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This paper deals with the numerical analysis of PIDE option pricing models with CGMY process using double discretization
schemes.This approach assumes weaker hypotheses of the solution on the numerical boundary domain than other relevant papers.
Positivity, stability, and consistency are studied. An explicit scheme is proposed after a suitable change of variables. Advantages of
the proposed schemes are illustrated with appropriate examples.

1. Introduction

The hypothesis that asset prices behave according to the
geometric Brownian motion when one derives the option
prices is inconsistent with market prices [1]. This drawback
has been overcome using Lévy processmodels [2–9] allowing
the calibration of the model to the option market price
and the reproduction of a wide variety of implied volatility
skews/smiles; see [10] and [11, chapters 14, 15]. Among the
Lévy process models, it is remarkable to distinguish these
with finite activity, that is, jump diffusion models [2, 3], and
those where the intensity of the jumps is not a finite measure
[4–9]. These models are characterized by the fact that option
price is given by the solution of a partial integrodifferential
equation (PIDE) involving a second-order differential opera-
tor part and a nonlocal integral term that presents additional
difficulties. In [12] wavelet methods are applied to infinite
Lévy models. Monte Carlo approaches are developed by
[13, 14]. Interesting analytic-numerical treatments have been
introduced in [15–17]. The so-called COS method for pricing
European options is presented in [15]. This is based on the
knowledge of the characteristic function and its relation with
the coefficients of the Fourier-cosine expansion of the density
function. In [16], an expansion of the characteristic function
of local volatility models with Lévy jumps is developed. The
authors in [17] derive an analytical formula for the price of
European options for anymodel including local volatility and
Poisson jump process by usingMalliavin calculus techniques.

Many authors used FD schemes for solving these PIDE
problems [18–28]. Dealing with FDmethods for such PIDEs,
the following challenges should be addressed, for instance,
how to approximate the integral term and how to localize a
bounded computational domain in order to consider rele-
vant information like large jumps. In addition, the possible
singularities of the integral kernel should be carefully treated
[18, 19].

The nonlocal character of the integral part involves a
dense discretization matrix. In the outstanding paper [18],
Cont and Voltchkova presented an explicit-implicit method
(explicit into the integral part and implicit into the differential
one) to obtain the numerical approximation of viscosity
solutions for European and barrier options. An improvable
issue of [18] is that, in order to approximate the truncated
integral term, they assume a particular behavior of the
solution outside of the bounded numerical domain. This last
drawback is experienced by most of the authors; see [22, 26,
27].

Implicit FD methods for the numerical solution of the
CGMY model have been used by Wang et al. [19] who
proposed an implicit time stepping method avoiding dense
linear systems but involving the iterationmethods drawbacks
of the implicit methods such as ungranted positivity. They
also assume that, for large enough values of 𝑆, the solution
behaves like Black-Scholes.

In [21], the authors use an unconditional ADI FDmethod
and accelerate it using fast Fourier transform (FFT) for
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jump diffusion models with finite jump intensity. Tavella and
Randall in [24] use an implicit time discretization and pro-
pose a stationary rapid convergent iterative method to solve
the full matrix problem quoted above, but with poor numeri-
cal analysis. A generalization of their iterativemethod to price
American options is proposed in [25].

One of the most relevant and versatile Lévy models is the
one proposed by Carr et al., the so-called CGMY model [8],
that belongs to the family of KoBoL models [9]. It is con-
sidered a prototype of the general class of models with
jumps and enjoyswidespread applicability.TheCGMYmodel
allows diffusions and jumps of both finite and infinite activity.
The CGMY Lévy density is given by

] (𝑦) =

{{{{{{

{{{{{{

{

𝐶𝑒
−𝐺|𝑦|

𝑦


1+𝑌

, 𝑦 < 0,

𝐶𝑒
−𝑀|𝑦|

𝑦


1+𝑌

, 𝑦 > 0,

(1)

where 𝐶 > 0, 𝐺 ≥ 0, 𝑀 ≥ 0, and 𝑌 < 2. The para-
meter 𝑌 allows controling the fine structure of asset return
distribution. For 𝑌 < 0, the Lévy process is of finite activity;
that is, the measure is finite; ∫ ](𝑦)𝑑𝑦 < ∞. For 0 ≤

𝑌 ≤ 1, it is of infinity activity but finite variance; that is,
∫
|𝑦|<1

𝑦](𝑦)𝑑𝑦 < ∞. Finally, for 1 < 𝑌 < 2, both the activity
and variation are infinite. Note that, for 𝑌 = 0, one gets the
well known Variance Gamma process proposed by Madan
and Seneta [29] as a particular case. So CGMY model is an
extension of the Variance Gamma model [7].

The authors in [22] use FDmethods discretizing the equ-
ation in space by the collocation method and using explicit
difference backward schemes focused on the case of infinite
activity and finite variation.

Very recently [28] proposed an efficient three-time-level
finite difference method for the infinite activity Lévy model.
Second-order convergence rate is shown in numerical expe-
riments although the numerical analysis of the method is not
developed.

The aim of this paper is the construction and numerical
analysis of an explicit finite difference scheme of the PIDE for
the CGMYmodel with measure ](𝑦) given by (1):
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𝜎
2
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𝑆
2

𝜕
2

𝑉

𝜕𝑆2
+ (𝑟 − 𝑞) 𝑆
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𝜕𝑆
− 𝑟𝑉

+ ∫

+∞

−∞

] (𝑦) [𝑉 (𝑆𝑒
𝑦

, 𝜏) − 𝑉 (𝑆, 𝜏) − 𝑆 (𝑒
𝑦

− 1)
𝜕𝑉

𝜕𝑆
] 𝑑𝑦,

𝑆 ∈ (0,∞) , 𝜏 ∈ (0, 𝑇] ,

(2)

𝑉 (𝑆, 0) = 𝑓 (𝑆) , 𝑆 ∈ (0,∞) . (3)

Here 𝑉(𝑆, 𝜏) is the option price depending on the under-
lying asset 𝑆, the time 𝜏 = 𝑇 − 𝑡, 𝜎 is the volatility parameter,
and 𝑟 and 𝑞 are the risk-free interest and the continuous

dividend paid by the asset, respectively. The payoff function
𝑓(𝑆) for a vanilla call option is given by

𝑓 (𝑆) = max (𝑆 − 𝐸, 0) , (4)

where 𝐸 is the strike price.
Like [20, 23] for jump diffusion models we transform the

original PIDE problem in order to remove the convection
term to avoid possible numerical oscillations. With respect
to the singularity of the integral kernel quoted above, the
jump component in the neighborhood of log jump size
zero is approximated by using a Taylor expansion, like
[18, 19].

The selection of the boundary conditions of the numerical
domain, the discretization of the infinite domain of the
integration, and matching the discretization of both the
differential and the integral part are important challenges.
Some authors, like those of [18], assume a particular behavior
of the solution outside of the bounded numerical domain.
In order to weaken these hypotheses we do not truncate the
infinite integral and we use a nonuniform partition of the
complete unbounded domain, allowing a proper matching
of the discretizations of the differential and integral parts
by assuming asymptotic linear behavior of the solution.
This strategy involves a double discretization with two spa-
tial stepsize parameters that will allow a better flexibility
to improve the approximation in different zones of the
domain.

