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This paper considers the precise asymptotics of the spectral statistics of random matrices. Following the ideas of Gut and Spătaru
(2000) and Liu and Lin (2006) on the precise asymptotics of i.i.d. random variables in the context of the complete convergence
and the second-order moment convergence, respectively, we will establish the precise second-order moment convergence rates of
a type of series constructed by the spectral statistics of Wigner matrices or sample covariance matrices.

1. Introduction and Main Results

Thispaper is concernedwith the precise asymptotic behaviors
of the spectral (eigenvalue) statistics of randommatrices; two
types of classical randommatrices includingWignermatrices
and sample covariance matrices will be considered. An 𝑛 × 𝑛

Wigner matrix is defined to be a random Hermitian matrix
𝑋

𝑛
= (𝑋

𝑖𝑗
)
1≤𝑖,𝑗≤𝑛

, in which the real and imaginary parts of𝑋
𝑖𝑗

for 𝑖 < 𝑗 are i.i.d. random variables with mean 0 and variance
1/2 (in that case, E𝑋

2

𝑖𝑗
= 0), and 𝑋

𝑖𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are

i.i.d. random variables withmean 0 and variance 1. Denote by
𝜆
1

≤ ⋅ ⋅ ⋅ ≤ 𝜆
𝑛
the real eigenvalues of the normalized Wigner

matrix 𝑀
𝑛

= (1/√𝑛)𝑋
𝑛
. The classical Wigner theorem states

that the empirical distribution 𝐹
𝑀
𝑛
(𝑥) = (1/𝑛)∑

𝑛

𝑖=1
1
{𝜆
𝑖
≤𝑥}

converges almost surely to the semicircle law with the density
𝜇
𝑠𝑐
(𝑥) = (1/2𝜋)√4 − 𝑥

2
1
[−2,2]

(𝑥). Consequently, for any
bounded continuous function 𝑓, the spectral statistics satisfy
that

lim
𝑛→∞

1

𝑛

𝑛

∑

𝑖=1

𝑓 (𝜆
𝑖
) = lim

𝑛→∞

∫𝑓 (𝑥) 𝑑𝐹
𝑀
𝑛

(𝑥)

= ∫𝑓 (𝑥) 𝜇
𝑠𝑐

(𝑥) 𝑑𝑥 a.s.

(1)

The result can be viewed as an analog of the law of
large number for independent random variables. As for the

fluctuation of the spectral statistics, a remarkable work due
to Bai et al. [1] states the following.

Lemma 1. Assume the entries of a Wigner matrix 𝑋
𝑛
satisfy

that 𝐸|𝑋
𝑖𝑗
|
4

= 2 and 𝐸|𝑋
𝑖𝑗
|
6

< ∞ for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Let Π

be an open interval including the interval [−2, 2] and 𝐶
4

(Π) is
the space of forth-order continuous differentiable functions on
Π. Denote

𝐺
𝑛
(𝑓) := 𝑛 {∫𝑓 (𝑥) 𝑑𝐹

𝑀
𝑛

(𝑥) − ∫𝑓 (𝑥) 𝜇
𝑠𝑐

(𝑥) 𝑑𝑥} . (2)

Then the empirical process {𝐺
𝑛
(𝑓) : 𝑓 ∈ 𝐶

4

(Π)} converges
weakly in finite dimension to a Gaussian process {𝐺(𝑓) : 𝑓 ∈

𝐶
4

(Π)}withmean zero and the covariance function Cov (𝑓, 𝑔)

given by
Cov (𝑓, 𝑔)

=

1

4𝜋
2
∬

2

−2

𝑓


(𝑡) 𝑔


(𝑠)

× log(

4 − 𝑡𝑠 + √(4 − 𝑡
2
) (4 − 𝑠

2
)

4 − 𝑡𝑠 − √(4 − 𝑡
2
) (4 − 𝑠

2
)

)𝑑𝑡 𝑑𝑠.

(3)
In addition, Guionnet and Zeitouni [2] give a concentra-

tion inequality on the empirical spectral measure of 𝐹
𝑀
𝑛
(𝑥)

near the semicircle law.
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Lemma 2. Assume the law of the entries {Re(𝑋
𝑖𝑗
), Im(𝑋

𝑖𝑗
),

𝑋
𝑖𝑖
} satisfies the logarithmic Sobolev inequality (LSI) with

constant 𝑐
0
> 0. Let 𝑓 be a Lipschitz function and denote

𝜂
𝑛
(𝑓) = 𝑛

−1

𝐺
𝑛
(𝑓) = ∫𝑓 (𝑥) 𝑑𝐹

𝑀
𝑛

(𝑥) − ∫𝑓 (𝑥) 𝜇
𝑠𝑐

(𝑥) 𝑑𝑥.

(4)

Then for any 𝛿 > 𝛿
𝑛
(𝑓) = |E∫𝑓(𝑥)𝑑𝐹

𝑀
𝑛
(𝑥) −

∫𝑓(𝑥)𝜇
𝑠𝑐
(𝑥)𝑑𝑥|, there exists 𝑐 > 0, such that

𝑃 (




𝜂
𝑛
(𝑓)





≥ 𝛿) ≤ 2𝑒

−𝑐n2(𝛿−𝛿
𝑛
(𝑓))
2

. (5)

Based on the above existing results on the limiting
spectral properties of random matrices, we will give another
type of asymptotic spectral properties, that is, the precise
asymptotics of the spectral statistics of random matrices. In
particular, we will consider the precise second-ordermoment
convergence rates of a type of series constructed by the
spectral statistics of random matrices. Our first result can be
listed as follows.

