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We establish theorems of strong convergence, for the Ishikawa-type (or two step; cf. Ishikawa, 1974) iteration scheme, to a fixed point
of a uniformly L-Lipschitzian asymptotically demicontractive mapping and a uniformly L-Lipschitzian hemicontractive mapping
in CAT(0) space. Moreover, we will propose some open problems.

1. Introduction

Let (𝑋, 𝑑) be a metric space. One of the most interesting
aspects of metric fixed point theory is to extend a linear
version of known result to the nonlinear case inmetric spaces.
To achieve this, Takahashi [1] introduced a convex structure
in a metric space (𝑋, 𝑑). A mapping𝑊: 𝑋×𝑋× [0, 1] → 𝑋

is a convex structure in𝑋 if

𝑑 (𝑢,𝑊 (𝑥, 𝑦, 𝜆)) ≤ 𝜆𝑑 (𝑢, 𝑥) + (1 − 𝜆) 𝑑 (𝑢, 𝑦) (1)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0, 1]. A metric space together with
a convex structure 𝑊 is known as a convex metric space. A
nonempty subset 𝐾 of a convex metric space is said to be
convex if

𝑊(𝑥, 𝑦, 𝜆) ∈ 𝐾 (2)

for all𝑥, 𝑦 ∈ 𝐾 and𝜆 ∈ [0, 1]. In fact, every normed space and
its convex subsets are convex metric spaces but the converse
is not true, in general (see, [1]).

Example 1 (see [2]). Let𝑋 = {(𝑥
1
, 𝑥
2
) ∈ R2 : 𝑥

1
> 0, 𝑥

2
> 0},

for all 𝑥 = (𝑥
1
, 𝑥
2
),𝑦 = (𝑦

1
, 𝑦
2
) ∈ 𝑋, and 𝜆 ∈ [0, 1].We define

a mapping𝑊: 𝑋 × 𝑋 × [0, 1] → 𝑋 by

𝑊(𝑥, 𝑦, 𝜆) = (𝜆𝑥
1
+ (1 − 𝜆) 𝑦

1
,
𝜆𝑥
1
𝑥
2
+ (1 − 𝜆) 𝑦

1
𝑦
2

𝜆𝑥
1
+ (1 − 𝜆) 𝑦

1

) ,

(3)

and define a metric 𝑑 : 𝑋 × 𝑋 → [0,∞) by

𝑑 (𝑥, 𝑦) =
𝑥1 − 𝑦1

 +
𝑥1𝑥2 − 𝑦1𝑦2

 . (4)

Thenwe can show that (𝑋, 𝑑,𝑊) is a convexmetric space, but
it is not a normed linear space.

A metric space 𝑋 is a 𝐶𝐴𝑇(0) space (the term is due
to Gromov [3] and it is an acronym for E. Cartan, A.
D. Aleksandrov, and V. A. Toponogov) if it is geodesically
connected and if every geodesic triangle in 𝑋 is at least
as “thin” as its comparison triangle in the Euclidean plane
(see, e.g., [4], page 159). It is well known that any com-
plete, simply connected Riemannian manifold nonpositive
sectional curvature is a 𝐶𝐴𝑇(0) space. The precise definition
is given below. For a thorough discussion of these spaces
and of the fundamental role they play in various branches of
mathematics, see Bridson and Haefliger [4] or Burago et al.
[5].

Let (𝑋, 𝑑) be ametric space. A geodesic path joining𝑥 ∈ 𝑋
to𝑦 ∈ 𝑋 (or,more briefly, a geodesic from 𝑥 to𝑦) is amapping
𝑐 from a closed interval [0, 𝑙] ⊂ R to 𝑋 such that 𝑐(0) = 𝑥,
𝑐(𝑙) = 𝑦, and 𝑑(𝑐(𝑡), 𝑐(𝑡)) = |𝑡 − 𝑡|, for all 𝑡, 𝑡 ∈ [0, 𝑙]. In
particular, 𝑐 is an isometry and 𝑑(𝑥, 𝑦) = 𝑙.The image 𝛼 of 𝑐 is
called a geodesic (ormetric) segment joining 𝑥 and 𝑦. When it
is unique, this geodesic is denoted by [𝑥, 𝑦]. The space (𝑋, 𝑑)
is said to be a geodesic space if every two points of𝑋 are joined
by a geodesic, and 𝑋 is said to be uniquely geodesic if there is
exactly one geodesic joining 𝑥 and 𝑦 for each 𝑥, 𝑦 ∈ 𝑋. A
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subset 𝑌 ⊆ 𝑋 is said to be convex if 𝑌 includes every geodesic
segment joining any two of its points.

A geodesic triangle Δ(𝑥
1
, 𝑥
2
, 𝑥
3
) is a geodesicmetric space

(𝑋, 𝑑) that consists of three points 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝑋 (the vertices

of Δ) and is a geodesic segment between each pair of vertices
(the edges of Δ). A comparison triangle for the geodesic
triangle Δ(𝑥

1
, 𝑥
2
, 𝑥
3
) in (𝑋, 𝑑) is a triangle Δ(𝑥

1
, 𝑥
2
, 𝑥
3
) =

Δ(𝑥
1
, 𝑥
2
, 𝑥
3
) in R2 such that 𝑑R2(𝑥𝑖, 𝑥𝑗) = 𝑑(𝑥𝑖, 𝑥𝑗) for 𝑖, 𝑗 ∈

{1, 2, 3}. Such a triangle always exists (see, [4]).
A geodesic metric space is said to be a 𝐶𝐴𝑇(0) space if

all geodesic triangles of appropriate size satisfy the following
𝐶𝐴𝑇(0) comparison axiom.

Let Δ be a geodesic triangle in 𝑋 and let Δ ⊂ R2 be
a comparison triangle for Δ. Then Δ is said to satisfy the
𝐶𝐴𝑇(0) inequality if for all 𝑥, 𝑦 ∈ Δ and all comparison
points 𝑥, 𝑦 ∈ Δ,

𝑑 (𝑥, 𝑦) ≤ 𝑑 (𝑥, 𝑦) . (5)

Complete 𝐶𝐴𝑇(0) spaces are often called Hadamard spaces
(see, [6]). If 𝑥, 𝑦

1
, 𝑦
2
are points of a 𝐶𝐴𝑇(0) space and if 𝑦

0
is

themidpoint of the segment [𝑦
1
, 𝑦
2
], which we will denote by

𝑦
1
⊕ 𝑦
2
/2, then the 𝐶𝐴𝑇(0) inequality implies

𝑑
2
(𝑥,

𝑦
1
⊕ 𝑦
2

2
) ≤

1

2
𝑑
2
(𝑥, 𝑦
1
) +

1

2
𝑑
2
(𝑥, 𝑦
2
) −

1

4
𝑑
2
(𝑦
1
, 𝑦
2
) .