This paper is organized as follows. In Section 2, the
integral part of (2) is approximated in a neighborhood of
𝑦 = 0 to obtain a new PIDE integral part extended outside
a neighborhood of 𝑦 = 0. Then a variable transformation
is developed in order to remove both the convection and
reaction terms of the differential part. Following the idea
developed in [20] for the finite activity case, a double
discretization explicit scheme for solving PIDE problem
(2) is constructed in Section 3 for the infinite activity case
affording the new challenges. Positivity and stability of the
numerical solutions given by the scheme are studied in
Section 4. Consistency of the scheme is treated in Section 5.
In Section 6, some illustrative numerical examples show the
advantages of the new discretization approach showing how
the double discretization allows flexible improvement of the
accuracy in different zones of the domain.

If V = (V
1

, V
2

, . . . , V
𝑛

)
𝑇 is a vector in R𝑛, we denote its

infinite norm ‖V‖
∞

= max{|V
𝑗

|; 𝑖 ≤ 𝑗 ≤ 𝑛}. Vector V is said
to be nonnegative if V

𝑗

≥ 0 for all 1 ≤ 𝑗 ≤ 𝑛; then we denote
V ≥ 0. For a matrix 𝐴 = (𝑎

𝑖𝑗

)
𝑚×𝑛

in R𝑚×𝑛, we denote ‖𝐴‖
∞

=

max
1≤𝑖≤𝑚

{∑
𝑛

𝑗=1

|𝑎
𝑖𝑗

|}. Matrix 𝐴 is said to be nonnegative if
𝑎
𝑖𝑗

≥ 0 for all 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, and we denote 𝐴 ≥ 0.
The exponential integrals have a major role in evaluating

important class of integrals. Let 𝑠 and 𝑧 be continuous (real
or complex) variables; the exponential integral of order 𝑠
denoted by 𝐸

𝑠

(𝑧) is given by [30]

𝐸
𝑠

(𝑧) = ∫

∞

1

𝑡
−𝑠 exp (−𝑧𝑡) 𝑑𝑡. (5)
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2. Transformation of the PIDE Problem

We begin this section by removing the singularity of the
kernel of the integral term of PIDE (2). Let 𝜀 > 0 and let
us split the real line into two regions 𝑅

1

= [−𝜀, 𝜀] and 𝑅
2

=

(−∞, 𝜀) ∪ (𝜀,∞). For the term 𝑉(𝑆𝑒
𝑦

, 𝜏) in 𝑅
1

, taking Taylor
expansion for 𝑧 = 𝑆𝑒𝑦 about 𝑧 = 𝑆 one gets
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3

) ,
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(6)

Taking into account (1) the integral part of (2) can be written
as
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where the integrals

𝜎
2

(𝜀) = ∫

𝜀

−𝜀

] (𝑦) (𝑒
𝑦

− 1)
2

𝑑𝑦,

𝛾 (𝜀) = ∫
𝑅

2

] (𝑦) (𝑒
𝑦

− 1) 𝑑𝑦,

𝜆 (𝜀) = ∫
𝑅

2

] (𝑦) 𝑑𝑦,

(8)

can be evaluated with high accuracy using the exponential
integrals ([30, 31], chapter 7). Let us denote

𝑓 (𝛼,𝑀, 𝜀) = 𝑀
𝛼−1

Γ (1 − 𝛼) − 𝜀
1−𝛼

𝐸
𝛼

(𝜀𝑀) , (9)

where Γ denotes the gamma function and 𝐸
𝛼

is the expone-
ntial integral. Considering the expression (1) and the expo-
nential integral (5) for𝑀 > 2, one gets

𝜎
2
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2
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𝑘
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(10)

Notice that (10) holds for𝑌 ∈ (0, 1)∪ (1, 2). For the particular
case where 𝑌 = 0, one gets
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For the remaining integrals in (8), we have

𝛾 (𝜀) = 𝐶𝜀
−𝑌

1

∑
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(
1

𝑘
) (−1)

1−𝑘
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(𝜀 (𝐺 + 𝑘)) + 𝐸
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𝜆 (𝜀) = 𝐶𝜀
−𝑌

(𝐸
1+𝑌

(𝐺𝜀) + 𝐸
1+𝑌
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Hence, the problem (2) takes the following form:

𝜕𝑉

𝜕𝜏
=
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2

2
𝑆
2

𝜕
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𝑉

𝜕𝑆2
+ (𝑟 − 𝑞 − 𝛾 (𝜀)) 𝑆

𝜕𝑉

𝜕𝑆

− (𝑟 + 𝜆 (𝜀)) 𝑉

+ ∫
𝑅

2

] (𝑦)𝑉 (𝑆𝑒
𝑦

, 𝜏) 𝑑𝑦 + O (𝜀
3−𝑌

) ,

(15)

where �̂�2 = �̂�2(𝜀) = 𝜎2 + 𝜎2(𝜀).
In order to remove the convection and reaction terms

from (15), let us introduce the following transformation of
variables:

𝑥 = exp [(𝑟 − 𝑞 − 𝛾 (𝜀)) 𝜏] 𝑆, 𝑈 (𝑥, 𝜏)

= exp [(𝑟 + 𝜆 (𝜀)) 𝜏] 𝑉 (𝑆, 𝜏) .
(16)

Hence the problem (15) is approximated by the following
form:

𝜕𝑈

𝜕𝜏
=
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2

2
𝑥
2

𝜕
2

𝑈

𝜕𝑥2
+ 𝐽, 𝑥 ∈ (0, +∞) , 𝜏 ∈ (0, 𝑇] ,

𝑈 (𝑥, 0) = 𝑓 (𝑥) , 𝑥 ∈ (0, +∞) ,

(17)
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where

𝐽 = 𝐽 (𝑥, 𝜏, 𝜀) = ∫
𝑅

2

] (𝑦)𝑈 (𝑥𝑒
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, 𝜏) 𝑑𝑦
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−∞
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∞

𝜀
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𝑦
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Finally in order to combine both discretizations of the
differential and integral part, we use 𝜙 = 𝑥𝑒

𝑦 to change the
integrand 𝐽 as follows:

𝐽 = 𝐽
1

+ 𝐽
2
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𝑥𝑒

−𝜀
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𝑔 (𝑥, 𝜙)𝑈 (𝜙, 𝜏) 𝑑𝜙
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𝜀

𝑔 (𝑥, 𝜙)𝑈 (𝜙, 𝜏) 𝑑𝜙,

(19)

where 𝑔(𝑥, 𝜙) = ](ln(𝜙/𝑥))/𝜙. For evaluating the integrals in
all the positive real line, let us introduce a parameter 𝐴 > 0

that separates [0,∞) into [0, 𝐴] ∪ [𝐴,∞). The point𝐴 can be
chosen according to the criteria used by [18, 32, 33] to truncate
the numerical domain. For instance, in [26] one takes𝐴 = 4𝐸

and in [20] one takes𝐴 = 3𝐸. To evaluate the integrals related
to 𝑥 > 𝐴, they are transformed to finite integrals by using the
substitution 𝑧 = 𝐴/𝜙 consequently, obtaining integrals of the
form

∫

𝛽

𝛼
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𝐴

𝑧
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𝑑𝑧
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(20)

where 𝜙
0

= 𝐴/𝛽, 𝜙
1

= 𝐴/𝛼. In particular if 𝛽 → ∞ then
𝜙
0

= 0. Hence, the problem (17) takes the form

𝜕𝑈

𝜕𝜏
=
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2
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𝑥
2

