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Let 𝐸𝛽 be the integral operator defined by 𝐸𝛽(𝑧) = [𝛽 ∫
𝑧

0
𝑡
𝛽−1

(𝑓

1(𝑡))
𝛼1
(𝑓1(𝑡)/𝑡)

𝛾1𝑃
𝜁1(𝑡)
1 ⋅ ⋅ ⋅ (𝑓


𝑛(𝑡))
𝛼𝑛
(𝑓𝑛(𝑡)/𝑡)

𝛾𝑛𝑃
𝜁𝑛(𝑡)
𝑛 𝑑𝑡]

1/𝛽
, where each

of the functions𝑓𝑖 and 𝑃𝑖 is, respectively, analytic functions and functions with positive real part defined in the open unit disk for all
𝑖 = 1, . . . , 𝑛. The object of this paper is to obtain several univalence conditions for this integral operator. Our main results contain
some interesting corollaries as special cases.

1. Introduction and Definitions

Let 𝐴 denote the class of functions of the form

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑎𝑛𝑧
𝑛
, (1)

which are analytic in the open unit disk𝑈 = {𝑧 : 𝑧 ∈ C : |𝑧| <

1} : 𝑆 = {𝑓 ∈ 𝐴 : 𝑓 is univalent in 𝑈}. Also, letP be the class
of all functions which are analytic in 𝑈 and satisfy 𝑃(0) = 1,
R{𝑃(𝑧)} > 0. Frasin and Darus [1] defined the family 𝐵(𝛿),
0 ≤ 𝛿 < 1, so that it consists of functions 𝑓 ∈ 𝐴 satisfying the
condition



𝑧
2
𝑓

(𝑧)

𝑓2 (𝑧)
− 1



< 1 − 𝛿 (𝑧 ∈ 𝑈) . (2)

In this paper, we obtain new sufficient conditions for the
univalence of the general integral operator 𝐸𝛽(𝑧) defined by

𝐸𝛽 (𝑧) = [𝛽∫

𝑧

0
𝑡
𝛽−1
𝑛

∏

𝑖=0

(𝑓

𝑖 (𝑡))
𝛼
𝑖

(
𝑓𝑖 (𝑡)

𝑡
)

𝛾
𝑖

𝑃
𝜁
𝑖
(𝑡)
𝑖 𝑑𝑡]

1/𝛽

,

(3)

where 𝛽 ∈ C, 𝛼𝑖, 𝛾𝑖, 𝜁𝑖 ∈ C, 𝑓𝑖 ∈ 𝐴, and 𝑃𝑖 ∈ P for all 𝑖 =
1, 2, 3, . . . 𝑛.

Here and throughout in the sequel, every multivalued
functions is taken with the principal branch.

Remark 1. Note that the integral operator 𝐸𝛽 generalizes the
following operators introduced and studied by several
authors as follows.

(i) For 𝛼𝑖 = 0, where 𝑖 = 1, . . . , 𝑛, we obtain the integral
operator

𝑁𝛽 (𝑧) = [𝛽∫

𝑧

0
𝑡
𝛽−1
𝑛

∏

𝑖=0

(
𝑓𝑖 (𝑡)

𝑡
)

𝛾
𝑖

𝑃
𝜁
𝑖
(𝑡)
𝑖 𝑑𝑡]

1/𝛽

, (4)

introduced and studied by Frasin [2].
(ii) For 𝛼𝑖 = 𝛾𝑖 = 0, 𝑖 = 1, . . . , 𝑛, we obtain the integral

operator

I
𝜁
𝛽
(𝑃𝑖) (𝑧) = [𝛽∫

𝑧

0
𝑡
𝛽−1
𝑛

∏

𝑖=0

𝑃
𝜁
𝑖
(𝑡)
𝑖 𝑑𝑡]

1/𝛽

, (5)

introduced and studied by Frasin [3].
(iii) For 𝜁𝑖 = 0, 𝑖 = 1, . . . , 𝑛, we obtain the integral operator

I
𝛼
𝑖
,𝛾
𝑖

𝛽
(𝑓1, 𝑓2, . . . , 𝑓𝑛) (𝑧)

= [𝛽∫

𝑧

0
𝑡
𝛽−1
𝑛

∏

𝑖=0

(𝑓

𝑖 (𝑡))
𝛼
𝑖

(
𝑓𝑖 (𝑡)