(6)

This inequality is the (CN) inequality of Bruhat and Tits [7].
In fact, a geodesic space is a 𝐶𝐴𝑇(0) space if and only if it
satisfies the (CN) inequality (cf. [4], page 163). The previous
inequality has been extended by Khamsi and Kirk [8] as

𝑑
2
(𝑧, 𝛼𝑥 ⊕ (1 − 𝛼) 𝑦)

≤ 𝛼𝑑
2
(𝑧, 𝑥) + (1 − 𝛼) 𝑑

2
(𝑧, 𝑦) − 𝛼 (1 − 𝛼) 𝑑

2
(𝑥, 𝑦) ,

(CN∗)

for any 𝛼 ∈ [0, 1] and 𝑥, 𝑦, 𝑧 ∈ 𝑋. The inequality (CN∗) also
appeared in [9].

Let us recall that a geodesicmetric space is a𝐶𝐴𝑇(0) space
if and only if it satisfies the (CN) inequality (see, [4], page 163).
Moreover, if 𝑋 is a 𝐶𝐴𝑇(0) metric space and 𝑥, 𝑦 ∈ 𝑋, then
for any 𝛼 ∈ [0, 1], there exists a unique point 𝛼𝑥 ⊕ (1 − 𝛼)𝑦 ∈
[𝑥, 𝑦] such that

𝑑 (𝑧, 𝛼𝑥 ⊕ (1 − 𝛼) 𝑦) ≤ 𝛼𝑑 (𝑧, 𝑥) + (1 − 𝛼) 𝑑 (𝑧, 𝑦) (7)

for any 𝑧 ∈ 𝑋 and [𝑥, 𝑦] = {𝛼𝑥 ⊕ (1 − 𝛼)𝑦 : 𝛼 ∈ [0, 1]}. In
view of the previous inequality,𝐶𝐴𝑇(0) space has Takahashi’s
convex structure𝑊(𝑥, 𝑦, 𝛼) = 𝛼𝑥 ⊕ (1 − 𝛼)𝑦. It is easy to see
that for any 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0, 1],

𝑑 (𝑥, (1 − 𝜆) 𝑥 ⊕ 𝜆𝑦) = 𝜆𝑑 (𝑥, 𝑦) ,

𝑑 (𝑦, (1 − 𝜆) 𝑥 ⊕ 𝜆𝑦) = (1 − 𝜆) 𝑑 (𝑥, 𝑦) .
(8)

As a consequence,

1 ⋅ 𝑥 ⊕ 0 ⋅ 𝑦 = 𝑥,

(1 − 𝜆) 𝑥 ⊕ 𝜆𝑥 = 𝜆𝑥 ⊕ (1 − 𝜆) 𝑥 = 𝑥.
(9)

Moreover, a subset 𝐾 of 𝐶𝐴𝑇(0) space 𝑋 is convex if for any
𝑥, 𝑦 ∈ 𝐾, we have [𝑥, 𝑦] ⊂ 𝐾.

Definition 2. Let 𝐶 be a nonempty subset of a metric space
(𝑋, 𝑑). Let 𝐹(𝑇) denote the fixed point set of 𝑇. Let 𝐹(𝑇) ̸= 0.

(1) A mapping 𝑇 : 𝐶 → 𝐶 is said to be 𝑘-strict
asymptotically pseudocontractivewith sequence {𝑎

𝑛
} if

lim
𝑛→∞

𝑎
𝑛
= 1 for some constant 𝑘, 0 ≤ 𝑘 < 1 and

𝑑
2
(𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≤ 𝑎

2

𝑛
𝑑
2
(𝑥, 𝑦) + 𝑘(𝑑 (𝑥, 𝑇

𝑛
𝑥) − 𝑑 (𝑦, 𝑇

𝑛
𝑦))
2

,

(10)

for all 𝑥, 𝑦 ∈ 𝐶, 𝑛 ∈ N.
If 𝑘 = 0, then 𝑇 is said to be asymptotically
nonexpansive with sequence {𝑎

𝑛
}, that is,

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≤ 𝑎

𝑛
𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝐶. (11)

(2) A mapping 𝑇 : 𝐶 → 𝐶 is said to be asymptotically
demicontractive with sequence {𝑎

𝑛
} if lim

𝑛→∞
𝑎
𝑛
= 1

for some constant 𝑘, 0 ≤ 𝑘 < 1, and

𝑑
2
(𝑇
𝑛
𝑥, 𝑝) ≤ 𝑎

2

𝑛
𝑑
2
(𝑥, 𝑝) + 𝑘 ⋅ 𝑑

2
(𝑥, 𝑇
𝑛
𝑥) ,

∀𝑝 ∈ 𝐹 (𝑇) ,
(12)

for all 𝑥 ∈ 𝐶, 𝑛 ∈ N.
If 𝑘 = 0, then 𝑇 is said to be asymptotically quasi-
nonexpansive with sequence {𝑎

𝑛
}, that is,

𝑑 (𝑇
𝑛
𝑥, 𝑝) ≤ 𝑎

𝑛
𝑑 (𝑥, 𝑝) , ∀𝑥 ∈ 𝐶, ∀𝑝 ∈ 𝐹 (𝑇) . (13)

(3) A mapping 𝑇 : 𝐶 → 𝐶 is said to be asymptotically
pseudocontractive with sequence {𝑎

𝑛
} if lim

𝑛→∞
𝑎
𝑛
=

1 and

𝑑
2
(𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≤ 𝑎

𝑛
𝑑
2
(𝑥, 𝑦) + [𝑑 (𝑥, 𝑇

𝑛
𝑥) − 𝑑 (𝑦, 𝑇

𝑛
𝑦)]
2

,

(14)

for all 𝑥, 𝑦 ∈ 𝐶, 𝑛 ∈ N.
(4) A mapping 𝑇 : 𝐶 → 𝐶 is said to be asymptotically

hemicontractive with sequence {𝑎
𝑛
} if lim

𝑛→∞
𝑎
𝑛
= 1

and

𝑑
2
(𝑇
𝑛
𝑥, 𝑝) ≤ 𝑎

𝑛
𝑑
2
(𝑥, 𝑝) + 𝑑

2
(𝑥, 𝑇
𝑛
𝑥) , ∀𝑝 ∈ 𝐹 (𝑇) ,

(15)

for all 𝑥 ∈ 𝐶, 𝑛 ∈ N.
(5) A mapping 𝑇 : 𝐶 → 𝐶 is said to be uniformly 𝐿-

Lipschitzian if for some constant 𝐿 > 0,

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≤ 𝐿 ⋅ 𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝐶, (16)

for all 𝑛 ∈ N.

