Ann. Funct. Anal. 8 (2017), no. 2, 199-210
http://dx.doi.org/10.1215/20088752-3802705
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

WEIGHTED BACKWARD SHIFT OPERATORS WITH INVARIANT DISTRIBUTIONALLY SCRAMBLED SUBSETS

XINXING WU, ${ }^{1}$ LIDONG WANG,,$^{2^{*}}$ and GUANRONG CHEN ${ }^{3}$

Communicated by J. Soria

Abstract

We obtain a sufficient condition to ensure that weighted backward shift operators on Köthe sequence spaces $\lambda_{p}(A)$ admit an invariant distributionally ε-scrambled subset for any $0<\varepsilon<\operatorname{diam} \lambda_{p}(A)$. In particular, every Devaney chaotic weighted backward shift operator on $\lambda_{p}(A)$ supports such a subset.

1. Introduction and preliminaries

Sharkovsky's amazing discovery (see [16]), as well as Li and Yorke's famous work which introduced the mathematical concept of "chaos" (see [7]), have provoked the recent rapid advancement of discrete chaos theory. An essential feature of chaos is the impossibility of predicting its long-term dynamics due to the exponential separation of any two nearby orbits.

A generalization of the concept of Li-Yorke chaos is distributional chaos, introduced by Schweizer and Smítal [15]. Let (X, T) be a dynamical system. For any pair of points $x, y \in X$, define lower and upper distributional functions, $\mathbf{R} \longrightarrow[0,1]$ generated by T, x and y, as follows:

$$
F_{x, y}(t, T)=\liminf _{n \rightarrow+\infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{[0, t)}\left(d\left(T^{j}(x) T^{j}(y)\right)\right)
$$

[^0]2009, Martínez-Giménez, Oprocha, and Peris [9] provided sufficient conditions for uniform distributional chaos under backward shift operators on Köthe sequence spaces. In [17], the current authors provided a set of characterizations for uniform Li-Yorke chaos and a sufficient condition for maximal distributional chaos under backward shift operators on Köthe sequence spaces, and we proved in [18] that the annihilation operator of a quantum harmonic oscillator which is a specific weighted backward shift operator on the Köthe sequence space $\lambda_{2}(A)$ with $a_{j, k}=(j+1)^{k / 2}$ exhibits maximal distributional chaos. Very recently, it was shown in [10] that the mixing property is not sufficient for distributional chaos under a linear operator. For more recent results on linear chaos, we refer the reader to [6] and the references therein.

Concerning the invariance of chaos, Du [4] proved that an interval map is turbulent if and only if there is an invariant scrambled set. Later, Oprocha [12] extended this result and proved that exactly the same characterization is valid for distributional chaos. In 2013, Doleželová [3] showed that a compact system with a weak specification property, fixed point, and infinitely many mutually distinct periods has a dense Mycielski invariant distributionally scrambled set. Very recently, for the full shift $\left(\Sigma_{2}, \sigma\right)$ on two symbols, the present authors in [19] constructed an invariant distributionally ε-scrambled set for any $0<\varepsilon<\operatorname{diam} \Sigma_{2}$, in which each point is transitive but is not weakly almost periodic.

Inspired by the above work on the chaoticity and invariant scrambled subsets of various operators and by methods and results developed in [9], [12], [17], [18], and [19], we aim here to study conditions under which a dynamical system $\left(\lambda_{p}(A), B_{w}\right)$ admits an invariant distributionally ε - scrambled subset for any $0<\varepsilon<\operatorname{diam} \lambda_{p}(A)$.

2. Backward shift on the Köthe sequence space

Now, we give a detailed description of a dynamical system $\left(\lambda_{p}(A), B_{w}\right)$. An infinite matrix $A=\left(a_{j, k}\right)_{j, k \in \mathbf{N}}$ is called a Köthe matrix if, for each $j \in \mathbf{N}$, there exists some $k \in \mathbf{N}$ with $a_{j, k}>0$ and $0 \leq a_{j, k} \leq a_{j, k+1}$ for all $j, k \in \mathbf{N}$.

Consider the unilateral backward shift, also called the one-sided left shift,

$$
B\left(x_{1}, x_{2}, x_{3}, \ldots\right):=\left(x_{2}, x_{3}, x_{4}, \ldots\right),
$$

on the Köthe sequence space $\lambda_{p}(A)$ which is determined by a Köthe matrix A, where, for $1 \leq p<+\infty$,

$$
\lambda_{p}(A):=\left\{x \in \mathbf{K}^{\mathbf{N}}:\|x\|_{k}:=\left(\sum_{j=1}^{+\infty}\left|x_{j} a_{j, k}\right|^{p}\right)^{1 / p}<+\infty, \forall k \in \mathbf{N}\right\}
$$

and for $p=0$,

$$
\lambda_{0}(A):=\left\{x \in \mathbf{K}^{\mathbf{N}}: \lim _{j \rightarrow+\infty} x_{j} a_{j, k}=0,\|x\|_{k}:=\sup _{j \in \mathbf{N}}\left|x_{j} a_{j, k}\right|, \forall k \in \mathbf{N}\right\}
$$