Theorem 3. Suppose that the law of the entries {Re(𝑋
𝑖𝑗
),

Im(𝑋
𝑖𝑗
), 𝑋

𝑖𝑖
} satisfies LSI with constant 𝑐

0
> 0 and 𝐸|𝑋

𝑖𝑗
|
4

= 2

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Denote 𝜂
𝑛
(𝑓) as (4), where𝑓 ∈ 𝐶

4

(Π) has a
bounded first-order derivative.Then for any 𝑠 > 1/2,𝛽 > 2𝑠−1,
one has

lim
𝜖↘0

𝜖
(𝛽+1)/𝑠−2

∞

∑

𝑛=1

𝑛
𝛽−2𝑠+2

E




𝜂
𝑛
(𝑓)






2

𝐼
{|𝜂
𝑛
(𝑓)|≥𝜖𝑛

𝑠−1
}

=

1

𝛽 − 2𝑠 + 1

[𝐷 (𝑓)]
(𝛽+1)/2𝑠

E




𝜉





(𝛽+1)/𝑠

,

(6)

where 𝜉 is a standard Gaussian random variable and

𝐷(𝑓) =

1

4𝜋
2
∬

2

−2

𝑓


(𝑡) 𝑓


(𝑠)

× log(

4 − 𝑡𝑠 + √(4 − 𝑡
2
) (4 − 𝑠

2
)

4 − 𝑡𝑠 − √(4 − 𝑡
2
) (4 − 𝑠

2
)

)𝑑𝑡 𝑑𝑠.

(7)

Now we turn to the sample covariance matrix, which
is an important statistic in multivariate statistics analysis.
Let 𝑌

𝑚𝑛
= (𝑌

𝑖𝑗
)
1≤𝑖≤𝑚,1≤𝑗≤𝑛

be an 𝑚 × 𝑛 random matrix
whose entries are i.i.d. complex-valued random variables
with mean 0 and variance 1 and Re(𝑌

𝑖𝑗
)
𝑖<𝑗

and Im(𝑌
𝑖𝑗
)
𝑖<𝑗

are
independent random variables withmean 0 and variance 1/2.
Then 𝑊

𝑚,𝑛
= (1/𝑛)𝑌

𝑚𝑛
𝑌
∗

𝑚𝑛
can be viewed as the sample

covariance matrix of 𝑛 samples of 𝑚-dimensional random
vectors. Let 𝜆



1
≤ ⋅ ⋅ ⋅ ≤ 𝜆



𝑚
be the eigenvalues of 𝑊

𝑚,𝑛
,

and define the empirical spectral distribution 𝐹
𝑊
𝑚,𝑛

(𝑥) =

(1/𝑚)∑
𝑚

𝑖=1
𝐼
{𝜆


𝑖
≤𝑥}

. When 𝑚/𝑛 → 𝜌 ∈ (0, 1] as 𝑛 → ∞, the
famousMarchenko-Pastur theorem reveals that almost surely
𝐹
𝑊
𝑚,𝑛

(𝑥) converges to the Marchenko-Pastur law with the
density 𝛾

𝜌
(𝑥) = (1/2𝜋𝑥𝜌)√(𝑏(𝜌) − 𝑥)(𝑥 − 𝑎(𝜌))1

[𝑎(𝜌),𝑏(𝜌)]
(𝑥),

where 𝑎(𝜌) = (1 − √𝜌)
2, 𝑏(𝜌) = (1 + √𝜌)

2.

Denote

𝜏
𝑚,𝑛

(𝑓) = ∫𝑓 (𝑥) 𝑑𝐹
𝑊
𝑚,𝑛

(𝑥) − ∫𝑓 (𝑥) 𝛾
𝑚/𝑛

(𝑥) 𝑑𝑥, (8)

where 𝛾
𝑚/𝑛

(𝑥) is the Marchenko-Pastur law 𝛾
𝜌
(𝑥) with the

parameter 𝜌 = 𝑚/𝑛. Similar to the result onWigner matrices,
we can give the result on the complex sample covariance
matrices.

Theorem 4. Assume the law of the entries {Re(𝑌
𝑖𝑗
), Im(𝑌

𝑖𝑗
)}

satisfies LSI with constant 𝑐
0
> 0 and 𝐸|𝑌

𝑖𝑗
|
4

= 2 for all 1 ≤ 𝑖 ≤

𝑚, 1 ≤ 𝑗 ≤ 𝑛, 𝑚 = [𝑛𝜌] (0 < 𝜌 ≤ 1). If one denotes Γ to be an
open interval including [𝑎(𝜌), 𝑏(𝜌)], 𝑓 ∈ 𝐶

4

(Γ) has a bounded
first order derivative. Then for any 𝑠 > 1/2, 𝛽 > 2𝑠 − 1, one has

lim
𝜖↘0

𝜖
(𝛽+1)/𝑠−2

∞

∑

𝑛=1

𝑛
𝛽−2𝑠+2

E




𝜏
𝑚,𝑛

(𝑓)