𝜕
2

𝑈

𝜕𝑥2
+ 𝐽, 𝑥 ∈ (0,∞) , 𝜏 ∈ (0, 𝑇] , (21)

𝑈 (𝑥, 0) = 𝑓 (𝑥) , 𝑥 ∈ (0,∞) . (22)

3. Numerical Scheme Construction

In this section a difference scheme for the problem (21)-(22)
is designed. For the time variable, given 𝜏 ∈ (0, 𝑇], let 𝑘 be
the time-step discretization 𝑘 = Δ𝜏 = 𝜏/𝐿 and 𝜏𝑙 = 𝑙𝑘, 0 ≤
𝑙 ≤ 𝐿, with 𝐿 integer. With respect to the spatial variable 𝑥
and for an arbitrary fixed 𝐴 > 0, we divide the interval [0, 𝐴]
into 𝑁 equal intervals with a spatial step ℎ = Δ𝑥 = 𝐴/𝑁,
with 𝑥

𝑖

= 𝑖ℎ, 0 ≤ 𝑖 ≤ 𝑁. Note that the unbounded domain
[𝐴,∞) is transformed into (0, 1] by the above quoted change
𝑧 = 𝐴/𝑥. Thus a uniform distributed mesh partition of the
interval (0, 1] of the form 𝑧

𝑖

= 𝑖𝛿, 𝛿 = 1/𝑀, and 0 < 𝑖 ≤ 𝑀
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𝑖

=

𝐴/𝑧
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and ℎ
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𝑖,𝑟

=

𝐽
𝑟

(𝑥
𝑖

, 𝜏
𝑙

, 𝜀), 𝑟 = 1, 2. Let 𝑖
1

(𝑖) be the biggest 𝑗 with 0 ≤ 𝑗 ≤

𝑁+𝑀−1 such that 𝑥
𝑗

≤ 𝑥
𝑖

𝑒
−𝜀 and let 𝑖

2

(𝑖) be the first 𝑗 such
that 𝑥

𝑖

𝑒
𝜀

≤ 𝑥
𝑗

. Then the expression (19) for the point (𝑥
𝑖

, 𝜏
𝑙

)

has the following form:

𝐽
𝑙

𝑖

= 𝐽
𝑙

𝑖,1

+ 𝐽
𝑙

𝑖,2

,

𝐽
𝑙

𝑖,1

= ∫

𝑥

𝑖1

0

𝑔 (𝑥
𝑖

, 𝜙)𝑈 (𝜙, 𝜏
𝑙

) 𝑑𝜙

+ ∫

𝑥

𝑖
𝑒

−𝜀

𝑥

𝑖1

𝑔 (𝑥
𝑖

, 𝜙)𝑈 (𝜙, 𝜏
𝑙

) 𝑑𝜙,

𝐽
𝑙

𝑖,2

= ∫

∞

𝑥

𝑖2

𝑔 (𝑥
𝑖

, 𝜙)𝑈 (𝜙, 𝜏
𝑙

) 𝑑𝜙

+ ∫

𝑥

𝑖2

𝑥

𝑖
𝑒

𝜀

𝑔 (𝑥
𝑖

, 𝜙)𝑈 (𝜙, 𝜏
𝑙

) 𝑑𝜙.

(26)

Then we apply the trapezoidal rule for the integrals over
(0, 𝑥
𝑖

1

] and [𝑥
𝑖

2
,∞

) because of (20) and using the first mean
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value theorem for integrals [34, page 1063], the two remaining
integrals are approximated by

∫

𝑥

𝑖
𝑒

−𝜀

𝑥

𝑖1

𝑔 (𝑥
𝑖

, 𝜙)𝑈 (𝜙, 𝜏
𝑙

) 𝑑𝜙

≈ 𝐼
𝑙

𝑖

= (∫

𝑥

𝑖
𝑒

−𝜀

𝑥

𝑖1

𝑔 (𝑥
𝑖

, 𝜙) 𝑑𝜙)𝑢
𝑙

𝑖

1

= 𝑔
𝑖,𝑖

1

𝑢
𝑙

𝑖

1

,

∫

𝑥

𝑖2

𝑥

𝑖
𝑒

𝜀

𝑔 (𝑥
𝑖

, 𝜙)𝑈 (𝜙, 𝜏
𝑙

) 𝑑𝜙

≈ 𝐻
𝑙

𝑖

= (∫

𝑥

𝑖2

𝑥

𝑖
𝑒

𝜀

𝑔 (𝑥
𝑖

, 𝜙) 𝑑𝜙) 𝑢
𝑙

𝑖

2

= 𝑔
𝑖,𝑖

2

𝑢
𝑙

𝑖

2

.

(27)

Let us denote

𝑔
𝑖,𝑗

=

] (ln𝑥
𝑗

/𝑥
𝑖

)

𝑥
𝑗

. (28)

Depending on the location of 𝑥
𝑖

for each 𝑖 with 1 < 𝑖 ≤ 𝑁 +

𝑀−2, we approximate 𝐽𝑙
𝑖

given by (26) in the following form.

Case 1 (𝑥
𝑖

< 𝐴𝑒
−𝜀). Note that in this case 𝑥

𝑖

1

< 𝐴, and thus
𝐽
𝑙

𝑖,1

is approximated by ℎ∑𝑖1−1
𝑗=1

𝑔
𝑖𝑗

𝑢
𝑙

𝑗

+ ((ℎ/2)𝑔
𝑖,𝑖

1

+ 𝑔
𝑖,𝑖

1

)𝑢
𝑙

𝑖

1

.
Also one has 𝑥

𝑖

2

< 𝐴 in the domain of the integral 𝐽𝑙
𝑖,2

and
is approximated by ((ℎ/2)𝑔

𝑖,𝑖

2

+ 𝑔
𝑖,𝑖

2

)𝑢
𝑙

𝑖

2

+ ℎ∑
𝑁−1

𝑗=𝑖

2
+1

𝑔
𝑖𝑗

𝑢
𝑛

𝑗

+

(𝑔
𝑖𝑁

/2)(ℎ + 𝐴𝛿)𝑢
𝑙

𝑁

+ (𝛿/𝐴)∑
𝑁+𝑀−1

𝑗=𝑁+1

𝑔
𝑖𝑗

𝑥
2

𝑗

𝑢
𝑙

𝑗

, taking into
account (20) for 𝑥

𝑗

> 𝐴. Thus

𝐽
𝑙

𝑖

= ℎ

𝑖

1
−1

∑

𝑗=1

𝑔
𝑖𝑗

𝑢
𝑙

𝑗

+ (
ℎ

2
𝑔
𝑖,𝑖

1

+ 𝑔
𝑖,𝑖

1

)𝑢
𝑙

𝑖

1

+ (
ℎ

2
𝑔
𝑖,𝑖

2

+ 𝑔
𝑖,𝑖

2

)𝑢
𝑙

𝑖

2

+ ℎ

𝑁−1

∑

𝑗=𝑖

2
+1

𝑔
𝑖𝑗

𝑢
𝑙

𝑗

+
𝑔
𝑖𝑁

2
(ℎ + 𝐴𝛿) 𝑢

𝑙

𝑁

+
𝛿

𝐴

𝑁+𝑀−1

∑

𝑗=𝑁+1

𝑔
𝑖𝑗

𝑥
2

𝑗

𝑢
𝑙

𝑗

.

