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This paper focuses on almost-periodic time-dependent perturbations of an almost-periodic differential equation near the
degenerate equilibrium point. Using the KAMmethod, the perturbed equation can be reduced to a suitable normal form with zero
as equilibrium point by an affine almost-periodic transformation. Hence, for the equation we can obtain a small almost-periodic
solution.

1. Introduction and Main Result

Reducibility of nonautonomous finite-dimensional systems
with quasiperiodic coefficients has basic importance in the
analysis of dynamical systems; see [1, 2]. Unfortunately, we
cannot guarantee in general such reducibility. In the last years,
establishing the reducibility of finite-dimensional systems
by means of the KAM tools is an active field of research,
and many authors are devoted to the study of reducibility
of such systems. In 1996, Jorba and Simó [3] considered
reducibility of the following nonlinear quasiperiodic system
near an elliptic equilibrium point:

�̇� = (𝐴 + 𝜖𝑄 (𝑡, 𝜖)) 𝑥 + 𝜖𝑔 (𝑡, 𝜖) + ℎ (𝑥, 𝑡, 𝜖) ,

𝑥 ∈ R
𝑑
,

(1)

where 𝐴 is assumed to be elliptic.𝑄(𝑡, 𝜖), 𝑔(𝑡, 𝜖) and ℎ(𝑥, 𝑡, 𝜖)

depend on time in a quasiperiodic way with basic frequencies
(𝜔1, . . . , 𝜔𝑟), ℎ(𝑥, 𝜔𝑡) = 𝑂(𝑥

2
) as 𝑥 → 0. Under a

nondegenerate condition and a nonresonant condition, using
KAM iteration they proved that for most sufficiently small
𝜖 by an affine quasiperiodic transformation the system (1) is
reducible to the following form:

�̇� = 𝐴∗ (𝜖) 𝑥 + ℎ∗ (𝑥, 𝑡, 𝜖) , 𝑥 ∈ R
𝑑
,

(2)

where 𝐴∗ is a constant matrix close to 𝐴 and ℎ∗(𝑥, 𝑡, 𝜖) =

𝑂(𝑥

2
) (𝑥 → 0) is a high-order term close to ℎ. Therefore,

the system (1) has a quasiperiodic solution near the zero
equilibrium point. Some similar results were obtained in [4].

Recently, Xu and Jiang [5] considered the following
nonlinear quasiperiodic differential equation:

�̇� = 𝑥

2𝑛+1
+ ℎ (𝑥, 𝜔𝑡) + 𝑓 (𝑥, 𝜔𝑡) , 𝑥 ∈ R, (3)

where 𝑛 ≥ 0 is an integer, ℎ = 𝑂(𝑥

2𝑛+2
) (𝑥 → 0) is a

higher-order term, 𝑓 is a small perturbation term, and ℎ and
𝑓 are all real analytic in 𝑥 and 𝑡, quasiperiodic in 𝑡 with
frequency 𝜔. Under the Diophantine condition, when 𝑓 is
sufficiently small the differential equation (3) can be reduced
to a suitable normal formwith zero as equilibriumpoint by an
affine quasiperiodic transformation, so it has a quasiperiodic
solution near zero.

In 1996, Xu and You [6] considered the following linear
almost-periodic differential equation:

�̇� = [𝐴 + 𝜖𝑄 (𝑡)] 𝑥, 𝑥 ∈ R
𝑑
,

(4)

where 𝐴 is a constant 𝑑 × 𝑑matrix with different eigenvalues
𝜆1, . . . , 𝜆𝑑 and 𝑄(𝑡) is a 𝑑 × 𝑑 almost-periodic matrix with
the frequency 𝜔 = (𝜔1, 𝜔2, . . .). Under some small divisor
condition, they proved that, for most sufficiently small 𝜖 the
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system (4) is reducible to the form ̇𝑦 = 𝐵𝑦 by an affine almost-
periodic transformation.

By the above inspired works [5, 6], we consider the
following nonlinear almost-periodic differential equation:

�̇� = (𝐴 + 𝜖𝑎 (𝑡)) 𝑥

2𝑛+1
+ ℎ (𝑥, 𝑡, 𝜖) + 𝑓 (𝑥, 𝑡, 𝜖) , 𝑥 ∈ R,

(5)

where 𝑛 ≥ 0 is an integer, 𝐴 is a positive number, 𝜖 is a
small parameter, ℎ is a higher-order term, and 𝑓 is a small
perturbation term. Under some suitable conditions, we show
that the differential equation (5) can be reduced to a suitable
normal form with zero as equilibrium point by an affine
almost-periodic transformation, so it has an almost-periodic
solution near zero.

For our purpose, we first introduce some definitions and
notations.

Definition 1. The function 𝑓(𝑡) is called a quasiperiodic
function of 𝑡 with frequencies 𝜔1, 𝜔2, . . . , 𝜔𝑚, if there is a
function 𝐹(𝜃) = 𝐹(𝜃1, 𝜃2, . . . , 𝜃𝑚), which is 2𝜋-periodic in all
its arguments 𝜃𝑖 (𝑖 = 1, . . . , 𝑚), such that 𝑓(𝑡) = 𝐹(𝜔𝑡) =

𝐹(𝜔1𝑡, 𝜔2𝑡, . . . , 𝜔𝑚𝑡).
If𝐹(𝜃) is analytic on a strip domain T𝑠 = {𝜃 ∈ C𝑚

/2𝜋Z𝑚
|

|𝐼𝑚𝜃𝑗| ≤ 𝑠, 𝑗 = 1, 2, . . . , 𝑚}, we say that 𝑓(𝑡) is analytic
quasiperiodic on T𝑠. Expand 𝑓(𝑡) as a Fourier series 𝑓 =

∑

𝑘∈Z𝑚 𝑓𝑘𝑒
𝑖⟨𝑘,𝜃⟩, where 𝑖 =

√
−1 and 𝜃 = 𝜔𝑡. Define ‖𝑓‖T

𝑠

=

∑

𝑘∈Z𝑚 |𝑓𝑘|𝑒
𝑠|𝑘|.

Write𝐷(0, 𝑟) = {𝑥 ∈ C|𝑥| ≤ 𝑟} and Δ 𝑟,𝑠 = 𝐷(0, 𝑟) × T𝑠.

Definition 2. Let 𝑃(𝑥, 𝑡) be real analytic in 𝑥 and t on Δ 𝑟,𝑠,
and let 𝑃(𝑥, 𝑡) be quasiperiodic with respect to 𝑡 with the
frequency 𝜔. Then 𝑃 can be expanded as a Fourier series as
follows:

𝑃 (𝑥, 𝑡) = ∑

𝑘∈Z𝑚

𝑃𝑘 (𝑥) 𝑒
𝑖⟨𝑘,𝜃⟩

. (6)

Define a norm by

‖𝑃‖Δ
𝑟,𝑠

= ∑

𝑘∈Z𝑚









𝑃𝑘







𝑟
𝑒

|𝑘|𝑠
, (7)

where 𝑃𝑘(𝑥) = ∑

∞

𝑙=0
𝑃𝑙𝑘𝑥

𝑙 and |𝑃𝑘|𝑟 = sup
𝑥∈𝐷(0,𝑟)

∑

∞

𝑙=0
|𝑃𝑙𝑘||𝑥|

𝑙.
It is easy to see that









𝑃1𝑃2







Δ
𝑟,𝑠

≤









𝑃1







Δ
𝑟,𝑠

⋅









𝑃2







Δ
𝑟,𝑠

. (8)

Definition 3 (see [7]). A function Δ is called an approxima-
tion function if it satisfies the following:

(1) Δ : [0, +∞) → [1, +∞), Δ(0) = 1, and Δ is a
nondecreasing function;

(2) logΔ(𝑡)/𝑡 is a decreasing function in [0, +∞);

(3) ∫

∞

0
logΔ(𝑡)/𝑡

2
< +∞.

Obviously, any positive power of an approximation function
is again an approximation function, so is the product of two
such functions.

Definition 4 (see [8]). Suppose that N is the natural number
set and 𝜏 is a set composed of the subset of N. We say that
(𝜏, [⋅]) is the finite spatial structure on N if 𝜏 satisfies the
following:

(1) the empty set 0 ∈ 𝜏;

(2) if Λ 1, Λ 2 ∈ 𝜏, then Λ 1 ∪ Λ 2 ∈ 𝜏;

(3) ⋃

Λ∈𝜏
Λ = N, [0] = 0 and [Λ 1 ∪ Λ 2] ≤ [Λ 1] + [Λ 2]

([⋅] is called a weight function defined in 𝜏).