2

𝐼
{|𝜏
𝑚,𝑛

(𝑓)|≥𝜖𝑛
𝑠−1

}

=

1

𝛽 − 2𝑠 + 1

𝜌
(𝛽+1)/𝑠

[𝑉 (𝑓)]
(𝛽+1)/2𝑠

E




𝜉





(𝛽+1)/𝑠

,

(9)

where 𝜉 ∼ 𝑁(0, 1), and

𝑉 (𝑓) =

1

2𝜋
2
∬

𝑏(𝜌)

𝑎(𝜌)

𝑓


(𝑥
1
) 𝑓



(𝑥
2
)

× log











𝑠 (𝑥
1
) − 𝑠 (𝑥

2
)

𝑠 (𝑥
1
) − 𝑠 (𝑥

2
)












𝑑𝑥
1
𝑑𝑥

2
,

(10)

𝑠(𝑥) = lim
𝑧→𝑥+𝑖0

𝑠(𝑧) and 𝑠(𝑧) is the Stieltjes transform of
𝐹
2
(𝑦) = (1 − 𝑦)1

[0,∞)
+ 𝑦∫

𝑦

−∞

𝛾
𝜌
(𝑥)𝑑𝑥, that is, 𝑠(𝑧) =

∫

+∞

−∞

(1/(𝑥 − 𝑧))𝑑𝐹
2
(𝑥).

We will give the proofs of theorems in Section 2. Below
are a few words about the motivation of this paper. In a
sense, our results are similar to the precise asymptotics of
independent random variables in the context of complete
convergence and moment convergence. Let 𝑋,𝑋

1
, 𝑋

2
, . . ., be

i.i.d. random variables and 𝑆
𝑛

= ∑
𝑛

𝑖=1
𝑋

𝑖
; there are a number

of results on the convergence of a type of series

∞

∑

𝑛=1

𝜑 (𝑛) 𝑃 (




𝑆
𝑛





≥ 𝜖𝑓 (𝑛)) , 𝜖 > 0, (11)

where 𝜑(𝑥) and 𝑓(𝑥) are the positive functions defined on
[0,∞), and ∑

∞

𝑛=1
𝜑(𝑛) = ∞. In fact, the sum (11) tends to

infinity when 𝜖 ↘ 0, one of the interesting problems is
to examine the precise rate at which this occurs, and this
amounts to finding a suitable normalizing rate function 𝜓(𝜖)

such that the sum (11) multiplied by 𝜓(𝜖) has a nontriv-
ial limit; this kind of results is frequently called “precise
asymptotics.” The first result in this direction due to Heyde
[3], who proved that lim

𝜖↘0
𝜖
2

∑
∞

𝑛=1
𝑃(|𝑆

𝑛
| ≥ 𝜖𝑛) = E𝑋

2

under the assumptions that E𝑋 = 0 and E𝑋
2

< ∞. Some
analogous results in more general case can be found in Gut
and Spǎtaru [4, 5] and Gut and Steinebach [6]. Moreover,
Chow [7] studied the convergence properties of the series
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∑
∞

𝑛=1
𝑛
𝑝𝛼−2−𝛼E{max

1≤𝑗≤𝑛
|𝑆

𝑗
| − 𝜖𝑛

𝛼

}
+

(𝜖 > 0) when 𝑝 ≥ 1,
𝛼 > 1/2, 𝑝𝛼 > 1. There is a remarkable result obtained by
Liu and Lin [8], who considered the precise asymptotics on
the second-order moment convergence, which states that

lim
𝜖↘0

1

− log 𝜖

∞

∑

𝑛=1

𝑛
−2

E𝑆
2

𝑛
𝐼
{|𝑆
𝑛
|≥𝜖𝑛}

= 2𝜎
2 (12)

when E𝑋 = 0, E𝑋
2

= 𝜎
2, and E𝑋

2log+|𝑋| < ∞. Chen and
Zhang [9] got the similar results on the second-ordermoment
convergence of empirical process. Furthermore, there are
also some precise asymptotic results in other contexts, such
as the self-normalized sums, martingale-difference, random
fields, and renewal process. It should be mentioned that
the corresponding results on random matrices and random
growth model have been studied by Su [10], who presented
the precise asymptotics of the largest eigenvalues of Gaussian
unitary ensembles, Laguerre unitary ensembles, and the
longest increasing subsequence of a random permutation.
In this paper, we will study the precise asymptotics on the
spectral statistics of Wigner matrices and sample covariance
matrices, which is also an interesting topic in randommatrix
theory.

In the rest of the paper, we will always write 𝑁(𝜖,𝑀) =

[𝑀𝜖
−1/𝑠

], where 𝜖 > 0 and 𝑀 is an arbitrary positive real
number. ‖𝑓‖ = sup

𝑥∈𝑅
|𝑓(𝑥)|, and 𝜉 stands for a random

variable observing the standard Gaussian distribution. We
also denote 𝐶 to be the absolutely positive constant whose
value can be different from one place to another.

2. The Proofs

Before the main proof of Theorem 3, we will first give four
propositions.