(29)

Case 2 (𝐴𝑒−𝜀 ≤ 𝑥
𝑖

< 𝐴𝑒
𝜀). As 𝑥

𝑖

1

< 𝐴 and 𝑥
𝑖

2

≥ 𝐴, the appro-
ximation of 𝐽𝑙

𝑖

becomes

𝐽
𝑙

𝑖

= ℎ

𝑖

1
−1

∑

𝑗=1

𝑔
𝑖𝑗

𝑢
𝑙

𝑗

+ (
ℎ

2
𝑔
𝑖,𝑖

1

+ 𝑔
𝑖,𝑖

1

)𝑢
𝑙

𝑖

1

+ (

𝑥
2

𝑖

2

𝛿

2𝐴
𝑔
𝑖,𝑖

2

+ 𝑔
𝑖,𝑖

2

)𝑢
𝑙

𝑖

2

+
𝛿

𝐴

𝑁+𝑀−1

∑

𝑗=𝑖

2
+1

𝑔
𝑖𝑗

𝑥
2

𝑗

𝑢
𝑙

𝑗

.

(30)

Case 3 (𝑥
𝑖

≥ 𝐴𝑒
𝜀). Here 𝑥

𝑖

2

> 𝑥
𝑖

1

≥ 𝐴 and the approximation
of 𝐽𝑙
𝑖

is given by

𝐽
𝑙

𝑖

= ℎ

𝑁−1

∑

𝑗=1

𝑔
𝑖𝑗

𝑢
𝑙

𝑗

+
𝑔
𝑖𝑁

2
(ℎ + 𝐴𝛿) 𝑢

𝑙

𝑁

+
𝛿

𝐴

𝑖

1
−1

∑

𝑗=𝑁+1

𝑔
𝑖𝑗

𝑥
2

𝑗

𝑢
𝑙

𝑗

+ (

𝑥
2

𝑖

1

𝛿

2𝐴
𝑔
𝑖,𝑖

1

+ 𝑔
𝑖,𝑖

2

)𝑢
𝑙

𝑖

1

+ (

𝑥
2

𝑖

2

𝛿

2𝐴
𝑔
𝑖,𝑖

2

+ 𝑔
𝑖,𝑖

2

)𝑢
𝑙

𝑖

2

+
𝛿

𝐴

𝑁+𝑀−1

∑

𝑗=𝑖

2
+1

𝑔
𝑖𝑗

𝑥
2

𝑗

𝑢
𝑙

𝑗

.

(31)

Assuming that 𝑈(𝜙, 𝜏) tends to zero at least linearly as
𝜙 tends to zero one has 𝑔(𝑥, 𝜙)𝑢(𝜙, 𝜏) → 0 by (1)
and (28). On the other hand, assuming linear behavior of
the solution for large values of 𝜙, the integrand of (20)
𝑔(𝑥, 𝐴/𝑧)𝑈(𝐴/𝑧, 𝜏)(1/𝑧

2

) → 0, as 𝑧 → 0. Thus, both the
terms involving𝑢𝑙

0

and𝑢𝑙
𝑁+𝑀

do not appear in the expressions
of (29)–(31). Taking into account (25)–(31) the resulting
difference scheme for the PIDE problem (21) takes the form

𝑢
𝑙+1

𝑖

= 𝑢
𝑙

𝑖

+
𝑘�̂�
2

2
𝑥
2

𝑖

Δ
𝑙

𝑖

+ 𝑘𝐽
𝑙

𝑖

, 1 ≤ 𝑖 ≤ 𝑁 +𝑀 − 2. (32)

In order to obtain a complete difference scheme, we include
the initial and boundary conditions. From (22), we have

𝑢
0

𝑖

= max (𝑥
𝑖

− 𝐸, 0) , 1 ≤ 𝑖 ≤ 𝑁 +𝑀 − 1. (33)

On the other hand, for a vanilla call option the boundary
condition for 𝑖 = 0 is

𝑢
𝑙

0

= 0, 0 ≤ 𝑙 ≤ 𝐿, (34)

and by assuming the linear behavior of the solution for large
values of the spatial variable, we have 𝜕2𝑈/𝜕𝑥2 → 0 and
thus Δ𝑙

𝑁+𝑀−1

= 0 and the null integral term approximation
𝐽
𝑁+𝑀−1

= 0, for all time level 𝑙. Thus from (32) for 𝑖 =

𝑁 +𝑀 − 1, one gets

𝑢
𝑙+1

𝑁+𝑀−1

= 𝑢
𝑙

𝑁+𝑀−1

= 𝑢
0

𝑁+𝑀−1

, 0 ≤ 𝑙 ≤ 𝐿 − 1. (35)

For the sake of convenience to study the stability, we now
introduce the vector formulation of scheme (32)–(35). Let us
denote the vector in R𝑁+𝑀−1 as

𝑈
𝑙

= [𝑢
𝑙

1

𝑢
𝑙

2

⋅ ⋅ ⋅ 𝑢
𝑙

𝑁+𝑀−1

]
𝑡

, (36)

and let 𝑃 = (𝑝
𝑖𝑗

) be a tridiagonal matrix inR(𝑁+𝑀−1)×(𝑁+𝑀−1)

related to the differential part, defined by

𝑝
𝑖𝑗

=

{{{{{{{{{

{{{{{{{{{

{

𝛼
𝑖

, 2 ≤ 𝑖 ≤ 𝑁 +𝑀 − 1, 𝑗 = 𝑖 − 1,

𝛽
𝑖

, 1 ≤ 𝑖 ≤ 𝑁 +𝑀 − 1, 𝑗 = 𝑖,

𝛾
𝑖

, 1 ≤ 𝑖 ≤ 𝑁 +𝑀 − 2, 𝑗 = 𝑖 + 1,

0, otherwise,

(37)
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where

𝛾
1

=
𝑘

2
�̂�
2

,

𝛼
𝑁+𝑀−1

= 0,

𝛽
𝑁+𝑀−1

= 1,

𝛾
𝑖

= 𝛼
𝑖

=
𝑘

2ℎ2
�̂�
2

𝑥
2

𝑖

, 2 ≤ 𝑖 ≤ 𝑁 − 1,

𝛽
𝑖

= 1 −
𝑘

ℎ2
�̂�
2

𝑥
2

𝑖

, 1 ≤ 𝑖 ≤ 𝑁 − 1,

𝛼
𝑁

=
𝑘�̂�
2

𝐴
2

ℎ (ℎ + 𝐴𝛿/ (1 − 𝛿))
,

𝛽
𝑁

= 1 −
𝑘�̂�
2

𝐴 (1 − 𝛿)

𝛿ℎ
,

𝛾
𝑁

=
𝑘�̂�
2

𝐴 (1 − 𝛿)

𝛿 (ℎ + 𝐴𝛿/ (1 − 𝛿))
,

𝛼
𝑖

=
𝑘�̂�
2

𝑥
2

𝑖

ℎ
𝑖−1

(ℎ
𝑖

+ ℎ
𝑖−1

)
,

𝛽
𝑖

= 1 −
𝑘�̂�
2

𝑥
2

𝑖

ℎ
𝑖

ℎ
𝑖−1

,

𝛾
𝑖

=
𝑘�̂�
2

𝑥
2

𝑖

ℎ
𝑖

(ℎ
𝑖

+ ℎ
𝑖−1

)
,

𝑁 + 1 ≤ 𝑖 ≤ 𝑁 +𝑀 − 2.