Definition 5. Assume 𝑘 = (𝑘1, 𝑘2, . . .) ∈ Z∞, the set

supp 𝑘 = {(𝑖1, 𝑖2, . . . , 𝑖𝑛) | 𝑘𝑗 ̸= 0 as 𝑗 = 𝑖1, 𝑖2, . . . , 𝑖𝑛;

𝑘𝑗 = 0 as 𝑗 = otherwise}
(9)

is called the support set of 𝑘. Consider

[𝑘] =: inf
supp 𝑘⊂Λ,Λ∈𝜏

[Λ] (10)

is called the weight of 𝑘, and |𝑘| =: ∑

∞

𝑖=1
|𝑘𝑖|.

Definition 6. If 𝑄(𝑡) = ∑

Λ∈𝜏
𝑄Λ(𝑡) with 𝑄Λ(𝑡) is quasiperi-

odic function with the frequency 𝜔Λ = {𝜔𝑖 | 𝑖 ∈ Λ}, then𝑄(𝑡)

is said to be almost-periodic function with the finite spatial
structure (𝜏, [⋅]). If 𝜔 = (𝜔1, 𝜔2, . . .) is the biggest subset of
∪𝜔Λ in the sense of integer modulus, then 𝜔 is called to be
the frequency of 𝑄(𝑡).

If almost-periodic function𝑄(𝑡) has a rapidly converging
Fourier series expansion

𝑄 (𝑡) = ∑

𝑘∈𝑍∞

𝑈𝑘𝑒
𝑖⟨𝑘,𝜔𝑡⟩

, (11)

where 𝜔 = (𝜔1, 𝜔2, . . .) is the frequency and 𝑘 = (𝑘1, 𝑘2, . . .)

have only finitely many nonzero components, then 𝑄(𝑡) is
analytic in 𝑡.

Definition 7. Let 𝑄(𝑡) = ∑

Λ∈𝜏
𝑄Λ(𝑡) with the frequency 𝜔 =

(𝜔1, 𝜔2, . . .). For𝑚 ≥ 0, 𝑠 ≥ 0,

|||𝑄 (𝑡)|||𝑚,𝑠 = ∑

Λ∈𝜏

𝑒

𝑚[Λ]






𝑄Λ (𝑡)







T
𝑠

(12)

is called the weight norm of𝑄(𝑡) in the finite spatial structure
(𝜏, [⋅]).

From Definition 7, we know that |𝑄(𝑡)| ≤ |||𝑄(𝑡)|||0,𝑠 ≤

|||𝑄(𝑡)|||𝑚,𝑠, for𝑚 ≥ 0, 𝑠 ≥ 0.

Definition 8. Let 𝑃(𝑥, 𝑡) = ∑

Λ∈𝜏
𝑃Λ(𝑥, 𝑡) with the frequency

𝜔 = (𝜔1, 𝜔2 ⋅ ⋅ ⋅ ), for𝑚 ≥ 0, 𝑠 ≥ 0,

|||𝑃 (𝑥, 𝑡)|||𝑚,Δ
𝑟,𝑠

= ∑

Λ∈𝜏

𝑒

𝑚[Λ]






𝑃Λ (𝑥, 𝑡)







Δ
𝑟,𝑠

(13)

is called the weight norm of 𝑃(𝑥, 𝑡) in the finite spatial
structure (𝜏, [⋅]).
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Let 𝑄(𝑡) = ∑

Λ∈𝜏
𝑄Λ(𝑡) be almost-periodic function; then

[𝑄] = lim
𝑇→∞

∫

𝑇

−𝑇

𝑄 (𝑡) 𝑑𝑡
(14)

is called themean value of𝑄(𝑡).The existence of the limit can
be found in [9].

Throughout this paper, we assume that the following
hypotheses hold

(H1) the functions 𝑎, ℎ, and 𝑓 are real analytic in all
variables and almost-periodic in 𝑡 with common
frequency vector 𝜔 = (𝜔1, 𝜔2, . . .); they also have the
the finite spatial structure (𝜏, [⋅]);

(H2) |⟨𝑘, 𝜔⟩| ≥ 𝛼/Δ

4
(|𝑘|)Δ

4
([𝑘]), 𝑘 ∈ Z∞

\{0}, where 𝛼 > 0

is a constant and Δ is an approximation function;
(H3) ℎ = O(𝑥

2𝑛+2
) (𝑥 → 0), where 𝑛 ≥ 0, and for fixed

𝑚0, 𝑠 > 0, we have

|||𝑎 (𝑡)|||𝑚
0
,𝑠 < +∞. (15)

Now we are ready to state the main result of this paper.

Theorem 9. Suppose that conditions (𝐻1)–(𝐻3) hold. Then
there exists sufficiently small 𝜖 > 0, such that if

























𝑓























𝑚
0
,Δ
𝑟,𝑠

≤ 𝜖, (16)

then there exists an affine real analytic almost-periodic trans-
formation of the form 𝑥 = 𝑦 + 𝑢(𝑡) such that the differential
equation (5) is changed to

̇𝑦 = 𝐴∗𝑦
2𝑛+1

+ 𝑓∗ (𝑦, 𝑡) , (17)

where𝑓∗(𝑦, 𝑡) = 𝑂(𝑦) as 𝑦 → 0. Moreover, 𝑢 is a real analytic
almost-periodic in 𝑡 with

|||𝑢 (𝑡)|||0,𝑠/2 = 𝑂 (𝜖

1/(2𝑛+2)
) , (18)

and 𝑥 = 𝑢(𝑡) is also an almost-periodic solution of (5).

2. Normal Form for an Almost-Periodic
Equation with Parameters

The proof of Theorem 9 is based on a norm form theorem
for an almost-periodic equation with parameters. In this
section, we first consider the following real almost-periodic
differential equation with two parameters:

�̇� = (𝐴 + 𝜖 [𝑎]) 𝜉

2𝑛+1
− 𝜆

+ (𝐴 + 𝜖𝑎 (𝑡)) Ω (𝜉) 𝑥 + 𝑃 (𝑥, 𝑡; 𝜉, 𝜆) ,

(19)

where [𝑎] is the mean value of 𝑎(𝑡). 𝜆 ∈ 𝐽 = [−1, 1], 𝜉 ∈ 𝐼 =

[−𝛿, 𝛿] are parameters andΩ(𝜉) = (2𝑛 + 1)𝜉

2𝑛.
Let 𝑇 ⊂ R2 and 𝑝 = (𝜉, 𝜆). Denote by

𝐵 (𝑇, 𝜎) = {𝑝 ∈ C
2
| dist (𝑝, 𝑇) ≤ 𝜎} (20)

the complex 𝜎-neighborhood of 𝑇 in the two-dimensional
complex space C2.

We will invoke the KAM iteration technique to prove the
following normal form theorem.

Theorem 10. Let𝑀0 = 𝐵(𝐼 × 𝐽, 𝜎0). Suppose thatΩ and P are
analytic on𝑀0 and Δ 𝑟

0
,𝑠
0

×𝑀0, respectively. Let 𝜌0 = 𝑠0/8 and
let 𝐸0 > 0. Let 𝐾0 > 0 such that 𝐸0 = 𝑒

−𝜌
0
𝐾
0 . There exists a

sufficiently small 𝐸0 > 0 such that if

𝜖0

𝐸0𝜎0

≤

1

4

,

𝜖0

𝑟0𝜎0

≤

1

16

,

𝐸0

𝑟0

≤ 1, (21)

|||𝑃|||𝑚
0
,Δ
𝑟
0
,𝑠
0

×𝑀
0

≤ 𝜖0 =

𝛼𝑟0𝐸0

Γ (𝑚0/2) Γ (𝜌0)

, (22)

where

Γ (𝜌) =: sup
𝑡≥0

[Δ

4
(𝑡) 𝑒

−𝜌𝑡
] , (23)

then there exists a real 𝐶∞-smooth curve in 𝑀0,

𝑇 : 𝜆 = 𝜆 (𝜉) = (𝐴 + 𝜖 [𝑎]) 𝜉

2𝑛+1
+

̂

𝑁 (𝜉) , 𝜉 ∈ 𝐼. (24)

And for every 𝑝 ∈ 𝑇, there exists an affine analytic almost-
periodic transformation

Φ(⋅, 𝑡; 𝑝) : 𝑥 = 𝑦 + 𝑢∗ (𝑡; 𝑝) , (25)

which changes (19) to

̇𝑦 = Ω∗ (𝑝) 𝑦 + 𝑃∗ (𝑦, 𝑡, 𝑝) (26)

with 𝑃∗(𝑦, 𝑡, 𝑝) = 𝑂(𝑦

2
) (𝑦 → 0). Moreover,











̂

𝑁 (𝜉)











≤ 4𝜖0,








Ω∗ (𝑝) − 𝐴Ω (𝑝)









≤

2𝜖0

𝑟0

,

∀𝑝 = (𝜉, 𝜆) ∈ 𝑇.

