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This paper presents a new generalizedmodel of hematopoiesis withmultiple time-varying delays.Themain purpose of this paper is
to study the existence and the global exponential stability of the positive pseudo almost periodic solutions, which are more general
and complicated than periodic and almost periodic solutions. Under suitable assumptions, and by using fixed point theorem,
sufficient conditions are given to ensure that all solutions of this model converge exponentially to the positive pseudo almost
periodic solution for the considered model. These results improve and extend some known relevant results.

1. Introduction

As we all know, many phenomena in nature have oscillatory
character and their mathematical models have led to the
introduction of certain classes of functions to describe them.
For example, the pseudo almost periodic functions are the
natural generalization of the concept of almost periodicity.
These are functions on the real numbers set that can be
represented uniquely in the form 𝑓 = ℎ + 𝜑, where ℎ (the
principal term) is an almost periodic function and 𝜑 (the
ergodic perturbation) a continuous function whose mean
vanishes at infinity. Note that there exists abundant literature
on the topic (see, e.g., [1–6]). In a classic study of population
dynamics, the following delay differential equation model

𝑥󸀠 (𝑡) = −𝑎 (𝑡) 𝑥 (𝑡) +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

1 + 𝑥𝑛 (𝑡 − 𝜏
𝑖
(𝑡))

, (1)

where 𝑛 is a positive constant and

𝑎, 𝑏
𝑖
, 𝜏
𝑖
: R 󳨀→ (0, +∞)

are continuous functions for 𝑖 = 1, 2, . . . , 𝑚,
(2)

has been used by [7, 8] to describe the dynamics of hema-
topoiesis (blood cell production). As we known, (1) belongs

to a class of biological systems and it (or its analogue
equation) has attracted more attention to the problem of
almost periodic solutions because of its extensively realistic
significance. For example, some criteria ensuring the exis-
tence and stability of positive almost periodic solutions were
established in [9–12] and the references cited therein. How-
ever, it is very difficult to study the global stability of positive
pseudo almost periodic solution for (1). So far, no attention
has been paid to the conditions for the global exponential
stability on positive pseudo almost periodic solution ofmodel
(1) in terms of its coefficients. On the other hand, since the
exponential convergent rate can be unveiled, the global expo-
nential stability plays a key role in characterizing the behavior
of dynamical system (see [13–15]). Thus, it is worthwhile to
continue to investigate the existence and global exponential
stability of positive pseudo almost periodic solutions of
(1).

Motivated by the above discussions, in this paper, we
consider the existence, uniqueness, and global exponential
stability of positive pseudo almost periodic solutions of (1).
Here in this paper, a new approachwill be developed to obtain
a delay-independent condition for the global exponential
stability of the positive pseudo almost periodic solutions of
(1), and the exponential convergent rate can be unveiled.
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Throughout this paper, for 𝑖 = 1, 2, . . . , 𝑚, it will be
assumed that 𝑎, 𝑏

𝑖
, 𝜏
𝑖
: R → (0, +∞) are continuous func-

tions, and

𝑎− = inf
𝑡∈R

𝑎 (𝑡) > 0, 𝑎+ = sup
𝑡∈R

𝑎 (𝑡) ,

𝑏−
𝑖
= inf
𝑡∈R

𝑏
𝑖
(𝑡) > 0, 𝑏+

𝑖
= sup
𝑡∈R

𝑏
𝑖
(𝑡) ,

𝑟 = max
1≤𝑖≤𝑚

{sup
𝑡∈R

𝜏
𝑖
(𝑡)} > 0.

(3)

Let R
+
denote nonnegative real number space, let 𝐶 =

𝐶([−𝑟, 0],R) be the continuous functions space equipped
with the usual supremum norm ‖ ⋅ ‖, and let 𝐶

+
=

𝐶([−𝑟, 0],R
+
). If 𝑥(𝑡) is defined on [−𝑟 + 𝑡

0
, 𝜎) with 𝑡

0
, 𝜎 ∈

R, then we define 𝑥
𝑡
∈ 𝐶 where 𝑥

𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for all

𝜃 ∈ [−𝑟, 0].
Due to the biological interpretation of model (1), only

positive solutions are meaningful and therefore admissible.
Thus we just consider admissible initial conditions.

𝑥
𝑡0
= 𝜑, 𝜑 ∈ 𝐶

+
, 𝜑 (0) > 0. (4)

Wewrite 𝑥
𝑡
(𝑡
0
, 𝜑)(𝑥(𝑡; 𝑡

0
, 𝜑)) for an admissible solution of the

admissible initial value problem (1) and (4). Also, let [𝑡
0
, 𝜂(𝜑))

be the maximal right interval of existence of 𝑥
𝑡
(𝑡
0
, 𝜑).