Proposition 5. Under the assumptions of Theorem 3, one has

lim
𝜖↘0

𝜖
(𝛽+1)/𝑠

∞

∑

𝑛=1

𝑛
𝛽

𝑃(




𝜉




≥

𝜖𝑛
𝑠

√𝐷(𝑓)

)

=

1

𝛽 + 1

[𝐷 (𝑓)]
(𝛽+1)/2𝑠

𝐸




𝜉





(𝛽+1)/𝑠

.

(13)

Proof. We calculate that

lim
𝜖↘0

𝜖
(𝛽+1)/𝑠

∞

∑

𝑛=1

𝑛
𝛽

𝑃(




𝜉




≥

𝜖𝑛
𝑠

√𝐷(𝑓)

)

= lim
𝜖↘0

𝜖
(𝛽+1)/𝑠

∫

∞

1

𝑦
𝛽

𝑃(




𝜉




≥

𝜖𝑦
𝑠

√𝐷(𝑓)

)𝑑𝑦

=

1

𝑠

[𝐷 (𝑓)]
(𝛽+1)/2𝑠

∫

∞

0

𝑡
(𝛽+1)/𝑠−1

𝑃 (




𝜉




≥ 𝑡) 𝑑𝑡

=

1

𝛽 + 1

[𝐷 (𝑓)]
(𝛽+1)/2𝑠

𝐸




𝜉





(𝛽+1)/𝑠

.

(14)

Proposition 6. Under the assumptions of Theorem 3, one has

lim
𝜖↘0

𝜖
(𝛽+1)/𝑠

∞

∑

𝑛=1

𝑛
𝛽
















𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝜖𝑛

𝑠

) − 𝑃(




𝜉




≥

𝜖𝑛
𝑠

√𝐷(𝑓)

)
















= 0.

(15)

Proof. We can write

∞

∑

𝑛=1

𝑛
𝛽
















𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝜖𝑛

𝑠

) − 𝑃(




𝜉




≥

𝜖𝑛
𝑠

√𝐷(𝑓)

)
















≤ ∑

𝑛≤𝑁(𝜖,𝑀)

𝑛
𝛽
















𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝜖𝑛

𝑠

) − 𝑃(




𝜉




≥

𝜖𝑛
𝑠

√𝐷(𝑓)

)
















+ ∑

𝑛>𝑁(𝜖,𝑀)

𝑛
𝛽

𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝜖𝑛

𝑠

)

+ ∑

𝑛>𝑁(𝜖,𝑀)

𝑛
𝛽

𝑃(




𝜉




≥

𝜖𝑛
𝑠

√𝐷(𝑓)

)

:= 𝐼
1
+ 𝐼

2
+ 𝐼

3
.

(16)

Under the assumptions of Theorem 3, the law of each
entry 𝑋

𝑖𝑗
also satisify LSI. By Lemma 5 of Vershynin [11], for

each fixed positive integer 𝑘, E|𝑋
𝑖𝑗
|
𝑘

< +∞. According to
Lemma 1, we can see that

𝑛𝜂
𝑛
(𝑓)

√𝐷 (𝑓)

𝑑

→ 𝑁(0, 1) . (17)

Thus, as 𝑛 → ∞,

Δ
𝑛

=: sup
𝑥∈R
















𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝑥) − 𝑃(





𝜉




≥

𝑥

√𝐷 (𝑓)

)
















→ 0.

(18)

Using Toeplitz’s lemma, we can deduce that

lim
𝜖↘0

𝜖
(𝛽+1)/𝑠

𝐼
1
= 0. (19)

For the term 𝐼
2
, if 𝑓 ∈ 𝐶

4

(Π) has a bounded first-order
derivative, then 𝑓 is a Lipschitz function.

By Theorem 8.2 of Bai and Silverstein [12], there exists a
real number 𝐶

1
> 0, such that

𝛿
𝑛
(𝑓) =









E∫𝑓 (𝑥) 𝑑𝐹
𝑀
𝑛

(𝑥) − ∫𝑓 (𝑥) 𝜇
𝑠𝑐

(𝑥) 𝑑𝑥









≤ 𝐶
1






𝑓






𝑛
−1/2

.

(20)
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By Lemma 2, for any 𝛿
0
> 𝑛𝛿

𝑛
(𝑓), there exists 𝑐 > 0 such that

𝑃(















𝑛𝜂
𝑛
(𝑓)

√𝐷 (𝑓)















≥ 𝛿
0
) ≤ 2𝑒

−𝑐(𝛿
0
−𝑛𝛿
𝑛
(𝑓))
2

. (21)

For each fixed 𝜖 > 0, the assumption 𝑠 > 1/2 reveals that,
when 𝑛 > 𝑁(𝜖,𝑀)with a sufficient large number𝑀, we have
𝜖𝑛

𝑠

> 𝑛𝛿
𝑛
(𝑓). Thus there exists 𝑐

1
> 0, such that

lim
𝑀→∞

𝐼
2
≤ lim

𝑀→∞

𝐶∫

∞

𝑁(𝜖,𝑀)

𝑥
𝛽

𝑒
−𝑐
1
𝑥
2𝑠

𝑑𝑥 = 0. (22)

For the term 𝐼
3
, as the fact that 𝜉 ∼ 𝑁(0, 1), the well-

known tail probability estimation states that for any 𝑥 ∈ R,

𝑃 (𝜉 ≥ 𝑥) ≤

1

√2𝜋𝑥

𝑒
−𝑥
2

/2

. (23)

Hence, for any fixed 𝜖 > 0, we can get

lim
𝑀→∞

𝐼
3
≤ lim

𝑀→∞

𝐶∫

∞

𝑁(𝜖,𝑀)

𝑥
𝛽−1

𝑒
−𝑥
2

/2

𝑑𝑥 = 0. (24)

By letting 𝜖 ↘ 0 and then 𝑀 → ∞, a combination of
(22) and (24) can get that lim

𝜖↘0
𝜖
(𝛽+1)/𝑠

(𝐼
2

+ 𝐼
3
) = 0. Then

combined with the relations (16) and (19), we can complete
the proof.

