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This paper is concerned with the large time behavior of disturbed planar fronts in the buffered bistable system in R𝑛 (𝑛 ≥ 2). We
first show that the large time behavior of the disturbed fronts can be approximated by that of the mean curvature flow with a drift
term for all large time up to 𝑡 = +∞. And then we prove that the planar front is asymptotically stable in 𝐿

∞

(R𝑛

) under ergodic
perturbations, which include quasiperiodic and almost periodic ones as special cases.

1. Introduction

Traveling waves in excitable systems have been the subject of
a vast number of mathematical studies for the past 50 years.
The basic mathematical theory can be used to describe
wave propagation in a wide array of biological and chemical
systems. Recently, Tsai and Sneyd [1, 2] studied the following
buffered system:
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where 𝐷, 𝐷
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are positive constants. We

call system (1) the full buffering model. When 𝐷
𝑖

= 0

(𝑖 = 1, . . . , 𝑁), Tsai and Sneyd [1] proved the existence,
uniqueness, and stability of traveling wave fronts of system
(1). The existence, uniqueness, and stability of traveling wave
fronts of system (1) with 𝐷

𝑖
̸= 0, were obtained by Tsai and

Sneyd [2]. About the buffered system (3), see also [3, 4], for
more details.

In this paper, we consider the large time behavior of the
Cauchy problem to buffering model in R𝑛:
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with initial value
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this paper, we always assume that 𝐷 = 𝐷
𝑖
= 1. In other

words, we consider a special case in the present paper and
will study the general case in the further paper.

One of the most interesting and natural questions is the
behavior of solutions (𝑢(𝑥, 𝑦, 𝑡), V

𝑖
(𝑥, 𝑦, 𝑡)) as 𝑡 → +∞, in

particular, the question about the stability of traveling wave
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fronts. Lv [5] studied the system (2) with 𝑁 = 1 and obtained
the asymptotic stability of planar waves on R𝑛, where 𝑛 ≥ 2.
Under initial perturbation that decays at space infinity, they
also proved that the perturbed solution converges to planar
waves as 𝑡 → ∞. We remark that one can obtain the similar
results toTheorems 1 and 3 when𝑁 ≥ 2. For convenience, we
only consider the case that 𝑁 = 1.

It is well known that (2) on R has a traveling wave
solution with the form (𝑢(𝑦, 𝑡), V
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(1) < 0, where 𝑓(0) = 𝑓(1) = 0. A typical example is that
𝑓(𝑢) = 𝑢(𝑢 − 𝑎)(1 − 𝑢), where 0 < 𝑎 < 1.

A traveling wave front of (2) is a monotone solution with
the form (𝑢(𝑦, 𝑡), V
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where 𝜉 = 𝑦 + 𝑐𝑡, 
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The function (𝜙(𝑦+𝑐𝑡), 𝜓
𝑖
(𝑦+𝑐𝑡)) is also a traveling wave

front for system (2) with 𝑛 ≥ 2. We call it planar front. Its
translation (𝜙(𝑦 + 𝑐𝑡 + 𝜉), 𝜓

𝑖
(𝑦 + 𝑐𝑡 + 𝜉)), where 𝜉 is any

constant, is also called a planar front. Note that the equations
in (2) from second to the last have the same properties;
without loss of generality, we only consider the case that 𝑁 =

1, and we write V
𝑖
as V, that is,
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Obviously, system (7) is a cooperative model. The prob-
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Recently, Matano et al. [6] considered the following
Allen-Cahn equation:

𝑢
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(9)

Under the condition that 𝑓 is of the bistable type, they
obtained the stability of planar fronts under any-possibly
large-initial perturbations and almost periodic perturbations.
When 𝑓 is monostable type, the stability of planar waves for
(9) was obtained by Lv and Wang [7]. About the stability of
planar wave, also see [8–10]. Just recently, Matano and Nara
[11] reconsidered theCauchy problem (9) under the condition
that 𝑓 is bistable type. They proved that the planar front
is asymptotically stable in 𝐿

∞

(R𝑛

) under spatially ergodic
perturbation and that the large time behavior of the disturbed
planar front can be approximated by that of the mean
curvature flow with a drift term for all large time up to +∞.
Lv [12] studied the Cauchy problem (9) under that 𝑓 is
monostable type and obtained that the planar front is asymp-
totically stable in 𝐿

∞

(R𝑛

) under spatially ergodic perturba-
tion.

Our work has been inspired by [11]; in this paper, we will
consider the stability of planar fronts under spatially ergodic
perturbation. Let us now state our main results.
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Theorem 1 (large time behavior). Let 𝑛 ≥ 2. Let (𝑢(𝑥,
𝑦, 𝑡), V(𝑥, 𝑦, 𝑡)) be a solution problem (7)with (6)whose initial
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where ∇
𝑥
denotes the (𝑛 − 1)-dimensional gradient.

The statement (ii) of Theorem 1 implies that the solu-
tion (𝑢(𝑥, 𝑦, 𝑡), V(𝑥, 𝑦, 𝑡)) behaves like the function (𝜙(𝑦 −

𝛾(𝑥, 𝑡)), 𝜓(𝑦−𝛾(𝑥, 𝑡))) for large 𝑡; thus the large time behavior
of the solution (𝑢(𝑥, 𝑦, 𝑡), V(𝑥, 𝑦, 𝑡)) is basically determined
by the position of the (𝜙(0), 𝜓(0))-level set (𝛾(𝑥, 𝑡), 𝛾(𝑥, 𝑡)).
The last statement shows that the behavior of 𝛾(𝑥, 𝑡) can be
approximated by the solution 𝑈(𝑥, 𝑡) of the mean curvature
flow on R𝑛−1 with a drift term 𝑐. Comparing the above
theorem withTheorem 1.1 in [5], it is to see that we delete the
assumptions that initial perturbations decay to zero as |𝑥| +
|𝑦| → ∞, and thus the result in this paper is better than that
of [5].

In order to obtain the stability of planar wave, we need the
following definition.
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and 𝐴

𝑋 stands for the closure of a set 𝐴 in the 𝑋-topology.

Theorem 3. In addition to the assumptions of Theorem 1,
assume further that 𝑢
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From [11], we see that

P ⊂ QP ⊂ AP ⊂ SE ⊂ UE, (16)

where P,QP,AP,SE,UE denote, respectively, the sets of
periodic functions, quasiperiodic functions, almost periodic
functions, strictly ergodic functions, and uniquely ergodic
functions. Hence, the above Theorem 3 is a general result.

The rest of this paper is organized as follows. In Section 2,
some known results and related problem are considered.
Section 3 is concerned with the proofs of Theorems 1 and 3.

2. Some Known Results and Related Problem

In this section, we first study the one-dimensional problem
(7) in a moving frame, that is,
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where 𝑧 = 𝑦 + 𝑐𝑡.
The traveling wave solutions of (17) have been studied by

many authors; see [1, 2], formore details. Tsai and Sneyd [1, 2]
obtained the existence, uniqueness, and stability of traveling
wave fronts of system (17). They obtained the following
lemmas; see Lemma 6.1 in [2] and Lemma 3.5 in [5].

Lemma 4. Assume that 𝑓 is bistable and (𝜙(𝑧), 𝜓(𝑧)) is a
traveling wave solution of (17). Then there exist 𝛿
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is a subsolution. More precisely, it satisfies the following
inequality:
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Lemma 5. Assume that 𝑓 is bistable and (𝜙(𝑧), 𝜓(𝑧)) is a
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inequality:

𝑁[𝑢
−

] := 𝑢
−

𝑡
− Δ𝑢

−

+ 𝑐𝑢
−

𝑧
− 𝑓 (𝑢

−

)

− 𝑘
1
V
−

+ 𝑘
2
𝑢

−

(𝑏
0
− V

−

) ≤ 0,

𝑁 [V
−

] := V
−

𝑡
− ΔV

−

+ 𝑐V
−

𝑧
+ 𝑘

1
V
−

− 𝑘
2
𝑢

−

(𝑏
0
− V

−

) ≤ 0.

(21)

The proof of the above two lemmas is similar to that of
Lemmas 3.5 and 3.6 in [5], and we omit them here. Now we
consider the following problem:

𝑈
𝑡

√1 +




∇

𝑥
𝑈





2

= div (

∇
𝑥
𝑈

√1 +




∇

𝑥
𝑈





2

)− 𝑐,

𝑥 ∈ R
𝑚

, 𝑡 > 0,

𝑈 (𝑥, 0) = 𝑈
0
(𝑥) , 𝑥 ∈ R

𝑚

.

(22)

Lemma 6 (see [11]). Let 𝑚 ≥ 1. Let 𝑈(𝑥, 𝑡) be a solution
to the problem (22) whose initial value 𝑈

0
(𝑥) is bounded,

Lipschitz continuous, and uniquely ergodic on R𝑚. Then there
exists a constant 𝜇 ∈ R such that

lim
𝑡→∞

sup
𝑥∈R𝑚





𝑈 (𝑥, 𝑡) + 𝑐𝑡 + 𝜇





= 0. (23)

Lemma 7 (see [11]). Let 𝑈(𝑥, 𝑡; 𝜑) and 𝑉(𝑥, 𝑡; 𝜑) denote the
solutions of the following equations:

𝑈
𝑡

√1 +




∇

𝑥
𝑈





2

= div (

∇
𝑥
𝑈

√1 +




∇

𝑥
𝑈





2

)− 𝑐,

𝑥 ∈ R
𝑚

, 𝑡 > 0,

𝑉
𝑡
= Δ

𝑥
𝑉 −

𝑐

2





∇

𝑥
𝑉





2

− 𝑐, 𝑥 ∈ R
𝑚

, 𝑡 > 0,

(24)

under the initial conditions 𝑈(⋅, 0) = 𝑉(⋅, 0) = 𝜑 ∈

𝑊
2,∞

(R𝑚

). Then, for any constant 𝜀 > 0, there exists a
constant 𝛿 > 0 such that if ‖∇

𝑥
𝜑‖

𝑊
1,∞ ≤ 𝛿, it holds that

sup
𝑥∈R𝑚





𝑈 (𝑥, 𝑡; 𝜑) − 𝑉 (𝑥, 𝑡; 𝜑)





≤ 𝜀 ∀𝑡 > 0. (25)

The following lemma is a little different from Lemma 3.10
in [11], but the proof is similar.