2. Preliminary Results

In this section, some lemmas and definitions will be pre-
sented, which are of importance in proving our main results
in Section 3.

In this paper, BC(R,R) denotes the set of bounded con-
tinued functions fromR toR. Note that (BC(R,R), ‖ ⋅ ‖

∞
) is

a Banach space where ‖ ⋅ ‖
∞

denotes the sup norm ‖𝑓‖
∞

:=
sup
𝑡∈R|𝑓(𝑡)|.

Definition 1 (see [16, 17]). Let 𝑢(𝑡) ∈ BC(R,R). 𝑢(𝑡) is said to
be almost periodic onR if, for any 𝜀 > 0, the set 𝑇(𝑢, 𝜀) = {𝛿 :
|𝑢(𝑡 + 𝛿) − 𝑢(𝑡)| < 𝜀 for all 𝑡 ∈ R} is relatively dense; that is,
for any 𝜀 > 0, it is possible to find a real number 𝑙 = 𝑙(𝜀) > 0,
and for any interval with length 𝑙(𝜀), there exists a number
𝛿 = 𝛿(𝜀) in this interval such that |𝑢(𝑡 + 𝛿) − 𝑢(𝑡)| < 𝜀, for all
𝑡 ∈ R.

We denote by AP(R,R) the set of the almost periodic
functions from R to R. Besides, the concept of pseudo
almost periodicity (pap) was introduced by Zhang in the
early nineties. It is a natural generalization of the classical
almost periodicity. Precisely, define the class of functions
PAP
0
(R,R) as follows:

{𝑓 ∈ BC (R,R) | lim
𝑇→+∞

1

2𝑇
∫
𝑇

−𝑇

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡 = 0} . (5)

A function 𝑓 ∈ BC(R,R) is called pseudo almost periodic if
it can be expressed as

𝑓 = ℎ + 𝜑, (6)

where ℎ ∈ AP(R,R) and 𝜑 ∈ PAP
0
(R,R). The collection of

such functions will be denoted by PAP(R,R). The functions
ℎ and 𝜑 in the above definition are, respectively, called the
almost periodic component and the ergodic perturbation
of the pseudo almost periodic function 𝑓. The decompo-
sition given in definition above is unique. Observe that
(PAP(R,R), ‖ ⋅ ‖

∞
) is a Banach space and AP(R,R) is a

proper subspace of PAP(R,R) since the function 𝜙(𝑡) =

cos𝜋𝑡 + cos 𝑡 + 1/(1 + 𝑡2) is pseudo almost periodic function
but not almost periodic. It should be mentioned that pseudo
almost periodic functions possess many interesting proper-
ties; we will need only a few of them and for the proofs we
shall refer to [16].

Lemma 2. Let 𝑥
1
(⋅), 𝜎(⋅) ∈ 𝐴𝑃(R,R), 𝜎󸀠(⋅) ∈ 𝐵𝐶(R,R) and

𝑥
2
(⋅) ∈ 𝑃𝐴𝑃

0
(R,R). Then

(1) 𝑥
1
(𝑡 − 𝜎(𝑡)) ∈ 𝐴𝑃(R,R);

(2) 𝑥
2
(𝑡−𝜎(𝑡)) ∈ 𝑃𝐴𝑃

0
(R,R), if (1 − 𝜎󸀠(𝑡))

−

= inf
𝑡∈R(1−

𝜎󸀠(𝑡)) > 0.

Proof. (1) For any 𝜀 > 0, from the uniform continuity of 𝑥
1
(⋅),

we can choose a constant

0 < 𝛿 = 𝛿 (𝜀) <
𝜀

2
(7)

such that

󵄨󵄨󵄨󵄨󵄨𝑥1 (𝑡
󸀠) − 𝑥

1
(𝑡󸀠󸀠)

󵄨󵄨󵄨󵄨󵄨 <
𝜀

2
, ∀𝑡󸀠, 𝑡󸀠󸀠 ∈ R,

󵄨󵄨󵄨󵄨󵄨𝑡
󸀠 − 𝑡󸀠󸀠

󵄨󵄨󵄨󵄨󵄨 < 𝛿. (8)

From the theory of almost periodic functions in [16, 17], it
follows that for 𝛿 > 0, it is possible to find a real number
𝑙 = 𝑙(𝛿) = 𝑙(𝛿(𝜀)) > 0, and for any interval with length 𝑙, there
exists a number 𝜏 = 𝜏(𝜀) in this interval such that

|𝜎 (𝑡 + 𝜏) − 𝜎 (𝑡)| < 𝛿,
󵄨󵄨󵄨󵄨𝑥1 (𝑡 + 𝜏) − 𝑥

1
(𝑡)
󵄨󵄨󵄨󵄨 < 𝛿 <

𝜀

2
,

∀𝑡 ∈ R.