(27)

Furthermore, for 𝑝 ∈ 𝑇, 𝑥 = 𝑢∗(𝑡, 𝑝) is an analytic almost-
periodic solution of the differential equation (19)with 𝜆 = 𝜆(𝜉).

Lemma 11. Let𝑁(𝑝) = (𝐴+𝜖[𝑎])𝜉

2𝑛+1
−𝜆+ℎ(𝑝), 𝑝 = (𝜉, 𝜆) ∈

𝑀. Suppose that ℎ is real analytic on𝑀 ⊂ C2 with











D𝑝ℎ









𝑀
=









ℎ𝜆







𝑀
+











ℎ𝜉









𝑀
<

1

2

. (28)

Suppose that, on the domain M, 𝑁(𝜉, 𝜆) = 0 determines
implicitly a real analytic curve 𝑇 : 𝜆 = 𝜆(𝜉), 𝜉 ∈ 𝐼𝜎

−
/2, such

that 𝐵(𝑇, 𝜖−/𝐸−) ⊂ 𝑀, where 𝜖−, 𝐸− and 𝜎− are supposed to
be well defined. Let 𝑁+(𝑝) = (𝐴 + 𝜖[𝑎])𝜉

2𝑛+1
− 𝜆 + ℎ+(𝑝),

where ℎ+ = ℎ +

̂

ℎ with ‖

̂

ℎ‖𝑀 ≤ 𝜖. Suppose that 𝜖/𝐸 ≤ 𝜖−/4𝐸−

with 𝐸 > 0. Then there exists a domain of C2, 𝑀+ ⊂ 𝑀 with
dist(𝑀+, 𝜕𝑀) ≥ 𝜖−/4𝐸−, such that 𝑁+ is real analytic on 𝑀+

and ̂

ℎ satisfies ‖D𝑝
̂

ℎ‖

𝑀
+

≤ 𝜖𝐸−/𝜖−. If











D𝑝ℎ+









𝑀
+

≤

1

2

, (29)

then, on the domain 𝑀+, 𝑁+(𝑝) = 0 determines implicitly a
real analytic curve𝑇+ : 𝜆 = 𝜆+(𝜉), 𝜉 ∈ 𝐼𝜎/2 (𝜎 < 𝜎−), such that









𝜆+ (𝜉) − 𝜆 (𝜉)









≤ 2𝜖, 𝜉 ∈ 𝐼𝜎/2, (30)

and 𝐵(𝑇+, 𝜖/𝐸) ⊂ 𝑀+. Moreover, one has









𝑁+ (𝑝)









≤

8𝜖

𝐸

, ∀𝑝 ∈ 𝑀+.
(31)
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Proof. Let 𝑀+ = 𝐵(𝑇, 3𝜖/𝐸) ∩ (𝐼𝜎/2+𝜖/𝐸 × C). Since 𝜖/𝐸 ≤

𝜖−/4𝐸− and 𝜎 ≤ 𝜎−, by 𝐵(𝑇, 𝜖−/𝐸−) ⊂ 𝑀 it follows easily
that 𝑀+ ⊂ 𝑀 and dist(𝑀+, 𝜕𝑀) ≥ 𝜖−/4𝐸−. Using Cauchy’s
estimate we have











D𝑝
̂

ℎ









𝑀
+

≤

4𝜖𝐸−

𝜖−

. (32)

By condition (29), the equation

𝑁+ (𝑝) = (𝐴 + 𝜖 [𝑎]) 𝜉

2𝑛+1
− 𝜆 + ℎ+ (𝑝) = 0 (33)

determines implicitly an analytic curve on𝑀+,

𝑇+ : 𝜆 = 𝜆+ (𝜉) , 𝜉 ∈ 𝐼𝜎/2. (34)

It follows that








𝜆+ (𝜉) − 𝜆 (𝜉)









=











ℎ (𝜉, 𝜆+) − ℎ (𝜉, 𝜆) +

̂

ℎ (𝜉, 𝜆+)











,

(35)

so








𝜆+ (𝜉) − 𝜆 (𝜉)









≤ 2𝜖, 𝜉 ∈ 𝐼𝜎/2. (36)

Thus, 𝐵(𝑇+, 𝜖/𝐸) ⊂ 𝑀+. Let 𝐸 ≤ 1/2. For each 𝑝 = (𝜉, 𝜆) ∈

𝑀+, we have









𝜆 − 𝜆+ (𝜉)









≤









𝜆 − 𝜆 (𝜉)









+









𝜆 (𝜉) − 𝜆+ (𝜉)









≤

3𝜖

𝐸

+ 2𝜖 ≤

4𝜖

𝐸

.

(37)

Noting that |𝑁+𝜆(𝑝)| ≤ 2, for all 𝑝 ∈ 𝑀+, and 𝑁+(𝑝) = 0, for
all 𝑝 = (𝜉, 𝜆+(𝜉)), we have









𝑁+ (𝑝)









≤

8𝜖

𝐸

, ∀𝑝 ∈ 𝑀+.
(38)

Thus we prove Lemma 11.

Lemma 12. Assume that 𝑅0(𝑡) = ∑

Λ∈𝜏
𝑅0Λ(𝑡) is an analytic

almost-periodic function with respect to 𝑡 with the frequency
𝜔 = (𝜔1, 𝜔2, . . .); it has the finite spatial structure (𝜏, [⋅]), and

























𝑅0 (𝑡)






















𝑚,𝑠
< +∞, 𝑚 > 0, 𝑠 > 0. (39)

If

|𝑖 ⟨𝑘, 𝜔⟩| ≥

𝛼

Δ

4
(|𝑘|) Δ

4
([𝑘])

, ∀𝑘 ∈ Z
∞

\ {0} , (40)

then there exists an almost-periodic function 𝑢(𝑡)with the same
spatial structure as 𝑅0(𝑡), which satisfies

𝜕𝜔𝑢 = 𝐴Ω𝑢 + 𝑅

𝐾

0
− [𝑅0] ,

(41)

where 𝜕𝜔𝑢 = ⟨𝜔, ∇𝜃𝑢⟩ is the direction derivative of 𝑢 along with
𝜔 (𝜃 = 𝜔𝑡). 𝑅

𝐾

0
is the truncation of 𝑅0 with order K.

Moreover, for 0 < 𝑚 < 𝑚, 0 < 𝑠 < 𝑠,

|||𝑢 (𝑡)|||𝑚−𝑚,𝑠−𝑠 ≤

Γ (𝑚) Γ (𝑠)

𝛼

























𝑅0 (𝑡)






















𝑚,𝑠
.

(42)

Proof. We assume

𝑅

𝐾

0Λ
(𝑡) = ∑

supp 𝑘⊂Λ,|𝑘|≤𝐾
𝑅0Λ𝑘𝑒

𝑖⟨𝑘,𝜔𝑡⟩
,

𝑢Λ (𝑡) = ∑

supp 𝑘⊂Λ
𝑢Λ𝑘𝑒

𝑖⟨𝑘,𝜔𝑡⟩
.

(43)

Insert the above formulas into the equation 𝜕𝜔𝑢 = 𝐴Ω𝑢 +

𝑅

𝐾

0
− [𝑅0], and compare the coefficients on both sides, thus

we can find

𝑢Λ𝑘 =

𝑅0Λ𝑘

𝑖 ⟨𝑘, 𝜔⟩ − 𝐴Ω

, 0 < |𝑘| ≤ 𝐾, supp 𝑘 ⊂ Λ. (44)

Then








𝑢Λ (𝑡)







T
𝑠−𝑠

≤ ∑

supp 𝑘⊂Λ, 0≤|𝑘|≤𝐾

Δ

4
(|𝑘|) 𝑒

−𝑠|𝑘|

𝛼

Δ

4
([𝑘])









𝑅0Λ𝑘









𝑒

𝑠|𝑘|

≤

Γ (𝑠) Δ

4
([Λ])

𝛼









𝑅0Λ







T
𝑠

.