Lemma 8. Let 𝑉(𝑥, 𝑡) be a solution to the problem

𝑉
𝑡
= Δ

𝑥
𝑉 −

𝑐

2





∇

𝑥
𝑉





2

− 𝑐, 𝑥 ∈ R
𝑛−1

, 𝑡 > 0,

𝑉 (𝑥, 0) = 𝑉
0
(𝑥) , 𝑥 ∈ R

𝑛−1

.

(26)

Then the following estimates hold:

sup
𝑥∈R𝑛−1






𝑉

𝑥
𝑖

(𝑥, 𝑡)






≤ min {𝐶

0
𝑡
−1/2

, 𝐶
1
} ,

sup
𝑥∈R𝑛−1








𝑉
𝑥
𝑖
𝑥
𝑗

(𝑥, 𝑡)








≤ min {𝐶
0
𝑡
−1

, 𝐶
2
} ,

sup
𝑥∈R𝑛−1








𝑉
𝑥
𝑖
𝑥
𝑗
𝑥
𝑘

(𝑥, 𝑡)








≤ 𝐶
3
(1 + 𝑡)

−3/2

,

sup
𝑥∈R𝑛−1






𝑉

𝑥
𝑖
𝑡
(𝑥, 𝑡)






≤ 𝐶

4
(1 + 𝑡)

−3/2

,

(27)

for each 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛 − 1, where 𝐶
0
, 𝐶

1
, 𝐶

2
, 𝐶

3
, and 𝐶

4
are

positive constants such that

(i) 𝐶
0
depends only on 𝑐 and ‖𝑉

0
‖
𝐿
∞ ;

(ii) 𝐶
1
depends only on 𝑐, ‖𝑉

0
‖
𝐿
∞ , and ‖∇

𝑥
𝑉

0
‖
𝐿
∞ and

satisfies

𝐶
1
→ 0 𝑎𝑠





∇

𝑥
𝑉

0




𝐿
∞ → 0; (28)

(iii) 𝐶
2
depends only on 𝑐, ‖𝑉

0
‖
𝐿
∞ , and ‖∇

𝑥
𝑉

0
‖
𝑊
1,∞ and

satisfies

𝐶
2
→ 0 𝑎𝑠





∇

𝑥
𝑉

0




𝑊
1,∞ → 0; (29)

(iv) 𝐶
3
and 𝐶

4
depend only on 𝑐 and ‖𝑉

0
‖
𝑊
3,∞ .

3. Proofs of Theorems 1 and 3

In this section, we consider problem (7) in R𝑛 and prove
our main results. Firstly, we give rough upper and lower
bounds for the solution at large time, then introduce the
notion of 𝜔-limit points of the solution and study basic
properties of (𝜙(0), 𝜓(0))-level surface of the solution. Lastly,
we construct a fine set of supersolutions and subsolutions and
give the proofs of the main theorems.

We will express solutions (𝑢(𝑥, 𝑦, 𝑡), V(𝑥, 𝑦, 𝑡)) of (1) in a
moving frame, and thus the planar waves can be viewed as
stationary states. Letting

𝑤 (𝑥, 𝑧, 𝑡) = 𝑢 (𝑥, 𝑦, 𝑡) , 𝜔 (𝑥, 𝑧, 𝑡)

= V (𝑥, 𝑦, 𝑡) , 𝑧 = 𝑦 + 𝑐𝑡,

(30)
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problem (7) with (6) is rewritten as (we write (𝑤(𝑥,
𝑧, 𝑡), 𝜔(𝑥, 𝑧, 𝑡)) as (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) for simplicity)

𝑢
𝑡
= Δ𝑢 − 𝑐𝑢

𝑧
+ 𝑓 (𝑢) + 𝑘

1
V − 𝑘

2
𝑢 (𝑏

0
− V) ,

𝑥 ∈ R
𝑛−1

, 𝑧 ∈ R, 𝑡 > 0,

V
𝑡
= ΔV − 𝑐V

𝑧
− 𝑘

1
V + 𝑘

2
𝑢 (𝑏

0
− V) ,

𝑥 ∈ R
𝑛−1

, 𝑧 ∈ R, 𝑡 > 0,

𝑢 (𝑥, 𝑧, 0) = 𝑢
0
(𝑥, 𝑧) , 𝑥 ∈ R

𝑛−1

, 𝑧 ∈ R,

V (𝑥, 𝑧, 0) = V
0
(𝑥, 𝑧) , 𝑥 ∈ R

𝑛−1

, 𝑧 ∈ R,

(31)

where Δ = 𝜕
2

/𝜕𝑥
2

1
+ ⋅ ⋅ ⋅ + 𝜕

2

/𝜕𝑥
2

𝑛−1
+ 𝜕

2

/𝜕𝑧
2.

Throughout this section, we always assume that the
initial value (𝑢

0
, V

0
) satisfies (0, 0) ≤ (𝑢

0
(𝑥, 𝑧), V

0
(𝑥, 𝑧)) ≤

(1, 𝑏
0
− 𝑏

2
) and

lim sup
𝑧→−∞

sup
𝑥∈R𝑛−1

𝑢
0
(𝑥, 𝑧) < 𝛿,

lim inf
𝑧→+∞

inf
𝑥∈R𝑛−1

𝑢
0
(𝑥, 𝑧) > 1 − 𝛿,

lim sup
𝑧→−∞

sup
𝑥∈R𝑛−1

V
0
(𝑥, 𝑧) < 𝑘

0
𝛿,

lim inf
𝑧→+∞

inf
𝑥∈R𝑛−1

V
0
(𝑥, 𝑧) > 𝑏

0
− 𝑏

2
− 𝑘

0
𝛿,

(32)

where 𝛿 and 𝑘
0
are defined in Theorem 1. We first consider

upper and lower bounds of the solution of (31) at large time.

Lemma9. Let (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) be a solution of (31).Then
there exists constant 𝑧

∗
, 𝑧∗

∈ R such that

lim
𝑡→∞

inf
𝑥∈R𝑛−1

(𝑢 (𝑥, 𝑧, 𝑡) , V (𝑥, 𝑧, 𝑡)) ≥ (𝜙 (𝑧 − 𝑧
∗

) , 𝜓 (𝑧 − 𝑧
∗

)) ,

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑧 ∈ R,

lim
𝑡→∞

sup
𝑥∈R𝑛−1

(𝑢 (𝑥, 𝑧, 𝑡) , V (𝑥, 𝑧, 𝑡)) ≤ (𝜙 (𝑧 − 𝑧
∗
) , 𝜓 (𝑧 − 𝑧

∗
)) ,

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑧 ∈ R.

(33)

Proof. We only show the upper bound
of (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)), since the other is similar.
Let (𝑢+

, V+) be as in Lemma 4. Then it suffices to show
that there exist constants 𝑇 > 0 and 𝑧

0
∈ R such that

𝑢 (𝑥, 𝑧, 𝑇) ≤ 𝜙 (𝑧 − 𝑧
0
) + 𝛿

1
= 𝑢

+

(𝑧 − 𝑧
0
, 0) , (34)

V (𝑥, 𝑧, 𝑇) ≤ 𝜓 (𝑧 − 𝑧
0
) + 𝛿

2
= V

+

(𝑧 − 𝑧
0
, 0) . (35)

Indeed, the comparison principle and (34)-(35) give
(𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) ≤ (𝑢

+

(𝑧 − 𝑧
0
, 𝑡 − 𝑇), V+(𝑧 − 𝑧

0
, 𝑡 − 𝑇))

for 𝑡 ≥ 𝑇, which yield upper bound by letting 𝑡 → ∞.
Since (0, 0) ≤ (𝑢

0
(𝑥, 𝑧), V

0
(𝑥, 𝑧)) ≤ (1, 𝑏

0
− 𝑏

2
), we see

from the comparison principle that

(0, 0) ≤ (𝑢 (𝑥, 𝑧, 𝑡) , V (𝑥, 𝑧, 𝑡)) ≤ (1, 𝑏
0
− 𝑏

2
) ,

(𝑥, 𝑧) ∈ R
𝑛

, 𝑡 > 0.

(36)

Note that lim
𝑧→∞

(𝜙(𝑧), 𝜓(𝑧)) = (1, 𝑏
0
− 𝑏

2
), there exists a

constant 𝑧
1
∈ R such that, for each 𝑇 > 0 and 𝑧 ≥ 𝑧

1
,

𝑢 (𝑥, 𝑧, 𝑡) ≤ 𝜙 (𝑧) + 𝛿
1
= 𝑢

+

(𝑧, 0) ,

V (𝑥, 𝑧, 𝑡) ≤ 𝜓 (𝑧) + 𝛿
2
= V

+

(𝑧, 0) .

(37)

Next, we show that

(lim sup
𝑧→−∞

sup
𝑥∈R𝑛−1

𝑢 (𝑥, 𝑧, 𝑇) , lim sup
𝑧→−∞

sup
𝑥∈R𝑛−1

V (𝑥, 𝑧, 𝑇))

< (𝛿
1
, 𝛿

2
) ,

(38)

for each 𝑇 > 0. For this purpose, choose positive constants
𝛽

1
, 𝛽

2
, and𝑀 such that

lim sup
𝑧→−∞

sup
𝑥∈R𝑛−1

𝑢
0
(𝑥, 𝑧) < 𝛽

1
< 𝛿,

lim sup
𝑧→−∞

sup
𝑥∈R𝑛−1

V
0
(𝑥, 𝑧) < 𝛽

2
< 𝑘

0
𝛿

(39)

and that

(𝑢
0
(𝑥, 𝑧) , V

0
(𝑥, 𝑧)) ≤ (𝛽

1
+𝑀𝑒

𝑐𝑧

, 𝛽
2
+𝑀𝑒

𝑐𝑧

) ,

(𝑥, 𝑧) ∈ R
𝑛

.

(40)

Then the functions

(𝑤 (𝑥, 𝑧, 𝑡) , 𝜔 (𝑥, 𝑧, 𝑡))

= (min {𝛽
1
+𝑀𝑒

𝑐(𝑧+𝑎𝑡)

, 1} ,min {𝛽
2
+𝑀𝑒

𝑐(𝑧+𝑎𝑡)

, 𝑏
0
− 𝑏

2
})

(41)

are a supersolution of (31) if 𝑎 > 0 is chosen sufficiently large.
Hence,

(𝑢 (𝑥, 𝑧, 𝑇) , V (𝑥, 𝑧, 𝑇)) ≤ (𝑤 (𝑥, 𝑧, 𝑇) , 𝜔 (𝑥, 𝑧, 𝑇)) . (42)

This proves (38). Combining (37) and (38), it is easy to see
that (34)-(35) hold. This completes the proof.