(9)

Combing (8) and (9), we obtain

󵄨󵄨󵄨󵄨𝑥1 (𝑡 + 𝜏 − 𝜎 (𝑡 + 𝜏)) − 𝑥
1
(𝑡 − 𝜎 (𝑡))

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑥1 (𝑡 + 𝜏 − 𝜎 (𝑡 + 𝜏)) − 𝑥

1
(𝑡 + 𝜏 − 𝜎 (𝑡))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑥1 (𝑡 + 𝜏 − 𝜎 (𝑡)) − 𝑥

1
(𝑡 − 𝜎 (𝑡))

󵄨󵄨󵄨󵄨

<
𝜀

2
+
𝜀

2
= 𝜀, ∀𝑡 ∈ R.

(10)

which yields 𝑥
1
(𝑡 − 𝜎(𝑡)) ∈ AP(R,R).
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(2) Set 𝑠 = 𝑡 − 𝜎(𝑡); we get

0 ≤
1

2𝑇
∫
𝑇

−𝑇

󵄨󵄨󵄨󵄨𝑥2 (𝑡 − 𝜎 (𝑡))
󵄨󵄨󵄨󵄨 𝑑𝑡

=
1

2𝑇
∫
𝑇−𝜎(𝑇)

−(𝑇−𝜎(−𝑇))

󵄨󵄨󵄨󵄨𝑥2 (𝑠)
󵄨󵄨󵄨󵄨

1

1 − 𝜎󸀠 (𝑡)
𝑑𝑠

≤
1

(1 − 𝜎󸀠 (𝑡))
−

𝑇 + 𝜎+

𝑇

1

2 (𝑇 + 𝜎+)
∫
𝑇+𝜎
+

−(𝑇+𝜎+)

󵄨󵄨󵄨󵄨𝑥2 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠,

where 𝜎+ = sup
𝑡∈R

𝜎 (𝑡) ,

(11)

which implies that 𝑥
2
(𝑡 − 𝜎(𝑡)) ∈ PAP

0
(R,R).

Remark 3. Set 𝑥(⋅) = 𝑥
1
(⋅) + 𝑥

2
(⋅) with 𝑥

1
(⋅) ∈ AP(R,R) and

𝑥
2
(⋅) ∈ PAP

0
(R,R). It follows from Lemma 2 that

𝑥 (𝑡 − 𝜎 (𝑡)) ∈ PAP (R,R) , if (1 − 𝜎󸀠 (𝑡))
−

> 0,

𝜎 (⋅) ∈ AP (R,R) , 𝜎󸀠 (⋅) ∈ BC (R,R) .

(12)

Definition 4 (see [16, 17]). Let 𝑥 ∈ 𝑅𝑛 and let 𝑄(𝑡) be an 𝑛 × 𝑛
continuous matrix defined on 𝑅. The linear system

𝑥󸀠 (𝑡) = 𝑄 (𝑡) 𝑥 (𝑡) (13)

is said to admit an exponential dichotomy on 𝑅 if there exist
positive constants 𝑘, and 𝛼, projection 𝑃, and the fundamen-
tal solution matrix𝑋(𝑡) of (13) satisfying

󵄩󵄩󵄩󵄩󵄩𝑋 (𝑡) 𝑃𝑋
−1

(𝑠)
󵄩󵄩󵄩󵄩󵄩 ≤ 𝑘𝑒−𝛼(𝑡−𝑠) for 𝑡 ≥ 𝑠,

󵄩󵄩󵄩󵄩󵄩𝑋 (𝑡) (𝐼 − 𝑃)𝑋
−1

(𝑠)
󵄩󵄩󵄩󵄩󵄩 ≤ 𝑘𝑒−𝛼(𝑠−𝑡) for 𝑡 ≤ 𝑠.

(14)

Lemma 5 (see [6, 16]). Assume that𝑄(𝑡) is an almost periodic
matrix function and 𝑔(𝑡) ∈ 𝑃𝐴𝑃(𝑅𝑛). If the linear system (13)
admits an exponential dichotomy, then pseudo almost periodic
system

𝑥󸀠 (𝑡) = 𝑄 (𝑡) 𝑥 + 𝑔 (𝑡) (15)

has a unique pseudo almost periodic solution 𝑥(𝑡), and

𝑥 (𝑡) = ∫
𝑡

−∞

𝑋(𝑡) 𝑃𝑋
−1

(𝑠) 𝑔 (𝑠) 𝑑𝑠

− ∫
+∞

𝑡

𝑋 (𝑡) (𝐼 − 𝑃)𝑋
−1

(𝑠) 𝑔 (𝑠) 𝑑𝑠.