Proposition 7. Under the assumptions of Theorem 3, one has

lim
𝜖↘0

𝜖
(𝛽+1)/𝑠−2

∞

∑

𝑛=1

𝑛
𝛽−2𝑠

∫

∞

𝜖𝑛
𝑠

𝑦𝑃(




𝜉




≥

𝑦

√𝐷 (𝑓)

)𝑑𝑦

=

𝑠

(𝛽 + 1) (𝛽 − 2𝑠 + 1)

[𝐷 (𝑓)]
(𝛽+1)/2𝑠

E




𝜉





(𝛽+1)/𝑠

.

(25)

Proof. By the similar argument in the proof of Proposition 5,
we can show that

lim
𝜖↘0

𝜖
(𝛽+1)/𝑠−2

∞

∑

𝑛=1

𝑛
𝛽−2𝑠

∫

∞

𝜖𝑛
𝑠

𝑦𝑃(




𝜉




≥

𝑦

√𝐷 (𝑓)

)𝑑𝑦

= lim
𝜖↘0

𝜖
(𝛽+1)/𝑠−2

𝐷(𝑓)∫

∞

1

𝑥
𝛽−2𝑠

∫

∞

𝜖𝑥
𝑠
/√𝐷(𝑓)

𝑦𝑃 (




𝜉




≥ 𝑦) 𝑑𝑦

= lim
𝜖↘0

2

𝑠

[𝐷 (𝑓)]
1/2𝑠

∫

∞

𝜖/√𝐷(𝑓)

𝑡
1/𝑠−3

∫

∞

𝑡

𝑦𝑃 (




𝜉




≥ 𝑦) 𝑑𝑦

=

2

𝑠

[𝐷 (𝑓)]
(𝛽+1)/2𝑠

∫

∞

0

𝑦𝑃 (




𝜉




≥ 𝑦)∫

𝑦

0

𝑡
(𝛽+1)/𝑠−3

𝑑𝑡 𝑑𝑦

=

𝑠

(𝛽 + 1) (𝛽 − 2𝑠 + 1)

[𝐷 (𝑓)]
(𝛽+1)/2𝑠

E




𝜉





(𝛽+1)/𝑠

.

(26)

Proposition 8. Under the assumptions of Theorem 3, one has

lim
𝜖↘0

𝜖
(𝛽+1)/𝑠−2

∞

∑

𝑛=1

𝑛
𝛽−2𝑠
















∫

∞

𝜖𝑛
𝑠

𝑦𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝑦) 𝑑𝑦

−∫

∞

𝜖𝑛
𝑠

𝑦𝑃(




𝜉




≥

𝑦

√𝐷 (𝑓)

)𝑑𝑦
















= 0.

(27)

Proof. Similar to the argument in the proof of Proposition 6,
we can write

∞

∑

𝑛=1

𝑛
𝛽−2𝑠
















∫

∞

𝜖𝑛
𝑠

𝑦𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝑦) 𝑑𝑦

−∫

∞

𝜖𝑛
𝑠

𝑦𝑃(




𝜉




≥

𝑦

√𝐷 (𝑓)

)𝑑𝑦
















=

𝑁(𝜖,𝑀)

∑

𝑛=1

𝑛
𝛽−2𝑠
















∫

∞

𝜖𝑛
𝑠

𝑦𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝑦) 𝑑𝑦

−∫

∞

𝜖𝑛
𝑠

𝑦𝑃(




𝜉




≥

𝑦

√𝐷 (𝑓)

)𝑑𝑦
















+ ∑

𝑛>𝑁(𝜖,𝑀)

𝑛
𝛽−2𝑠
















∫

∞

𝜖𝑛
𝑠

𝑦𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝑦) 𝑑𝑦

−∫

∞

𝜖𝑛
𝑠

𝑦𝑃(




𝜉




≥

𝑦

√𝐷 (𝑓)

)𝑑𝑦
















:= 𝐽
1
+ 𝐽

2
.