Now, we introduce the notion of 𝜔-limit points of the
solution (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) of (31), where we consider a
sequence both in 𝑥 and 𝑡. Then we show that any 𝜔-limit
point is a planar wave under the assumption (34).

Definition 10. A vector-valued function (𝑤(𝑥, 𝑧, 𝑡), 𝜔(𝑥, 𝑧, 𝑡))
defined on R𝑛−1

× R × R is called a 𝜔-limit point of the
solution (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) of (31) if there exists a sequence
{(𝑥

𝑖
, 𝑡

𝑖
)} such that 0 < 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ → ∞ and that

(𝑢 (𝑥 + 𝑥
𝑖
, 𝑧, 𝑡 + 𝑡

𝑖
) , V (𝑥 + 𝑥

𝑖
, 𝑧, 𝑡 + 𝑡

𝑖
))

→(𝑤 (𝑥, 𝑧, 𝑡) , 𝜔 (𝑥, 𝑧, 𝑡)) as 𝑖→∞ in 𝐶
2,1

loc (R
𝑛

×R) .

(43)

The following remark tells us how to construct 𝜔-limit
point, which is similar to Remark 4.4 in [11].
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Remark 11. Let U(𝑥, 𝑧, 𝑡) := (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) be a solu-
tion of (31). Then for any sequence {(𝑥

𝑖
, 𝑡

𝑖
)} with 0 < 𝑡

1
<

𝑡
2
< ⋅ ⋅ ⋅ → ∞, there exist a subsequence {(𝑥



𝑖
, 𝑡



𝑖
)} and a

𝜔-limit point W(𝑥, 𝑧, 𝑡) := (𝑤(𝑥, 𝑧, 𝑡), 𝜔(𝑥, 𝑧, 𝑡)) of U(𝑥, 𝑧,
𝑡) such that

U (𝑥 + 𝑥


𝑖
, 𝑧, 𝑡 + 𝑡



𝑖
) → W (𝑥, 𝑧, 𝑡) ,

as 𝑖 → ∞ in 𝐶
2,1

loc (R
𝑛

×R) .

(44)

Indeed, by the assumption in Theorem 1, it is easy to
see that U(𝑥, 𝑧, 𝑡) is bounded. Then by 𝐿

𝑝-estimates and
Schauder’s estimate (see [13, 14]), the solution U(𝑥, 𝑧,
𝑡) belongs to 𝐶

2+𝛼,1+𝛼/2

(R𝑛

× [𝛿, 𝑇]) for any 0 < 𝛿 < 𝑇.
Furthermore,

‖U (𝑥, 𝑧, 𝑡)‖
𝐶
2+𝛼,1+𝛼/2

(R𝑛×[𝛿,𝑇])
≤ 𝐶, (45)

where 𝐶 > 0 is a constant independent of 𝑇 > 0. Let
{𝑄

𝑘
}
𝑘=1,2,...

be a sequence of compact subsets of R𝑛

× R

satisfying

𝑄
1
⊂ 𝑄

2
⊂ ⋅ ⋅ ⋅ , lim

𝑘→∞

𝑄
𝑘
= R

𝑛

×R. (46)

Then, for each 𝑘, the sequence of functions {U(𝑥, 𝑧, 𝑡)(𝑥 +

𝑥
𝑖
, 𝑧, 𝑡 + 𝑡

𝑖
)}

𝑖=1,2,...
is defined on 𝑄

𝑘
for all large 𝑖 and the

restrictions of these functions onto 𝑄
𝑘
are relatively compact

in 𝐶
2,1

(𝑄
𝑘
) by virtue of the estimate (45). By using diagonal

argument, we can choose a subsequence {(𝑥


𝑖
, 𝑡



𝑖
)} and a

function 𝑤(𝑥, 𝑧, 𝑡) defined on R𝑛

×R such that, for any 𝑘 ≥

1, it holds that

lim
𝑖→∞






U (𝑥 + 𝑥



𝑖
, 𝑧, 𝑡 + 𝑡



𝑖
) −W (𝑥, 𝑧, 𝑡)





𝐶
2,1

(𝑄
𝑘
)

= 0, (47)

which means U(𝑥 + 𝑥


𝑖
, 𝑧, 𝑡 + 𝑡



𝑖
) → W(𝑥, 𝑧, 𝑡) as 𝑖 →

∞ in 𝐶
2,1

loc(𝑄𝑘
).

In order to prove that any 𝜔-limit point is a planar wave,
the following Lemma is needed.

Lemma 12. Let (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) be a vector-valued func-
tion that is defined on R𝑛−1

×R ×R and satisfies

𝑢
𝑡
= Δ𝑢 − 𝑐𝑢

𝑧
+ 𝑓 (𝑢) + 𝑘

1
V − 𝑘

2
𝑢 (𝑏

0
− V) ,

(𝑥, 𝑧) ∈ R
𝑛

, 𝑡 ∈ R,

V
𝑡
= ΔV − 𝑐V

𝑧
− 𝑘

1
V + 𝑘

2
𝑢 (𝑏

0
− V) ,

(𝑥, 𝑧) ∈ R
𝑛

, 𝑡 ∈ R.

(48)

Assume further that there exist two constants 𝑧
∗
, 𝑧

∗

∈

R such that

(𝜙 (𝑧 − 𝑧
∗

) , 𝜓 (𝑧 − 𝑧
∗

))

≤ (𝑢 (𝑥, 𝑧, 𝑡) , V (𝑥, 𝑧, 𝑡))

≤ (𝜙 (𝑧 − 𝑧
∗
) , 𝜓 (𝑧 − 𝑧

∗
)) , (𝑥, 𝑧) ∈ R

𝑛

, 𝑡 ∈ R.

(49)

Then there exists a constant 𝑧
0
∈ [𝑧

∗
, 𝑧

∗

] such that

𝑢 (𝑥, 𝑧, 𝑡) = 𝜙 (𝑧 − 𝑧
0
) ,

V (𝑥, 𝑧, 𝑡) = 𝜓 (𝑧 − 𝑧
0
) ,

(𝑥, 𝑧) ∈ R
𝑛

, 𝑡 ∈ R.

(50)

Proof. Define

𝑢
𝑠

(𝑥, 𝑧, 𝑡) = 𝑢 (𝑥 + 𝑦, 𝑧 + 𝑠, 𝑡 + 𝑇) ,

𝑦 ∈ R
𝑛−1

, 𝑠, 𝑇 ∈ R,

V
𝑠

(𝑥, 𝑧, 𝑡) = V (𝑥 + 𝑦, 𝑧 + 𝑠, 𝑡 + 𝑇) ,

𝑦 ∈ R
𝑛−1

, 𝑠, 𝑇 ∈ R.

(51)

Then,

(𝜙 (𝑧 + 𝑠 − 𝑧
∗

) , 𝜓 (𝑧 + 𝑠 − 𝑧
∗

))

≤ (𝑢
𝑠

(𝑥, 𝑧, 𝑡) , V
𝑠

(𝑥, 𝑧, 𝑡))

≤ (𝜙 (𝑧 + 𝑠 − 𝑧
∗
) , 𝜓 (𝑧 + 𝑠 − 𝑧

∗
)) .

(52)

It follows from the monotonicity of 𝜙 and 𝜓 that there
exists 𝑠 ∈ R satisfying

𝑢
𝑠

(𝑥, 𝑧, 𝑡) ≥ 𝑢 (𝑥, 𝑧, 𝑡) ,

V
𝑠

(𝑥, 𝑧, 𝑡) ≥ V (𝑥, 𝑧, 𝑡) .
(53)

Indeed, let 𝑠 = 𝑧
∗

− 𝑧
∗
, then (𝑢

𝑠

(𝑥, 𝑧, 𝑡), V𝑠(𝑥, 𝑧, 𝑡)) ≥

(𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)). Now, let

𝑠
∗
= inf {𝑠 ∈ R, (𝑢

𝑠


, V
𝑠


) ≥ (𝑢, V) , in R
𝑛

×R ∀𝑠


≥ 𝑠} .

(54)

Since lim
𝑧→−∞

(𝜙(𝑧), 𝜓(𝑧)) = (0, 0), lim
𝑧→∞

(𝜙(𝑧), 𝜓(𝑧)) =

(1, 𝑏
0
− 𝑏

2
) and by using (49), there exists constant 𝐴

1
>

0 such that

(𝑢 (𝑥, 𝑧, 𝑡) , V (𝑥, 𝑧, 𝑡)) ≥ (1 − 𝛾, 𝑏
0
− 𝑏

2
− 𝛾)

∀𝑧 ≥ 𝐴
1
, (𝑥, 𝑧, 𝑡) ∈ R

𝑛

×R,

(𝑢 (𝑥, 𝑧, 𝑡) , V (𝑥, 𝑧, 𝑡)) ≤ (𝛾, 𝛾)

∀𝑧 ≤ −𝐴
1
, (𝑥, 𝑧, 𝑡) ∈ R

𝑛

×R.