Liu [10] has proved the convergence of Mann and
Ishikawa iterative sequence for uniformly 𝐿-Lipschitzian
asymptotically demicontractive and hemicontractive map-
pings in Hilbert space (cf. [11]). The existence of (common)
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fixed points of one mapping (or two mappings or family
of mappings) is not known in many situations. So the
approximation of fixed points of one or more nonexpan-
sive, asymptotically nonexpansive, or asymptotically quasi-
nonexpansive mappings by various iterations have been
extensively studied in Banach spaces, convex metric spaces,
𝐶𝐴𝑇(0) spaces, and so on (see, [2, 6, 8, 9, 12–27]).

In this paper, we establish theorems of strong convergence
for the Ishikawa-type (or two step, cf. [28]) iteration scheme
to a fixed point of a uniformly 𝐿-Lipschitzian asymptotically
demicontractive mapping and a uniformly 𝐿-Lipschitzian
asymptotically hemicontractive mapping in 𝐶𝐴𝑇(0) space.
Moreover, we will propose some open problems.

2. Preliminaries

We introduce the following iteration process.
Let 𝐶 be a nonempty convex subset of a 𝐶𝐴𝑇(0) space

(𝑋, 𝑑) and let 𝑇 : 𝐶 → 𝐶 be a given mapping. Let 𝑥
1
∈ 𝐶 be

a given point.

Algorithm 3. The sequences {𝑥
𝑛
} and {𝑦

𝑛
} defined by the

iterative process

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛
𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛
𝑥
𝑛
, 𝑛 ≥ 1,

(17)

is called an Ishikawa-type iterative sequence (cf. [28]).

If 𝛽
𝑛
≡ 0, then Algorithm 3 reduces to the following.

Algorithm 4. The sequence {𝑥
𝑛
} defined by the iterative

process

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛
𝑥
𝑛
, 𝑛 ≥ 1, (18)

is called aMann-type iterative sequence (cf. [29]).

Lemma 5 (see [10]). Let sequences {𝑎
𝑛
}, {𝑏
𝑛
} satisfy that

𝑎
𝑛+1

≤ 𝑎
𝑛
+ 𝑏
𝑛
, (19)

𝑎
𝑛
≥ 0, for all 𝑛 ∈ N, ∑∞

𝑛=1
𝑏
𝑛
is convergent, and {𝑎

𝑛
} has a

subsequence {𝑎
𝑛
𝑘

} converging to 0. Then, we must have

lim
𝑛→∞

𝑎
𝑛
= 0. (20)

3. Convergence Theorems

Lemma 6. Let (𝑋, 𝑑) be a 𝐶𝐴𝑇(0) space and let 𝐶 be a
nonempty convex subset of𝑋. Let 𝑇 : 𝐶 → 𝐶 be an uniformly
𝐿-Lipschitzian mapping and let {𝛼

𝑛
}, {𝛽
𝑛
} be sequence in [0, 1].

Define the iteration scheme {𝑥
𝑛
} as Algorithm 3. Then

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑇
𝑛
𝑥
𝑛
)

+ 𝐿 (1 + 2𝐿 + 𝐿
2
) 𝑑 (𝑥

𝑛−1
, 𝑇
𝑛−1

𝑥
𝑛−1

) ,
(21)

for all 𝑛 ≥ 1.

Proof. Let 𝐶
𝑛
= 𝑑(𝑥

𝑛
, 𝑇𝑛𝑥
𝑛
). We have

𝑑 (𝑥
𝑛−1

, 𝑦
𝑛−1

) = 𝑑 (𝑥
𝑛−1

, (1 − 𝛽
𝑛−1

) 𝑥
𝑛−1

⊕ 𝛽
𝑛−1

𝑇
𝑛−1

𝑥
𝑛−1

)

≤ 𝛽
𝑛−1

⋅ 𝑑 (𝑥
𝑛−1

, 𝑇
𝑛−1

𝑥
𝑛−1

)

= 𝛽
𝑛−1

𝐶
𝑛−1

.

(22)

From (22), we get

𝑑 (𝑥
𝑛−1

, 𝑇
𝑛−1

𝑦
𝑛−1

) ≤ 𝑑 (𝑥
𝑛−1

, 𝑇
𝑛−1

𝑥
𝑛−1

)

+ 𝑑 (𝑇
𝑛−1

𝑥
𝑛−1

, 𝑇
𝑛−1

𝑦
𝑛−1

)

≤ 𝐶
𝑛−1

+ 𝐿 ⋅ 𝑑 (𝑥
𝑛−1

, 𝑦
𝑛−1

)

≤ 𝐶
𝑛−1

+ 𝛽
𝑛−1

⋅ 𝐿 ⋅ 𝐶
𝑛−1

.

(23)

From (22) and (23), we get

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
)

≤ 𝑑 (𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) + 𝑑 (𝑇

𝑛
𝑥
𝑛
, 𝑇𝑥
𝑛
)

≤ 𝐶
𝑛
+ 𝐿 ⋅ 𝑑 (𝑇

𝑛−1
𝑥
𝑛
, 𝑥
𝑛
)

≤ 𝐶
𝑛
+ 𝐿 {𝑑 (𝑇

𝑛−1
𝑥
𝑛
, 𝑇
𝑛−1

𝑥
𝑛−1

) + 𝑑 (𝑇
𝑛−1

𝑥
𝑛−1

, 𝑥
𝑛
)}

≤ 𝐶
𝑛
+ 𝐿
2
⋅ 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) + 𝐿 ⋅ 𝑑 (𝑇
𝑛−1

𝑥
𝑛−1

, 𝑥
𝑛
)

≤ 𝐶
𝑛
+ 𝐿
2
⋅ 𝑑 ((1 − 𝛼

𝑛−1
) 𝑥
𝑛−1

⊕ 𝛼
𝑛−1

𝑇
𝑛−1

𝑦
𝑛−1

, 𝑥
𝑛−1

)

+ 𝐿 ⋅ 𝑑 (𝑇
𝑛−1

𝑥
𝑛−1

, (1 − 𝛼
𝑛−1

) 𝑥
𝑛−1

⊕ 𝛼
𝑛−1

𝑇
𝑛−1

𝑦
𝑛−1

)

≤ 𝐶
𝑛
+ 𝐿
2
⋅ 𝛼
𝑛−1

⋅ 𝑑 (𝑇
𝑛−1

𝑦
𝑛−1

, 𝑥
𝑛−1

)

+ 𝐿 {(1 − 𝛼
𝑛−1

) 𝑑 (𝑇
𝑛−1

𝑥
𝑛−1

, 𝑥
𝑛−1

)

+𝛼
𝑛−1

⋅ 𝑑 (𝑇
𝑛−1

𝑥
𝑛−1

, 𝑇
𝑛−1

𝑦
𝑛−1

)}

≤ 𝐶
𝑛
+ 𝐿
2
⋅ 𝛼
𝑛−1

(𝐶
𝑛−1

+ 𝛽
𝑛−1

⋅ 𝐿 ⋅ 𝐶
𝑛−1

)

+ 𝐿 (1 − 𝛼
𝑛−1

) 𝐶
𝑛−1

+ 𝐿
2
⋅ 𝛼
𝑛−1

⋅ 𝛽
𝑛−1

⋅ 𝐶
𝑛−1

≤ 𝐶
𝑛
+ 𝐿 (1 + 2𝐿 + 𝐿

2
) 𝐶
𝑛−1

, 𝑛 ≥ 1.