(28)

For the term 𝐽
1
, we have

𝐽
1
≤

𝑁(𝜖,𝑀)

∑

𝑛=1

𝑛
𝛽−2𝑠

× ∫

∞

𝜖𝑛
𝑠

𝑦
















𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝑦) − 𝑃(





𝜉




≥

𝑦

√𝐷 (𝑓)

)
















𝑑𝑦

≤

𝑁(𝜖,𝑀)

∑

𝑛=1

𝑛
𝛽

∫

𝑛
−𝑠

Δ
−1/4

𝑛

0

(𝑥 + 𝜖)

×
















𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥(𝑥+𝜖) 𝑛

𝑠

)−𝑃(




𝜉




≥

(𝑥 + 𝜖) 𝑛
𝑠

√𝐷(𝑓)

)
















𝑑𝑥

+

𝑁(𝜖,𝑀)

∑

𝑛=1

𝑛
𝛽
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× ∫

∞

𝑛
−𝑠
Δ
−1/4

𝑛

(𝑥 + 𝜖) 𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ (𝑥 + 𝜖) 𝑛

𝑠

) 𝑑𝑥

+

𝑁(𝜖,𝑀)

∑

𝑛=1

𝑛
𝛽

× ∫

∞

𝑛
−𝑠
Δ
−1/4

𝑛

(𝑥 + 𝜖) 𝑃(




𝜉




≥

(𝑥 + 𝜖) 𝑛
𝑠

√𝐷(𝑓)

)𝑑𝑥

:=

𝑁(𝜖,𝑀)

∑

𝑛=1

𝑛
𝛽

(𝐽
11

+ 𝐽
12

+ 𝐽
13

) .

(29)

As𝑁(𝜖,𝑀) = [𝑀𝜖
−1/𝑠

], for 𝑛 ≤ 𝑁(𝜖,𝑀), we have 𝜖 ≤ 𝑀
𝑠

𝑛
−𝑠.

Thus

𝑛
2𝑠

𝐽
11

≤ 𝑛
2𝑠

∫

𝑛
−𝑠

Δ
−1/4

𝑛

0

(𝑥 + 𝜖) Δ
𝑛
𝑑𝑥

≤ 𝐶𝑛
2𝑠

Δ
𝑛
(𝑛

−𝑠

Δ
−1/4

𝑛
+ 𝑀

𝑠

𝑛
−𝑠

)

2

= 𝐶(Δ
1/4

𝑛
+ 𝑀

𝑠

Δ
1/2

𝑛
)

2

→ 0 as 𝑛 → ∞.

(30)

Noticing that when 𝜖 > 0 is fixed, 𝜖𝑛
𝑠

> 𝑛𝛿
𝑛
(𝑓) for

sufficient large 𝑛, the relation (21) tells us that there exists
𝑐
1
> 0, such that

lim
𝑛→∞

𝑛
2𝑠

𝐽
12

= lim
𝑛→∞

𝑛
2𝑠

∫

∞

𝑛
−𝑠
Δ
−1/4

𝑛

(𝑥 + 𝜖) 𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ (𝑥 + 𝜖) 𝑛

𝑠

) 𝑑𝑥

= lim
𝑛→∞

∫

∞

𝜖𝑛
𝑠
+Δ
−1/4

𝑛

𝑦𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝑦) 𝑑𝑦

≤ lim
𝑛→∞

𝐶∫

∞

𝜖𝑛
𝑠
+Δ
−1/4

𝑛

𝑦𝑒
−𝑐
1
𝑦
2

𝑑𝑦

≤ lim
𝑛→∞

𝐶∫

∞

Δ
−1/4

𝑛

𝑦𝑒
−𝑐
1
𝑦
2

𝑑𝑦

≤ lim
𝑛→∞

𝐶𝑒
−𝑐
1
Δ
−1/2

𝑛
= 0.

(31)

By the same argument as for 𝐽
12
, using the relation (23),

we can easily prove that

lim
𝑛→∞

𝑛
2𝑠

𝐽
13

= 0. (32)

Hence, we have proved that lim
𝑛→∞

Ξ
𝑛
(𝜖) :=

lim
𝑛→∞

𝑛
2𝑠

(𝐽
11

+ 𝐽
12

+ 𝐽
13

) = 0 uniformly for 𝜖 > 0.
By Toeplitz’s lemma again, we can further deduce that

lim
𝜖↘0

𝜖
(𝛽+1)/𝑠−2

𝐽
1

= lim
𝜖↘0

𝜖
(𝛽+1)/𝑠−2

𝑁(𝜖,𝑀)

∑

𝑛=1

𝑛
𝛽

(𝐽
11

+ 𝐽
12

+ 𝐽
13

)

≤ lim
𝜖↘0

𝐶[𝑁 (𝜖,𝑀)]
2𝑠−𝛽−1

𝑁(𝜖,𝑀)

∑

𝑛=1

𝑛
𝛽−2𝑠

Ξ
𝑛
(𝜖) = 0.

(33)

For the term 𝐽
2
, we can write

𝐽
2
≤ ∑

𝑛>𝑁(𝜖,𝑀)

𝑛
𝛽−2𝑠

× ∫

∞

𝜖𝑛
𝑠

𝑦
[

[

[

𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝑦) + 𝑃(





𝜉




≥

𝑦

√𝐷 (𝑓)

)
]

]

]

𝑑𝑦

:= 𝐽
21

+ 𝐽
22

.