(55)

Note that one can assume that 𝛾 ∈ (0,min{1/2, (𝑏
0
−

𝑏
2
− 𝛾)/2}). Let 𝐴 = max{𝐴

1
, ((𝑧

∗

− 𝑧
∗
)/2)}, then (𝑢(𝑥,

𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) ≥ (1 − 𝛾, 𝑏
0
− 𝑏

2
− 𝛾) for 𝑧 ≥ 𝐴 and (𝑢(𝑥,

𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) ≤ (𝛾, 𝛾) for 𝑧 ≤ −𝐴. It is easy to see that
𝑠
∗
≤ 2𝐴 and 𝑠

∗
> −∞. Assume that 𝑠

∗
> 0 and call 𝑆 =

{(𝑥, 𝑧, 𝑡) ∈ R𝑛

× R, −𝐴 ≤ 𝑧 ≤ 𝐴}. If inf
𝑆
(𝑢

𝑠
∗
− 𝑢) > 0

and inf
𝑆
(V𝑠∗ − V) > 0, then there exists 𝜂

0
∈ (0, 𝑠

∗
) such

that (𝑢𝑠
∗
−𝜂
0
, V𝑠∗−𝜂

0
) ≥ (𝑢, V) in 𝑆 for all 𝜂 ∈ [0, 𝜂

0
]. Denote
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𝐸 = {(𝑥, 𝑧, 𝑡) ∈ R𝑛

×R, 𝑧 > 𝐴},𝑤 = 𝑢
𝑠
∗
−𝜂

−𝑢 and𝜔 = V𝑠∗−𝜂

−V,
we see that (𝑤, 𝜔) ≥ (0, 0) on 𝜕𝐸 and satisfies

𝑤
𝑡
− Δ𝑤 + 𝑐𝑤

𝑧

= 𝑓 (𝑢
𝑠
∗
−𝜂

) − 𝑓 (𝑢) + (𝑘
1
+ 𝑘

2
𝑢) 𝜔 − 𝑘

2
(𝑏

0
− V

𝑠
1∗

−𝜂

) 𝑤

≥ (𝑘
1
+ 𝑘

2
𝑢) 𝜔 − 𝑘

2
(𝑏

0
− V

𝑠
∗
−𝜂

) 𝑤 − 𝐵𝑤

𝜔
𝑡
− Δ𝜔 + 𝑐𝜔

𝑧
= − (𝑘

1
+ 𝑘

2
𝑢) 𝜔 + 𝑘

2
(𝑏

0
− V

𝑠
∗
−𝜂

) 𝑤

(56)

for some constant 𝐵 (remember that 𝑓 ∈ 𝐶
1

(R) and 𝑢
𝑠
∗
−𝜂

,

𝑢, V𝑠∗−𝜂 and V are bounded).The parabolicmaximumprinci-
ple implies that (𝑤(𝑥, 𝑧, 𝑡), 𝜔(𝑥, 𝑧, 𝑡)) ≥ (0, 0) in 𝐸. Similarly,
we can prove that (𝑤(𝑥, 𝑧, 𝑡), 𝜔(𝑥, 𝑧, 𝑡)) ≥ (0, 0) for 𝑧 ≤ −𝐴.
Therefore, (𝑢𝑠

∗
−𝜂

, V𝑠∗−𝜂

) ≥ (𝑢, V) in R𝑛

×R for all 𝜂 ∈ [0, 𝜂
0
].

This contradicts the minimality of 𝑠
∗
. It follows then that

inf
𝑆

(𝑢
𝑠
∗

− 𝑢) = 0 or inf
𝑆

(V
𝑠
∗

− V) = 0. (57)

Wefirst consider the case that inf
𝑆
(𝑢

𝑠
∗
−𝑢) = 0 and inf

𝑆
(V𝑠∗−

V) > 0. As a consequence, there exist 𝑧
∞

∈ [−𝐴,𝐴] and a
sequence (𝑥

𝑛
, 𝑧

𝑛
, 𝑡

𝑛
)
𝑛∈𝑁

such that

𝑧
𝑛
→ 𝑧

∞
,

𝑢
𝑠
∗

(𝑥
𝑛
, 𝑧

𝑛
, 𝑡

𝑛
) − 𝑢 (𝑥

𝑛
, 𝑧

𝑛
, 𝑡

𝑛
) → 0 as 𝑛 → ∞.

(58)

Call 𝑢
𝑛
(𝑥, 𝑧, 𝑡) = 𝑢(𝑥 + 𝑥

𝑛
, 𝑧 + 𝑧

𝑛
, 𝑡 + 𝑡

𝑛
) and V

𝑛
(𝑥, 𝑧, 𝑡) =

V(𝑥 + 𝑥
𝑛
, 𝑧 + 𝑧

𝑛
, 𝑡 + 𝑡

𝑛
). Note that V

𝑛
(𝑥, 𝑧, 𝑡) is a bounded

sequence. Up to extraction of a subsequence, the func-
tions (𝑢

𝑛
, V

𝑛
) converge locally uniformly to a solution (𝑢

∞
,

V
∞
) of the following system:

𝑢
𝑡
= Δ𝑢 − 𝑐𝑢

𝑧
+ 𝑓 (𝑢) + 𝑘

1
V − 𝑘

2
𝑢 (𝑏

0
− V) ,

V
𝑡
= ΔV − 𝑐V

𝑧
− 𝑘

1
V + 𝑘

2
𝑢 (𝑏

0
− V) .

(59)

It is easy to see that

𝑤 (𝑥, 𝑧, 𝑡) = 𝑢
∞
(𝑥 + 𝑦, 𝑧 + 𝑠

∗
, 𝑡 + 𝑇) − 𝑢 (𝑥, 𝑧, 𝑡) ≥ 0,

𝜔 (𝑥, 𝑧, 𝑡) = V
∞
(𝑥 + 𝑦, 𝑧 + 𝑠

∗
, 𝑡 + 𝑇)

− V (𝑥, 𝑧, 𝑡) > 0 in R
𝑛

×R

(60)

and 𝑤(0, 𝑧
∞
, 0) = 0; that is, 𝑤(𝑥, 𝑧, 𝑡) attains the local

minimum at (0, 𝑧
∞
, 0). We only consider the equation of 𝑢.

It is easy to verify that 𝑤 cannot attain the local minimum
because

𝑤
𝑡
(0, 𝑧

∞
, 0) = 0,

Δ𝑤 (0, 𝑧
∞
, 0) ≥ 0,

𝑤
𝑧
(0, 𝑧

∞
, 0) = 0,

𝜔 (0, 𝑧
∞
, 0) > 0.

(61)

So we get a contradiction. Similarly, one can deal with the
other case: inf

𝑆
(V𝑠∗ − V) = 0 and inf

𝑆
(𝑢

𝑠
∗
− 𝑢) > 0.

Now we consider the last case: inf
𝑆
(𝑢

𝑠
∗

− 𝑢) =

0 and inf
𝑆
(V𝑠∗ − V) = 0. As the case that inf

𝑆
(𝑢

𝑠
∗
− 𝑢) =

0 and inf
𝑆
(V𝑠∗ − V) > 0, we obtain a solution (𝑢

∞
, V

∞
) of

system (59) and (𝑤(0, 𝑧
∞
, 0), 𝜔(0, 𝑧

∞
, 0)) = 0. It follows

from the strong parabolic maximum principle that (𝑤(𝑥,
𝑧, 𝑡), 𝜔(𝑥, 𝑧, 𝑡)) = (0, 0) for all 𝑡 ≤ 0 and then (𝑤(𝑥,

𝑧, 𝑡), 𝜔(𝑥, 𝑧, 𝑡)) ≡ (0, 0) in R𝑛

× R by uniqueness of the
solution of the Cauchy problem (31). Thus, 𝑢

∞
(0, 0, 0) =

𝑢
∞
(𝑘𝑦, 𝑘𝑠

∗
, 𝑘𝑇) for all 𝑘 ∈ Z. But 𝑢

∞
(𝑘𝑦, 𝑘𝑠

∗
, 𝑘𝑇) →

1 as 𝑘 → ∞ since 𝑠
∗
> 0. This is a contradiction.

Thus, 𝑠
∗
≤ 0,

𝑢
0

(𝑥, 𝑧, 𝑡) = 𝑢 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑇) ≥ 𝑢 (𝑥, 𝑧, 𝑡) ,

V
0

(𝑥, 𝑧, 𝑡) = V (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑇) ≥ V (𝑥, 𝑧, 𝑡) .
(62)

Since 𝑇 ∈ R and 𝑦 ∈ R𝑛−1 are arbitrary, we conclude
that 𝑢 and V depend on 𝑧 only, namely, (𝑢(𝑥, 𝑧, 𝑡), V(𝑥,
𝑧, 𝑡)) = (𝜙(𝑧 − 𝑧

1
), 𝜓(𝑧 − 𝑧

2
)) for some 𝑧

𝑖
∈ R (𝑖 = 1, 2).

Note that (𝜙(𝑧), 𝜓(𝑧)) is a solution of (59), we conclude that
𝑧
1
= 𝑧

2
= 𝑧

0
. This completes the proof.

From Lemma 9, any 𝜔-limit point of (𝑢, V) satisfies

𝜙 (𝑧 − 𝑧
∗

) ≤ 𝑤 (𝑥, 𝑧, 𝑡) ≤ 𝜙 (𝑧 − 𝑧
∗
) ,

𝜓 (𝑧 − 𝑧
∗

) ≤ 𝜔 (𝑥, 𝑧, 𝑡) ≤ 𝜓 (𝑧 − 𝑧
∗
) , (𝑥, 𝑧) ∈ R

𝑛

, 𝑡 ∈ R,

(63)

for some constant 𝑧∗

, 𝑧
∗
∈ R. Combining the above lemma,

we immediately have the following result.

Lemma 13. Let (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) be a solution of (31).Then
any 𝜔-limit point (𝑤(𝑥, 𝑧, 𝑡), 𝜔(𝑥, 𝑧, 𝑡)) of (𝑢, V) is a planar
wave; that is, there exists a constant 𝑧

0
R such that

(𝑤 (𝑥, 𝑧, 𝑡) , 𝜔 (𝑥, 𝑧, 𝑡))

= (𝜙 (𝑧 − 𝑧
0
) , 𝜓 (𝑧 − 𝑧

0
)) , (𝑥, 𝑧) ∈ R

𝑛

, 𝑡 ∈ R.

(64)

Now, we derive estimate for the derivatives of the solution
of (31).