𝑡
)

𝛾
𝑖

𝑑𝑡]

1/𝛽

,

(6)

introduced and studied by Frasin [4].
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(iv) For 𝜁𝑖 = 0, 𝛽 = 1, and 𝑖 = 1, . . . , 𝑛, we obtain the inte-
gral operator

I
𝛼
𝑖
,𝛾
𝑖 (𝑓1, 𝑓2, . . . , 𝑓𝑛) (𝑧) = ∫

𝑧

0

𝑛

∏

𝑖=0

(𝑓

𝑖 (𝑡))
𝛼
𝑖

(
𝑓𝑖 (𝑡)

𝑡
)

𝛾
𝑖

𝑑𝑡,

(7)

introduced and studied by Frasin [5].
(v) For 𝜁𝑖 = 𝛼𝑖 = 0 and 𝑖 = 1, . . . , 𝑛, we obtain the integral

operator

I
𝛽
𝑖

𝛾 (𝑓1, 𝑓2, . . . , 𝑓𝑛) (𝑧)

= [𝛽∫

𝑧

0
𝑡
𝛽−1

(
𝑓1 (𝑡)

𝑡
)

𝛾
1

⋅ ⋅ ⋅ (
𝑓𝑛 (𝑡)

𝑡
)

𝛾
𝑛

𝑑𝑡]

1/𝛽

,

(8)

introduced and studied by D. Breaz and N. Breaz [6].
(vi) For 𝛽 = 1, 𝜁𝑖 = 𝛼𝑖 = 0, and 𝑖 = 1, . . . , 𝑛, we obtain the

integral operator

𝐹 (𝑧) = ∫

𝑧

0
(
𝑓1 (𝑡)

𝑡
)

𝛾
1

⋅ ⋅ ⋅ (
𝑓𝑛 (𝑡)

𝑡
)

𝛾
𝑛

𝑑𝑡, (9)

introduced and studied by D. Breaz and N. Breaz [6].
(vii) For 𝛽 = 1, 𝜁𝑖 = 𝛾𝑖 = 0, and 𝑖 = 1, . . . , 𝑛, we obtain the

integral operator

𝐹𝛼
1
,...,𝛼
𝑛
(𝑧) = ∫

𝑧

0
(𝑓

1 (𝑡))
𝛼
1

⋅ ⋅ ⋅ (𝑓

𝑛 (𝑡))
𝛼
𝑛

𝑑𝑡, (10)

introduced and studied by Breaz et al. [7].
(viii) For 𝛽 = 1, 𝑛 = 1, 𝛾1 = 𝛾, and 𝛼𝑖 = 𝜁𝑖 = 0, we obtain

the integral operator

𝐹𝛼,𝛾 (𝑧) = ∫

𝑧

0
(
𝑓 (𝑡)

𝑡
)

𝛾

(𝑓

(𝑡))
𝛼
𝑑𝑡, (11)

studied in [8].
(ix) For 𝛽 = 1, 𝑛 = 1, 𝛾1 = 𝛾, and 𝛼𝑖 = 𝜁𝑖 = 0, we obtain

the integral operator

𝐹𝛾 (𝑧) = ∫

𝑧

0
(
𝑓 (𝑡)

𝑡
)

𝛾

𝑑𝑡 (12)

studied in [9]. In particular, for 𝛾 = 1, we obtain
Alexander integral operator which was introduced in
[10] as follows

𝐹 (𝑧) = ∫

𝑧

0

𝑓 (𝑡)

𝑡
𝑑𝑡. (13)

(x) For 𝛽 = 1, 𝑛 = 1, 𝛼𝑖 = 𝛼, and 𝛾𝑖 = 𝜁𝑖 = 0, we obtain
the integral operator

𝐺 (𝑧) = ∫

𝑧

0
(𝑓

(𝑡))
𝛼
𝑑𝑡, (14)

studied in [11].

In order to derive our main results, we have to recall here the
following lemmas.

Lemma 2 (see [12]). Let 𝜂 ∈ C withR(𝜂) > 0. If ℎ ∈ 𝐴 satis-
fies

1 − |𝑧|
2R(𝜂)

R (𝜂)



𝑧ℎ

(𝑧)

ℎ (𝑧)



≤ 1 (15)

for all 𝑧 ∈ 𝑈, then the integral operator

𝐹𝛽 (𝑧) = [𝛽∫

𝑧

0
𝑡
𝛽−1

(𝑓

(𝑡)) 𝑑𝑡]

1/𝛽

(16)

is in the class S.