It is possible to define a complete metric on $\lambda_{p}(A)$ which is invariant by translation:

$$
d(x, y)=\sum_{n=1}^{+\infty} \frac{1}{2^{n}} \frac{\|x-y\|_{n}}{1+\|x-y\|_{n}} .
$$

The operator $B: \lambda_{p}(A) \longrightarrow \lambda_{p}(A)$ is continuous and well defined if and only if the following condition on the matrix A is satisfied:

$$
\begin{equation*}
\forall n \in \mathbf{N}, \quad \exists m>n \text { such that } \sup _{j \in \mathbf{N}}\left|\frac{a_{j, n}}{a_{j+1, m}}\right|<+\infty, \tag{2.1}
\end{equation*}
$$

where in the case of $a_{j+1, m}=0$, we have $a_{j, n}=0$; therefore, we consider $\frac{0}{0}$ as 1 . Here, we give a brief description of the Köthe sequence space. Given a sequence $\left\{w_{i}\right\}_{i \geq 2}$ of strictly positive scalars, we may consider its associated weighted backward shift $B_{w}: \lambda_{p}(A) \longrightarrow \lambda_{p}(A)$,

$$
B_{w}\left(x_{1}, x_{2}, \ldots\right):=\left(w_{2} x_{2}, w_{3} x_{3}, \ldots\right)
$$

According to (2.1), the operator B_{w} is continuous if and only if

$$
\begin{equation*}
\forall n \in \mathbf{N}, \quad \exists m>n \text { such that } \sup _{j \in \mathbf{N}}\left|w_{j+1} \frac{a_{j, n}}{a_{j+1, m}}\right|<+\infty . \tag{2.2}
\end{equation*}
$$

Set

$$
\mathscr{W}_{1}=1, \quad \mathscr{W}_{i}=\frac{1}{w_{2} \cdots w_{i}}, \quad \mathscr{W}_{i}^{k}=w_{i} \cdots w_{i-k+1}, \quad i>1, k<i .
$$

Then it is easy to see that, for any $k \in \mathbf{N}$ and any $x=\left(x_{1}, x_{2}, \ldots\right) \in \lambda_{p}(A)$, we have

$$
B_{w}^{k}(x)=\left(\mathscr{W}_{k+1}^{k} x_{k+1}, \mathscr{W}_{k+2}^{k} x_{k+2}, \ldots\right) .
$$

We recall that the upper density $\overline{\mathscr{D}}(A)$ of a set $A \subset \mathbf{N}$ is defined by

$$
\overline{\mathscr{D}}(A)=\limsup _{n \rightarrow+\infty} \frac{|A \cap[1, n]|}{n},
$$

where $|\cdot|$ means the cardinality of a set.

3. Main Results

Theorem 3.1. Let A be a Köthe matrix, let $\left\{w_{i}\right\}_{i \geq 2}$ be a weight sequence satisfying (2.2) above, and let $1 \leq p<+\infty$ (or $p=0$). If there exists an increasing sequence $E \subset \mathbf{N}$ such that for any $n \in \mathbf{N}, \sum_{j \in E}\left|\mathscr{W}_{j} a_{j, n}\right|^{p}<+\infty$ (or $\lim _{E \ni j \rightarrow+\infty}\left|\mathscr{W}_{j} a_{j, n}\right|=0$) and $\overline{\mathscr{D}}(E)=1$, then $B_{w}: \lambda_{p}(A) \longrightarrow \lambda_{p}(A)$ has an invariant distributionally ε-scrambled subset for any $0<\varepsilon<\operatorname{diam} \lambda_{p}(A)$.
Proof. Suppose that $1 \leq p<+\infty$. The proof for the case in which $p=0$ is basically the same using the corresponding sup norm. By hypothesis, there exists an increasing sequence $\left\{m_{n}\right\}_{n \in \mathbf{N}} \subset \mathbf{N}$ such that

$$
1=\overline{\mathscr{D}}(E)=\lim _{n \rightarrow+\infty} \frac{\left|E \cap\left[1, m_{n}\right]\right|}{m_{n}} .
$$

Combining this with $\nu:=\left(\nu_{1}, \nu_{2}, \ldots\right)=\sum_{j \in E} \mathscr{W}_{j} e_{j} \in \lambda_{p}(A)$, where $e_{j}=\left(x_{1}, x_{2}\right.$, x_{3}, \ldots) with

$$
x_{i}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

it follows that there exists a subsequence $\left\{M_{n}\right\}_{n \in \mathbf{N}}$ of $\left\{m_{n}\right\}_{n \in \mathbf{N}}$ such that, for any $n \in \mathbf{N}, \sum_{j=M_{n}}^{+\infty}\left|\nu_{j} a_{j, n}\right|^{p}<1 / 2^{n}$, and $M_{n+1}-M_{n} \geq 4^{M_{n}}$. Take $\widetilde{\nu}=\left(\widetilde{\nu}_{1}, \widetilde{\nu}_{2}, \ldots\right)$ to be

$$
\widetilde{\nu}_{j}= \begin{cases}k \nu_{j} & M_{k} \leq j<M_{k+1}, k \in \mathbf{N} \\ \nu_{j} & 1 \leq j<M_{1}\end{cases}
$$