Lemma 14 (monotonicity in 𝑧). Let (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) be
a solution of (31). Then for any constant 𝑅 > 0, there exists
a constant 𝑇 > 0 such that

inf
𝑥∈R𝑛−1,|𝑧|≤𝑅,𝑡≥𝑇

(𝑢
𝑧
(𝑥, 𝑧, 𝑡) , V

𝑧
(𝑥, 𝑧, 𝑡)) > (0, 0) . (65)

Proof. We prove this lemma by contradiction. If the above
claim does not hold, then there exists a sequence {(𝑥

𝑘
, 𝑧

𝑘
,

𝑡
𝑘
)} such that {𝑧

𝑘
} ⊂ [−𝑅, 𝑅], 0 < 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ → ∞ and

that
lim inf
𝑘→∞

(𝑢
𝑧
(𝑥

𝑘
, 𝑧

𝑘
, 𝑡

𝑘
) , V

𝑧
(𝑥

𝑘
, 𝑧

𝑘
, 𝑡

𝑘
)) ≤ (0, 0) . (66)

Replace {(𝑥
𝑘
, 𝑧

𝑘
, 𝑡

𝑘
)} by its subsequence if necessary; we may

assume without loss of generality that 𝑧
𝑘
converges to some

limit 𝑧
∞

∈ [−𝑅, 𝑅] and that

(𝑢
𝑧
, V

𝑧
) (𝑥 + 𝑥

𝑘
, 𝑧 + 𝑧

𝑘
, 𝑡 + 𝑡

𝑘
) → (𝑤, 𝜔) (𝑥, 𝑧, 𝑡)

as 𝑘 → ∞ in 𝐶
2,1

loc (R
𝑛

×R) ,
(67)
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where (𝑤, 𝜔) is a limit point of (𝑢, V). Hence,

(𝑤
𝑧
(0, 𝑧

∞
, 0) , 𝜔

𝑧
(0, 𝑧

∞
, 0))

= lim
𝑘→∞

(𝑢
𝑧
(𝑥

𝑘
, 𝑧

𝑘
, 𝑡

𝑘
) , V

𝑧
(𝑥

𝑘
, 𝑧

𝑘
, 𝑡

𝑘
)) ≤ (0, 0) .

(68)

On the other hand, Lemma 13 shows that (𝑤(𝑥, 𝑧, 𝑡), 𝜔(𝑥,
𝑧, 𝑡)) = (𝜙(𝑧 − 𝑧

0
), 𝜓(𝑧 − 𝑧

0
)) for some 𝑧

0
∈ R. This gets a

contradiction because 𝜙


, 𝜓


> 0. The proof of the lemma is
completed.

By using Lemmas 14 and 9, the following corollary is
obtained.

Corollary 15. Let (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) be a solution of (31).
Then there exists a constant 𝑇 > 0 such that

inf
(𝑥,𝑧,𝑡)∈𝐷

(𝑢
𝑧
(𝑥, 𝑧, 𝑡) , V

𝑧
(𝑥, 𝑧, 𝑡)) > 0, (69)

where

𝐷 = {(𝑥, 𝑧, 𝑡) ∈ R
𝑛

× [𝑇,∞) , (

𝜙 (0)

2

,

𝜓 (0)

2

)

≤ (𝑢 (𝑥, 𝑧, 𝑡) , V (𝑥, 𝑧, 𝑡))

≤ (

1 + 𝜙 (0)

2

,

𝑏
0
− 𝑏

2
+ 𝜓 (0)

2

)} .

(70)

Lemma 16 (decay of 𝑥-derivatives). Let (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧,
𝑡)) be a solution of (31). Then for any constant 𝑅 > 0, it holds
that

lim
𝑡→∞

sup
𝑥∈R𝑛−1,|𝑧|≤𝑅






𝑢
𝑥
𝑖

(𝑥, 𝑧, 𝑡)






= 0,

lim
𝑡→∞

sup
𝑥∈R𝑛−1,|𝑧|≤𝑅








𝑢
𝑥
𝑖
𝑥
𝑗

(𝑥, 𝑧, 𝑡)








= 0,

lim
𝑡→∞

sup
𝑥∈R𝑛−1,|𝑧|≤𝑅






V
𝑥
𝑖

(𝑥, 𝑧, 𝑡)






= 0,

lim
𝑡→∞

sup
𝑥∈R𝑛−1,|𝑧|≤𝑅








V
𝑥
𝑖
𝑥
𝑗

(𝑥, 𝑧, 𝑡)








= 0,

(71)

for each 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1.

The proof of this lemma is similar to Lemma 4.9 in [11],
and we omit it here.

Next we study the (𝜙(0), 𝜓(0))-level surface of the solu-
tion of (31). From Corollary 15 and Lemma 16, we can
derive the following lemma that the (𝜙(0), 𝜓(0))-level sur-
face of the solution (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) has a graphical
representation 𝑧 = Γ(𝑥, 𝑡) for all 𝑡.

Lemma 17. Let (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) be a solution of (31) and
let 𝑇 > 0 be as defined in Corollary 15. Then there exists a
smooth bounded function Γ(𝑥, 𝑡) such that

(𝑢 (𝑥, 𝑧, 𝑡) , V (𝑥, 𝑧, 𝑡)) = (𝜙 (0) , 𝜓 (0)) ,

𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑧 = Γ (𝑥, 𝑡)

(72)

for any (𝑥, 𝑡) ∈ R𝑛−1

× [𝑇,∞). Furthermore, the following
estimates hold:

(i) for each 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1,

lim
𝑡→∞

sup
𝑥∈R𝑛−1






Γ
𝑥
𝑖

(𝑥, 𝑧, 𝑡)






= 0,

lim
𝑡→∞

sup
𝑥∈R𝑛−1








Γ
𝑥
𝑖
𝑥
𝑗

(𝑥, 𝑧, 𝑡)








= 0;

(73)

(ii) there exists a constant 𝑀 > 0 such that, for each 1 ≤

𝑖, 𝑗, 𝑘 ≤ 𝑛 − 1,

sup
𝑥∈R𝑛−1








Γ
𝑥
𝑖
𝑥
𝑗
𝑥
𝑘

(𝑥, 𝑧, 𝑡)








≤ 𝑀 𝑓𝑜𝑟 𝑡 ≥ 𝑇. (74)

Proof. Since

𝐷 = {(𝑥, 𝑧, 𝑡) ∈ R
𝑛

× [𝑇,∞) , (

𝜙 (0)

2

,

𝜓 (0)

2

)

≤ (𝑢 (𝑥, 𝑧, 𝑡) , V (𝑥, 𝑧, 𝑡))

≤ (

1 + 𝜙 (0)

2

,

𝑏
0
− 𝑏

2
+ 𝜓 (0)

2

)}

(75)

is bounded in the 𝑧-direction by virtue of Lemma 9 and
the facts (𝜙, 𝜓)(−∞) = (0, 0) and (𝜙, 𝜓)(+∞) = (1, 𝑏

0
−

𝑏
2
), we can define a bounded function Γ(𝑥, 𝑡) satisfying (72)

thanks to Corollary 15. Here Γ(𝑥, 𝑡) is smooth by the implicit
function theorem, since 𝑢(𝑥, 𝑧, 𝑡) is smooth for 𝑡 > 0. The
other estimates follow from Lemma 16, and we omit it here.
This completes the proof.

The following lemma shows that the large time behavior
of the solution can be essentially determined by the (𝜙(0),

𝜓(0))-level surface Γ(𝑥, 𝑡).

Lemma 18. Let (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) be a solution of (31) and
let Γ(𝑥, 𝑡) be as defined in Lemma 17. Then, it holds that

lim
𝑡→∞

sup
(𝑥,𝑧)∈R𝑛





𝑢 (𝑥, 𝑧, 𝑡) − 𝜙 (𝑧 − Γ (𝑥, 𝑡))





= 0,

lim
𝑡→∞

sup
(𝑥,𝑧)∈R𝑛





V (𝑥, 𝑧, 𝑡) − 𝜓 (𝑧 − Γ (𝑥, 𝑡))





= 0.

(76)

Proof. We prove this lemma by contradiction, and we only
consider 𝑢. If the above claim does not hold, there exist a
constant 𝛿 > 0 and a sequence {(𝑥

𝑘
, 𝑧

𝑘
, 𝑡

𝑘
)} such that 0 <

𝑡
1
< 𝑡

2
< ⋅ ⋅ ⋅ → ∞ and that





𝑢 (𝑥

𝑘
, 𝑧

𝑘
, 𝑡

𝑘
) − 𝜙 (𝑧

𝑘
− Γ (𝑥

𝑘
, 𝑡

𝑘
))




≥ 𝛿. (77)

On the other hand, by virtue of Lemma 9 and bounded-
ness of Γ(𝑥, 𝑡), we can choose constants𝑅 > 0 and𝑇 > 0 such
that

sup
𝑥∈R𝑛−1,|𝑧|≥𝑅,𝑡≥𝑇





𝑢 (𝑥, 𝑧, 𝑡) − 𝜙 (𝑧 − Γ (𝑥, 𝑡))





< 𝛿, (78)
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which means that {𝑧
𝑘
} is bounded. We can choose subse-

quence of {(𝑥
𝑘
, 𝑧

𝑘
, 𝑡

𝑘
)}, which we denote again by {(𝑥

𝑘
, 𝑧

𝑘
,

𝑡
𝑘
)} such that

𝑧
∞

:= lim
𝑘→∞

𝑧
𝑘
,

𝛾
∞

:= lim
𝑘→∞

Γ (𝑥
𝑘
, 𝑡

𝑘
)

𝑢 (𝑥 + 𝑥
𝑘
, 𝑧, 𝑡 + 𝑡

𝑘
) → 𝑤 (𝑥, 𝑧, 𝑡)

as 𝑘 → ∞ in 𝐶
2,1

loc (R
𝑛

×R) ,

(79)

where 𝑤 is some 𝜔-limit point of 𝑢. This and (77) show that





𝑤 (0, 𝛾

∞
, 0) − 𝜙 (𝑧

∞
− 𝛾

∞
)





= lim
𝑘→∞





𝑢 (𝑥

𝑘
, 𝑧

𝑘
, 𝑡

𝑘
) − 𝜙 (𝑧

𝑘
− 𝛾 (𝑥

𝑘
, 𝑡

𝑘
))




≥ 𝛿.

(80)

On the other hand, we have

𝑤 (0, 𝛾
∞
, 0) = lim

𝑘→∞

𝑢 (𝑥
𝑘
, Γ (𝑥

𝑘
, 𝑡

𝑘
) , 𝑡

𝑘
) = 𝜙 (0) . (81)

Lemma 13 implies that 𝑤(𝑥, 𝑧, 𝑡) ≡ 𝜙(𝑧 − 𝛾
∞
). This contra-

dicts (80). This completes the proof of this lemma.

By setting 𝑦 = 𝑧 − 𝑐𝑡 and 𝛾(𝑥, 𝑡) = Γ(𝑥, 𝑡) − 𝑐𝑡, we obtain
the statement (i), (ii) of Theorem 1 from Lemmas 17 and 18.
Thus, it remains to prove the statement (iii).This will be done
at the end of this section.

In the following, we construct supersolutions of (31). For
this purpose, we consider the problem of the form

𝑉
𝑡
= Δ

𝑥
𝑉 −

𝑐

2





∇

𝑥
𝑉





2

, 𝑥 ∈ R
𝑛−1

, 𝑡 > 0,

V (𝑥, 0) = V
0
(𝑥) , 𝑥 ∈ R

𝑛−1

.