Lemma 3 (see [13]). Let 𝛽 ∈ C with R(𝛽) > 0, 𝑐 ∈ C with
|𝑐| ≤ 1, 𝑐 ̸= − 1. If ℎ ∈ 𝐴 satisfies



𝑐|𝑧|
2𝛽

+ (1 + |𝑧|
2𝛽
)
𝑧ℎ

(𝑧)

𝛽ℎ (𝑧)



≤ 1 (17)

for all 𝑧 ∈ 𝑈, then the integral operator 𝐹𝛽(𝑧) defined by (16) is
in the class S.

Lemma 4 (see [14]). If 𝑃(𝑧) ∈ P, then



𝑧𝑃

(𝑧)

𝛽𝑃 (𝑧)



≤
2 |𝑧|

1 − |𝑧|
2
. (18)

Lemma 5 (see [9]). If 𝑓(𝑧) ∈ 𝐵(𝛿), then



𝑧𝑓

(𝑧)

𝑓 (𝑧)
− 1



≤
(1 − 𝛿) (1 + |𝑧|)

1 − |𝑧|
. (19)

When 𝛿 = 0, so 𝑓 ∈ S.

Lemma 6 (see [9]). If 𝑓(𝑧) ∈ 𝐵(𝛿), then



𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
(1 − 𝛿) (2 + |𝑧|)

1 − |𝑧|
. (20)

Also we need the following general Schwarz lemma.

Lemma 7 (see [15]). Let the function 𝑓 be regular in the disk
𝑈𝑅 = {𝑧 : |𝑧| < 𝑅}, with |𝑀| < 𝑅 for fixed𝑀. If 𝑓(𝑧) has one
zero with multiplicity order bigger than𝑚 for 𝑧 = 0, then

𝑓 (𝑧)
 ≤

𝑀

𝑅𝑚
|𝑧|
𝑚
, (𝑧 ∈ 𝑈𝑅) . (21)

The equality holds only if

𝑓 (𝑧) = 𝑒
𝑖𝜃
(
𝑀

𝑅𝑚
) 𝑧
𝑚
, (22)

where 𝜃 is constant.

Lemma 8 (see [16]). If 𝑓 ∈ 𝐴, then



1 +
𝑧𝑓

(𝑧)

𝑓 (𝑧)



≤
5

4



𝑧𝑓

(𝑧)

𝑓 (𝑧)



. (23)
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2. Univalence Conditions for the Operator 𝐸𝛽

We first prove the following theorem.

Theorem 9. Let 𝑓 ∈ 𝐵(𝛿𝑖), 0 ≤ 𝛿𝑖 < 1, 𝑃𝑖(𝑧) ∈ P for all
𝑖 = 1, . . . , 𝑛 and 𝜂 ∈ C withR(𝜂) = 𝑎 > 0. If

𝑛

∑

𝑖=1

[(3
𝛼𝑖

 + 2
𝛾𝑖
) (1 − 𝛿𝑖) + 2

𝜁𝑖
] < min {𝑎; 1

2
} , (24)

then the integral operator 𝐸𝛽 defined by (3) is in the class S.

Proof. Define the regular function ℎ(𝑧) by

ℎ (𝑧) = ∫

𝑧

0

𝑛

∏

𝑖=0

[(𝑓

𝑖 (𝑡))
𝛼
𝑖

(
𝑓𝑖 (𝑡)

𝑡
)

𝛾
𝑖

𝑃
𝜁
𝑖
(𝑡)
𝑖 ] 𝑑𝑡. (25)

Then it is easy to see that

ℎ

(𝑧) =

𝑛

∏

𝑖=0

[(𝑓

𝑖 (𝑡))
𝛼
𝑖

(
𝑓𝑖 (𝑡)

𝑡
)

𝛾
𝑖

𝑃
𝜁
𝑖
(𝑡)
𝑖 ] , (26)

and ℎ(0) = 1 − ℎ

(0) = 0. Differentiating both sides of (26)

logarithmically, we obtain

𝑧ℎ

(𝑧)

ℎ (𝑧)
=

𝑛

∑

𝑖=1

𝛼𝑖 (
𝑧𝑓

𝑖 (𝑧)

𝑓

𝑖 (𝑧)

) +

𝑛

∑

𝑖=1

𝛾𝑖 (
𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)
− 1)

+

𝑛

∑

𝑖=1

𝜁𝑖 (
𝑧𝑃

𝑖 (𝑧)

𝑃𝑖 (𝑧)
) .