Because

$$
\begin{aligned}
\sum_{j=M_{k}}^{+\infty}\left|\widetilde{\nu}_{j} a_{j, k}\right|^{p} & =\sum_{l \geq k} \sum_{j=M_{l}}^{M_{l+1}-1}\left|\widetilde{\nu}_{j} a_{j, k}\right|^{p}=\sum_{l \geq k} \sum_{j=M_{l}}^{M_{l+1}-1} l^{p}\left|\nu_{j} a_{j, k}\right|^{p} \\
& \leq \sum_{l \geq k} \sum_{j=M_{l}}^{M_{l+1}-1} l^{p}\left|\nu_{j} a_{j, l}\right|^{p} \leq \sum_{l \geq k} \frac{l^{p}}{2^{l}}<+\infty
\end{aligned}
$$

we have $\widetilde{\nu} \in \lambda_{p}(A)$.
For any $k, n \in \mathbf{N}$, denote

$$
\widetilde{\nu}[k]=B_{w}^{k}(\widetilde{\nu})=\left(\mathscr{W}_{k+1}^{k} \widetilde{\nu}_{k+1}, \mathscr{W}_{k+2}^{k} \widetilde{\nu}_{k+2}, \ldots\right)
$$

and

$$
\widetilde{\nu}[k, n]=(\underbrace{0,0, \ldots, 0}_{n}, \mathscr{W}_{k+n+1}^{k} \widetilde{\nu}_{k+n+1}, \mathscr{W}_{k+n+2}^{k} \widetilde{2}_{k+n+2}, \ldots) .
$$

Since $\lim _{n \rightarrow+\infty} d(0, \widetilde{\nu}[k, n])=0$, it follows that, for any $k, n, q \in \mathbf{N}$, there exists $\zeta(k, n, q) \in \mathbf{N}$ such that, for all $m \geq \zeta(k, n, q)$ and all $1 \leq j \leq n$, we have that $d(0, \widetilde{\nu}[k+j, m])<1 / q$.

Applying mathematical induction, it is easy to show that there exists a subsequence $\left\{\widehat{M}_{n}\right\}_{n \in \mathbf{N}}$ of $\left\{M_{n}\right\}_{n \in \mathbf{N}}$ such that, for any $n \in \mathbf{N}$,
(i) $\widehat{M}_{1}=M_{1}$,
(ii) $\widehat{M}_{2 n}=\min \left\{M_{2 i}: M_{2 i} \geq \widehat{M}_{2 n-1}+2^{\widehat{M}_{2 n-1}}+2 \zeta\left(\widehat{M}_{2 n-1}, 2^{\widehat{M}_{2 n-1}}, 2 n\right), i \in \mathbf{N}\right\}$,
(iii) $\widehat{M}_{2 n+1}=\min \left\{M_{2 i+1}: M_{2 i+1}>\widehat{M}_{2 n}, i \in \mathbf{N}\right\}$.

Arrange all odd prime numbers by the natural order $<$, and denote them as $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$ For any $n, l \in \mathbf{N}$, set

$$
\begin{aligned}
\mathscr{B}_{n, l}^{0}= & \left\{j \in \mathbf{N}: \widehat{M}_{\mathrm{P}_{n}^{l}+1}+(2 u) l \leq j<\widehat{M}_{\mathrm{P}_{n}^{l}+1}+(2 u+1) l,\right. \\
& \left.0 \leq 2 u \leq\left[\frac{\widehat{M}_{\mathrm{P}_{n}^{l}+2}-\widehat{M}_{\mathrm{P}_{n}^{l}+1}}{l}\right]-3\right\}, \\
\mathscr{B}_{n, l}^{1}= & \left\{j \in \mathbf{N}: \widehat{M}_{\mathrm{P}_{n}^{l}+1}+(2 u+1) l \leq j<\widehat{M}_{\mathrm{P}_{n}^{l}+1}+(2 u+2) l,\right. \\
& \left.1 \leq 2 u+1 \leq\left[\frac{\widehat{M}_{\mathrm{P}_{n}^{l}+2}-\widehat{M}_{\mathrm{P}_{n}^{l}+1}}{l}\right]-3\right\},
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{B}_{n, l} & =\mathscr{B}_{n, l}^{0} \cup \mathscr{B}_{n, l}^{1} \\
& =\left\{j \in \mathbf{N}: \widehat{M}_{\mathrm{P}_{n}^{l}+1} \leq j<\widehat{M}_{\mathrm{P}_{n}^{l}+1}+l\left(\left[\frac{\widehat{M}_{\mathrm{P}_{n}^{l}+2}-\widehat{M}_{\mathrm{P}_{n}^{l}+1}}{l}\right]-2\right)\right\},
\end{aligned}
$$

and

$$
\mathscr{C}_{n}=\left\{j \in \mathbf{N}: \widehat{M}_{16^{n}} \leq j<\widehat{M}_{16^{n}+1}\right\} .
$$