(24)

This completes the proof of Lemma 6.

Theorem 7. Let (𝑋, 𝑑) be a complete 𝐶𝐴𝑇(0) space, let 𝐶
be a nonempty bounded closed convex subset of 𝑋, and let
𝑇 : 𝐶 → 𝐶 be a completely continuous and uniformly 𝐿-
Lipschitzian and asymptotically demicontractive with sequence
{𝑎
𝑛
}, 𝑎
𝑛
∈ [1,∞), ∑∞

𝑛=1
(𝑎2
𝑛
− 1) < ∞, 𝜀 ≤ 𝛼

𝑛
≤ 1 − 𝑘 − 𝜀, for

all 𝑛 ∈ N and some 𝜀 > 0. Given 𝑥
0
∈ 𝐶, define the iteration

scheme {𝑥
𝑛
} by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛
𝑥
𝑛
, 𝑛 ≥ 1. (25)

Then {𝑥
𝑛
} converges strongly to some fixed point of 𝑇.
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Proof. Since 𝑇 is a completely continuous mapping in a
bounded closed convex subset 𝐶 of complete metric space,
from Schauder’s theorem, 𝐹(𝑇) is nonempty. It follows from
(CN∗) inequality that

𝑑
2
(𝑥
𝑛+1

, 𝑝) = 𝑑
2
((1 − 𝛼

𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛
𝑥
𝑛
, 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑝) + 𝛼

𝑛
𝑑
2
(𝑇
𝑛
𝑥
𝑛
, 𝑝)

− (1 − 𝛼
𝑛
) 𝛼
𝑛
𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) ,

(26)

for all 𝑝 ∈ 𝐹(𝑇). Since 𝑇 is a asymptotically demicontractive,
we get

𝑑
2
(𝑥
𝑛+1

, 𝑝) ≤ (1 − 𝛼
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑝)

+ 𝛼
𝑛
{𝑎
2

𝑛
𝑑
2
(𝑥
𝑛
, 𝑝) + 𝑘 ⋅ 𝑑

2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
)}

− 𝛼
𝑛
(1 − 𝛼

𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
)

= 𝑑
2
(𝑥
𝑛
, 𝑝) + 𝛼

𝑛
(𝑎
2

𝑛
− 1) 𝑑

2
(𝑥
𝑛
, 𝑝)

− 𝛼
𝑛
(1 − 𝛼

𝑛
− 𝑘) 𝑑

2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) ,

∀𝑝 ∈ 𝐹 (𝑇) .

(27)

Since 0 < 𝜀 ≤ 𝛼
𝑛
≤ 1 − 𝑘 − 𝜀, we have 1 − 𝑘 − 𝛼

𝑛
≥ 𝜀. Thus,

𝛼
𝑛
(1 − 𝑘 − 𝛼

𝑛
) ≥ 𝜀
2
. (28)

From (27), we have

𝑑
2
(𝑥
𝑛+1

, 𝑝) ≤ 𝑑
2
(𝑥
𝑛
, 𝑝) + 𝛼

𝑛
(𝑎
2

𝑛
− 1) 𝑑

2
(𝑥
𝑛
, 𝑝)

− 𝜀
2
⋅ 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) ,

(29)

for all 𝑝 ∈ 𝐹(𝑇). Since 𝐶 is bounded and 𝑇 is self-mapping
in 𝐶, there exist some 𝑀 > 0 so that 𝑑2(𝑥

𝑛
, 𝑝) ≤ 𝑀, for all

𝑛 ∈ N. Since 0 ≤ 𝛼
𝑛
≤ 1, it follows from (29) that

𝑑
2
(𝑥
𝑛+1

, 𝑝) ≤ 𝑑
2
(𝑥
𝑛
, 𝑝) + (𝑎

2

𝑛
− 1)𝑀 − 𝜀

2
⋅ 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) ,

∀𝑝 ∈ 𝐹 (𝑇) .

(30)

Therefore,

𝜀
2
⋅ 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) ≤ 𝑑
2
(𝑥
𝑛
, 𝑝) − 𝑑

2
(𝑥
𝑛+1

, 𝑝) + (𝑎
2

𝑛
− 1)𝑀.

(31)

So
𝑚

∑
𝑛=1

𝜀
2
⋅ 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
)

≤ 𝑑
2
(𝑥
1
, 𝑝) − 𝑑

2
(𝑥
𝑚+1

, 𝑝) +

𝑚

∑
𝑛=1

(𝑎
2

𝑛
− 1)𝑀

≤ 2𝑀 +

∞

∑
𝑛=1

(𝑎
2

𝑛
− 1)𝑀,

(32)

for all𝑚 ∈ N. Since ∑∞
𝑛=1

(𝑎2
𝑛
− 1) < ∞, we get

∞

∑
𝑛=1

𝜀
2
⋅ 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) < ∞. (33)

Therefore,

lim
𝑛→∞

𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) = 0, lim

𝑛→∞
𝑑 (𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) = 0. (34)

Since 𝑇 is a uniformly 𝐿-Lipschitzian, it follows from
Lemma 6 that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. (35)

Since {𝑥
𝑛
} is a bounded sequence and 𝑇 is completely contin-

uous, there exist a convergent subsequence {𝑇𝑥
𝑛
𝑘

} of {𝑇𝑥
𝑛
}.

Therefore, from (35), {𝑥
𝑛
} has a convergent subsequence

{𝑥
𝑛
𝑘

}. Let lim
𝑘→∞

𝑥
𝑛
𝑘

= 𝑞. It follows from the continuity of 𝑇
and (35), we have 𝑞 = 𝑇𝑞. Therefore, {𝑥

𝑛
} has a subsequence

which converges to the fixed point 𝑞 of 𝑇. Let 𝑝 = 𝑞 in
the inequality (30). Since ∑∞

𝑛=1
(𝑎2
𝑛
− 1) < ∞ and ∑∞

𝑛=1
𝜀2 ⋅

𝑑2(𝑥
𝑛
, 𝑇𝑛𝑥
𝑛
) < ∞, from (30) and Lemma 5, we have

lim
𝑛→∞

𝑑
2
(𝑥
𝑛
, 𝑞) = 0. (36)

Therefore,
lim
𝑛→∞

𝑥
𝑛
= 𝑞. (37)

This completes the proof of Theorem 7.