(27)

Thus, we have


𝑧ℎ

(𝑧)

ℎ (𝑧)



≤

𝑛

∑

𝑖=1

𝛼𝑖




𝑧𝑓

𝑖 (𝑧)

𝑓

𝑖 (𝑧)



+

𝑛

∑

𝑖=1

𝛾𝑖




𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)
− 1



+

𝑛

∑

𝑖=1

𝜁𝑖




𝑧𝑃

𝑖 (𝑧)

𝑃𝑖 (𝑧)



.

(28)

Since 𝑓𝑖 ∈ 𝐵(𝛿𝑖), 𝑃𝑖(𝑧) ∈ P for all 𝑖 = 1, . . . , 𝑛, from (28), (18),
(19), and (20), we obtain



𝑧ℎ

(𝑧)

ℎ (𝑧)



≤

𝑛

∑

𝑖=1

𝛼𝑖
 (1 − 𝛿𝑖) (

2 + |𝑧|

1 − |𝑧|
)

+

𝑛

∑

𝑖=1

𝛾𝑖
 (1 − 𝛿𝑖) (

1 + |𝑧|

1 − |𝑧|
) +

𝑛

∑

𝑖=1

𝜁𝑖
 (

2 |𝑧|

1 − |𝑧|
2
)

≤

𝑛

∑

𝑖=1

𝛼𝑖
 (1 − 𝛿𝑖) (

3

1 − |𝑧|
)

+

𝑛

∑

𝑖=1

𝛾𝑖
 (1 − 𝛿𝑖) (

2

1 − |𝑧|
) +

𝑛

∑

𝑖=1

𝜁𝑖
 (

2

1 − |𝑧|
) .

(29)

Multiplying both sides of (29) by (1 − |𝑧|
2R(𝜂)

)/R(𝜂), we get

1 − |𝑧|
2R(𝜂)

R (𝜂)



𝑧ℎ

(𝑧)

ℎ (𝑧)



≤
1 − |𝑧|

2R(𝜂)

(1 − |𝑧|)R (𝜂)

×

𝑛

∑

𝑖=1

[(3
𝛼𝑖

 + 2
𝛾𝑖
) (1 − 𝛿𝑖) + 2

𝜁𝑖
] ,

(30)

for all 𝑧 ∈ 𝑈.
Let us denote |𝑧| = 𝑥, 𝑥 ∈ [0, 1), R(𝜂) = 𝑎 > 0, and

Φ(𝑥) = (1 − 𝑥
2𝑎
)/(1 − 𝑥). It is easy to prove that

Φ (𝑥) ≤

{

{

{

1, 0 < 𝑎 < 1,

2𝑎,
1

2
< 𝑎 < ∞.

(31)

From (31), (30), and the hypotheses (24), we have

1 − |𝑧|
2𝑎

𝑎



𝑧ℎ

(𝑧)

ℎ (𝑧)



≤

{{{{

{{{{

{

1

𝑎

𝑛

∑

𝑖=1

[(3
𝛼𝑖

 + 2
𝛾𝑖
) (1 − 𝛿𝑖) + 2

𝜁𝑖
] , 0 < 𝑎 < 1,

2

𝑛

∑

𝑖=1

[(3
𝛼𝑖

 + 2
𝛾𝑖
) (1 − 𝛿𝑖) + 2

𝜁𝑖
] ,

1

2
< 𝑎 < ∞

≤ 1,

(32)

for all 𝑧 ∈ 𝑈. Applying Lemma 2 for the function ℎ(𝑧), we
prove that 𝐸𝛽(𝑧) ∈ S.

Letting 𝑛 = 1, 𝛿1 = 𝛿, 𝛼1 = 𝛼, 𝛾1 = 𝛾, and 𝜁1 = 𝜁 in
Theorem 9, we obtain the following corollary.