(38)

Let 𝐵 = (𝑏
𝑖𝑗

) be the matrix in ∈ R(𝑁+𝑀−1)×(𝑁+𝑀−1) related to
the integral part whose entries 𝑏

𝑖𝑗

for each fixed 𝑖 in 1 ≤ 𝑖 ≤

𝑁 +𝑀 − 2 are defined by

𝑏
𝑖𝑗

=

{{{{{{{{{

{{{{{{{{{

{

𝑘𝑏
(1)

𝑖𝑗

, 1 ≤ 𝑖 ≤ 𝑖
1

(𝑁) − 1,

𝑘𝑏
(2)

𝑖𝑗

, 𝑖
1

(𝑁) ≤ 𝑖 ≤ 𝑖
2

(𝑁) − 1,

𝑘𝑏
(3)

𝑖𝑗

, 𝑖
2

(𝑁) ≤ 𝑖 ≤ 𝑁 +𝑀 − 2,

0, 𝑖 = 𝑀 +𝑁 − 1,

(39)

where

𝑏
(1)

𝑖𝑗

=

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

ℎ𝑔
𝑖𝑗

, 1 ≤ 𝑗 ≤ 𝑖
1

− 1,

ℎ

2
𝑔
𝑖,𝑗

+ 𝑔
𝑖,𝑗

, 𝑗 = 𝑖
1

, 𝑖
2

,

0, 𝑖
1

+ 1 ≤ 𝑗 ≤ 𝑖
2

− 1,

ℎ𝑔
𝑖𝑗

, 𝑖
2

+ 1 ≤ 𝑗 ≤ 𝑁 − 1,

1

2
(ℎ + 𝐴𝛿) 𝑔

𝑖𝑁

, 𝑗 = 𝑁,

𝛿

𝐴
𝑥
2

𝑗

𝑔
𝑖𝑗

, 𝑁 + 1 ≤ 𝑗 ≤ 𝑁 +𝑀 − 1,

(40)

𝑏
(2)

𝑖𝑗

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

ℎ𝑔
𝑖𝑗

, 1 ≤ 𝑗 ≤ 𝑖
1

− 1,

ℎ

2
𝑔
𝑖,𝑗

+ 𝑔
𝑖,𝑗

, 𝑗 = 𝑖
1

,

0, 𝑖
1

+ 1 ≤ 𝑗 ≤ 𝑖
2

− 1,

𝑥
2

𝑖

2

𝛿

2𝐴
𝑔
𝑖,𝑗

+ 𝑔
𝑖,𝑗

, 𝑗 = 𝑖
2

,

𝛿

𝐴
𝑥
2

𝑗

𝑔
𝑖𝑗

, 𝑖
2

+ 1 ≤ 𝑗 ≤ 𝑁 +𝑀 − 1,

(41)

𝑏
(3)

𝑖𝑗

=

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

ℎ𝑔
𝑖𝑗

, 1 ≤ 𝑗 ≤ 𝑁 − 1,

1

2
(ℎ + 𝐴𝛿) 𝑔

𝑖𝑁

, 𝑗 = 𝑁,

𝛿

𝐴
𝑥
2

𝑗

𝑔
𝑖𝑗

, 𝑁 + 1 ≤ 𝑗 ≤ 𝑖
1

− 1,

𝛿𝑥
2

𝑗

2𝐴
𝑔
𝑖,𝑗

+ 𝑔
𝑖,𝑗

, 𝑗 = 𝑖
1

, 𝑖
2

,

0, 𝑖
1

+ 1 ≤ 𝑗 ≤ 𝑖
2

− 1,

𝛿

𝐴
𝑥
2

𝑗

𝑔
𝑖𝑗

, 𝑖
2

+ 1 ≤ 𝑗 ≤ 𝑁 +𝑀 − 1.

(42)

Hence scheme (32)–(35) can be written in the form

𝑈
𝑙+1

= (𝑃 + 𝐵) 𝑈
𝑙

= (𝑃 + 𝐵)
𝑙

𝑈
0

,

0 ≤ 𝑙 ≤ 𝐿 − 1,

𝑈
0

= [𝑓 (𝑥
1

) 𝑓 (𝑥
2

) ⋅ ⋅ ⋅ 𝑓 (𝑥
𝑁+𝑀−1

)]
𝑡

.

(43)

4. Positivity and Stability of
the Numerical Solution

The price of contracts modelled by PIDE must be a non-
negative value. Our objective here is to demonstrate that the
solution of scheme (32)–(35) is conditionally nonnegative
and stable.

First we study the positivity of thematrix𝑃.The following
lemma has been proved in [20].

Lemma 1. With previous notation, assume that stepsizes 𝑘 =
Δ𝜏, ℎ = Δ𝑥 in [0, 𝐴] and 0 < 𝛿 ≤ 1/3, 𝛿 = Δ𝑧 in (0, 1], satisfy

(C1) 𝑘/ℎ2 ≤ (1/�̂�2𝐴2);
(C2) 𝑘 ≤ min{𝛿2/�̂�2(1 − 2𝛿), 𝛿ℎ/�̂�2 𝐴(1 − 𝛿)}.

Then matrix 𝑃 given by (37) is nonnegative.

Note that as the matrix 𝐵 defined by (40)-(39) is always
nonnegative, from Lemma 1 and (43) starting from nonneg-
ative initial vector 𝑈0, the following result is established.

Theorem2. With the hypotheses and notation of Lemma 1, the
solution {𝑢𝑙

𝑖

} of scheme (32)–(35) is nonnegative if the initial
values 𝑢0

𝑖

≥ 0, 1 ≤ 𝑖 ≤ 𝑁 +𝑀 − 1.
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The next result will be used below to guarantee stability.

Lemma 3. Let matrices 𝑃 and 𝐵 be defined by (37)–(39), and
let 𝜀 > 0; then the following results hold.

(1) Under conditions (C1) and (C2) of Lemma 1, ‖𝑃‖
∞

= 1.
(2) ‖𝐵‖

∞

≤ 𝑘(𝜆(𝜀) + 1), where 𝜆(𝜀) is defined by (14).

By [20, lemma 2], part 1 is proved. Since the norm of 𝐵 is
given by

‖𝐵‖
∞

= max
𝑖

𝑁+𝑀−1

∑

𝑗=1


𝑏
𝑖𝑗


= max
𝑖

𝑁+𝑀−1

∑

𝑗=1

𝑏
𝑖𝑗

,

1 ≤ 𝑖 ≤ 𝑁 +𝑀 − 1,

(44)

if �̃� denotes the row containing the maximum of (44), one
gets

‖𝐵‖
∞

=

𝑁+𝑀−1

∑

𝑗=1

𝑏
�̃�𝑗

= 𝑘

𝑁+𝑀−1

∑

𝑗=1

𝑏
(𝑟)

�̃�𝑗

,

𝑟 = 1, 2, or 3,

(45)

the elements of the summation in (45) are given by (40)-(39).
To upper bound (45), we apply the change of variables 𝑦 =

𝑥
�̃�

𝑒
𝜙 in (8), resulting in

𝜆 (𝜀) = ∫

𝑥

�̃�
𝑒

−𝜀

0

𝑔 (𝑥
�̃�

, 𝜙) 𝑑𝜙 + ∫

∞

𝑥

�̃�
𝑒

𝜀

𝑔 (𝑥
�̃�

, 𝜙) 𝑑𝜙, (46)

which coincides with (19) when 𝑈(𝜙, 𝜏) = 1. Hence from
(19), (45), and (46), we conclude that ∑𝑁+𝑀−1

𝑗=1

𝑏
(𝑟)

�̃�𝑗

is an
approximation for 𝜆(𝜀). Thus, for small enough ℎ and 𝛿, one
gets [35]

𝑁+𝑀−1

∑

𝑗=1

𝑏
(𝑟)

�̃�𝑗

< 𝜆 (𝜀) + 1. (47)

Hence

‖𝐵‖
∞

< 𝑘 (𝜆 (𝜀) + 1) , (48)

independently of the value of the size of matrix 𝐵.
There aremany definitions of stability in the literature; we

recall our concept of stability in the next definition.