It is not difficult to check that, for any $n, l \in \mathbf{N}$, there exists $\Xi_{n, l} \in\{0,1\}$ such that

$$
\left|E \cap \mathscr{B}_{n, l}^{\Xi_{n, l}}\right| \geq \frac{1}{2}\left|E \cap\left(\mathscr{B}_{n, l}^{0} \cup \mathscr{B}_{n, l}^{1}\right)\right|=\frac{1}{2}\left|E \cap \mathscr{B}_{n, l}\right|
$$

and

$$
\lim _{n \rightarrow+\infty} \frac{\left|E \cap \mathscr{C}_{n}\right|}{\widehat{M}_{16^{n}+1}}=\lim _{n \rightarrow+\infty} \frac{\left|E \cap \mathscr{B}_{n, l}\right|}{\widehat{M}_{\mathrm{P}_{n}^{l}+2}}=\overline{\mathscr{D}}(E)=1
$$

Take $\bar{\nu}=\left(\bar{\nu}_{1}, \bar{\nu}_{2}, \ldots\right)$ with

$$
\bar{\nu}_{j}= \begin{cases}\widetilde{\nu}_{j} & j \in \mathscr{C}_{n}, n \in \mathbf{N}, \\ \widetilde{\nu}_{j} & j \in \mathscr{B}_{n, l}^{\Xi_{n, l}}, n, l \in \mathbf{N}, \\ 0 & \text { otherwise },\end{cases}
$$

and set

$$
D=\bigcup_{n=0}^{+\infty} B_{w}^{n}(\{\alpha \bar{\nu}: \alpha \in(0,1)\})
$$

Clearly, $B_{w}(D) \subset D$ and D is uncountable. Given any two fixed points $a, b \in D$, with $a \neq b$, there exist $\alpha, \beta \in(0,1)$ and $p, q \in \mathbf{Z}^{+}$such that $a=B^{p}(\alpha \bar{\nu})$ and $b=B^{q}(\beta \bar{\nu})$. Assume that $p \leq q$. Set $\mathscr{D}=\left\{k \in \mathbf{N}: a_{j, k}=0, \forall j \in \mathbf{N}\right\}$. Without loss of generality, assume that $\mathscr{D}=\emptyset$. This implies that there exists $j_{0} \in \mathbf{N}$ such that $a_{j_{0}, 1}>0$. According to the definition of Köthe matrix, it is easy to see that, for each $k \in \mathbf{N}$,

$$
\begin{equation*}
a_{j_{0}, k} \geq a_{j_{0}, 1}>0 \tag{3.1}
\end{equation*}
$$

Now, we assert that (a, b) is a distributionally ε-chaotic pair for any $0<\varepsilon<$ $\operatorname{diam} \lambda_{p}(A)$.

First, observing that for any $\widehat{M}_{2 n-1} \leq j<\widehat{M}_{2 n-1}+2^{\widehat{M}_{2 n-1}}-q$, the first $\zeta\left(\widehat{M}_{2 n-1}, 2^{\widehat{M}_{2 n-1}}, 2 n\right)$ symbols of $B_{w}^{j+p}(\widetilde{\nu})$ and $B_{w}^{j+p}(\widetilde{\nu})$ are all equal to zero, we have

$$
\begin{aligned}
d\left(B_{w}^{j}(a), B_{w}^{j}(b)\right) & \leq d\left(0, B_{w}^{j}(a)\right)+d\left(0, B_{w}^{j}(b)\right) \\
& =d\left(0, B_{w}^{j+p}(\alpha \bar{\nu})\right)+d\left(0, B_{w}^{j+q}(\beta \bar{\nu})\right) \\
& \leq d\left(0, B_{w}^{j+p}(\widetilde{\nu})\right)+d\left(0, B_{w}^{j+q}(\widetilde{\nu})\right) \\
& \leq \frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n} .
\end{aligned}
$$

This implies that for any $t>0$ there exists $N \in \mathbf{N}$ such that, for any $n \geq N$ and any $\widehat{M}_{2 n-1} \leq j<\widehat{M}_{2 n-1}+2^{\widehat{M}_{2 n-1}}-q$, we have $d\left(B_{w}^{j}(a), B_{w}^{j}(b)\right)<t$. Consequently,

$$
\begin{aligned}
F_{a, b}^{*}\left(t, B_{w}\right) & =\limsup _{n \rightarrow+\infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{[0, t)}\left(d\left(B_{w}^{j}(a), B_{w}^{j}(b)\right)\right) \\
& \geq \limsup _{n \rightarrow+\infty} \frac{1}{\widehat{M}_{2 n-1}+2^{\widehat{M}_{2 n-1}}} \sum_{j=1}^{\widehat{M}_{2 n-1}+2^{\widehat{M}_{2 n-1}}} \chi_{[0, t)}\left(d\left(B_{w}^{j}(a), B_{w}^{j}(b)\right)\right) \\
& \geq \limsup _{n \rightarrow+\infty} \frac{2^{\widehat{M}_{2 n-1}}-q}{\widehat{M}_{2 n-1}+2^{\widehat{M}_{2 n-1}}} \\
& =1
\end{aligned}
$$