(82)

Lemma 19 (supersolution). For any constant 𝑀 > 0, there
exist positive constant 𝛿, 𝜀

0
, 𝑘

0
and smooth functions 𝑝(𝑡)

and 𝑞(𝑡) satisfying

𝑝 (0) > 0,

𝑞 (0) = 0,

0 ≤ 𝑝 (𝑡) , 𝑞 (𝑡) ≤ 𝜀 𝑓𝑜𝑟 𝑡 ≥ 0,

(83)

where 𝜀 ∈ (0, 𝜀
0
], such that if 𝑉(𝑥, 𝑡) is any solution of (82)

with ‖𝑉
0
‖
𝑊
3,∞ ≤ 𝑀 and ‖∇

𝑥
𝑉

0
‖
𝑊
1,∞ ≤ 𝛿, then the function

defined by

𝑢
+

(𝑥, 𝑧, 𝑡) = 𝜙(

𝑧 − 𝑉 (𝑥, 𝑡)

√1 +




∇

𝑥
𝑉





2

+ 𝑞 (𝑡)) + 𝑝 (𝑡) ,

V
+

(𝑥, 𝑧, 𝑡) = 𝜓(

𝑧 − 𝑉 (𝑥, 𝑡)

√1 +




∇

𝑥
𝑉





2

+ 𝑞 (𝑡)) + 𝑘
0
𝑝 (𝑡)

(84)

satisfies

𝐿 [𝑢
+

] := 𝑢
+

𝑡
− Δ𝑢

+

+ 𝑐𝑢
+

𝑧
− 𝑓 (𝑢

+

) − 𝑘
1
V
+

+ 𝑘
2
𝑢

+

(𝑏
0
− V

+

) ≥ 0, (𝑥, 𝑧) ∈ R
𝑛

, 𝑡 > 0,

𝐿 [V
+

] := V
+

𝑡
− ΔV

+

+ 𝑐V
+

𝑧
+ 𝑘

1
V
+

− 𝑘
2
𝑢

+

(𝑏
0
− V

+

) ≥ 0, (𝑥, 𝑧) ∈ R
𝑛

, 𝑡 > 0.

(85)

Proof. We divide the proof into four steps. The first two steps
are similar to that of Lemma 4.12 in [11], and we only give the
last results.

Step 1. Set

𝜂 (𝑥, 𝑧, 𝑡) =

𝑧 − 𝑉 (𝑥, 𝑡)

√1 +




∇

𝑥
𝑉





2

. (86)

Then, by using (8), we have

𝐿 [𝑢
+

] = (𝜂
𝑡
− Δ

𝑥
𝜂 + 𝑐𝜂

𝑧
− 𝑐) 𝜙



+ (1 −




∇

𝑥
𝜂





2

− 𝜂
2

𝑧
) 𝜙



+ 𝑞


(𝑡) 𝜙


+ 𝑝


(𝑡) − 𝑓 (𝜙 + 𝑝 (𝑡))

+ 𝑓 (𝜙) − (𝑘
1
+ 𝑘

2
𝜙) 𝑘

0
𝑝 (𝑡)

+ 𝑘
2
𝑝 (𝑡) (𝑏

0
− 𝜓 − 𝑘

0
𝑝 (𝑡))

𝐿 [V
+

] = (𝜂
𝑡
− Δ

𝑥
𝜂 + 𝑐𝜂

𝑧
− 𝑐) 𝜓



+ (1 −




∇

𝑥
𝜂





2

− 𝜂
2

𝑧
) 𝜓



+ 𝑞


(𝑡) 𝜓


+ 𝑘
0
𝑝



(𝑡) + (𝑘
1
+ 𝑘

2
𝜙) 𝑘

0
𝑝 (𝑡)

− 𝑘
2
𝑝 (𝑡) (𝑏

0
− 𝜓 − 𝑘

0
𝑝 (𝑡)) .

(87)

By rewriting the above expression in terms of 𝑉, we obtain

𝐿 [𝑢
+

] = (𝐼
0
− 𝐼

2
) 𝜙



+ (𝐼
1
− 3𝐼

3
) 𝜂𝜙



− 2𝐼
2
𝜂𝜙



− 𝐼
3
𝜂
2

𝜙


+ 𝐽
1
,

𝐿 [V
+

] = (𝐼
0
− 𝐼

2
) 𝜓



+ (𝐼
1
− 3𝐼

3
) 𝜂𝜓



− 2𝐼
2
𝜂𝜓



− 𝐼
3
𝜂
2

𝜓


+ 𝐽
2
,

(88)

where 𝐼
𝑖
, 𝐽

𝑗
(𝑖 = 0, 1, 2, 3; 𝑗 = 1, 2) are functions given by

𝐼
0
= −

𝑉
𝑡
− 𝑐

√1 +




∇

𝑥
𝑉





2

+ div (

∇
𝑥

√1 +




∇

𝑥
𝑉





2

)− 𝑐,

𝐼
1
= −

𝑛−1

∑

𝑖=1

𝑉
𝑥
𝑖

𝑉
𝑥
𝑖𝑡

1 +




∇

𝑥
𝑉





2
+

𝑛−1

∑

𝑖,𝑗=1

𝑉
2

𝑥
𝑖
𝑥
𝑗

+ 𝑉
𝑥
𝑗

𝑉
𝑥
𝑖
𝑥
𝑖
𝑥
𝑗

1 +




∇

𝑥
𝑉





2
,
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𝐼
2
=

𝑛−1

∑

𝑖,𝑗=1

𝑉
𝑥
𝑖

𝑉
𝑥
𝑗

+ 𝑉
𝑥
𝑗

𝑉
𝑥
𝑖
𝑥
𝑗

(1 +




∇

𝑥
𝑉





2

)

3/2

,

𝐼
3
=

𝑛−1

∑

𝑖=1

(

∑
𝑛−1

𝑖=1
𝑉

𝑥
𝑖

𝑉
𝑥
𝑖𝑗

1 +




∇

𝑥
𝑉





2
)

2

,

𝐽
1
= (𝜙


𝑞


(𝑡)

𝑝 (𝑡)

+

𝑝


(𝑡)

𝑝 (𝑡)

− ∫

1

0

𝑓


(𝜙 + 𝜏𝑝 (𝑡)) 𝑑𝜏 − (𝑘
1
+ 𝑘

2
𝜙) 𝑘

0

+ 𝑘
2
(𝑏

0
− 𝜓 − 𝑘

0
𝑝 (𝑡)) ) ⋅ 𝑝 (𝑡) ,

𝐽
2
= (𝜓


𝑞


(𝑡)

𝑘
0
𝑝 (𝑡)

+

𝑝


(𝑡)

𝑝 (𝑡)

+ (𝑘
1
+ 𝑘

2
𝜙)

+ 𝑘
2
(𝑏

0
− 𝜓 − 𝑘

0
𝑝 (𝑡))

1

𝑘
0

) ⋅ 𝑘
0
𝑝 (𝑡) .

(89)

Step 2. Now we estimate 𝐼
𝑖
(𝑖 = 1, 2, 3). Define 𝐼

𝑢
(𝑥, 𝑧, 𝑡) and

𝐼V(𝑥, 𝑧, 𝑡) by

𝐼
𝑢
(𝑥, 𝑧, 𝑡) = (𝐼

0
− 𝐼

2
) 𝜙



+ (𝐼
1
− 3𝐼

3
) 𝜂𝜙



− 2𝐼
2
𝜂𝜙



− 𝐼
3
𝜂
2

𝜙


,

𝐼V (𝑥, 𝑧, 𝑡) = (𝐼
0
− 𝐼

2
) 𝜓



+ (𝐼
1
− 3𝐼

3
) 𝜂𝜓



− 2𝐼
2
𝜂𝜓



− 𝐼
3
𝜂
2

𝜓


.

(90)

It follows from Theorem 2.1 in [5] that 𝜙

(𝑧), 𝜙

(𝑧), 𝜓

(𝑧)

and 𝜓


(𝑧) decay to zero exponentially as |𝑧| → ∞. Noting
that 𝑞(𝑡) is assumed to be bounded, the following functions
are all bounded:

𝜂𝜙


(𝜂 + 𝑞 (𝑡)) ,

𝜂𝜙


(𝜂 + 𝑞 (𝑡)) ,

𝜂
2

𝜙


(𝜂 + 𝑞 (𝑡)) ,

𝜂𝜓


(𝜂 + 𝑞 (𝑡)) ,

𝜂𝜓


(𝜂 + 𝑞 (𝑡)) ,

𝜂
2

𝜓


(𝜂 + 𝑞 (𝑡)) .

(91)

Now we choose a constant 𝐶
1

> 0 arbitrarily. Then from
the above boundedness and Lemma 8, we can choose a
constant 𝐶

2
≥ 1 depending only on 𝑐 and 𝑀, and a con-

stant 𝛿 > 0 depending only on 𝐶
1
such that if ‖∇

𝑥
𝑉

0
‖
𝑊
1,∞ ≤

𝛿, it holds that




𝐼
𝑢
(𝑥, 𝑧, 𝑡)





≤ 𝑃 (𝑡) ,





𝐼V (𝑥, 𝑧, 𝑡)





≤ 𝑃 (𝑡) where𝑃 (𝑡) = min {𝐶

2
𝑡
−2

, 𝐶
1
} .

(92)

Step 3. Now we determine the constant 𝐶
1
, 𝜀

0
and the

smooth functions 𝑝
𝑖
(𝑡) and 𝑞(𝑡) (𝑖 = 1, 2). Set

𝐹 (𝑢, V) = 𝑓 (𝑢) + 𝑘
1
V − 𝑘

2
𝑢 (𝑏

0
− V) ,

𝐺 (𝑢, V) = −𝑘
1
V + 𝑘

2
𝑢 (𝑏

0
− V) .