(34)

By using the relation (21) again, for any fixed 𝜖 > 0, when
𝑀 → ∞, there exists 𝑐

1
> 0, such that

𝜖
(𝛽+1)/𝑠−2

𝐽
21

≤ 𝐶𝜖
(𝛽+1)/𝑠−2

∑

𝑛>𝑁(𝜖,𝑀)

𝑛
𝛽−2𝑠

∫

∞

𝑛

𝜖
2

𝑥
2𝑠−1

𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝜖𝑥

𝑠

) 𝑑𝑥

≤ 𝐶𝜖
(𝛽+1)/𝑠

∑

𝑛>𝑁(𝜖,𝑀)

𝑛
𝛽−2𝑠

∫

∞

𝑛

𝑥
2𝑠−1

𝑒
−𝑐
1
𝜖
2

𝑥
2𝑠

𝑑𝑥

≤ 𝐶𝜖
(𝛽+1)/𝑠

∫

∞

𝑁(𝜖,𝑀)

𝑦
𝛽−2𝑠

∫

∞

𝑦

𝑥
2𝑠−1

𝑒
−𝑐
1
𝜖
2

𝑥
2𝑠

𝑑𝑥 𝑑𝑦

≤ 𝐶𝜖
(𝛽+1)/𝑠

∫

∞

𝑁(𝜖,𝑀)

𝑥
𝛽−2𝑠+1

𝑥
2𝑠−1

𝑒
−𝑐
1
𝜖
2

𝑥
2𝑠

𝑑𝑥

≤ 𝐶∫

∞

𝑀
𝑠

𝑦
(𝛽+1)/𝑠−1

𝑒
−𝑐
1
𝑦
2

𝑑𝑦 → 0.

(35)

Hence, by letting 𝜖 ↘ 0 firstly and then taking 𝑀 → ∞, we
get lim

𝜖↘0
𝜖
(𝛽+1)/𝑠−2

𝐽
21

= 0.
Following the proof of 𝐽

21
and using the relation (23), we

can easily prove that 𝜖
(𝛽+1)/𝑠−2

𝐽
22

vanishes as 𝜖 ↘ 0, which
yields that

lim
𝜖↘0

𝜖
(𝛽+1)/𝑠−2

𝐽
2
= 0. (36)

By combining (33) and (36), we conclude that the proof is
completed.

Proof of Theorem 3. According to the fact that for any ran-
dom variable 𝜁 and 𝑎 ∈ R,

E𝜁𝐼
{𝜁≥𝑎}

= 𝑎𝑃 (𝜁 ≥ 𝑎) + ∫

∞

𝑎

𝑃 (𝜁 ≥ 𝑡) 𝑑𝑡, (37)

we can see that

E




𝜂
𝑛
(𝑓)






2

𝐼
{|𝜂
𝑛
(𝑓)|≥𝜖𝑛

𝑠−1
}

= 𝜖
2

𝑛
2𝑠−2

𝑃 (




𝜂
𝑛
(𝑓)





≥ 𝜖𝑛

𝑠−1

)

+ 2𝑛
−2

∫

∞

𝜖𝑛
𝑠

𝑦𝑃 (




𝑛𝜂

𝑛
(𝑓)





≥ 𝑦) 𝑑𝑦.

(38)

By Propositions 5–8, we can get Theorem 3 easily.
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Proof of Theorem 4. The proof is essentially the same as for
Theorem 3, which mainly depends on the central limit theo-
rem of the spectral statistics and the concentration inequality
of the empirical spectral measure. We will only list some key
tools in the proof, and the details are omitted here.

Lemma 9 (see [13]). Consider the sample covariance matrix
𝑊

𝑚,𝑛
= (1/𝑛)𝑌

𝑚𝑛
𝑌
∗

𝑚𝑛
as above, where𝐸|𝑌

𝑖𝑗
|
4

= 2 and𝐸|𝑌
𝑖𝑗
|
8

<

∞ for all 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, 𝑚 = [𝑛𝜌] (0 < 𝜌 ≤ 1). Let

𝐺
𝑚,𝑛

(𝑓) = 𝑚{∫𝑓 (𝑥) 𝑑𝐹
𝑊
𝑚,𝑛

(𝑥) − ∫𝑓 (𝑥) 𝛾
𝑚/𝑛

(𝑥) 𝑑𝑥}

(39)

and denote Γ to be an open interval including [𝑎(𝜌), 𝑏(𝜌)].Then
the empirical processes {𝐺

𝑚,𝑛
(𝑓) : 𝑓 ∈ 𝐶

4

(Γ)} converge weakly
in finite dimension to a Gaussian process {𝐺(𝑓) : 𝑓 ∈ 𝐶

4

(Γ)}

with mean zero and the covariance function ̃Cov (𝑓, 𝑔) given
by

̃Cov (𝑓, 𝑔) =

1

2𝜋
2
∬

𝑏(𝜌)

𝑎(𝜌)

𝑓


(𝑥
1
) 𝑔



(𝑥
2
)

× log











𝑠 (𝑥
1
) − 𝑠 (𝑥

2
)

𝑠 (𝑥
1
) − 𝑠 (𝑥

2
)












𝑑𝑥
1
𝑑𝑥

2
,

𝑓, 𝑔 ∈ 𝐶
4

(Γ) ,

(40)

where 𝑠(𝑥) is defined in Theorem 4.