Definition 4. Let {𝑢𝑙
𝑖

} be a numerical solution of the PIDE
(21), (22) computed from scheme (32)–(35) with stepsizes
ℎ = Δ𝑥 in [0, 𝐴], 𝛿 = Δ𝑧 in ]0, 1], and 𝑘 = Δ𝜏 in [0, 𝜏].
Let {𝑈𝑙} be the corresponding vector form; that is, 𝑈𝑙 =
[𝑢
𝑙

1

𝑢
𝑙

2

⋅ ⋅ ⋅ 𝑢
𝑙

𝑁+𝑀−1

]
𝑡; of (43). One says that {𝑢𝑙

𝑖

} is strongly
uniformly ‖ ⋅ ‖

∞

stable if


𝑈
𝑙

∞
≤ 𝑊


𝑈
0

∞
, 0 ≤ 𝑙 ≤ 𝐿, (49)

where𝑊 > 0 is independent of 𝑙, ℎ, 𝛿, and 𝑘.

If the property (49) is satisfied for appropriate relation-
ships between the stepsizes ℎ, 𝛿 and 𝑘, then one says that the
strong uniform stability is conditional.

Theorem 5. With the previous notation, the numerical solu-
tion {𝑢𝑙

𝑖

} of scheme (32)–(35) is strongly uniformly ‖ ⋅ ‖
∞

stable
if one satisfies the condition 0 < 𝛿 ≤ 1/3 together with

𝑘

ℎ2
≤

1

�̂�2𝐴2
,

𝑘 ≤ min{ 𝛿
2

�̂�2 (1 − 2𝛿)
,

𝛿ℎ

�̂�2𝐴 (1 − 𝛿)
} .

(50)

Proof. Note that scheme (32)–(35) is equivalent to the vector
form scheme (43). Under condition (50), by Lemma 3 one
gets, after taking norms in (43),


𝑈
𝑙+1

∞
≤ (‖𝑃‖

∞

+ ‖𝐵‖
∞

)

𝑈
𝑙

∞

≤ (1 + 𝑘 (𝜆 (𝜀) + 1))

𝑈
𝑙

∞
.

(51)

Hence, from (51) and that 0 ≤ 𝑙 ≤ 𝐿, 𝑘𝐿 = 𝜏 ≤ 𝑇,

𝑈
𝑙

∞
𝑈
0

∞

≤ (1 + 𝑘 (𝜆 (𝜀) + 1))
𝑙

≤ exp (𝑙𝑘 (𝜆 (𝜀) + 1)) ≤ exp (𝑇 (𝜆 (𝜀) + 1)) .

(52)

Thus the conditional strong uniform stability is established.

5. Consistency

A numerical scheme is consistent with a PIDE if an exact the-
oretical solution of the PIDE approximates well the difference
scheme as the stepsizes discretization tend to zero [36, 37].

After recalling the definition of consistency, let us write
(32) in the form

𝐹
𝑙

𝑖

(𝑢) =
𝑢
𝑙+1

𝑖

− 𝑢
𝑙

𝑖

𝑘
−
�̂�
2

2
𝑥
2

𝑖

Δ
𝑙

𝑖

− 𝐽
𝑙

𝑖

= 0. (53)

Let us denote 𝑈𝑙
𝑖

= 𝑈(𝑥
𝑖

, 𝜏
𝑙

) as the value of the theoretical
solution of (21) and let 𝐴 > 0 such that 𝑥

𝑖

< 𝐴𝑒
−𝜀, and let us

write the PIDE (21) as

𝐿 (𝑈) = 𝐽 (𝑈) , (54)

where

𝐿 (𝑈) =
𝜕𝑈

𝜕𝜏
−
�̂�
2

2
𝑥
2

𝜕
2

𝑈

𝜕𝑥2
,

𝐽 (𝑈) = 𝐽 = 𝐽
1

+ 𝐽
2

.

(55)

The local truncated error 𝑇𝑙
𝑖

(𝑈) at (𝑥
𝑖

, 𝜏
𝑙

) is defined by

𝑇
𝑙

𝑖

(𝑈) = 𝐹
𝑙

𝑖

(𝑈) − 𝐿 (𝑈
𝑙

𝑖

) + 𝐽 (𝑈
𝑙

𝑖

) . (56)
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In order to prove the consistency, we must show that

𝑇
𝑙

𝑖

(𝑈) → 0, as ℎ → 0, 𝛿 → 0, 𝑘 → 0. (57)

Assuming that𝑈 is twice continuously partially differentiable
with respect to 𝜏 and four times partially differentiable with
respect to 𝑥, and using Taylor’s expansion about (𝑥

𝑖

, 𝜏
𝑙

), it
follows that

𝑈
𝑙+1

𝑖

− 𝑈
𝑙

𝑖

𝑘
=
𝜕𝑈

𝜕𝜏
(𝑥
𝑖

, 𝜏
𝑙

) + 𝑘𝐸
𝑙

𝑖

(1) ,

𝐸
𝑙

𝑖

(1) =
1

2

𝜕
2

𝑈

𝜕𝜏2
(𝑥
𝑖

, 𝜁) , 𝜏
𝑙

< 𝜁 < 𝜏
𝑙+1

,


𝐸
𝑙

𝑖

(1)

≤
1

2
𝑊
𝑙

𝑖

(1)

=
1

2
max{



𝜕
2

𝑈

𝜕𝜏2
(𝑥
𝑖

, 𝜁)



; 𝜏
𝑙

≤ 𝜁 ≤ 𝜏
𝑙+1

} ,

Δ
𝑙

𝑖

=
𝜕
2

𝑈

𝜕𝑥2
(𝑥
𝑖

, 𝜏
𝑙

) + ℎ
2

𝐸
𝑙

𝑖

(2) ,

𝐸
𝑙

𝑖

(2) =
1

12

𝜕
4

𝑈

𝜕𝑥4
(𝜁, 𝜏
𝑙

) , 𝑥
𝑖

− ℎ < 𝜁 < 𝑥
𝑖

+ ℎ,


𝐸
𝑙

𝑖

(2)

≤
1

12
𝑊
𝑙

𝑖

(2)

=
1

12
max{



𝜕
4

𝑈

𝜕𝑥4
(𝜁, 𝜏
𝑙

)



; 𝑥
𝑖

− ℎ ≤ 𝜁 ≤ 𝑥
𝑖

+ ℎ} .