(45)

From Definition 7,

|||𝑢 (𝑡)|||𝑚−𝑚,𝑠−𝑠

= ∑

Λ∈𝜏









𝑢Λ







T𝑠−𝑠
𝑒

(𝑚−𝑚)[Λ]

≤ ∑

Λ∈𝜏

Γ (𝑠) Δ

4
([Λ])

𝛼









𝑅0Λ







T
𝑠

≤

Γ (𝑚) Γ (𝑠)

𝛼

∑

Λ∈𝜏









𝑅0Λ







T
𝑠

𝑒

𝑚[Λ]

=

Γ (𝑚) Γ (𝑠)

𝛼

























𝑅0 (𝑡)






















𝑚,𝑠
.

(46)

Thus, 𝑢(𝑡) = ∑

Λ∈𝜏
𝑢Λ(𝑡) is convergent in the smaller domain

𝐷𝑠−𝑠 with the norm ||| ⋅ |||𝑚−𝑚,𝑠−𝑠.
Now we consider the following real analytic almost-

periodic differential equation with parameters

�̇� = 𝑁 (𝑝) + 𝐴Ω (𝑝) 𝑥 + 𝜖𝑆 (𝑡, 𝑝) 𝑥 + 𝑃 (𝑥, 𝑡, 𝑝) (47)

with 𝑆(𝑡, 𝑝) = 𝑎(𝑡)Ω(𝑝).

Lemma 13. Consider the above equation, where𝑁(𝑝) = (𝐴 +

𝜖[𝑎])𝜉

2𝑛+1
− 𝜆 + ℎ(𝑝). Let ̂ℎ = [𝑃|𝑥=0] and ̂

Ω = (𝑃𝑥|𝑥=0)
𝐾. Let

ℎ+ = ℎ +

̂

ℎ,Ω+ = 𝐴Ω +

̂

Ω and𝑁+(𝑝) = (𝐴 + 𝜖[𝑎])𝜉

2𝑛+1
− 𝜆 +

ℎ+(𝑝). Assume the following hold.

(1) 𝑃 is real analytic on Δ 𝑟,𝑠 × 𝑀 and satisfies

|||𝑃|||𝑚,Δ
𝑟,𝑠
×𝑀 ≤ 𝜖 =

𝛼𝑟𝐸

Γ (𝑚/2) Γ (𝜌)

(48)

with 0 ≤ 𝐸 < 1/2, 0 < 𝜌 < 𝑠/2, and 𝐸 = 𝑒

−𝜌𝐾.
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(2) 4𝜖/𝐸 ≤ 𝜎.
(3) 𝑁, ̂ℎ, and ℎ+ are real analytic on 𝑀 ⊂ 𝐶

2 and all the
assumptions of Lemma 11 hold. Let 𝑀+ ⊂ 𝑀 be the
domain defined in Lemma 11.

Then, for any 𝑝 ∈ 𝑀+, there exists an affine analytic
almost-periodic transformation

Φ(⋅, 𝑡; 𝑝) : 𝑥+ ∈ 𝐷 (0, 𝑟+) → 𝑥

= (1 + 𝜖𝑄) 𝑥+ + 𝑢 (𝑡; 𝑝) ∈ 𝐷 (0, 𝑟) ,

(49)

whereΦ is real analytic on𝐷(𝑟+, 𝑠+)×𝑀+, such that the above
differential equation is transformed to

�̇�+ = 𝑁+ (𝑝) + Ω+ (𝑝) 𝑥+ + 𝜖

2
𝑆+ (𝑡, 𝑝) 𝑥+ + 𝑃+ (𝑥+, 𝑡, 𝑝) ,

(50)

where 𝑆+ and 𝑃+ will be get in the proof.
Moreover, one has

|||Φ − 𝑖𝑑|||𝑚,Δ
𝑟,𝑠−2𝜌

×𝑀
+

≤ 𝑐 (𝑟 + 𝑟

2
) 𝐸,

























𝐷𝑥Φ − 1























𝑚,Δ
𝑟,𝑠−2𝜌

×𝑀
+

≤ 𝑐𝑟𝐸.

(51)

The new perturbation term 𝑃+ satisfies

























𝑃+























𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

≤ 𝜖+ =

𝛼𝑟+𝐸+

Γ (𝑚+/2) Γ (𝜌+)

(52)

with

𝑠+ = 𝑠 − 2𝜌, 𝜂 = 𝐸

1/2
,

𝜌+ =

1

2

𝜌, 𝑟+ = 𝜂𝜌,

𝐸+ = 𝑐𝐸

3/2
, 𝑚+ =

1

2

𝑚.

(53)

Proof. The proof is the standard KAM step and we divide it
into several parts.

(A) Truncation. Let 𝑅 = 𝑅0 + 𝑅1𝑥 with 𝑅0 = 𝑃|𝑥=0 and 𝑅1 =

𝑃𝑥|𝑥=0. It follows easily that

























𝑅0























𝑚,Δ
𝑟,𝑠
×𝑀

≤ 𝜖,

























𝑅1























𝑚,Δ
𝑟,𝑠
×𝑀

≤

𝜖

𝑟

. (54)

Hence |||𝑅|||𝑚,Δ
𝑟,𝑠
×𝑀 ≤ 2𝜖. Let

𝑅 = ∑

Λ∈𝜏,supp 𝑘⊂Λ,𝑘∈𝑍∞
𝑅𝑘 (𝑥; 𝑝) 𝑒

𝑖⟨𝑘,𝜔𝑡⟩
,

𝑅

𝐾
= ∑

Λ∈𝜏,supp 𝑘⊂Λ,|𝑘|≤𝐾
𝑅𝑘 (𝑥; 𝑝) 𝑒

𝑖⟨𝑘,𝜔𝑡⟩
.

(55)

By definition, we have































𝑅 − 𝑅

𝐾


























𝑚,Δ
𝑟,𝑠−𝜌

×𝑀
≤ 2𝜖𝑒

−𝐾𝜌
. (56)

(B) Construnction of the Transformation.Define the transfor-
mation 𝜙1 : 𝑥 = 𝑢(𝑡) + 𝑦, where 𝑢 satisfies

𝜕𝜔𝑢 = 𝐴Ω𝑢 + 𝑅

𝐾

0
− [𝑅0] .

(57)

From Lemma 12, we have

|||𝑢 (𝑡)|||𝑚−(𝑚/2),𝑠−2𝜌

≤

Γ (𝑚/2) Γ (2𝜌)

𝛼

























𝑅0 (𝑡)






















𝑚,𝑠

≤

Γ (𝑚/2) Γ (2𝜌)

𝛼

𝜖 < 𝑐𝑟𝐸.

(58)

By the transformation 𝜙1, the equation becomes

�̇� + ̇𝑦 = 𝑁 (𝑝) + 𝐴Ω (𝑝) (𝑢 + 𝑦)

+ 𝜖𝑎 (𝑡) Ω (𝑝) (𝑢 + 𝑦) + 𝑃 (𝑢 + 𝑦, 𝑡, 𝑝) ,

(59)

̇𝑦 = 𝑁 (𝑝) + [𝑅0] + (𝐴Ω (𝑝) + 𝑅

𝐾

1
) 𝑦 + 𝜖𝑎 (𝑡)Ω (𝑝) 𝑦

+ 𝑅 (𝑢 + 𝑦, 𝑡) − 𝑅

𝐾
(𝑢 + 𝑦, 𝑡) + 𝑅

𝐾

1
𝑢

+ 𝜖𝑎 (𝑡)Ω (𝑝) 𝑢 + 𝑃 (𝑢 + 𝑦, 𝑡) − 𝑅 (𝑢 + 𝑦, 𝑡) ;

(60)

then

̇𝑦 = 𝑁+ (𝑝) + (𝐴Ω (𝑝) + 𝑅

𝐾

1
) 𝑦 + 𝜖𝑎 (𝑡)Ω (𝑝) 𝑦

+ 𝑅 (𝑢 + 𝑦, 𝑡) − 𝑅

𝐾
(𝑢 + 𝑦, 𝑡) + 𝑅

𝐾

1
𝑢

+ 𝜖𝑎 (𝑡)Ω (𝑝) 𝑢 + 𝑃 (𝑢 + 𝑦, 𝑡) − 𝑅 (𝑢 + 𝑦, 𝑡) .