Corollary 10. Let 𝑓 ∈ 𝐵(𝛿), 0 ≤ 𝛿 < 1, 𝑃(𝑧) ∈ P, and all
𝜂, 𝛾, 𝜁 ∈ C withR(𝜂) = 𝑎 > 0. If

(3 |𝛼| + 2
𝛾
) (1 − 𝛿) + 2

𝜁
 < min {𝑎; 1

2
} , (33)

and then the integral operator𝑁𝛼,𝛾,𝜁
𝛽

defined by

𝑁
𝛼,𝛾,𝜁

𝛽 (𝑧) = [𝛽∫

𝑧

0
𝑡
𝛽−1

(𝑓

(𝑡))
𝛼
(
𝑓 (𝑡)

𝑡
)

𝛾

𝑃
𝜁
(𝑡) 𝑑𝑡]

1/𝛽

(34)

is in the class S.

If we set 𝛿 = 0 in Corollary 10, we have the following.

Corollary 11. Let 𝑓 ∈ S, 𝑃(𝑧) ∈ P and all 𝜂, 𝛾, 𝜁 ∈ C with
R(𝜂) = 𝑎 > 0. If

3 |𝛼| + 2
𝛾
 + 2

𝜁
 < min {𝑎; 1

2
} , (35)

then the integral operator 𝑁𝛼,𝛾,𝜁
𝛽

defined by (34) is in the class
S.
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Next, we prove the following theorem.

Theorem 12. Let 𝛼𝑖, 𝛾𝑖, 𝜁𝑖 ∈ C for all 𝑖 = 1, . . . , 𝑛 and each
𝑓𝑖 ∈ 𝐴 satisfies condition (15) withR(𝑓𝑖(𝑧)/𝑧) > 0 and

𝑛

∑

𝑖=1

[29
𝛼𝑖

 + 16
𝛾𝑖 + 𝜁𝑖

] ≤ {
4R (𝜂) , 𝑖𝑓 R (𝜂) ∈ (0, 1) ,

4, 𝑖𝑓 R (𝜂) ∈ [1,∞)

(36)

and then, for any complex number 𝜎 with R(𝜎) ≥ R(𝜂) > 0,
the integral operator𝑁𝛽 defined by (4) is in the class S.

Proof. Suppose that R(𝑓𝑖(𝑧)/𝑧) for all 𝑖 = 1, . . . , 𝑛. Thus we
have

𝑓𝑖 (𝑧)

𝑧
= 𝑃𝑖 (𝑧) , (37)

where 𝑃𝑖 ∈ P for all 𝑖 = 1, . . . , 𝑛. Differentiating both sides of
(37) logarithmically, we obtain

𝑧𝑓

𝑖 (𝑧)

𝑓𝑖𝑧
− 1 =

𝑧𝑃

𝑖 (𝑧)

𝑃𝑖 (𝑧)
. (38)

Define the regular function ℎ(𝑧) as in (25).Thus from (27) we
have

𝑧ℎ

(𝑧)

ℎ (𝑧)
=

𝑛

∑

𝑖=1

𝛼𝑖 (
𝑧𝑓

𝑖 (𝑧)

𝑓

𝑖 (𝑧)

) +

𝑛

∑

𝑖=1

(𝛾𝑖 + 𝜁𝑖) (
𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)
− 1)

(39)

and so

𝑧ℎ

(𝑧)

ℎ (𝑧)
=

𝑛

∑

𝑖=1

𝛼𝑖 (
𝑧𝑓

𝑖 (𝑧)

𝑓

𝑖 (𝑧)

+ 1) −

0

∑

𝑛=𝑖

𝛼𝑖

+

𝑛

∑

𝑖=1

(𝛾𝑖 + 𝜁𝑖) (
𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)
− 1) .

(40)

From Lemma 8, it follows that


𝑧ℎ

(𝑧)

ℎ (𝑧)



≤
5

4

𝑛

∑

𝑖=1

𝛼𝑖




𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)



+

𝑛

∑

𝑖=1

𝛾𝑖 + 𝜁𝑖




𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)
− 1



+

0

∑

𝑛=𝑖

𝛼𝑖


≤
5

4

𝑛

∑

𝑖=1

𝛼𝑖
 [



𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)
− 1



+ 1]

+

𝑛

∑

𝑖=1

𝛾𝑖 + 𝜁𝑖




𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)
− 1



+

0

∑

𝑛=𝑖

𝛼𝑖


≤

𝑛

∑

𝑖=1

[(
5

4

𝛼𝑖
 +

𝛾𝑖 + 𝜁𝑖
)



𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)
− 1



]

+
9

4

𝑛

∑

𝑖=1

𝛼𝑖


≤

𝑛

∑

𝑖=1

[(
5

4

𝛼𝑖
 +

𝛾𝑖 + 𝜁𝑖
) (



𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)



+ 1)]

+
9

4

𝑛

∑

𝑖=1

𝛼𝑖
 .