(93)

Then, direct calculation shows that

𝐹
𝑢
= 𝑓



(𝑢) − 𝑘
2
(𝑏

0
− V) ,

𝐹V = 𝑘
1
+ 𝑘

2
𝑢,

𝐺
𝑢
= 𝑘

2
(𝑏

0
− V) ,

𝐺V = − (𝑘
1
+ 𝑘

2
𝑢) ,

𝐹
𝑢
(0, 0) 𝐺V (0, 0) − 𝐹V (0, 0) 𝐺𝑢

(0, 0) = −𝑘
1
𝑓



(0) > 0,

𝐹
𝑢
(1, 𝑏

0
− 𝑏

2
) 𝐺V (1, 𝑏0 − 𝑏

2
) − 𝐹V (1, 𝑏0 − 𝑏

2
) 𝐺

𝑢
(1, 𝑏

0
− 𝑏

2
)

= − (𝑘
1
+ 𝑘

2
) 𝑓



(1) > 0.

(94)

Hence, there exist constants 𝜀
0
> 0, 𝛼

11
, 𝛼

22
< 0 and 𝛼

12
,

𝛼
21
> 0 such that

𝛼
11
< 𝐹

𝑢
< 0,

𝛼
22
< 𝐺V < 0,

0 < 𝐹V < 𝛼
12
,

0 < 𝐺V < 𝛼
21
,

on 𝐴
𝑖

𝜀
, 𝑖 = 1, 2,

(95)

where 𝜀 ∈ (0, 𝜀
0
] and

𝐴
0

𝜀
= {(𝑢, V) | |𝑢| ≤ 𝜀, |V| ≤ 𝜀} ,

𝐴
1

𝜀
= {(𝑢, V) | |𝑢 − 1| ≤ 𝜀,





V − 𝑏

0
+ 𝑏

2





≤ 𝜀} .

(96)

It follows that there exist positive constants 𝐾
0
and 𝑘

0
such

that for all 𝐾 ∈ (0, 𝐾
0
), we have

2𝐾 + 𝛼
11
< 0,

2𝐾 + 𝛼
22
< 0,

(2𝐾 + 𝛼
11
) (2𝐾 + 𝛼

22
) > 𝛼

12
𝛼

21
,

−

𝛼
21

2𝐾 + 𝛼
22

< 𝑘
0
< −

2𝐾 + 𝛼
11

𝛼
12

.

(97)

This implies that

−2𝐾 − 𝛼
11
− 𝑘

0
𝛼

12
> 0,

−2𝐾 − 𝛼
22
−

1

𝑘
0

𝛼
21
> 0.

(98)

Denote 𝜉 = (𝑧 − 𝑉(𝑥, 𝑡))/√1 + |∇
𝑥
𝑉|

2
+ 𝑞(𝑡). Using the

above estimates and the facts that lim
𝑧→−∞

𝜙(𝑧) = 0,
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lim
𝑧→−∞

𝜓(𝑧) = 0, lim
𝑧→∞

𝜙(𝑧) = 1 and lim
𝑧→∞

𝜓(𝑧) =

𝑏
0
− 𝑏

2
, there exist constants 𝑀

1
,𝑀

2
> 0 such that

− 2𝐾 − 𝑓


(𝜙 + 𝜃𝛿
1
𝑒
−𝛽𝑡

) − 𝑘
0
(𝑘

1
+ 𝑘

2
𝜙) + 𝑘

2
(𝑏

0
− 𝜓) > 0

for 𝜉 ≤ −𝑀
2
or 𝜉 ≥ 𝑀

1
,

− 2𝐾 + 𝑘
1
+ 𝑘

2
𝜙 − 𝑘

2

1

𝑘
0

(𝑏
0
− 𝜓) > 0

for 𝜉 ≤ −𝑀
2
or 𝜉 ≥ 𝑀

1
.

(99)

Set

𝛿
0
= min{

−2𝐾 − 𝛼
11
− 𝑘

0
𝛼

12

2𝑘
2
𝑘
0

,

−2𝐾 − 𝛼
22
− 𝛼

21
/𝑘

0

2𝑘
2
𝑘
0

, 1,

1

𝑘
0

} .

(100)

We define the constant 𝐶
1
> 0 and 𝐶

0
≥ 1 by

𝐶
1
=

𝐾
2

𝜀
2

𝑘
2

0

16(1 + 𝑘
0
)
2

𝐶
2
𝐶

2

0

,

𝐶
0
= max

{

{

{

1,

2𝐾 +






𝑓






𝐿
∞

([0,1])

+ (𝑘
1
+ 𝑘

2
) 𝑘

0
+ 𝛿

0
𝑘
2

inf
−𝑀
2
≤𝜉≤𝑀

1

𝜙

(𝜉)

,

2𝐾𝑘
0
− 𝑘

1
𝑘
0
+ 𝑘

2
𝑏
0

inf
−𝑀
2
≤𝜉≤𝑀

1

𝜓

(𝜉)

}

}

}

.

(101)

We choose functions 𝑝(𝑡), 𝑞(𝑡) ∈ 𝐶
∞

[0,∞) satisfying

𝑃 (𝑡) ≤ min {1, 𝑘
0
}𝐾𝑝 (𝑡) ,

𝐾𝑝 (𝑡) ≤ 2 (1 +

1

𝑘
0

)𝑃 (𝑡) ,

𝐾






𝑝



(𝑡)






≤ 2






𝑃



(𝑡)






,

𝑞 (𝑡) = ∫

𝑡

0

𝑝 (𝑠) 𝑑𝑠.

(102)

Then (107) holds, since we have

𝑝 (0) ≥

𝐾𝜀
2

𝑘
0

16(1 + 𝑘
0
)
2

𝐶
2
𝐶

2

0

> 0,

0 < 𝑝 (𝑡) ≤

𝐾𝜀
2

𝑘
0

8𝐶
2
𝐶

2

0
(1 + 𝑘

0
)

≤ 𝜀,

0 ≤ ∫

∞

0

𝑝 (𝑠) 𝑑𝑠 ≤ 𝜀.

(103)

Step 4. Now we complete the proof. Since |𝐼
𝑢
(𝑥, 𝑧, 𝑡)| ≤

𝑃(𝑡) and |𝐼V(𝑥, 𝑧, 𝑡)| ≤ 𝑃(𝑡) by Step 2, it suffices to show the
inequality 𝐽

𝑖
(𝑥, 𝑧, 𝑡) ≥ 𝑃(𝑡) (𝑖 = 1, 2). Letting 𝜉 = (𝑧 −

𝑉(𝑥, 𝑡))/√1 + |∇
𝑥
𝑉|

2
+𝑞(𝑡), when 𝜉 ∈ (−∞, −𝑀

2
]∪[𝑀

1
,∞),

we have

𝐽
1
≥ (

𝑝


(𝑡)

𝑝 (𝑡)

− ∫

1

0

𝑓


(𝜙 + 𝜏𝑝 (𝑡)) 𝑑𝜏

− (𝑘
1
+ 𝑘

2
) 𝑘

0
+ 𝑘

2
(𝑏

0
− 𝜓 − 𝑝 (𝑡)) ) ⋅ 𝑝 (𝑡)

≥ 𝐾𝑝 (𝑡) ≥ 𝑃 (𝑡) ,

𝐽
2
≥ (

𝑝


(𝑡)

𝑝 (𝑡)

+ (𝑘
1
+ 𝑘

2
𝜙) + 𝑘

2
(𝑏

0
− 𝜓 − 𝑝 (𝑡))

1

𝑘
0

) ⋅ 𝑘
0
𝑝 (𝑡)

≥ 𝑘
0
𝐾𝑝 (𝑡) ≥ 𝑃 (𝑡) ,

(104)

since we have

sup
𝑡≥0






𝑝



(𝑡)







𝑝 (𝑡)

≤ sup
𝑡≥0

2






𝑃



(𝑡)







𝐾𝑝 (𝑡)

≤ sup
𝑡≥0

2






𝑃



(𝑡)







𝑃 (𝑡)

=

𝐾𝜀

𝐶
0

< 𝐾.

(105)

For any −𝑀
2
≤ 𝜉 ≤ 𝑀

1
, we have

𝐿 [𝑢
+

] ≥ (𝐶
0

inf
−𝑀
2
≤𝜉≤𝑀

1

𝜙


(𝜉) − 2𝐾 −






𝑓






𝐿
∞

([0,1])

− (𝑘
1
+ 𝑘

2
) 𝑘

0
− 𝛿

0
𝑘
2
)𝑝 (𝑡) ≥ 0,

𝐿 [V
+

] ≥ (

𝐶
0

𝑘
0

inf
−𝑀
2
≤𝜉≤𝑀

1

𝜓


(𝜉) − 2𝐾 + 𝑘
1
−

𝑘
2
𝑏
0

𝑘
0

) ≥ 0.

(106)

In summary, we have 𝐿[𝑢
+

] ≥ 0 and 𝐿[𝑢
+

] ≥ 0. This com-
pletes the proof.

Lemma 20 (subsolution). For any constants 𝑀 > 0, there
exist positive constant 𝛿, 𝜀

0
, 𝑘

0
and smooth functions 𝑝(𝑡) and

𝑞(𝑡) satisfying

𝑝 (0) > 0,

𝑞 (0) = 0,

0 ≤ 𝑝 (𝑡) , 𝑞 (𝑡) ≤ 𝜀 𝑓𝑜𝑟 𝑡 ≥ 0,

(107)

where 𝜀 ∈ (0, 𝜀
0
], such that if 𝑉(𝑥, 𝑡) is any solution of (82)

with ‖𝑉
0
‖
𝑊
3,∞ ≤ 𝑀 and ‖∇

𝑥
𝑉

0
‖
𝑊
1,∞ ≤ 𝛿, then the function

defined by

𝑢
−

(𝑥, 𝑧, 𝑡) = 𝜙(

𝑧 − 𝑉 (𝑥, 𝑡)

√1 +




∇

𝑥
𝑉





2

− 𝑞 (𝑡)) − 𝑝 (𝑡) ,

V
−

(𝑥, 𝑧, 𝑡) = 𝜓(

𝑧 − 𝑉 (𝑥, 𝑡)

√1 +




∇

𝑥
𝑉





2

− 𝑞 (𝑡)) − 𝑘
0
𝑝 (𝑡)

(108)



12 Abstract and Applied Analysis

satisfies

𝐿 [𝑢
−

] := 𝑢
−

𝑡
− Δ𝑢

−

+ 𝑐𝑢
−

𝑧
− 𝑓 (𝑢

−

)

− 𝑘
1
V
−

+ 𝑘
2
𝑢

−

(𝑏
0
− V

−

) ≤ 0, (𝑥, 𝑧) ∈ R
𝑛

, 𝑡 > 0,

𝐿 [V
−

] := V
−

𝑡
− ΔV

−

+ 𝑐V
−

𝑧
+ 𝑘

1
V
−

− 𝑘
2
𝑢

−

(𝑏
0
− V

−

) ≤ 0, (𝑥, 𝑧) ∈ R
𝑛

, 𝑡 > 0.