(61)

Define the transformation 𝜙2 : 𝑦 = (1+𝜖𝑄)𝑥+;𝑄 satisfies

̇

𝑄 = 𝑎 (𝑡)Ω (𝑝) . (62)

We assume

𝑄 (𝑡) = ∑

Λ∈𝜏

𝑄Λ (𝑡) , 𝑄Λ (𝑡) = ∑

supp 𝑘⊂Λ,
𝑄Λ𝑘𝑒

𝑖⟨𝑘,𝜔𝑡⟩
,

𝑎 (𝑡) = ∑

Λ∈𝜏

𝑎Λ (𝑡) , 𝑎Λ (𝑡) = ∑

supp 𝑘⊂Λ,
𝑎Λ𝑘𝑒

𝑖⟨𝑘,𝜔𝑡⟩
.

(63)

Then

𝑄Λ𝑘 =

{

{

{

{

{

{

{

0, |𝑘| = 0, supp 𝑘 ⊂ Λ,

𝑎Λ𝑘Ω

𝑖 ⟨𝑘, 𝜔⟩

, |𝑘| > 0, supp 𝑘 ⊂ Λ.

(64)

Similar to Lemma 12, we have

|||𝑄 (𝑡)|||𝑚−(𝑚/2),𝑠−2𝜌

≤

Γ (𝑚/2) Γ (2𝜌)

𝛼

|||𝑎 (𝑡)|||𝑚,𝑠 |Ω|

≤ 𝑐

Γ (𝑚/2) Γ (2𝜌)

𝛼

,

|||𝜖𝑄 (𝑡)|||𝑚−(𝑚/2),𝑠−2𝜌 ≤ 𝑐𝑟𝐸.

(65)
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By the transformation 𝜙2, the equation becomes

(1 + 𝜖𝑄) �̇�+ + 𝜖

̇

𝑄𝑥+

= 𝑁+ (𝑝) + (𝐴Ω (𝑝) + 𝑅

𝐾

1
) (1 + 𝜖𝑄) 𝑥+

+ 𝜖𝑎 (𝑡)Ω (𝑝) (1 + 𝜖𝑄) 𝑥+

+ 𝑅 (𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡) − 𝑅

𝐾
(𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡)

+ 𝑅

𝐾

1
𝑢 + 𝜖𝑎 (𝑡)Ω (𝑝) 𝑢

+ 𝑃 (𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡) − 𝑅 (𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡) ;

(66)

then

�̇�+ = 𝑁+ (𝑝) + (𝐴Ω (𝑝) + 𝑅

𝐾

1
) 𝑥+ + 𝜖

2 𝑎 (𝑡)Ω (𝑝)𝑄

1 + 𝜖𝑄

𝑥+

+ (

1

1 + 𝜖𝑄

− 1)𝑁+ +

1

1 + 𝜖𝑄

𝑅 (𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡)

−

1

1 + 𝜖𝑄

𝑅

𝐾
(𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡)

+

1

1 + 𝜖𝑄

𝑅

𝐾

1
𝑢 +

𝜖𝑎 (𝑡)Ω (𝑝) 𝑢

1 + 𝜖𝑄

+

1

1 + 𝜖𝑄

𝑃 (𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡)

−

1

1 + 𝜖𝑄

𝑅 (𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡) .

(67)

Thus, by the transformation Φ = 𝜙1 ∘ 𝜙2 : 𝑥 = 𝑢 + (1 +

𝜖𝑄)𝑥+, the equation is transformed to

�̇�+ = 𝑁+ + Ω+𝑥+ + 𝜖

2
𝑆+𝑥+ + 𝑃+ (𝑥+, 𝑡; 𝑝) ,

(68)

where

𝑃+ = (

1

1 + 𝜖𝑄

− 1)𝑁+ +

1

1 + 𝜖𝑄

𝑅 (𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡)

−

1

1 + 𝜖𝑄

𝑅

𝐾
(𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡)

+

1

1 + 𝜖𝑄

𝑅

𝐾

1
𝑢 +

𝜖𝑎 (𝑡)Ω (𝑝) 𝑢

1 + 𝜖𝑄

+

1

1 + 𝜖𝑄

𝑃 (𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡)

−

1

1 + 𝜖𝑄

𝑅 (𝑢 + (1 + 𝜖𝑄) 𝑥+, 𝑡) ,

𝑆+ =

𝑎 (𝑡)Ω (𝑝)𝑄

1 + 𝜖𝑄

.

(69)

With the estimates of 𝑢 and 𝑄, we have

|||Φ − 𝑖𝑑|||𝑚,Δ
𝑟,𝑠−2𝜌

×𝑀
+

≤ 𝑟|||𝜖𝑄|||𝑚,Δ
𝑟,𝑠−2𝜌

×𝑀
+

+ |||𝑢|||𝑚,Δ
𝑟,𝑠−2𝜌

×𝑀
+

≤ 𝑐 (𝑟 + 𝑟

2
) 𝐸,

























𝐷𝑥Φ − 1























𝑚,Δ
𝑟,𝑠−2𝜌

×𝑀
+

≤ |||𝜖𝑄|||𝑚,Δ
𝑟,𝑠−2𝜌

×𝑀
+

≤ 𝑐𝑟𝐸.

(70)

Let 𝜂 = 𝐸

1/2
≤ 1/4, 𝑠+ = 𝑠 − 2𝜌, and 𝑟+ = 𝜂𝑟. Then the

transformation Φ : 𝑥+ ∈ 𝐷(0, 𝑟+) → 𝐷(0, 2𝑟+) is analytic
almost-periodic on T𝑠

+

with respect to 𝑡 and affine in 𝑥+.

(C) Estimates of Error Terms. Because |||𝜖𝑄|||𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

< 1,
then 1/(1 + 𝜖𝑄) = 1− 𝜖𝑄+ (𝜖𝑄)

2
− (𝜖𝑄)

3
+ ⋅ ⋅ ⋅ + (−𝜖𝑄)

𝑛
+ ⋅ ⋅ ⋅ .

Thus,

















































1

1 + 𝜖𝑄















































𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

≤ 1 + |||𝜖𝑄|||𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

+ |||𝜖𝑄|||

2

𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

+ ⋅ ⋅ ⋅ + |||𝜖𝑄|||

𝑛

𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

+ ⋅ ⋅ ⋅

≤ 2.

(71)

Let 𝜂 = 𝐸

1/2. Then, it follows that

















































(

1

1 + 𝜖𝑄

− 1)𝑁+















































𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

≤

















𝜖𝑄𝑁+















𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

≤ 𝑐𝜖𝐸,

















































1

1 + 𝜖𝑄

(𝑅 ∘ Φ − 𝑅

𝐾
∘ Φ)















































𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

≤ 𝑐𝜖𝑒

−𝐾𝜌
,

















































1

1 + 𝜖𝑄

𝑅

𝐾

1
𝑢















































𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

≤ 2

𝜖

𝑟

𝑐𝑟𝐸 ≤ 𝑐𝜖𝐸,

















































𝜖𝑎 (𝑡) Ω𝑢

1 + 𝜖𝑄















































𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

≤ 𝑐𝜖𝐸,

















































1

1 + 𝜖𝑄

(𝑃 ∘ Φ − 𝑅 ∘ Φ)















































𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

≤ 𝑐

𝜖

𝑟

2
𝑟

2
𝜂

2
= 𝑐𝜂

2
𝜖.

(72)

So

























𝑃+























𝑚
+
,Δ
𝑟+,𝑠+

×𝑀
+

≤ 𝑐𝜖𝐸 + 𝑐𝜖𝑒

−𝐾𝜌
+ 𝑐𝜂

2
𝜖 = 𝑐𝜖𝐸

=

𝛼𝑟+𝐸+

Γ (𝑚+/2) Γ (𝜌+)

= 𝜖+,

(73)
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where 𝜌+ = (1/2)𝜌, 𝑟+ = 𝜂𝑟, 𝐸+ = 𝑐𝐸

3/2, and 𝑚+ = (1/2)𝑚.
Thus we have proved Lemma 13.

Iteration. Now we choose some suitable parameters so that
the above KAM step can be iterated infinitely. At the initial
step, let

𝑠0 = 𝑠, 𝑟0 = 𝑟, 𝐸0 > 0, 𝜂0 = 𝐸

1/2

0
,

𝜌0 =

𝑠0

8

, 𝜖0 =

𝛼𝑟0𝐸0

Γ (𝑚0/2) Γ (𝜌0)

, 𝑚0 =

𝑠0

8

.