(41)

Multiplying both sides of (41) by (1 − |𝑧|
2R(𝜂)

)/R(𝜂), from
Lemma 5 with 𝛿 = 0, we get

1 − |𝑧|
2R(𝜂)

R (𝜂)



𝑧ℎ

(𝑧)

ℎ (𝑧)



≤
1 − |𝑧|

2R(𝜂)

R (𝜂)

𝑛

∑

𝑖=1

(
5

4

𝛼𝑖
 +

𝛾𝑖 + 𝜁𝑖
) (

2

1 − |𝑧|
)

+

9 (1 − |𝑧|
2R(𝜂)

)∑
𝑛
𝑖=1

𝛼𝑖


4R (𝜂)
.

(42)

Suppose thatR(𝜂) ∈ (0, 1). Define a functionΦ : (0, 1) → 𝑅

by

Φ (𝑥) = 1 − 𝑎
2𝑎

(0 < 𝑎 < 1) . (43)

Then Φ is an increasing function and consequently, for |𝑧| =
𝑎; 𝑧 ∈ 𝑈, we obtain

1 − |𝑧|
2R(𝜂)

< 1 − |𝑧|
2
. (44)

We thus find from (42) and (44) that

1 − |𝑧|
2R(𝜂)

R (𝜂)



𝑧ℎ

(𝑧)

ℎ (𝑧)



≤
∑
𝑛
𝑖=1 (5

𝛼𝑖
 + 4

𝛾𝑖 + 𝜁𝑖
)

R (𝜂)

+
9∑
𝑛
𝑖=1

𝛼𝑖


4R (𝜂)

=
∑
𝑛
𝑖=1 (29

𝛼𝑖
 + 19

𝛾𝑖 + 𝜁𝑖
)

4R (𝜂)
.

(45)

Using the hypotheses (36) forR(𝜂) ∈ (0, 1), we readily get

1 − |𝑧|
2R(𝜂)

R (𝜂)



𝑧ℎ

(𝑧)

ℎ (𝑧)



≤ 1. (46)

Now ifR(𝜂) ∈ [1,∞), we define a function Ψ : [1,∞) → 𝑅

by

Ψ (𝑥) =
1 − 𝑎
2𝑥

𝑥
, (0 < 𝑎 < 1) . (47)

We observe that the function Ψ is decreasing and conse-
quently, for |𝑧| = 𝑎; 𝑧 ∈ 𝑈, we have

1 − |𝑧|
2R(𝜂)

R (𝜂)
< 1 − |𝑧|

2
, (48)

for all 𝑧 ∈ 𝑈. It follows from (40) and (42) that

1 − |𝑧|
2R(𝜂)

R (𝜂)



𝑧ℎ

(𝑧)

ℎ (𝑧)



≤

𝑛

∑

𝑖=1

(
29

4

𝛼𝑖
 + 4

𝛾𝑖 + 𝜁𝑖
) . (49)
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Using once again the hypotheses (36) when R(𝜂) ∈ [1,∞),
we easily get

1 − |𝑧|
2R(𝜂)

R (𝜂)



𝑧ℎ

(𝑧)

ℎ (𝑧)



≤ 1. (50)

Finally by applying Lemma 2, we conclude that the integral
operator𝑁𝛽 defined by (4) is in the class S.

Letting 𝑛 = 1, 𝛿1 = 𝛿, 𝛼1 = 𝛼, 𝛾1 = 𝛾, and 𝜁1 = 𝜁 in
Theorem 12, we obtain the following corollary.

Corollary 13. Let 𝛼, 𝛾, 𝜁 ∈ C, and 𝑓 ∈ 𝐴 satisfies condition
(15). If

29 |𝛼| + 16
𝛾 + 𝜁

 ≤ {
4R (𝜂) , 𝑖𝑓 R (𝜂) ∈ (0, 1) ,

4, 𝑖𝑓 R (𝜂) ∈ [1,∞)
(51)

then, for any complex number 𝜎 with R(𝜎) ≥ R(𝜂) > 0, the
integral operator𝑁𝛼,𝛾,𝜁

𝛽
defined by (4) is in the class S.