(109)

The proof of Lemma 20 is similar to that of Lemma 19,
and we omit it here.

Lemma 21 (approximation of Γ(𝑥, 𝑡)). Let (𝑢(𝑥, 𝑧, 𝑡), V(𝑥,
𝑧, 𝑡)) be a solution of (31) and let Γ(𝑥, 𝑡) be as defined in
Lemma 17. Then for any 𝜀 > 0, there exists a constant 𝜏

𝜀
>

0 such that the function 𝑉(𝑥, 𝑡) defined by

𝑉
𝑡
= Δ

𝑥
𝑉 −

𝑐

2





∇

𝑥
V
1






2

, 𝑥 ∈ R
𝑛−1

, 𝑡 > 0,

V
1
(𝑥, 0) = Γ (𝑥, 𝜏

𝜀
) , 𝑥 ∈ R

𝑛−1

(110)

satisfies

sup
𝑥∈R𝑛−1





Γ (𝑥, 𝑡) ≥ 𝑉 (𝑥, 𝑡 − 𝜏

𝜀
)




≤ 𝜀, 𝑡 ≥ 𝜏

𝜀
. (111)

Proof. From Corollary 15, we can choose constants 𝑇 >

0, 𝑀 > 0, and 𝐿 > 0 such that

sup
𝑡≥𝑇

‖Γ (⋅, 𝑡)‖
𝑊
3,∞ ≤ 𝑀,

inf
(𝑥,𝑧,𝑡)∈𝐷

𝑢
𝑧
(𝑥, 𝑧, 𝑡) ≥ 𝐿,

inf
(𝑥,𝑧,𝑡)∈𝐷

V
𝑧
(𝑥, 𝑧, 𝑡) ≥ 𝐿,

𝐷 = {(𝑥, 𝑧, 𝑡) ∈ R
𝑛

× [𝑇,∞) , (

𝜙 (0)

2

,

𝜓 (0)

2

)

≤ (𝑢 (𝑥, 𝑧, 𝑡) , V (𝑥, 𝑧, 𝑡))

≤ (

1 + 𝜙 (0)

2

,

𝑏
0
− 𝑏

2
+ 𝜓 (0)

2

)} .

(112)

For the constant 𝑀 and 𝜀 := min{𝜀
0
,min{𝐿𝜀, (1 + 𝜙(0))/

[2(1 + ‖𝜙


‖
𝐿
∞)]}}, we choose a constant 𝛿 > 0 and func-

tions 𝑝(𝑡), 𝑞(𝑡) satisfying

𝑝 (0) > 0,

𝑞 (0) = 0,

0 ≤ 𝑝 (𝑡) , 𝑞 (𝑡) ≤ 𝜀 for 𝑡 ≥ 0,

(113)

as in Lemma 19. Then it follows from Lemma 17 that there
exists a constant 𝜏

𝜀
∈ [𝑇,∞) such that ‖Γ(⋅, 𝜏

𝜀
)‖

𝑊
1,∞ ≤ 𝛿.

Moreover, using Lemma 18, by choosing 𝜏
𝜀
larger if necessary,

we have

𝑢 (𝑥, 𝑧, 𝜏
𝜀
) ≤ 𝜙 (𝑧 − Γ (𝑥, 𝜏

𝜀
)) +

𝑝 (0)

2

≤ 𝜙(

𝑧 − Γ (𝑥, 𝜏
𝜀
)

√1 +




∇

𝑥
Γ (𝑥, 𝜏

𝜀
)





2

)+ 𝑝 (0) ,

V (𝑥, 𝑧, 𝜏
𝜀
) ≤ 𝜓 (𝑧 − Γ (𝑥, 𝜏

𝜀
)) +

𝑘
0
𝑝 (0)

2

≤ 𝜓(

𝑧 − Γ (𝑥, 𝜏
𝜀
)

√1 +




∇

𝑥
Γ (𝑥, 𝜏

𝜀
)





2

)+ 𝑘
0
𝑝 (0) ,

(114)

where we used the smallness of |∇
𝑥
Γ|. For such 𝜏

𝜀
, we

define 𝑉(𝑥, 𝑡) as a function satisfying (110). Then Lemma 19
shows that the function defined by

𝑢
+

(𝑥, 𝑧, 𝑡)

= 𝜙(

𝑧 − 𝑉 (𝑥, 𝑡 − 𝜏
𝜀
)

√1 +




∇

𝑥
𝑉





2

+ 𝑞 (𝑡 − 𝜏
𝜀
)) + 𝑝 (𝑡 − 𝜏

𝜀
) ,

V
+

(𝑥, 𝑧, 𝑡)

= 𝜓(

𝑧 − 𝑉 (𝑥, 𝑡 − 𝜏
𝜀
)

√1 +




∇

𝑥
𝑉





2

+ 𝑞 (𝑡 − 𝜏
𝜀
)) + 𝑘

0
𝑝 (𝑡 − 𝜏

𝜀
)

(115)

is a supersolution of (31) for 𝑡 ≥ 𝜏
𝜀
. Since (114) implies

that 𝑢(𝑥, 𝑧, 𝜏
𝜀
) ≤ 𝑢

+

(𝑥, 𝑧, 𝜏
𝜀
) and V(𝑥, 𝑧, 𝜏

𝜀
) ≤ V+(𝑥, 𝑧, 𝜏

𝜀
),

the comparison principle gives that 𝑢(𝑥, 𝑧, 𝑡) ≤ 𝑢
+

(𝑥, 𝑧, 𝑡)

and V(𝑥, 𝑧, 𝑡) ≤ V+(𝑥, 𝑧, 𝑡) for 𝑡 ≥ 𝜏
𝜀
. Then, due to 𝑝(𝑡), 𝑞(𝑡) ≤

𝜀, we have

𝑢 (𝑥, 𝑉 (𝑥, 𝑡 − 𝜏
𝜀
) , 𝑡) − 𝜙 (0)

≤ 𝑢
+

(𝑥, 𝑉 (𝑥, 𝑡 − 𝜏
𝜀
) , 𝑡) − 𝜙 (0)

= 𝜙 (𝑞 (𝑡 − 𝜏
𝜀
)) + 𝑝 (𝑡) − 𝜙 (0)

≤ (1 +






𝜙






𝐿
∞
) 𝜀

≤ min{𝐿𝜀,
(1 + 𝜙 (0))

2

} .

(116)

Noting that 𝑢(𝑥, Γ(𝑥, 𝑡), 𝑡) = 𝜙(0), we get

𝐿𝜀 ≥ 𝑢 (𝑥, 𝑉 (𝑥, 𝑡 − 𝜏
𝜀
) , 𝑡) − 𝑢 (𝑥, Γ (𝑥, 𝑡 − 𝜏

𝜀
) , 𝑡)

≥ inf
𝑢∈[𝜙(0),(1+𝜙(0))/2],𝑡≥𝜏

𝜀

𝑢
𝑧
× (𝑉 (𝑥, 𝑡) − Γ (𝑥, 𝑡))

≥ 𝐿 (𝑉 (𝑥, 𝑡) − Γ (𝑥, 𝑡)) ,

(117)

which implies that 𝑉(𝑥, 𝑡 − 𝑇) − Γ(𝑥, 𝑡) ≤ 𝜀 for 𝑡 > 𝜏
𝜀
. Sim-

ilarly, by using the subsolution (𝑢
−

, V−) given in Lemma 20,
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we can show that 𝑉(𝑥, 𝑡 − 𝑇) − Γ(𝑥, 𝑡) ≥ −𝜀 for 𝑡 > 𝜏
𝜀
. This

completes the proof.

Now we are ready to complete the proof of Theorem 1.

Proof of Theorem 1. The statements (i) and (ii) of Theorem 1
are directly from Lemmas 17 and 18, respectively. Thus, we
only prove the statement (iii).

By Lemma 21, the large time behavior of the (𝜙(0), 𝜓(0))-
level surface Γ(𝑥, 𝑡) of the solution 𝑢(𝑥, 𝑧, 𝑡) of (31) can be
approximated by function 𝑉(𝑥, 𝑡) of the equation

𝑉
𝑡
= Δ

𝑥
𝑉 −

𝑐

2





∇

𝑥
𝑉





2

, 𝑥 ∈ R
𝑛−1

, 𝑡 > 0. (118)

This means that the (𝜙(0), 𝜓(0))-level surface 𝛾(𝑥, 𝑡) =

Γ(𝑥, 𝑡) − 𝑐𝑡 of the solution (𝑢(𝑥, 𝑦, 𝑡), V(𝑥, 𝑦, 𝑡)) of (7) can be
approximated by function �̃�(𝑥, 𝑡) of the equation

�̃�
𝑡
= Δ

𝑥
�̃� −

𝑐

2






∇

𝑥
�̃�







2

− 𝑐, 𝑥 ∈ R
𝑛−1

, 𝑡 > 0. (119)

Hence, the statement (iii) of Theorem 1 follows from
Lemma 21. This completes the proof of Theorem 1.

Next, we proveTheorem 3. Firstly, similar to Lemma 4.15
in [11], one can prove that the (𝜙(0), 𝜓(0))-level surface
Γ(𝑥, 𝑡) remains uniquely ergodic for all large 𝑡 ≥ 0.

Lemma 22 (ergodicity of (𝜙(0), 𝜓(0))-level surface).
Let (𝑢(𝑥, 𝑧, 𝑡), V(𝑥, 𝑧, 𝑡)) be a solution of (31) and assume that
(𝑢

0
(𝑥, 𝑧), V

0
(𝑥, 𝑧)) is uniquely ergodic in the 𝑥-direction.Then

the (𝜙(0), 𝜓(0))-level surface Γ(𝑥, 𝑡) defined in Lemma 17 is
uniquely ergodic for each 𝑡 ≥ 𝑇, where 𝑇 > 0 is the constant
in Lemma 17.

Proof of Theorem 3. Let 𝑇 > 0 and Γ(𝑥, 𝑡) be as in Lemma
17, then Γ(𝑥, 𝑡) is uniquely ergodic for each 𝑡 ≥ 𝑇 from
Lemma 22. Combining Lemmas 6 and 7, one can easily prove
Theorem 3.
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