Lemma 10. Assume 𝑓 is a Lipschitz function and 𝜏
𝑚,𝑛

(𝑓)

is defined by (8). Denote ̃
𝛿
𝑚,𝑛

(𝑓) = |E∫𝑓(𝑥)𝑑𝐹
𝑊
𝑚,𝑛

(𝑥) −

∫𝑓(𝑥)𝛾
𝑚/𝑛

(𝑥)𝑑𝑥|. Then under the assumptions of Theorem 4,
for any 𝛿 >

̃
𝛿
𝑚,𝑛

(𝑓), there exists 𝑐
2
> 0, such that

𝑃 (




𝜏
𝑚,𝑛

(𝑓)




≥ 𝛿) ≤ 2𝑒

−𝑐
2
𝑚
2

(𝛿−
̃
𝛿
𝑚,𝑛

(𝑓))

2

. (41)

Proof. If we denote

𝜏
∘

𝑚,𝑛
(𝑓) = ∫𝑓 (𝑥) 𝑑𝐹

𝑊
𝑚,𝑛

(𝑥) − 𝐸 [∫𝑓 (𝑥) 𝑑𝐹
𝑊
𝑚,𝑛

(𝑥)] ,

(42)

then by the Corollary 1.8(b) in Guionnet and Zeitouni [2], for
any 𝛿 > 0, there exists 𝑐

2
> 0 such that

𝑃 (






𝜏
∘

𝑚,𝑛
(𝑓)






≥ 𝛿) ≤ 2𝑒

−𝑐
2
𝛿
2

𝑚
2

. (43)

As we can write
𝑃 (





𝜏
𝑚,𝑛

(𝑓)




≥ 𝛿)

≤ 𝑃(






𝜏
∘

𝑚,𝑛
(𝑓)







+









E∫𝑓 (𝑥) 𝑑𝐹
𝑊
𝑚,𝑛

(𝑥) − ∫𝑓 (𝑥) 𝛾
𝑚/𝑛

(𝑥) 𝑑𝑥









≥ 𝛿)

≤ 𝑃 (






𝜏
∘

𝑚,𝑛
(𝑓)






≥ 𝛿 −

̃
𝛿
𝑚,𝑛

(𝑓)) ,

(44)

for each 𝛿 >
̃
𝛿
𝑚,𝑛

(𝑓), we have

𝑃 (




𝜏
𝑚,𝑛

(𝑓)




≥ 𝛿) ≤ 2𝑒

−𝑐
2
𝑚
2

(𝛿−
̃
𝛿
𝑚,𝑛

(𝑓))

2

. (45)

Just like the proof of Proposition 6, in order to use
Lemma 10, we will need to estimate the order of ̃

𝛿
𝑚,𝑛

(𝑓), and
the following remark is needed.

Remark 11. For the estimation of ̃
𝛿
𝑚,𝑛

(𝑓), by the result of Bai
et al. [14], we can see that

sup
𝑥∈R






E𝐹

(𝑚,𝑛)

2
(𝑥) − 𝐹

(𝑚,𝑛)

2
(𝑥)






≤ 𝐶𝑚

−1/2

, (46)

where 𝐹
(𝑚,𝑛)

2
(𝑥) = ∫

𝑥

0

𝑑𝐹
𝑊
𝑚,𝑛

(𝑡) is the empirical spectral
distribution of 𝑊

𝑚,𝑛
. As a direct consequence, when 𝑓 is

differentiable and 𝑓
 is bounded, there exists a real number

𝐶
2
> 0, such that ̃

𝛿
𝑚,𝑛

(𝑓) ≤ 𝐶
2
‖𝑓



‖𝑚
−1/2.
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[5] A. Gut and A. Spătaru, “Precise asymptotics in the law of the
iterated logarithm,”The Annals of Probability, vol. 28, no. 4, pp.
1870–1883, 2000.

[6] A. Gut and J. Steinebach, “Precise asymptotics—a general
approach,” Acta Mathematica Hungarica, vol. 138, no. 4, pp.
365–385, 2013.

[7] Y. S. Chow, “On the rate ofmoment convergence of sample sums
and extremes,” Bulletin of the Institute of Mathematics, vol. 16,
no. 3, pp. 177–201, 1988.

[8] W. D. Liu and Z. Y. Lin, “Precise asymptotics for a new kind of
complete moment convergence,” Statistics & Probability Letters,
vol. 76, no. 16, pp. 1787–1799, 2006.

[9] Y.-Y. Chen and L.-X. Zhang, “Second moment convergence
rates for uniform empirical processes,” Journal of Inequalities
and Applications, vol. 2010, Article ID 972324, 9 pages, 2010.

[10] Z. G. Su, “Precise asymptotics for randommatrices and random
growthmodels,”ActaMathematica Sinica, vol. 24, no. 6, pp. 971–
982, 2008.



Abstract and Applied Analysis 7

[11] R. Vershynin, “Introduction to the non-asymptotic analysis
of random matrices,” in Compressed Sensing, Y. Eldar and
G. Kutyniok, Eds., pp. 210–268, Cambridge University Press,
Cambridge, UK, 2012.

[12] Z. D. Bai and J. W. Silverstein, Spectral Analysis of Large Dimen-
sional Random Matrices, Science Press, Beijing, China, 2006.

[13] Z. D. Bai, X. Y.Wang, andW. Zhou, “Functional CLT for sample
covariance matrices,” Bernoulli, vol. 16, no. 4, pp. 1086–1113,
2010.

[14] Z. D. Bai, B. Q. Miao, and J.-F. Yao, “Convergence rates of spec-
tral distributions of large sample covariance matrices,” SIAM
Journal on Matrix Analysis and Applications, vol. 25, no. 1, pp.
105–127, 2003.