Second, given any fixed $0<\varepsilon<\operatorname{diam} \lambda_{p}(A)$, there exists $M \in \mathbf{N}$ such that

$$
\begin{equation*}
\sum_{n=1}^{+\infty} \frac{1}{2^{n}} \frac{M}{1+M} \geq \varepsilon \tag{3.2}
\end{equation*}
$$

To prove that $F_{a, b}\left(\varepsilon, B_{w}\right)=0$, consider the two following cases.
Case 1: $p=q$ and $a \neq \beta$. For any $j>j_{0}$, denote

$$
B_{w}^{j-j_{0}}(\bar{\nu})=\left(\xi_{1}^{(j)}, \xi_{2}^{(j)}, \ldots\right)
$$

Observe that, for any $n>j_{0}$ and any $j \in E \cap \mathscr{C}_{n}$,

$$
\left|\xi_{j_{0}}^{(j)}\right|=\left|\mathscr{W}_{j}^{j-j_{0}} \bar{\nu}_{j}\right| \geq\left|\frac{16^{n}}{w_{2} \cdots w_{j_{0}}}\right|
$$

Combining this with (3.1), it follows that, for any $k \in \mathbf{N}$,

$$
\begin{aligned}
& \left\|B_{w}^{j-j_{0}}((\alpha-\beta) \bar{\nu})\right\|_{k} \\
& \quad=\left(\sum_{i=1}^{+\infty}\left|(\alpha-\beta) \xi_{i}^{(j)} a_{i, k}\right|^{p}\right)^{1 / p} \\
& \quad \geq\left|(\alpha-\beta) \xi_{j_{0}}^{(j)} a_{j_{0}, k}\right| \\
& \quad \geq\left|(\alpha-\beta) \frac{16^{n}}{w_{2} \ldots w_{j_{0}}} a_{j_{0}, 1}\right| \longrightarrow+\infty \quad(n \longrightarrow+\infty)
\end{aligned}
$$

This with (3.2) leads to the fact that there exists some $N^{\prime}>j_{0}$ such that, for any $n \geq N^{\prime}$ and any $j \in E \cap \mathscr{C}_{n}$,

$$
\begin{aligned}
d\left(B_{w}^{j-j_{0}-q}(a), B_{w}^{j-j_{0}-q}(b)\right) & =d\left(0, B_{w}^{j-j_{0}}((\alpha-\beta) \bar{\nu})\right) \\
& =\sum_{k=1}^{+\infty} \frac{1}{2^{k}} \frac{\left\|B_{w}^{j-j_{0}}((\alpha-\beta) \bar{\nu})\right\|_{k}}{1+\left\|B_{w}^{j-j_{0}}((\alpha-\beta) \bar{\nu})\right\|_{k}} \\
& \geq \varepsilon
\end{aligned}
$$

Then

$$
\begin{align*}
1 & \geq \limsup _{n \rightarrow+\infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{[\varepsilon,+\infty)}\left(d\left(B_{w}^{j}(a), B_{w}^{j}(b)\right)\right) \\
& \geq \limsup _{n \rightarrow+\infty} \frac{1}{\widehat{M}_{16^{n}+1}} \sum_{j=1}^{\widehat{M}_{16^{n}+1}} \chi_{[\varepsilon,+\infty)}\left(d\left(B_{w}^{j}(a), B_{w}^{j}(b)\right)\right) \\
& \geq \lim _{n \rightarrow+\infty} \frac{\left|E \cap \mathscr{C}_{n}\right|}{\widehat{M}_{16^{n}+1}}=1 . \tag{3.3}
\end{align*}
$$

Case 2: $p<q$. Note that, for any $n>j_{0}$ and any $j \in E \cap \mathscr{B}_{n, q-p}^{\Xi_{n, q-p}}$,

$$
\left|\xi_{j_{0}}^{(j)}\right|=\left|\mathscr{W}_{j}^{j-j_{0}} \bar{\nu}_{j}\right| \geq\left|\frac{\mathrm{P}_{n}^{q-p}+1}{w_{2} \cdots w_{j_{0}}}\right|
$$

and

$$
\xi_{j_{0}}^{(j+(q-p))}=\mathscr{W}_{j+(q-p)}^{j-j_{0}+(q-p)} \bar{\nu}_{j+(q-p)}=0 .
$$

This together with (3.1) leads to the fact that, for any $k \in \mathbf{N}$,

$$
\begin{align*}
\left\|B_{w}^{j-j_{0}-p}(a-b)\right\|_{k} & =\left\|B_{w}^{j-j_{0}}(\alpha \bar{\nu})-B_{w}^{j-j_{0}+(q-p)}(\beta \bar{\nu})\right\|_{k} \\
& \geq\left|\left(\alpha \xi_{j_{0}}^{(j)}-\beta \xi_{j_{0}}^{(j+(q-p))}\right) a_{j_{0}, k}\right| \\
& \geq\left|\alpha \frac{\mathrm{P}_{n}^{q-p}+1}{w_{2} \cdots w_{j_{0}}} a_{j_{0}, 1}\right| \longrightarrow+\infty \quad(n \longrightarrow+\infty) \tag{3.4}
\end{align*}
$$