Corollary 8. Let (𝑋, 𝑑) be a complete𝐶𝐴𝑇(0) space, let𝐶 be a
nonempty bounded closed convex subset of𝑋, and let 𝑇 : 𝐶 →

𝐶 be a completely continuous anduniformly𝐿-Lipschitzian and
𝑘-strict asymptotically pseudocontractive with sequence {𝑎

𝑛
},

𝑎
𝑛
∈ [1,∞), ∑∞

𝑛=1
(𝑎2
𝑛
− 1) < ∞, and 𝜀 ≤ 𝛼

𝑛
≤ 1 − 𝑘 − 𝜀, for

all 𝑛 ∈ N and some 𝜀 > 0. Given 𝑥
0
∈ 𝐶, define the iteration

scheme {𝑥
𝑛
} by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛
𝑥
𝑛
, 𝑛 ≥ 1. (38)

Then {𝑥
𝑛
} converges strongly to some fixed point of 𝑇.

Proof. By Definition 2, 𝑇 is 𝑘-strict asymptotically pseu-
docontractive; then 𝑇 must be asymptotically demicon-
tractive. Therefore, Corollary 8 can be proved by using
Theorem 7.

Lemma 9. Let (𝑋, 𝑑) be a 𝐶𝐴𝑇(0) space and let 𝐶 be a
nonempty convex subset of 𝑋. Let 𝑇 : 𝐶 → 𝐶 be an
uniformly 𝐿-Lipschitzian and asymptotically hemicontractive
with sequence {𝑎

𝑛
} ⊂ [1,∞), for all 𝑛 ∈ N, and 𝐹(𝑇) is

nonempty. Define the iteration scheme {𝑥
𝑛
} as follows:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛
𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛
𝑥
𝑛
, 𝑛 ≥ 1.

(39)

Then the following inequality holds:

𝑑
2
(𝑥
𝑛+1

, 𝑝) ≤ [1 + 𝛼
𝑛
(𝑎
𝑛
− 1) (𝑎

𝑛
𝛽
𝑛
+ 1)] 𝑑

2
(𝑥
𝑛
, 𝑝)

− 𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
− 𝑎
𝑛
𝛽
𝑛
− 𝐿
2
𝛽
2

𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
)

− 𝛼
𝑛
(𝛽
𝑛
− 𝛼
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
) ,

(40)

for all 𝑝 ∈ 𝐹(𝑇).
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Proof. It follows from (CN∗) inequality that

𝑑
2
(𝑥
𝑛+1

, 𝑝) = 𝑑
2
((1 − 𝛼

𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛
𝑦
𝑛
, 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑝) + 𝛼

𝑛
𝑑
2
(𝑇
𝑛
𝑦
𝑛
, 𝑝)

− (1 − 𝛼
𝑛
) 𝛼
𝑛
𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
) ,

(41)

𝑑
2
(𝑦
𝑛
, 𝑝) = 𝑑

2
((1 − 𝛽

𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛
𝑥
𝑛
, 𝑝)

≤ (1 − 𝛽
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑝) + 𝛽

𝑛
𝑑
2
(𝑇
𝑛
𝑥
𝑛
, 𝑝)

− (1 − 𝛽
𝑛
) 𝛽
𝑛
𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) ,

(42)

for all 𝑝 ∈ 𝐹(𝑇). Since 𝑇 is asymptotically hemicontractive,
we get

𝑑
2
(𝑇
𝑛
𝑦
𝑛
, 𝑝) ≤ 𝑎

𝑛
𝑑
2
(𝑦
𝑛
, 𝑝) + 𝑑

2
(𝑦
𝑛
, 𝑇
𝑛
𝑦
𝑛
) , (43)

𝑑
2
(𝑇
𝑛
𝑥
𝑛
, 𝑝) ≤ 𝑎

𝑛
𝑑
2
(𝑥
𝑛
, 𝑝) + 𝑑

2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) . (44)

From (42) and (44), we have

𝑑
2
(𝑦
𝑛
, 𝑝) ≤ (1 − 𝛽

𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑝)

+ 𝛽
𝑛
[𝑎
𝑛
𝑑
2
(𝑥
𝑛
, 𝑝) + 𝑑

2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
)]

− (1 − 𝛽
𝑛
) 𝛽
𝑛
𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
)

= [1 + (𝑎
𝑛
− 1) 𝛽

𝑛
] 𝑑
2
(𝑥
𝑛
, 𝑝) + 𝛽

2

𝑛
𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) .

(45)

From (CN∗) inequality, we have

𝑑
2
(𝑦
𝑛
, 𝑇
𝑛
𝑦
𝑛
) = 𝑑
2
((1 − 𝛽

𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛
𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
)

≤ (1 − 𝛽
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
) + 𝛽
𝑛
𝑑
2
(𝑇
𝑛
𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
)

− (1 − 𝛽
𝑛
) 𝛽
𝑛
𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) .

(46)

Substituting (45) and (46) into (43), we get

𝑑
2
(𝑇
𝑛
𝑦
𝑛
, 𝑝)

≤ 𝑎
𝑛
[1 + (𝑎

𝑛
− 1) 𝛽

𝑛
] 𝑑
2
(𝑥
𝑛
, 𝑝) + 𝑎

𝑛
𝛽
2

𝑛
𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
)

+ (1 − 𝛽
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
) + 𝛽
𝑛
𝑑
2
(𝑇
𝑛
𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
)

− (1 − 𝛽
𝑛
) 𝛽
𝑛
𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) .

(47)

From (41) and (47), we obtain

𝑑
2
(𝑥
𝑛+1

, 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑝) + 𝛼

𝑛
𝑎
𝑛
(1 + (𝑎

𝑛
− 1) 𝛽

𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑝)

+ 𝛼
𝑛
𝑎
𝑛
𝛽
2

𝑛
𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) + 𝛼
𝑛
(1 − 𝛽

𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
)

+ 𝛼
𝑛
𝛽
𝑛
𝑑
2
(𝑇
𝑛
𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
) − 𝛼
𝑛
(1 − 𝛽

𝑛
) 𝛽
𝑛
𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
)

− (1 − 𝛼
𝑛
) 𝛼
𝑛
𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
)

= [1 + 𝛼
𝑛
{(𝑎
𝑛
− 1) + 𝑎

𝑛
(𝑎
𝑛
− 1) 𝛽

𝑛
}] 𝑑
2
(𝑥
𝑛
, 𝑝)

− 𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
− 𝑎
𝑛
𝛽
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
)

− 𝛼
𝑛
(𝛽
𝑛
− 𝛼
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
) + 𝛼
𝑛
𝛽
𝑛
𝑑
2
(𝑇
𝑛
𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
) .