(58)

In accordance with [36, page 101] let us denote the local
consistency error of 𝐽𝑙

𝑖,1

(see (29)) by

𝐶
𝑙

𝑖,1

= 𝐽
𝑙

𝑖,1

− 𝑇
𝑙

𝑖,1

([0, 𝑥
𝑖

𝑒
−𝜀

]) ,

𝑇
𝑖,1

([0, 𝑥
𝑖

𝑒
−𝜀

])

= ℎ

𝑖

1
−1

∑

𝑗=1

𝑔
𝑖𝑗

𝑈
𝑙

𝑗

+ (
ℎ

2
𝑔
𝑖,𝑖

1

+ 𝑔
𝑖,𝑖

1

)𝑈
𝑙

𝑖

1

.

(59)

By (26) and (29), the local consistency error for 𝐽𝑙
𝑖,2

is given
by

𝐶
𝑙

𝑖,2

= 𝐽
𝑙

𝑖,2

− (𝑇
𝑙

𝑖,2

([𝑥
𝑖

𝑒
𝜀

, 𝐴]) + 𝑇
𝑙

𝑖,3

([0, 1])) , (60)

where

𝑇
𝑙

𝑖,2

([𝑥
𝑖

𝑒
𝜀

, 𝐴])

= (
ℎ

2
𝑔
𝑖,𝑖

2

+ 𝑔
𝑖,𝑖

2

)𝑈
𝑙

𝑖

2

+ ℎ

𝑁−1

∑

𝑗=𝑖

2
+1

𝑔
𝑖𝑗

𝑈
𝑙

𝑗

+
ℎ

2
𝑔
𝑖𝑁

𝑈
𝑙

𝑁

,

𝑇
𝑙

𝑖,3

([0, 1]) =
𝛿

𝐴
(
1

2
𝑔
𝑖𝑁

𝑥
2

𝑁

𝑈
𝑙

𝑁

+

𝑁+𝑀−1

∑

𝑗=𝑁+1

𝑔
𝑖𝑗

𝑥
2

𝑗

𝑈
𝑙

𝑗

) .

(61)

From the first mean value theorem for integrals [34, page
1063], one gets

𝐼 (𝑥
𝑖

, 𝜀) = ∫

𝑥

𝑖
𝑒

−𝜀

𝑥

𝑖1

𝑔 (𝑥
𝑖

, 𝜙)𝑈 (𝜙, 𝜏
𝑙

) 𝑑𝜙

= (∫

𝑥

𝑖
𝑒

−𝜀

𝑥

𝑖1

𝑔 (𝑥
𝑖

, 𝜙) 𝑑𝜙)𝑈 (𝑐, 𝜏
𝑙

)

= 𝑔
𝑖,𝑖

1

𝑈(𝑐, 𝜏
𝑙

) , 𝑥
𝑖

1

< 𝑐 < 𝑥
𝑖

𝑒
−𝜀

,

(62)

and since

𝑈(𝑐, 𝜏
𝑙

) = 𝑈 (𝑥
𝑖

1

, 𝜏
𝑙

) + (𝑐 − 𝑥
𝑖

1

)
𝜕𝑈

𝜕𝑥
(𝜉, 𝜏
𝑙

) ,

𝑥
𝑖

1

< 𝜉 < 𝑐,

(63)

it follows that

𝐼 (𝑥
𝑖

, 𝜀) − 𝑔
𝑖,𝑖

1

𝑈
𝑙

𝑖

1


≤ 𝑔
𝑖,𝑖

1

ℎΛ
𝑙

𝑖

(1) ≤ ℎ
2

𝑊
𝑙

𝑖

(3) , (64)

where

Λ
𝑙

𝑖

(1) = max{


𝜕𝑈

𝜕𝑥
(𝑥, 𝜏
𝑙

)



; 𝑥
𝑖

1

≤ 𝑥 ≤ 𝑥
𝑖

𝑒
−𝜀

} ,

𝑊
𝑙

𝑖

(3) = Λ
𝑙

𝑖

(1)max {𝑔 (𝑥
𝑖

, 𝑥) ; 𝑥
𝑖

1

≤ 𝑥 ≤ 𝑥
𝑖

𝑒
−𝜀

} .

(65)

Analogously,

𝐻 (𝑥
𝑖

, 𝜀) − 𝑔
𝑖,𝑖

2

𝑈
𝑙

𝑖

2


≤ 𝑔
𝑖,𝑖

1

ℎΛ
𝑙

𝑖

(1) ≤ ℎ
2

𝑊
𝑙

𝑖

(4) ,

𝐻 (𝑥
𝑖

, 𝜀) = ∫

𝑥

𝑖2

𝑥

𝑖
𝑒

𝜀

𝑔 (𝑥
𝑖

, 𝜙)𝑈 (𝜙, 𝜏
𝑙

) 𝑑𝜙,

𝑊
𝑙

𝑖

(4) = (max{


𝜕𝑈

𝜕𝑥
(𝑥, 𝜏
𝑙

)



; 𝑥
𝑖

𝑒
−𝜀

≤ 𝑥 ≤ 𝑥
𝑖

2

})

× (max {𝑔 (𝑥
𝑖

, 𝑥) ; 𝑥
𝑖

𝑒
−𝜀

≤ 𝑥 ≤ 𝑥
𝑖

2

}) .

(66)

Let𝑊𝑙
𝑖

(5),𝑊𝑙
𝑖

(6), and𝑊𝑙
𝑖

(7) be defined as

𝑊
𝑙

𝑖

(5) = sup {

(𝑔 (𝑥
𝑖

, 𝑥)𝑈 (𝑥, 𝜏
𝑙

))
(2)


; 0 < 𝑥 ≤ 𝑥

𝑖

𝑒
−𝜀

} ,

𝑊
𝑙

𝑖

(6) = sup {

(𝑔 (𝑥
𝑖

, 𝑥)𝑈 (𝑥, 𝜏
𝑙

))
(2)


; 𝑥
𝑖

𝑒
𝜀

≤ 𝑥 ≤ 𝐴} ,

𝑊
𝑙

𝑖

(7) = sup{


(𝑔 (𝑥
𝑖

,
𝐴

𝑧
)𝑈(

𝐴

𝑧
, 𝜏
𝑙

)
1

𝑧2
)

(2)



; 0 < 𝑥 ≤ 1} ,

(67)

where the second derivatives appearing in (67) are taken with
respect to the variable𝑥 for𝑊𝑙

𝑖

(5) and𝑊𝑙
𝑖

(6), andwith respect
to the variable 𝑧 for𝑊𝑙

𝑖

(7). From the expression of the error
of the trapezoidal rule, [35, page 54], (59)–(67), one gets


𝐶
𝑙

𝑖,1


≤ ℎ
2

(𝑊
𝑙

𝑖

(3) +
𝑥
𝑖

𝑒
−𝜀

12
𝑊
𝑙

𝑖

(5)) ,


𝐶
𝑙

𝑖,2


≤ ℎ
2

(𝑊
𝑙

𝑖

(4) +
1

12
(𝐴 − 𝑥

𝑖

𝑒
−𝜀

)𝑊
𝑙

𝑖

(6)) +
𝐴𝛿
2

12
𝑊
𝑙

𝑖

(7) .

(68)
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Figure 1: The variation of 𝑉 with 𝑆 for several values of 𝑌.