(74)

Let 𝐾0 satisfy 𝐸0 = 𝑒

−𝐾
0
𝜌
0 and 𝜎0 = 𝛿. Inductively, we define

𝑠𝑗 = 𝑠𝑗−1 − 2𝜌𝑗−1, 𝜂𝑗 = 𝐸

1/2

𝑗
, 𝜌𝑗 =

1

2

𝜌𝑗−1,

𝑟𝑗 = 𝜂𝑗−1𝑟𝑗−1, 𝐸𝑗 = 𝑐𝐸

3/2

𝑗−1
, 𝑚𝑗 =

1

2

𝑚𝑗−1,

𝜖𝑗 =

𝛼𝑟𝑗𝐸𝑗

Γ (𝑚𝑗/2) Γ (𝜌𝑗)

, 𝜎𝑗 =

𝜎𝑗−1

4

.

(75)

And𝐾𝑗 satisfies 𝐸𝑗 = 𝑒

−𝐾
𝑗
𝜌
𝑗 .

By 𝐸𝑗 = 𝑐𝐸

3/2

𝑗−1
, we have 𝐸𝑗 = 𝑐

−2
(𝑐

2
𝐸0)

(3/2)
𝑗

. Thus, if 𝐸0
is sufficiently small, we have 𝑐𝐸𝑗 ≤ 1 and 𝜂𝑗 = 𝐸

1/2

𝑗
≤ 1/4.

Moreover, by definition it follows that

(𝜖𝑗+1/𝐸𝑗+1)

(𝜖𝑗/𝐸𝑗)

=

Γ (𝑚𝑗/2) Γ (𝜌𝑗)

Γ (𝑚𝑗+1/2) Γ (𝜌𝑗+1)

𝐸

1/2

𝑗
≤ 𝐸

1/2

𝑗
≤

1

4

≤ 1.

(76)

Thus 𝜖𝑗+1/𝐸𝑗+1 ≤ 𝜖𝑗/𝐸𝑗, 𝑗 ≤ 0.
Now we prove that, for 𝐸0 sufficiently small, 4𝜖𝑗/𝐸𝑗 ≤ 𝜎𝑗

hold for all 𝑗 ≤ 0.
Let 𝐺𝑗 = 4𝜖𝑗/𝐸𝑗𝜎𝑗; from (21) we have 𝐺0 ≤ 1. Moreover,

we have
𝐺𝑗+1

𝐺𝑗

=

𝜎𝑗𝜖𝑗+1𝐸𝑗

𝜎𝑗+1𝜖𝑗𝐸𝑗+1

= 4

𝛼𝑟𝑗+1𝐸𝑗+1

Γ (𝑚𝑗+1/2) Γ (𝜌𝑗+1)

⋅

Γ (𝑚𝑗/2) Γ (𝜌𝑗)

𝛼𝑟𝑗𝐸𝑗

⋅

𝐸𝑗

𝐸𝑗+1

≤ 4

𝜂𝑗𝐸𝑗+1

𝐸𝑗

⋅

𝐸𝑗

𝐸𝑗+1

= 4𝐸

1/2

𝑗
≤ 1,

(77)

for all 𝑗 ≤ 0. Thus, 𝐺𝑗 ≤ 𝐺0 ≤ 1. So the inequalities in the
assumption 2 of Lemma 13 hold for all 𝑗 ≤ 0.

Let 𝑀0 = 𝑀, 𝑁0 = (𝐴 + 𝜖[𝑎])𝜉

2𝑛+1
− 𝜆, ℎ0 = 0, Ω0 =

𝐴Ω, 𝑆0 = 𝑎Ω, and 𝑃0 = 𝑃. By Lemmas 11, 12, and 13, we
have a sequence of closed domains 𝑀𝑗 with 𝑀𝑗+1 ⊂ 𝑀𝑗 and
a sequence of affine transformations

Φ𝑗 : 𝐷 (0, 𝑟𝑗+1) → 𝐷(0, 2𝑟𝑗+1) ⊂ 𝐷 (0, 𝑟𝑗) ,

Φ𝑗 : 𝑥𝑗 = (1 + 𝜖

2
𝑗

𝑄𝑗) 𝑥𝑗+1 + 𝑢𝑗.

(78)

We also have






























Φ𝑗 − 𝑖𝑑





























𝑚
𝑗+1
,Δ
𝑟
𝑗+1
,𝑠
𝑗+1

×𝑀
𝑗+1

≤ 𝑐 (𝑟𝑗 + 𝑟

2

𝑗
) 𝐸𝑗,































𝐷𝑥Φ𝑗 − 1





























𝑚
𝑗+1
,Δ
𝑟
𝑗+1
,𝑠
𝑗+1

×𝑀
𝑗+1

≤ 𝑐𝑟𝑗𝐸𝑗.

(79)

Let Φ𝑗
= Φ0 ∘ Φ1 ∘ ⋅ ⋅ ⋅ Φ𝑗−1 with Φ0 = 𝑖𝑑. Then, after the

transformationΦ

𝑗, (19) is changed to

�̇� = 𝑁𝑗 (𝑝) + Ω𝑗 (𝑝) 𝑥 + 𝜖

2
𝑗

𝑆𝑗𝑥 + 𝑃𝑗 (𝑥, 𝑡; 𝑝) .
(80)

By the inductive assumptions of KAM iteration, we have
|||𝑃𝑗|||𝑚

𝑗
,Δ
𝑟
𝑗
,𝑠
𝑗

×𝑀
𝑗

≤ 𝜖𝑗.

The correction terms ̂ℎ𝑗 and ̂

Ω𝑗 satisfy











̂

ℎ𝑗









𝑀
𝑗

≤ 𝜖𝑗,











̂

Ω𝑗









𝑀
𝑗

≤

𝜖𝑗

𝑟𝑗

. (81)

By Lemma 11, we have dist(𝑀𝑗+1, 𝜕𝑀𝑗) ≥ 𝜖𝑗−1/4𝐸𝑗−1. For
Cauchy’s estimate we have











𝐷𝑝
̂

ℎ𝑗









𝑀
𝑗+1

≤

4𝜖𝑗𝐸𝑗−1

𝜖𝑗−1

. (82)

Noting that𝑀0 = 𝐵(𝐼×𝐽, 𝜎0) and𝑇0 : 𝜆 = (𝐴+𝜖[𝑎])𝜉

2𝑛+1,
|𝜉| ≤ 𝛿 ≤ 1. Since 𝜎0 ≥ 4𝜖0/𝐸0 and 𝑀1 = 𝐵(𝑇0, 3𝜖0/𝐸0) ∩

(𝐼𝜎
0
/2+𝜖
0
/𝐸
0

×C), it follows that𝑀1 ⊂ 𝑀0 and dist(𝑀1, 𝜕𝑀0) ≥

𝜎0/4. For Cauchy’s estimate we have










𝐷𝑝
̂

ℎ0









𝑀
1

≤

4𝜖0

𝜎0

. (83)

Let 𝐹𝑗 = 𝜖𝑗𝐸𝑗−1/𝜖𝑗−1𝑟𝑗; then

𝐹𝑗 =

𝐸𝑗−1

𝑟𝑗

⋅

𝛼𝑟𝑗𝐸𝑗Γ (𝑚𝑗−1/2) Γ (𝜌𝑗−1)

𝛼𝑟𝑗−1𝐸𝑗−1Γ (𝑚𝑗/2) Γ (𝜌𝑗)

≤

𝐸𝑗−1

𝑟𝑗

⋅

𝛼𝑟𝑗𝐸𝑗

𝛼𝑟𝑗−1𝐸𝑗−1

=

𝑐𝐸

2

𝑗−1

𝑟𝑗

= 𝑅𝑗.

(84)

So 𝑅𝑗+1/𝑅𝑗 = 𝑐𝐸

1/6

𝑗
. Obviously, we can choose 𝐸0 sufficiently

small so that 𝑅𝑗+1/𝑅𝑗 ≤ 1/2, 𝑅𝑗+1 ≤ (1/2)𝑅𝑗. Noting that
ℎ0 = 0 and 𝜖0/𝑟0𝜎0 ≤ 1/16, we have











𝐷𝑝ℎ𝑗









𝑀
𝑗+1

≤











𝐷𝑝
̂

ℎ0









𝑀
𝑗+1

+

𝑗−1

∑

𝑙=1











𝐷𝑝
̂

ℎ𝑙









𝑀
𝑗+1

≤

4𝜖0

𝜎0

+

𝑗−1

∑

𝑙=1

4𝑟𝑗𝑅𝑗 ≤

1

4

+ 𝑐𝐸

2

0
≤

1

2

.