(48)

Since 𝑇 is uniformly 𝐿-Lipschitzian, we have

𝑑 (𝑇
𝑛
𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
) ≤ 𝐿 ⋅ 𝑑 (𝑥

𝑛
, 𝑦
𝑛
)

= 𝐿 ⋅ 𝑑 (𝑥
𝑛
, (1 − 𝛽

𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛
𝑥
𝑛
)

≤ 𝐿𝛽
𝑛
⋅ 𝑑 (𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) .

(49)

Substituting (49) into (48), we obtain

𝑑
2
(𝑥
𝑛+1

, 𝑝) ≤ [1 + 𝛼
𝑛
(𝑎
𝑛
− 1) (1 + 𝑎

𝑛
𝛽
𝑛
)] 𝑑
2
(𝑥
𝑛
, 𝑝)

− 𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
− 𝑎
𝑛
𝛽
𝑛
− 𝐿
2
𝛽
2

𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
)

− 𝛼
𝑛
(𝛽
𝑛
− 𝛼
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑦
𝑛
) , ∀𝑝 ∈ 𝐹 (𝑇) .

(50)

This completes the proof of Lemma 9.

Lemma 10. Let (𝑋, 𝑑) be a 𝐶𝐴𝑇(0) space and let 𝐶 be a
nonempty bounded convex subset of 𝑋. Let 𝑇 : 𝐶 → 𝐶 be
a uniformly 𝐿-Lipschitzian and asymptotically hemicontractive
with sequence {𝑎

𝑛
} ⊂ [1,∞), for all 𝑛 ∈ N and ∑∞

𝑛=1
(𝑎
𝑛
− 1) <

∞. Let 𝐹(𝑇) be nonempty. Given 𝑥
1
∈ 𝐶, define the iteration

scheme {𝑥
𝑛
} by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛
𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛
𝑥
𝑛
, 𝑛 ≥ 1.

(51)

If 𝜀 ≤ 𝛼
𝑛
≤ 𝛽
𝑛
≤ 𝑏 for some 𝜀 > 0 and 𝑏 ∈ (0, (√1 + 𝐿2−1)/𝐿2),

then

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. (52)

Proof. First, we will prove lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇𝑛𝑥
𝑛
) = 0. From

Lemma 9 and 0 ≤ 𝛼
𝑛
≤ 𝛽
𝑛
, we have

𝑑
2
(𝑥
𝑛+1

, 𝑝) ≤ [1 + 𝛼
𝑛
(𝑎
𝑛
− 1) (1 + 𝑎

𝑛
𝛽
𝑛
)] 𝑑
2
(𝑥
𝑛
, 𝑝)

− 𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
− 𝑎
𝑛
𝛽
𝑛
− 𝐿
2
𝛽
2

𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) .

(53)



6 Abstract and Applied Analysis

Thus

𝑑
2
(𝑥
𝑛+1

, 𝑝) − 𝑑
2
(𝑥
𝑛
, 𝑝)

≤ 𝛼
𝑛
(𝑎
𝑛
− 1) (1 + 𝑎

𝑛
𝛽
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑝)

− 𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
− 𝑎
𝑛
𝛽
𝑛
− 𝐿
2
𝛽
2

𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) .

(54)

Since∑∞
𝑛=1

(𝑎
𝑛
−1) < ∞, we have lim

𝑛→∞
(𝑎
𝑛
−1) = 0. Hence,

{𝑎
𝑛
} is bounded. By boundedness of 𝐶 and 0 ≤ 𝛼

𝑛
≤ 𝛽
𝑛
≤ 1,

we obtain that {𝛼
𝑛
(1 + 𝑎
𝑛
𝛽
𝑛
)𝑑
2
(𝑥
𝑛
, 𝑝)} is bounded.Therefore,

there exists a constant𝑀 > 0 such that

0 ≤ 𝛼
𝑛
(1 + 𝑎

𝑛
𝛽
𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑝) ≤ 𝑀. (55)

From (54) and (55), we get

𝑑
2
(𝑥
𝑛+1

, 𝑝) − 𝑑
2
(𝑥
𝑛
, 𝑝)

≤ (𝑎
𝑛
− 1)𝑀 − 𝛼

𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
− 𝑎
𝑛
𝛽
𝑛

−𝐿
2
𝛽
2

𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) .

(56)

Let 𝐷 = 1 − 2𝑏 − 𝐿
2𝑏2 > 0. Since lim

𝑛→∞
𝑎
𝑛
= 1, there

exists𝑁 ∈ N such that

1 − 𝛽
𝑛
− 𝑎
𝑛
𝛽
𝑛
− 𝐿
2
𝛽
2

𝑛
≥ 1 − 𝑏 − 𝑎

𝑛
𝑏 − 𝐿
2
𝑏
2
≥
𝐷

2
> 0, (57)

for all 𝑛 ≥ 𝑁. Suppose that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇𝑛𝑥
𝑛
) ̸= 0, then

there exist a 𝜀
0
> 0 and a subsequence {𝑥

𝑛
𝑖

} of {𝑥
𝑛
} such that

𝑑
2
(𝑥
𝑛
𝑖

, 𝑇
𝑛
𝑖𝑥
𝑛
𝑖

) ≥ 𝜀
0
. (58)

Without loss of generality, we let 𝑛
1
≥ 𝑁. From (56), we have

𝛼
𝑛
𝛽
𝑛
(1 − 𝛽

𝑛
− 𝑎
𝑛
𝛽
𝑛
− 𝐿
2
𝛽
2

𝑛
) 𝑑
2
(𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
)

≤ (𝑎
𝑛
− 1)𝑀 + 𝑑

2
(𝑥
𝑛
, 𝑝) − 𝑑

2
(𝑥
𝑛+1

, 𝑝) ,

(59)

so
𝑖

∑
𝑙=1

𝛼
𝑛
𝑙

𝛽
𝑛
𝑙

(1 − 𝛽
𝑛
𝑙

− 𝑎
𝑛
𝑙

𝛽
𝑛
𝑙

− 𝐿
2
𝛽
2

𝑛
𝑙

) 𝑑
2
(𝑥
𝑛
𝑙

, 𝑇
𝑛
𝑙𝑥
𝑛
𝑙

)

=

𝑛
𝑖

∑
𝑚=𝑛
1

𝛼
𝑚
𝛽
𝑚
(1 − 𝛽

𝑚
− 𝑎
𝑚
𝛽
𝑚
− 𝐿
2
𝛽
2

𝑚
) 𝑑
2
(𝑥
𝑚
, 𝑇
𝑚
𝑥
𝑚
)

≤

𝑛
𝑖

∑
𝑚=𝑛
1

(𝑎
𝑚
− 1)𝑀 + 𝑑

2
(𝑥
𝑛
1

, 𝑝) − 𝑑
2
(𝑥
𝑛
𝑖
+1
, 𝑝) .