Take

$$
E_{n}=\left\{j \in \mathscr{B}_{n, q-p}: j+(q-p) \in E \cap \mathscr{B}_{n, q-p}^{\Xi_{n, q-p}}\right\}
$$

It is easy to verify that, for any $n>j_{0}$ and any $j \in E_{n}$,

$$
\xi_{j_{0}}^{(j)}=\mathscr{W}_{j}^{j-j_{0}} \bar{\nu}_{j}=0
$$

and

$$
\left|\xi_{j_{0}}^{(j+(q-p))}\right|=\left|\mathscr{W}_{j+(q-p)}^{j-j_{0}+(q-p)} \bar{\nu}_{j+(q-p)}\right| \geq\left|\frac{\mathrm{P}_{n}^{q-p}+1}{w_{2} \cdots w_{j_{0}}}\right|
$$

Combining this with (3.1), in a similar way as in the proof of (3.4), it follows that for any $j \in E_{n}$ and any $k \in \mathbf{N}$,

$$
\begin{equation*}
\left\|B_{w}^{j-j_{0}-p}(a-b)\right\|_{k} \geq\left|\beta \frac{\mathrm{P}_{n}^{q-p}+1}{w_{2} \cdots w_{j_{0}}} a_{j_{0}, 1}\right| \tag{3.5}
\end{equation*}
$$

Applying (3.2), (3.4), and (3.5), we have that there exists $N^{\prime \prime}>j_{0}$ such that for any $n \geq N^{\prime \prime}$ and any $j \in E_{n} \cup\left(E \cap \mathscr{B}_{n, q-p}^{\Xi_{n, q-p}}\right)$,

$$
d\left(B_{w}^{j-j_{0}-p}(a), B_{w}^{j-j_{0}-p}(b)\right) \geq \varepsilon
$$

Noting that $E_{n} \cap\left(E \cap \mathscr{B}_{n, q-p}^{\Xi_{n, p-p}}\right)=\emptyset$, we have

$$
\begin{align*}
1 & \geq \limsup _{n \rightarrow+\infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{[\varepsilon,+\infty)}\left(d\left(B_{w}^{j}(a), B_{w}^{j}(b)\right)\right) \\
& \geq \limsup _{n \rightarrow+\infty} \frac{1}{\widehat{M}_{\mathrm{P}_{n}^{q-p}+2}} \sum_{j=1}^{\widehat{\mathrm{P}}_{n}^{q-p}+2} \chi_{[\varepsilon,+\infty)}\left(d\left(B_{w}^{j}(a), B_{w}^{j}(b)\right)\right) \\
& \geq \limsup _{n \rightarrow+\infty} \frac{\left|E_{n}\right|+\left|E \cap \mathscr{B}_{n, q-p}^{\Xi_{n, q-p}}\right|}{\widehat{M}_{\mathrm{P}_{n}^{q-p}+2}} \\
& \geq \limsup _{n \rightarrow+\infty} \frac{2\left|E \cap \mathscr{B}_{n, q-p}^{\Xi_{n-p}}\right|-(q-p)}{\widehat{M}_{\mathrm{P}_{n}^{q-p}}} \\
& \geq \limsup _{n \rightarrow+\infty} \frac{\left|E \cap \mathscr{B}_{n, q-p}\right|-(q-p)}{\widehat{M}_{\mathrm{P}_{n}^{q-p}}+2}=1 . \tag{3.6}
\end{align*}
$$

Summing up (3.3) and (3.6), we obtain

$$
F_{a, b}\left(\varepsilon, B_{w}\right)=1-\limsup _{n \rightarrow+\infty} \frac{1}{n} \sum_{j=1}^{n} \chi_{[\varepsilon,+\infty)}\left(d\left(B_{w}^{j}(a), B_{w}^{j}(b)\right)\right)=0
$$

Hence, D is an invariant distributionally ε-scrambled set for any $0<\varepsilon<$ $\operatorname{diam} \lambda_{p}(A)$.
Remark 3.2.
(1) It is remarkable that [1, Corollary 27] proved that for a Fréchet sequence space, the same hypothesis of Theorem 3.1 ensures the existence of a dense uniformly distributionally scrambled submanifold.
(2) A stronger condition given in [11, Corollary 3.4] characterizing chaos in the sense of Devaney was

$$
\sum_{j=1}^{+\infty}\left|\mathscr{W}_{j} a_{j, n}\right|^{p}<+\infty
$$

This condition implies the existence of invariant distributionally ε-scrambled sets for any $0<\varepsilon<\operatorname{diam} \lambda_{p}(A)$, since the hypothesis of Theorem 3.1 above is satisfied for $E=\mathbf{N}$.
Let B_{w} be a weighted backward shift operator defined on a weighted l^{p}-space $l^{p}\left(\left\{a_{j}\right\}_{j \in \mathbf{N}}\right)$ formed by a sequence of strictly positive weights $\left\{a_{j}\right\}_{j \in \mathbf{N}}$, where, for $1 \leq p<+\infty$,