(85)

So condition (29) holds for all 𝑗 ≤ 0.
From Lemma 11,𝑁𝑗(𝑝) = (𝐴 + 𝜖[𝑎])𝜉

2𝑛+1
− 𝜆 + ℎ𝑗(𝑝) = 0

defines implicitly a real analytic curve 𝑇𝑗 ⊂ 𝑀𝑗 : 𝜆 = 𝜆𝑗(𝜉),
𝜉 ∈ 𝐼𝜎

𝑗
/2, satisfying











𝜆𝑗+1 (𝜉) − 𝜆𝑗 (𝜉)











≤ 2𝜖𝑗, ∀𝜉 ∈ 𝐼𝜎
𝑗
/2. (86)

Furthermore, ‖𝑁𝑗+1‖𝑀
𝑗+1

≤ 8𝜖𝑗/𝐸𝑗.
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Convergence of KAM Iteration. Now we prove the conver-
gence of KAM iteration. By the definition of 𝐸𝑗, if 𝐸0 is
sufficiently small, it follows that































𝐷𝑥Φ𝑗





























𝑚
𝑗
,Δ
𝑟
𝑗
,𝑠
𝑗

×𝑀
𝑗

≤

𝑗−1

∏

𝑖=0

(1 + 𝑐𝑟𝑖𝐸𝑖) ≤ 2.
(87)

Therefore, we have






























Φ

𝑗
− Φ

𝑗−1


























𝑚
𝑗
,Δ
𝑟
𝑗
,𝑠
𝑗

×𝑀
𝑗

≤ 𝑐 (𝑟𝑗−1 + 𝑟

2

𝑗−1
) 𝐸𝑗−1,































𝐷𝑥 (Φ
𝑗
− Φ

𝑗−1
)





























𝑚
𝑗
,Δ
𝑟
𝑗
,𝑠
𝑗

×𝑀
𝑗

≤ 𝑐𝑟𝑗−1𝐸𝑗−1.

(88)

Let

Δ∗ =

∞

⋂

𝑗=0

Δ 𝑟
𝑗
,𝑠
𝑗

= Δ 0,𝑠
0
/2, 𝑀∗ = ⋂

𝑗≥0

𝑀𝑗,

Φ = lim
𝑗→∞

Φ

𝑗
.

(89)

We have






























Φ

𝑗
− Φ

0


























𝑚
𝑗
,Δ
𝑟
𝑗
,𝑠
𝑗

×𝑀
𝑗

≤































Φ

𝑗
− Φ

𝑗−1


























𝑚
𝑗
,Δ
𝑟
𝑗
,𝑠
𝑗

×𝑀
𝑗

+































Φ

𝑗−1
− Φ

𝑗−2


























𝑚
𝑗
,Δ
𝑟
𝑗
,𝑠
𝑗

×𝑀
𝑗

+ ⋅ ⋅ ⋅ +































Φ

1
− Φ

0


























𝑚
𝑗
,Δ
𝑟
𝑗
,𝑠
𝑗

×𝑀
𝑗

≤ 𝑐 (𝑟𝑗−1 + 𝑟

2

𝑗−1
) 𝐸𝑗−1 + 𝑐 (𝑟𝑗−2 + 𝑟

2

𝑗−2
) 𝐸𝑗−2

+ ⋅ ⋅ ⋅ + 𝑐 (𝑟0 + 𝑟

2

0
) 𝐸0

≤ 𝑐 (𝑟0 + 𝑟

2

0
) 𝐸0.

(90)

Thus

|||Φ − 𝑖𝑑|||𝑚
∗
,Δ
𝑟∗,𝑠∗

×𝑀
∗

≤ 𝑐 (𝑟0 + 𝑟

2

0
) 𝐸0,

























𝐷𝑥Φ − 𝑖𝑑























𝑚
∗
,Δ
𝑟∗,𝑠∗

×𝑀
∗

≤ 𝑐𝑟0𝐸0.

(91)

So we have the convergence of Φ𝑗 to Φ on Δ 𝑟
0
/2,𝑠
0
/2.

From (86) it is easy to show that 𝜆𝑗 is convergent on 𝐼. In
fact, 𝜖𝑗+1/𝜖𝑗 ≤ 𝑐𝐸𝑗 ≤ 1/2. For 𝑖 > 𝑗, it follows that











𝜆𝑖 (𝜉) − 𝜆𝑗 (𝜉)











≤

𝑖−1

∑

𝑙=𝑗

2𝜖𝑙 ≤ 4𝜖𝑗, ∀𝜉 ∈ 𝐼(1/2)𝜎
𝑗

. (92)

Let 𝜆𝑖(𝜉) → 𝜆(𝜉) = (𝐴+𝜖[𝑎])𝜉

2𝑛+1
+

̂

𝑁(𝜉), 𝜉 ∈ 𝐼. For 𝜆0(𝜉) =

(𝐴 + 𝜖[𝑎])𝜉

2𝑛+1, we have










𝜆𝑖 (𝜉) − (𝐴 + 𝜖 [𝑎]) 𝜉

2𝑛+1








≤ 4𝜖0, ∀𝜉 ∈ 𝐼(1/2)𝜎
𝑗

,











̂

𝑁 (𝜉)











=











𝜆 (𝜉) − (𝐴 + 𝜖 [𝑎]) 𝜉

2𝑛+1








≤ 4𝜖0, ∀𝜉 ∈ 𝐼.

(93)

Moreover, by Cauchy’s estimate we have











𝜆



𝑗+1
(𝜉) − 𝜆



𝑗
(𝜉)











≤

4𝜖𝑗

𝜎𝑗

, ∀𝜉 ∈ 𝐼. (94)

Let 𝐿𝑗 = 4𝜖𝑗/𝜎𝑗; then 𝐿𝑗+1/𝐿𝑗 ≤ 𝑐𝐸𝑗. Thus, it is easy to
prove that {𝜆

𝑗
(𝜉)} is convergent uniformly on 𝐼, and so 𝜆(𝜉)

is differentiable on 𝐼. In fact, in the same way as in [7], we can
prove that 𝜆(𝜉) is 𝐶∞-smooth on 𝐼.

Since 𝑇𝑖 ⊂ 𝑀𝑖 ⊂ 𝑀𝑗, for all 𝑖 ≥ 𝑗, letting 𝑖 → ∞ we have
𝑇 = {(𝜉, 𝜆) | 𝜆 = 𝜆(𝜉), 𝜉 ∈ 𝐼 ⊂ 𝑀𝑗} and 𝑇 = 𝑀∗ = ∩𝑗≤0𝑀𝑗.
Obviously, 𝑁𝑗(𝑝) → 0, for 𝑝 ∈ 𝑇. Let Ω𝑗 → Ω∗ and let
𝑃𝑗 → 𝑃∗. By Cauchy’s estimate we have











𝐷𝑥𝑃𝑗|𝑥=0











≤

𝜖𝑗

𝑟𝑗

=

𝛼𝐸𝑗

Γ (𝑚𝑗/2) Γ (𝜌𝑗)

→ 0. (95)

Thus 𝑃∗|𝑥=0 = 0 and𝐷𝑥𝑃∗|𝑥=0 = 0. Hence 𝑃∗(𝑥, 𝑡; 𝑝) = 𝑂(𝑥

2
)

for 𝑝 ∈ 𝑇.
Noting that ‖̂Ω𝑗‖𝑀

𝑗

≤ 𝜖𝑗/𝑟𝑗 and Ω𝑗 = 𝐴Ω + ∑

𝑗−1

𝑖=1
̂

Ω𝑗, we
have









Ω∗ (𝑝) − 𝐴Ω (𝑝)









≤

2𝜖0

𝑟0

, ∀𝑝 ∈ Γ. (96)

The proof of Theorem 10 is complete.

3. Proof of Theorem 9

Let 𝑥 = 𝜉 + 𝑦 with |𝜉| ≤ 𝛿 and |𝑦| ≤ 𝑟0 ≤ 𝛿. Then (5) becomes

̇𝑦 = (𝐴 + 𝜖𝑎 (𝑡)) (𝑦 + 𝜉)

2𝑛+1
+ ℎ (𝑦 + 𝜉, 𝑡) + 𝑓 (𝑦 + 𝜉, 𝑡) .

(97)

Let

(𝑦 + 𝜉)

2𝑛+1
= 𝜉

2𝑛+1
+ (2𝑛 + 1) 𝜉

2𝑛
𝑦 + 𝑔 (𝑦, 𝜉)

(98)

with

𝑔 (𝑦, 𝜉) =

(2𝑛 + 1) 2𝑛

2

𝜉

2𝑛−1
𝑦

2
+ ⋅ ⋅ ⋅ + (2𝑛 + 1) 𝜉𝑦

2𝑛
+ 𝑦

2𝑛+1
.