Summarizing, one gets

𝑇
𝑙

𝑖

(𝑈) = 𝑘𝐸
𝑙

𝑖

(1) −
ℎ
2

2
�̂�
2

𝑥
2

𝑖

𝐸
𝑙

𝑖

(2) + 𝐶
𝑙

𝑖,1

+ 𝐶
𝑙

𝑖,2

,


𝑇
𝑙

𝑖

(𝑈)

≤ ℎ
2

(
𝑊
𝑙

𝑖

(2)

24
+𝑊
𝑙

𝑖

(3) + 𝑊
𝑙

𝑖

(4) +
𝑥
𝑖

𝑒
−𝜀

12
𝑊
𝑙

𝑖

(5)

+
1

12
(𝐴 − 𝑥

𝑖

𝑒
−𝜀

)𝑊
𝑙

𝑖

(6) )

+
𝐴𝛿
2

12
𝑊
𝑙

𝑖

(7) + 𝑘𝑊
𝑙

𝑖

(1) .

(69)

Thus,

𝑇
𝑙

𝑖

(𝑈) = O (ℎ
2

) + O (𝛿
2

) + O (𝑘) , (70)

showing the consistency of the scheme with PIDE.

6. Numerical Results

In the following examples theMatlab program has been used.
The first example reveals the effect of Yor parameter on the
option price.

Example 6. Consider the vanilla call option problem (2)–(4)
under CGMY process with parameters 𝑇 = 1, 𝐸 = 80, 𝐴 =

3𝐸, 𝜎 = 0.2, 𝑟 = 0.01, 𝑞 = 0, 𝐶 = 0.08, 𝐺 = 𝑀 = 25.04,
𝜀 = 0.05,𝑁 = 100, 𝛿 = 0.15, and 𝑘 = 0.002. Figure 1 exhibits
the variation of the option price𝑉 versus the underlying asset
at various values of Yor parameter.

The next example illustrates the importance of positivity
conditions given by Lemma 1.
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Figure 2: The effect of positivity conditions on 𝑉.

Example 7. Here in this example the parameters have been
selected as follows: 𝑇 = 1, 𝐸 = 80, 𝐴 = 3𝐸, 𝜎 = 0.2, 𝑟 = 0.01,
𝑞 = 0, 𝐶 = 1, 𝐺 = 20,𝑀 = 30, 𝑌 = 1.5, 𝜀 = 0.1,𝑁 = 100, and
𝛿 = 0.15. Positivity conditions hold for 𝑘 = 0.002, while for
𝑘 = 0.01, the positivity conditions are broken and the values
of the option price become unreliable as shown in Figure 2.

Next example shows that the variation of the absolute
and relative error of the solution in light of the stability and
positivity conditions hold at the strike for two cases: first, for
several values of the stepsize discretization ℎ and second, for
different values of the parameter 𝜀.

Example 8. Consider the European call option for CGMY
process with the following values: 𝐶 = 1, 𝐺 = 𝑀 = 5,
𝐸 = 100, 𝑇 = 1, 𝑟 = 0.1, 𝑞 = 0, 𝑘 = 0.001, 𝛿 = 0.1, and
𝐴 = 3𝐸, for several values of Yor parameter 𝑌 = 0.5, 1.5, and
1.98.

We consider the evaluation of the price option at the
strike and 𝜏 = 𝑇. Table 1 reveals the deviation between our
numerical solutions and the reference values used in [15,
tables 8–10] for different stepsizes ℎ and fixed 𝜀 = 0.12. Notice
that the numerical solution exhibits the expected second-
order convergence rate.

Table 2 shows the deviation for several values of 𝜀, while
ℎ = 0.5.

In the next example, we consider the Variance Gamma
model as a particular case (𝑌 = 0) of CGMYmodel for which
the exact solution is known [38].

Example 9. Consider a call option under the Variance
Gamma process with parameters 𝐶 = 1, 𝐺 = 𝑀 = 25, 𝑇 = 1,
𝑟 = 0.01, 𝑞 = 0, 𝜎 = 0.2, 𝜀 = 0.12, 𝐸 = 10, 𝐴 = 3𝐸, 𝑘 = 0.01,
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Table 1: Errors and convergence rates.

(a)

ℎ

𝑌 = 0.5 𝑌 = 1.5

Absolute
error

Relative
error 𝛼

Absolute
error

Relative
error 𝛼

0.8
4.38 ×

10
−4

2.2 × 10
−5 — 7.35 ×

10
−5

1.48 ×

10
−6

—

0.4
1.16 ×

10
−4

5.85 ×

10
−6

1.92 1.9 × 10
−5

3.92 ×

10
−7

1.952

0.2
2.95 ×

10
−5

1.49 ×

10
−6

1.98 4.79 ×

10
−6

9.62 ×

10
−8

1.988

(b)

ℎ
𝑌 = 1.98

Absolute error Relative error 𝛼

0.8 3.87 × 10
−5

3.87 × 10
−7 —

0.4 9.76 × 10
−6

9.76 × 10
−8 1.9873

0.2 2.46 × 10
−6

2.46 × 10
−8 1.9882

Table 2: Errors due to the variation of 𝜀.

(a)

𝜀

𝑌 = 0.5 𝑌 = 1.5

Absolute
error

Relative
error

Absolute
error

Relative
error

0.8 3.91 × 10
−3

1.97 × 10
−4

6.37 × 10
−4

1.28 × 10
−5

0.4 7.18 × 10
−4

3.62 × 10
−5

8.54 × 10
−5

1.72 × 10
−6

0.2 9.32 × 10
−6

4.7 × 10
−7

7.16 × 10
−6

1.44 × 10
−7

(b)

𝜀
𝑌 = 1.98

Absolute error Relative error
0.8 4.19 × 10

−4

4.19 × 10
−6

0.4 5.76 × 10
−5

5.76 × 10
−7

0.2 5.92 × 10
−6

5.92 × 10
−8

and 𝛿 = 0.15. Figure 3 displays the associated error of the
numerical solution for several values of the stepsize ℎ.

The next example shows that the double discretization
strategy reduces the error near the parameter 𝐴 by changing
the stepsize 𝛿.

Example 10. Consider Example 9 with fixed ℎ = 0.5; Figure 4
shows the variation of the error of the numerical solution for
various values of 𝛿. Notice that the error decreases near the
right boundary𝐴 of the numerical domain by decreasing the
stepsize𝛿, while the error near the strike𝐸 remains stationary.
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motion to Fi-nance,” in Lévy Processes—Theory and Applica-
tions, O. Barndorff-Nielsen, T. Mikosch, and S. Resnick, Eds.,
pp. 319–336, Birkhauser, Boston, Mass, USA, 2001.

[6] I. Koponen, “Analytic approach to the problem of convergence
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Quantitative Finance, vol. 5, no. 4, pp. 403–424, 2005.

[13] D. B. Madan and M. Yor, “CGMY and Meixner subordinators
are absolutely continuous with respect to one sided stable
subordinators,” 2006, http://arxiv.org/pdf/math/0601173.pdf.

[14] J. Poirot and P. Tankov, “Monte Carlo option pricing for tem-
pered stable (CGMY) processes,” Asia-Pacific Financial Mar-
kets, vol. 13, no. 4, pp. 327–344, 2006.

[15] F. Fang and C. W. Oosterlee, “A novel pricing method for
european options based on fourier-cosine series expansions,”
SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 826–
848, 2008.

[16] S. Pagliarani, A. Pascucci, and C. Riga, Adjoint Expansions in
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