$$
l^{p}\left(\left\{a_{j}\right\}_{j \in \mathbf{N}}\right)=\left\{x=\left(x_{1}, x_{2}, \ldots\right):\|x\|=\left(\sum_{j=1}^{+\infty}\left|a_{j} x_{j}\right|^{p}\right)^{1 / p}<+\infty\right\}
$$

and

$$
l^{0}\left(\left\{a_{j}\right\}_{j \in \mathbf{N}}\right)=\left\{x=\left(x_{1}, x_{2}, \ldots\right): \lim _{j \rightarrow+\infty} a_{j} x_{j}=0,\|x\|=\sup _{j \in \mathbf{N}}\left|a_{j} x_{j}\right|\right\}
$$

Combining Proposition 1.1 with Theorem 3.1 yields the following result.
Corollary 3.3. If there exists an increasing sequence $E \subset \mathbf{N}$ such that $\overline{\mathscr{D}}(E)=1$ and $\sum_{j \in E}\left|\mathscr{W}_{j} a_{j}\right|^{p}<+\infty\left(\right.$ or $\left.\lim _{E \ni j \rightarrow+\infty}\left|\mathscr{W}_{j} a_{j}\right|=0\right)$, then $B_{w}: l^{p}\left(\left\{a_{j}\right\}_{j \in \mathbf{N}}\right) \longrightarrow$ $l^{p}\left(\left\{a_{j}\right\}_{j \in \mathbf{N}}\right)$ has an invariant distributionally ε-scrambled subset for any $0<\varepsilon<$ $\operatorname{diam} l^{p}\left(\left\{a_{j}\right\}_{j \in \mathbf{N}}\right)$.
Example 3.4. Consider the subspace of $\mathscr{H}=L^{2}(-\infty,+\infty)$

$$
\mathscr{H}_{1}:=\left\{\phi \in \mathscr{H}: \phi=\sum_{n=0}^{+\infty} c_{n} \psi_{n}, \sum_{n=0}^{+\infty}\left|c_{n}\right|^{2}(n+1)^{r}<+\infty, \forall r>0\right\}
$$

where

$$
\psi_{n}(x)=\frac{e^{-x^{2} / 2}}{\sqrt{\sqrt{\pi} 2^{n} n!}}(-1)^{n} e^{x^{2}} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} e^{-x^{2}}, \quad n=0,1, \ldots
$$

Here, \mathscr{H}_{1} is an infinite-dimensional Fréchet space with topology defined by the system of seminorms $p_{r}(\cdot)$ of the form

$$
p_{r}(\phi)=p_{r}\left(\sum_{n=0}^{+\infty} c_{n} \psi_{n}\right)=\left(\sum_{n=0}^{+\infty}\left|c_{n}\right|^{2}(n+1)^{r}\right)^{1 / 2}
$$

This topology on \mathscr{H}_{1} can be equivalently introduced by the metric

$$
\rho(\phi, \psi)=\sum_{m=0}^{+\infty} \frac{1}{2^{m}} \frac{p_{m}(\phi-\psi)}{1+p_{m}(\phi-\psi)}
$$

According to the basic properties of Hermite polynomials, the annihilation operator for a quantum harmonic oscillator $\hat{a}=\frac{1}{\sqrt{2}}\left(x+\frac{\mathrm{d}}{\mathrm{d} x}\right): \mathscr{H}_{1} \longrightarrow \mathscr{H}_{1}$ is given by

$$
\hat{a}\left(\psi_{n}\right)=\frac{1}{\sqrt{2}}\left(x+\frac{\mathrm{d}}{\mathrm{~d} x}\right) \psi_{n}=\sqrt{n} \psi_{n-1} .
$$

It is not difficult to check that the system $\left(\mathscr{H}_{1}, \hat{a}\right)$ can also be represented as the weighted backward shift operator

$$
B_{w}\left(x_{1}, x_{2}, \ldots\right):=\left(\sqrt{2} x_{2}, \sqrt{3} x_{3}, \ldots\right)
$$

defined on the Köthe sequence space $\lambda_{2}(A)$ with $a_{j, k}=(j+1)^{k / 2}$. From Theorem 3.1, it follows that \hat{a} has an invariant distributionally ε-scrambled set for any $0<\varepsilon<2$ under the metric ρ. This shows that the main results in [18] follow naturally.

Acknowledgments. Wu's work was supported by National Natural Science Foundation of China (NSFC) grants 11601449 and 61601306, and Southwest Petroleum University scientific research starting project 2015QHZ029. Wang's work was supported by Central Universities Independent Research Foundation grant DC 201502050201) and NSFC grant 11271061. Chen's work was supported by Hong Kong Research Grants Council GRF grant CityU 11201414.