(99)

We write ℎ(𝑦+𝜉, 𝑡) = ℎ(𝑦, 𝑡, 𝜉) and𝑓(𝑦+𝜉, 𝑡) = 𝑓(𝑦, 𝑡, 𝜉) and
decompose 𝑎(𝑡) as 𝑎(𝑡) = [𝑎] +

̃

𝑎(𝑡), where [𝑎] is the average
of 𝑎(𝑡) and ̃

𝑎(𝑡) has zero mean value. Then the differential
equation (5) becomes

̇𝑦 = (𝐴 + 𝜖 [𝑎]) 𝜉

2𝑛+1
+ (2𝑛 + 1) (𝐴 + 𝜖𝑎 (𝑡)) 𝜉

2𝑛
𝑦

+ 𝑃 (𝑦, 𝑡, 𝜉) ,

(100)

where 𝑃 = 𝜖

̃

𝑎(𝑡)𝜉

2𝑛+1
+ (𝐴 + 𝜖𝑎(𝑡))𝑔 + ℎ + 𝑓.

Let 𝐼 = [−𝛿, 𝛿] and 𝐼𝜎 = {𝜉 ∈ C | dist(𝜉, 𝐼) ≤ 𝜎}. By
assumption and the choice of 𝑟 and 𝛿, it is easy to see that 𝑔,
ℎ, and 𝑓 are all real analytic on Δ 𝑟

0
,𝑠
0

× 𝐼𝜎 with 𝑟0 ≤ 𝛿, 𝜎0 ≤ 𝛿

and 𝑠0 = 𝑠. Moreover, we have that
























(𝐴 + 𝜖𝑎 (𝑡)) 𝑔























𝑚
0
,Δ
𝑟
0
,𝑠
0

×𝐼
𝜎
0

≤ 𝑐𝑟

2

0
𝛿,































𝜖

̃

𝑎 (𝑡)𝜉

2𝑛+1


























𝑚
0
,Δ
𝑟
0
,𝑠
0

×𝐼
𝜎
0

≤ 𝑐𝜖|𝛿|

2𝑛+1
≤ 𝑐𝜖,

(101)
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where 𝑐 is a constant depending on 𝑛. Note that we always
use 𝑐 to denote different constants in estimates. Similarly, we
have |||ℎ|||𝑚

0
,Δ
𝑟
0
,𝑠
0

×𝐼
𝜎
0

≤ 𝑐𝛿

2𝑛+2 and |||𝑓|||

𝑚
0
,Δ
𝑟
0
,𝑠
0

×𝐼
𝜎
0

≤ 𝜖. Let
𝛿 = 𝜖

1/(2𝑛+2) and let 𝑟0 = 𝜖

2𝑛+1/(4𝑛+4). Then 𝛿

2𝑛+2
= 𝜖 and

𝑟0 = 𝛿

2𝑛+1/2. Let 𝜎0 = 𝛿. Then it follows that

|||𝑃|||𝑚
0
,Δ
𝑟
0
,𝑠
0

×𝐼
𝜎
0

≤ 𝑐𝑟

2

0
𝛿 + 𝑐𝛿

2𝑛+2
+ 𝜖 = 𝑐𝜖 = 𝜖0. (102)

Now (97) is equivalent to the following parameterized differ-
ential equation:

̇𝑦 = (𝐴 + 𝜖 [𝑎]) 𝜉

2𝑛+1
+ (𝐴 + 𝜖𝑎 (𝑡)) Ω (𝜉) 𝑦 + 𝑃 (𝑦, 𝑡, 𝜉) ,

(103)

whereΩ(𝜉) = (2𝑛 + 1)𝜉

2𝑛.
Now we want to prove that if 𝜖 is sufficiently small, then

there exists 𝜉∗ ∈ 𝐼 such that at 𝜉 = 𝜉∗ the differential equation
(103) is reducible to a normal form with zero as equilibrium
point. We introduce an external parameter and consider the
following almost-periodic differential equation:

�̇� = (𝐴 + 𝜖 [𝑎]) 𝜉

2𝑛+1
− 𝜆 + (𝐴 + 𝜖𝑎 (𝑡)) Ω (𝜉) 𝑦 + 𝑃 (𝑦, 𝑡, 𝜉) ,

(104)

where 𝜆 ∈ 𝐽 = [−1, 1] is an external parameter. Obviously,
(103) corresponds to (104) with 𝜆 = 0.

By Theorem 10, we will prove that there exists a smooth
curve 𝑇 : 𝜆 = 𝜆(𝜉), 𝜉 ∈ 𝐼, such that for (𝜉, 𝜆) ∈ 𝑇 the
differential equation (104) can be reduced to a normal form
with zero equilibrium.Moreover, we can find 𝜉∗ ∈ 𝐼 such that
𝜆(𝜉∗) = 0 and then come back to the original equation (103)
with 𝜉 = 𝜉∗.

To apply Theorem 10 to (104), we verify all the assump-
tions. Note that

𝛿 = 𝜖

1/2𝑛+2
, 𝑟0 = 𝜖

2𝑛+1/4𝑛+4
,

𝑠0 = 𝑠, 𝜎0 = 𝛿, 𝜖0 = 𝑐𝜖.

(105)

Let

𝐸0 =

𝜖0Γ (𝑚0/2) Γ (𝜌0)

𝛼𝑟0

=

𝜖

2𝑛+3/4𝑛+4
Γ (𝑚0/2) Γ (𝜌0)

𝛼

.
(106)

Thus when 𝜖 is small enough, 𝐸0 is also small. Moreover, we
have

𝜖0

𝐸0𝜎0

=

𝛼𝜖

(2𝑛−1)/(4𝑛+4)

Γ (𝑚0/2) Γ (𝜌0)

≤

1

4

,

𝜖0

𝑟0𝜎0

= 𝜖

(2𝑛+1)/(4𝑛+4)
≤

1

16

,

𝐸0

𝑟0

=

𝜖

1/2𝑛+2
Γ (𝑚0/2) Γ (𝜌0)

𝛼

≤ 1.

(107)

So all the inequalities of (21) hold. Moreover, we have

|||𝑃|||𝑚
0
,Δ
𝑟
0
,𝑠
0×𝑀
0

≤ 𝜖0 =

𝛼𝑟0𝐸0

Γ (𝑚0/2) Γ (𝜌0)

. (108)

ThusTheorem 10 holds for (104).

Since |

̂

𝑁(±𝛿)| ≤ 4𝜖0 ≤ 𝑐𝛿

2𝑛+2, it follows that 𝜆(±𝛿) =

±(𝐴+ 𝜖[𝑎])𝛿

2𝑛+1
+

̂

𝑁(±𝛿)must have a different sign for 𝛿 > 0

sufficiently small.Thus there exists a 𝜉∗ ∈ 𝐼, such that 𝜆(𝜉∗) =

0.Moreover, we have |𝜉∗| ≤ 𝛿 = 𝜖

1/(2𝑛+2) and𝑝∗ = (𝜉∗, 0) ∈ 𝑇.
Hence, by the transformation 𝑥 = Φ(𝑦, 𝑡; 𝑝∗) the differential
equation (103) at 𝜉 = 𝜉∗ is changed to

̇𝑦 = 𝐴∗Ω∗𝑦 + 𝑃∗ (𝑦, 𝑡, 𝑝∗) (109)

with 𝑃∗(𝑦, 𝑡, 𝑝∗) = 𝑂(𝑦

2
) (𝑦 → 0). Therefore by the

transformation 𝑥 = Φ(𝑦+ 𝜉∗, 𝑡; 𝑝∗) the system (5) is changed
to the formof (17).Moreover,𝑥(𝑡) = Φ(𝜉∗, 𝑡; 𝑝∗) is an almost-
periodic solution with the frequency 𝜔.

Since Φ(𝑦 + 𝜉∗, 𝑡; 𝑝∗) = 𝑦 + 𝑢∗(𝑡; 𝑝) + 𝜉∗, we have 𝑥 =

𝑦 + 𝑢(𝑡) with 𝑢(𝑡) = 𝑢∗(𝑡; 𝑝) + 𝜉∗. Noting that |𝜉∗| ≤ 𝜖

1/(2𝑛+2),
it follows that, for 𝑝 ∈ 𝑇, |||𝑢|||0,𝑠

0
/2 = 𝑂(𝜖

1/(2𝑛+2)
). Thus,

Theorem 9 is proved.
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