(60)

From (57)–(60) and 𝜀 ≤ 𝛼
𝑛
≤ 𝛽
𝑛
, we obtain

𝑖 ⋅ 𝜀
2
⋅
𝐷

2
⋅ 𝜀
0
≤

𝑛
𝑖

∑
𝑚=𝑛
1

(𝑎
𝑚
− 1)𝑀 + 𝑑

2
(𝑥
𝑛
1

, 𝑝) − 𝑑
2
(𝑥
𝑛
𝑖
+1
, 𝑝) .

(61)

Since ∑∞
𝑛=1

(𝑎
𝑛
− 1) < ∞ and the boundedness of 𝐶, the right

side of (61) is bounded. However, if we have 𝑖 → ∞, then

the left side of (61) is unbounded. This is a contradiction.
Therefore,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇
𝑛
𝑥
𝑛
) = 0. (62)

Since 𝑇 is a uniformly 𝐿-Lipschitzian, from Lemma 6, we get

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. (63)

This completes the proof of Lemma 10.

Theorem 11. Let (𝑋, 𝑑) be a complete𝐶𝐴𝑇(0) space, let𝐶 be a
nonempty bounded closed convex subset of𝑋, and let 𝑇 : 𝐶 →

𝐶 be a completely continuous anduniformly𝐿-Lipschitzian and
asymptotically hemicontractive with sequence {𝑎

𝑛
} ⊂ [1,∞)

satisfying ∑∞
𝑛=1

(𝑎
𝑛
− 1) < ∞, for all 𝑛 ∈ N. Given 𝑥

1
∈ 𝐶,

define the iterative scheme {𝑥
𝑛
} by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛
𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛
𝑥
𝑛
, 𝑛 ≥ 1.

(64)

If {𝛼
𝑛
}, {𝛽
𝑛
} ⊂ [0, 1] with 𝜀 ≤ 𝛼

𝑛
≤ 𝛽
𝑛
≤ 𝑏 for some 𝜀 > 0 and

𝑏 ∈ (0, (√1 + 𝐿2 −1)/𝐿2), then {𝑥
𝑛
} converges strongly to some

fixed point of 𝑇.

Proof. Since 𝑇 is a completely continuous mapping in a
bounded closed convex subset 𝐶 of complete metric space,
from Schauder’s theorem, 𝐹(𝑇) is nonempty. Since 𝑇 is
completely continuous, there exist a convergent subset {𝑇𝑥

𝑛
𝑖

}

of {𝑇𝑥
𝑛
}. Let

lim
𝑖→∞

𝑇𝑥
𝑛
𝑖

= 𝑝. (65)

Since lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0, from Lemma 10, we have

lim
𝑖→∞

𝑥
𝑛
𝑖

= 𝑝. (66)

On the other hand, from the continuity of 𝑇, (66), and
Lemma 10, we have

𝑑 (𝑝, 𝑇𝑝) = lim
𝑖→∞

𝑑 (𝑥
𝑛
𝑖

, 𝑇𝑥
𝑛
𝑖

) = 0. (67)

This means that 𝑝 is a fixed point of 𝑇. From (55), (57), and
𝛼
𝑛
≤ 𝛽
𝑛
, we obtain Lemma 9 that

𝑑
2
(𝑥
𝑛+1

, 𝑝) ≤ 𝑑
2
(𝑥
𝑛
, 𝑝) + (𝑎

𝑛
− 1)𝑀. (68)

From (66), there exists a subsequence {𝑑2(𝑥
𝑛
𝑖

, 𝑝)} of
{𝑑2(𝑥
𝑛
, 𝑝)} which converges to 0. Therefore, from Lemma 5

and (68),

lim
𝑛→∞

𝑑
2
(𝑥
𝑛
, 𝑝) = 0. (69)

Hence,

lim
𝑛→∞

𝑥
𝑛
= 𝑝. (70)

This completes the proof of Theorem 11.
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Corollary 12. Let (𝑋, 𝑑) be a complete 𝐶𝐴𝑇(0) space, let
𝐶 be a nonempty bounded closed convex subset of 𝑋, and
let 𝑇 : 𝐶 → 𝐶 be a completely continuous and uni-
formly 𝐿-Lipschitzian and asymptotically pseudocontractive
with sequence {𝑎

𝑛
} ⊂ [1,∞) satisfying ∑∞

𝑛=1
(𝑎2
𝑛
− 1) < ∞,

for all 𝑛 ∈ N. Given 𝑥
1
∈ 𝐶, define the iterative scheme {𝑥

𝑛
} by

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
⊕ 𝛼
𝑛
𝑇
𝑛
𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
⊕ 𝛽
𝑛
𝑇
𝑛
𝑥
𝑛
, 𝑛 ≥ 1.

(71)

If {𝛼
𝑛
}, {𝛽
𝑛
} ⊂ [0, 1] with 𝜀 ≤ 𝛼

𝑛
≤ 𝛽
𝑛
≤ 𝑏 for some 𝜀 > 0 and

𝑏 ∈ (0, (√1 + 𝐿2 −1)/𝐿2), then {𝑥
𝑛
} converges strongly to some

fixed point of 𝑇.

Proof. ByDefinition 2,𝑇 is an asymptotically pseudocontrac-
tive mapping, then 𝑇 is an asymptotically hemicontractive
mapping. Since 𝑎

𝑛
∈ [1,∞), we have 𝑎2

𝑛
− 1 ≥ 𝑎

𝑛
− 1 ≥ 0.

Obviously, ∑∞
𝑛=1

(𝑎
𝑛
− 1) ≤ ∑

∞

𝑛=1
(𝑎2
𝑛
− 1) < ∞. Therefore,

Corollary 12 can be proved by usingTheorem 11.

4. Some Remarks and Open Problems

Let 𝑆 be a semigroup. We denote by 𝐵(𝑆) the space of all
bounded real-valued functions defined on 𝑆 with supremum
norm. For each 𝑠 ∈ 𝑆, we define the left and right translation
operators 𝑙

𝑠
and 𝑟
𝑠
on 𝐵(𝑆) by

(𝑙
𝑠
𝑓) (𝑡) = 𝑓 (𝑠𝑡) , (𝑟

𝑠
𝑓) (𝑡) = 𝑓 (𝑡𝑠) , (72)

for each 𝑡 ∈ 𝑆 and 𝑓 ∈ 𝐵(𝑆), respectively. Let𝑋 be a subspace
of 𝐵(𝑆) containing 1. An element 𝜇 in the dual space𝑋∗ of𝑋
is said to be a mean on𝑋 if ‖𝜇‖ = 𝜇(1) = 1. For 𝑠 ∈ 𝑆, we can
define a point evaluation 𝛿

𝑠
by 𝛿
𝑠
(𝑓) = 𝑓(𝑠) for each 𝑓 ∈ 𝑋.