References

1. N. C. Bernardes, Jr., A. Bonilla, V. Müller, and A. Peris, Distributional chaos for linear operators, J. Funct. Anal. 265 (2013), no. 9, 2143-2163. Zbl 1302.47014. MR3084499. DOI 10.1016/j.jfa.2013.06.019. 200, 207
2. N. C. Bernardes, Jr., A. Bonilla, V. Müller, and A. Peris, Li-Yorke chaos in linear dynamics, Ergodic Theory Dynam. Systems 35 (2015), no. 6, 1723-1745. Zbl 06480859 . MR3377281. DOI 10.1017/etds.2014.20. 200
3. J. Doleželová, Distributionally scrambled invariant sets in a compact metric space, Nonlinear. Anal. 79 (2013), 80-84. Zbl 1260.37020. MR3005028. DOI 10.1016/j.na.2012.11.005. 201
4. B. Du, On the invariance of Li-Yorke chaos of interval maps, J. Difference Equ. Appl. 11 (2005), no. 9, 823-828. Zbl 1076.37024. MR2159799. DOI 10.1080/10236190500138320. 201
5. K.-G. Grosse-Erdmann, Recent developments in hypercyclicity, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 97 (2003), no. 2, 273-286. Zbl 1076.47005. MR2068180. 200
6. K.-G. Grosse-Erdmann and A. Peris, Linear Chaos, Universitext, Springer, London, 2011. Zbl 1246.47004. MR2919812. DOI 10.1007/978-1-4471-2170-1. 200, 201
7. T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985-992. Zbl 0351.92021. MR0385028. 199
8. F. Martínez-Giménez, Chaos for power series of backward shift operators, Proc. Amer. Math. Soc. 135 (2007), no. 6, 1741-1752. Zbl 1115.47008. MR2286084. DOI 10.1090/ S0002-9939-07-08658-3. 200
9. F. Martínez-Giménez, P. Oprocha, and A. Peris, Distributional chaos for backward shifts, J. Math. Anal. Appl. 351 (2009), no. 2, 607-615. Zbl 1157.47008. MR2473967. DOI 10.1016/j.jmaa.2008.10.049. 200, 201
10. F. Martínez-Giménez, P. Oprocha, and A. Peris, Distributional chaos for operators with full scrambled sets, Math. Z. 274 (2013), no. 1-2, 603-612. Zbl 1279.47017. MR3054346. DOI 10.1007/s00209-012-1087-8. 200, 201
11. F. Martínez-Giménez and A. Peris, Chaos for backward shift operators, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 8, 1703-1715. Zbl 1070.47024. MR1927407. DOI 10.1142/S0218127402005418. 200, 207
12. P. Oprocha, Invariant scrambled sets and distributional chaos, Dyn. Syst. 24 (2009), no. 1, 31-43. Zbl 1171.37022. MR2548813. DOI 10.1080/14689360802415114. 201
13. S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22. Zbl 0174.44203. MR0241956. 200
14. H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993-1004. Zbl 0822.47030. MR1249890. DOI 10.2307/2154883. 200
15. B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994), no. 2, 737-754. Zbl 0812.58062. MR1227094. DOI 10.2307/2154504. 199
16. A. N. Sharkovsky, Coexistence of cycles of a continuous map of the line into itself (in Russian), Ukraïn. Mat. Zh. 16 (1964), no. 1, 61-71; English translation in Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), no. 5, 1263-1273. Zbl 0890.58012. MR1361914. DOI 10.1142/S0218127495000934. 199
17. X. Wu, G. Chen, and P. Zhu, Invariance of chaos from backward shift on the Köthe sequence space, Nonlinearity 27 (2014), no. 2, 271-288. Zbl 1291.54046. MR3162611. DOI 10.1088/ 0951-7715/27/2/271. 200, 201
18. X. Wu and P. Zhu, The principal measure of a quantum harmonic oscillator, J. Phys. A 44 (2011), no. 50, 505101. Zbl 1238.81129. MR2869648. DOI 10.1088/1751-8113/44/50/ 505101. 200, 201, 208
19. X. Wu and P. Zhu, Invariant scrambled set and maximal distributional chaos, Ann. Polon. Math. 109 (2013), no. 3, 271-278. Zbl 1347.37067. MR3125144. DOI 10.4064/ap109-3-3. 201
${ }^{1}$ School of Sciences and Research Center for Mathematics and Mechanics, Southwest Petroleum University, Chengdu, Sichuan, 610500, People's Republic of China.

E-mail address: wuxinxing5201314@163.com
${ }^{2}$ Zhuhai College of Jilin University, Zhuhai, 519041, People's Republic of China and Department of Mathematics, Dalian Nationalities University, Dalian, 116600, People's Republic of China.

E-mail address: wld0707@126.com
${ }^{3}$ Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China.

E-mail address: gchen@ee.cityu.edu.hk

[^0]: Copyright 2017 by the Tusi Mathematical Research Group.
 Received Mar. 18, 2016; Accepted Aug. 18, 2016.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 47A16; Secondary 47A15, 47A16.
 Keywords. weighted backward shift, distributional chaos, invariant subset, Köthe sequence space.