Using Lemma 3, we derive the following theorem.

Theorem 14. Let 𝛼𝑖, 𝛾𝑖, 𝜁𝑖, 𝛽 ∈ C for all 𝑖 = 1, . . . , 𝑛,R(𝛽) > 0,
𝑐 ∈ C(|𝑐| ≤ 1) and each 𝑓𝑖 ∈ 𝐴 satisfies condition (15). If
𝑛

∑

𝑖=1

[29
𝛼𝑖

+ 16
𝛾𝑖 + 𝜁𝑖

]≤ {
4𝛽 (1 − |𝑐|) , 𝑖𝑓 R (𝜂) ∈ (0, 1) ,

4 (1 − |𝑐|) , 𝑖𝑓 R (𝜂) ∈ [1,∞)

(52)

then, for any complex number 𝜎 with R(𝜎) ≥ R(𝜂) > 0, the
integral operator𝑁𝛽 defined by (4) is in the class S.

Proof. From (40), we have


𝑐|𝑧|
2𝛽

+ (1 − |𝑧|
2𝛽
)
𝑧ℎ

(𝑧)

𝛽ℎ (𝑧)



=



𝑐|𝑧|
2𝛽

+
1 − |𝑧|

2
𝛽

𝛽

× [

𝑛

∑

𝑖=1

𝛼𝑖 (
𝑧𝑓

𝑖 (𝑧)

𝑓

𝑖 (𝑧)

+ 1) −

𝑛

∑

𝑖=1

𝛼𝑖

+

𝑛

∑

𝑖=1

(𝛾𝑖 + 𝜁𝑖) (
𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)
− 1)]



≤ |𝑐| +


1 − |𝑧|

2
𝛽


× [

𝑛

∑

𝑖=1

(
5

4

𝛼𝑖
 +

𝛾𝑖 + 𝜁𝑖
) (



𝑧𝑓

𝑖 (𝑧)

𝑓𝑖 (𝑧)



+ 1) +
9

4

𝑛

∑

𝑖=1

𝛼𝑖
]

≤ |𝑐| +


1 − |𝑧|

2
𝛽


× [

𝑛

∑

𝑖=1

(
5

4

𝛼𝑖
 +

𝛾𝑖 + 𝜁𝑖
) (

2

1 − |𝑧|
) +

9

4

𝑛

∑

𝑖=1

𝛼𝑖
] .

(53)

Suppose that 𝛽 ∈ (0, 1). Define a functionΦ : (0, 1) → 𝑅 by

Φ (𝑥) = 1 − 𝑎
2𝑥

(0 < 𝑎 < 1) . (54)

Then Φ is an increasing function and consequently for |𝑧| =
𝑎; 𝑧 ∈ 𝑈, we obtain

1 − |𝑧|
2𝛽

< 1 − |𝑧|
2
. (55)

We thus find from (53) that


𝑐|𝑧|
2𝛽

+ (1 − |𝑧|
2𝛽
)
𝑧ℎ

(𝑧)

𝛽ℎ (𝑧)



≤
∑
𝑛
𝑖=1 (29

𝛼𝑖
 + 16

𝛾𝑖 + 𝜁𝑖
)

4
𝛽


.

(56)

Using the hypotheses (52) for 𝛽 ∈ (0, 1), we readily get


𝑐|𝑧|
2𝛽

+ (1 − |𝑧|
2𝛽
)
𝑧ℎ

(𝑧)

𝛽ℎ (𝑧)



≤ 1. (57)

Now if 𝛽 ∈ [1,∞), we define a function Ψ : [1,∞) → 𝑅 by

Ψ (𝑥) =
1 − 𝑎
2𝑥

𝑥
, (0 < 𝑎 < 1) . (58)

We observe that the function Ψ is decreasing and conse-
quently for |𝑧| = 𝑎; 𝑧 ∈ 𝑈, and using once again the hypo-
theses (36) whenR(𝜂) ∈ [1,∞), we easily get



𝑐|𝑧|
2𝛽

+ (1 − |𝑧|
2𝛽
)
𝑧ℎ

(𝑧)

𝛽ℎ (𝑧)



≤ 1. (59)

Finally, by applying Lemma 3, we conclude that𝑁𝛽 ∈ S.
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