It is well known that 𝜇 is mean on𝑋 if and only if

inf
𝑠∈𝑆

𝑓 (𝑠) ≤ 𝜇 (𝑓) ≤ sup
𝑠∈𝑆

𝑓 (𝑠) (73)

for each 𝑓 ∈ 𝑋. Eachmean on𝑋 is the weak∗-limit of convex
combination of point evaluations.

Let 𝑋 be a translation invariant subspace of 𝐵(𝑆) (i.e.,
𝑙
𝑠
𝑋 ⊂ 𝑋 and 𝑟

𝑠
𝑋 ⊂ 𝑋 for each 𝑠 ∈ 𝑆) containing 1. Then a

mean 𝜇 on𝑋 is said to be left invariant (resp., right invariant)
if

𝜇 (𝑙
𝑠
𝑓) = 𝜇 (𝑓) (resp., 𝜇 (𝑟

𝑠
𝑓) = 𝜇 (𝑓)) , (74)

for each 𝑠 ∈ 𝑆 and 𝑓 ∈ 𝑋. A mean 𝜇 on 𝑋 is said to be
invariant if 𝜇 is both left and right invariant ([30–34]). 𝑋 is
said to be left (resp., right) amenable if𝑋has a left (resp., right)
invariant mean.𝑋 is amenable if𝑋 is left and right amenable.
In this case, we say that the semigroup 𝑆 is an amenable
semigroup (see [35, 36]). Moreover, 𝐵(𝑆) is amenable when
𝑆 is a commutative semigroup or a solvable group. However,
the free group or semigroup of two generators is not left or
right amenable.

A net {𝜇
𝛼
} of means on 𝑋 is said to be asymptotically left

(resp., right) invariant if

lim
𝛼
(𝜇
𝛼
(𝑙
𝑠
𝑓) − 𝜇

𝛼
(𝑓)) = 0

(resp., lim
𝛼
(𝜇
𝛼
(𝑟
𝑠
𝑓) − 𝜇

𝛼
(𝑓)) = 0) ,

(75)

for each 𝑓 ∈ 𝑋 and 𝑠 ∈ 𝑆, and it is said to be left (resp., right)
strongly asymptotically invariant (or strong regular) if

lim
𝛼

𝑙
∗

𝑠
𝜇
𝛼
− 𝜇
𝛼

 = 0 (resp., lim
𝛼

𝑟
∗

𝑠
𝜇
𝛼
− 𝜇
𝛼

 = 0) , (76)

for each 𝑠 ∈ 𝑆, where 𝑙∗
𝑠
and 𝑟∗
𝑠
are the adjoint operators of 𝑙

𝑠

and 𝑟
𝑠
, respectively. Such nets were first studied byDay in [35]

where they were called weak∗ invariant and norm invariant,
respectively.

It is easy to see that if a semigroup 𝑆 is left (resp., right)
amenable, then the semigroup 𝑆

 = 𝑆 ∪ {𝑒}, where 𝑒𝑠 =
𝑠𝑒 = 𝑠 for all 𝑠 ∈ 𝑆 is also left (resp., right) amenable and
conversely.

A semigroup 𝑆 is called left reversible if any two right
ideals of 𝑆 have nonvoid intersection, that is, 𝑎𝑆 ∩ 𝑏𝑆 ̸= 0 for
𝑎, 𝑏 ∈ 𝑆. In this case, (𝑆, ⪯) is a directed system when the
binary relation “⪯” on 𝑆 is defined by 𝑎 ⪯ 𝑏 if and only if
{𝑎} ∪ 𝑎𝑆 ⊇ {𝑏} ∪ 𝑏𝑆 for 𝑎, 𝑏 ∈ 𝑆. It is easy to see that 𝑡 ⪯ 𝑡𝑠

for all 𝑡, 𝑠 ∈ 𝑆. Further, if 𝑡 ⪯ 𝑠, then 𝑝𝑡 ⪯ 𝑝𝑠 for all 𝑝 ∈ 𝑆.
The class of left reversible semigroup includes all groups and
commutative semigroups. If a semigroup 𝑆 is left amenable,
then 𝑆 is left reversible. But the converse is not true ([31, 37–
41]).

Let 𝑆 be a semigroup and 𝐹(𝑇) denote the fixed point set
of 𝑇. Then I = {𝑇

𝑠
: 𝑠 ∈ 𝑆} is called a representation of 𝑆 if

𝑇
𝑒
= 𝐼 and 𝑇

𝑠𝑡
= 𝑇
𝑠
𝑇
𝑡
for each 𝑠, 𝑡 ∈ 𝑆. We denote by 𝐹(I) the

set of common fixed points of {𝑇
𝑠
: 𝑠 ∈ 𝑆}, that is,

𝐹 (I) = ⋂
𝑠∈𝑆

𝐹 (𝑇
𝑠
) = ⋂
𝑠∈𝑆

{𝑥 ∈ 𝐶 : 𝑇
𝑠
𝑥 = 𝑥} . (77)

Open Problem 1. It will be interesting to obtain a generaliza-
tion of both Theorems 7 and 11 to commutative, amenable,
and reversible semigroups as in the case of Hilbert spaces or
some Banach spaces (cf. [8, 30, 32, 42–45]).

For a real number 𝜅, a 𝐶𝐴𝑇(𝜅) space is defined by a
geodesic metric space whose geodesic triangle is sufficiently
thinner than the corresponding triangle in a model space
with curvature 𝜅.

For 𝜅 = 0, the 2-dimensional model space 𝑀2
𝜅
= 𝑀2
0

is the Euclidean space R2 with the metric induced from
the Euclidean norm. For 𝜅 > 0, 𝑀2

𝜅
is the 2-dimensional

sphere (1/√𝜅)S2 whose metric is length of a minimal great
arc joining each two points. For 𝜅 < 0, 𝑀2

𝜅
is the 2-

dimensional hyperbolic space (1/√−𝜅)H2 with the metric
defined by a usual hyperbolic distance. Formore details about
the properties of 𝐶𝐴𝑇(𝜅) spaces, see [4, 46–48].

Open Problem 2. It will be interesting to obtain a generaliza-
tion of bothTheorems 7 and 11 to 𝐶𝐴𝑇(𝜅) space.
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