(16)

Lemma6 (see [16, 17]). Let 𝑐
𝑖
(𝑡) be an almost periodic function

on 𝑅 and

𝑀[𝑐
𝑖
] = lim
𝑇→+∞

1

𝑇
∫
𝑡+𝑇

𝑡

𝑐
𝑖
(𝑠) 𝑑𝑠 > 0, 𝑖 = 1, 2, . . . , 𝑛. (17)

Then the linear system

𝑥󸀠 (𝑡) = diag (−𝑐
1
(𝑡) , −𝑐

2
(𝑡) , . . . , −𝑐

𝑛
(𝑡)) 𝑥 (𝑡) (18)

admits an exponential dichotomy on 𝑅.

Lemma 7 (see [11, Lemma 2.3]). Every solution 𝑥(𝑡; 𝑡
0
, 𝜑) of

(1) and (4) is positive and bounded on [𝑡
0
, 𝜂(𝜑)), and 𝜂(𝜑) =

+∞.

Lemma 8. Suppose that there exist two positive constants 𝜅
and𝑀 such that

𝑀 > 𝜅, sup
𝑡∈𝑅

{−𝑎 (𝑡)𝑀 +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)} < 0,

inf
𝑡∈𝑅

{−𝑎 (𝑡) 𝜅 +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

1 +𝑀𝑛
} > 0.

(19)

Then, there exists 𝑡
𝜑
> 𝑡
0
such that

𝜅 < 𝑥 (𝑡; 𝑡
0
, 𝜑) < 𝑀, ∀𝑡 ≥ 𝑡

𝜑
. (20)

Proof. This Lemma can be proven in a similar way to that in
Lemma 2.2 of [12]. But for convenience of reading, we give
the proof as follows. Let 𝑥(𝑡) = 𝑥(𝑡; 𝑡

0
, 𝜑). We first claim that

there exists 𝑡# ∈ [𝑡
0
, +∞) such that

𝑥 (𝑡#) < 𝑀. (21)

Otherwise,

𝑥 (𝑡) ≥ 𝑀, ∀𝑡 ∈ [𝑡
0
, +∞) , (22)

Which, together with (19), implies that

𝑥󸀠 (𝑡) = −𝑎 (𝑡) 𝑥 (𝑡) +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

1 + 𝑥𝑛 (𝑡 − 𝜏
𝑖
(𝑡))

≤ −𝑎 (𝑡)𝑀 +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

1 +𝑀𝑛

≤ −𝑎 (𝑡)𝑀 +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

≤ sup
𝑡∈𝑅

{−𝑎 (𝑡)𝑀 +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)}

< 0, ∀𝑡 ≥ 𝑡
0
+ 𝑟.

(23)

This yields that

𝑥 (𝑡) = 𝑥 (𝑡
0
+ 𝑟) + ∫

𝑡

𝑡0+𝑟

𝑥󸀠 (𝑠) 𝑑𝑠

≤ 𝑥 (𝑡
0
+ 𝑟) + sup

𝑡∈𝑅

{−𝑎 (𝑡)𝑀 +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)}

× (𝑡 − (𝑡
0
+ 𝑟)) , ∀𝑡 ≥ 𝑡

0
+ 𝑟.

(24)

Thus

lim
𝑡→+∞

𝑥 (𝑡) = −∞, (25)
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which contradicts the fact that 𝑥(𝑡) is positive and bounded
on [𝑡
0
, +∞). Hence, (21) holds. In the sequel, we prove that

𝑥 (𝑡) < 𝑀, ∀𝑡 ∈ [𝑡#, +∞) . (26)

Suppose, for the sake of contradiction, there exists 𝑡̃ ∈ (𝑡#,
+∞) such that

𝑥 (𝑡̃) = 𝑀, 𝑥 (𝑡) < 𝑀, ∀𝑡 ∈ [𝑡#, 𝑡̃) . (27)

Calculating the derivative of 𝑥(𝑡), together with (19), (1), and
(27), implies that

0 ≤ 𝑥󸀠 (𝑡̃) = −𝑎 (𝑡̃) 𝑥 (𝑡̃) +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡̃)

1 + 𝑥𝑛 (𝑡̃ − 𝜏
𝑖
(𝑡̃))

≤ −𝑎 (𝑡̃)𝑀 +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡̃) < 0,

(28)

which is a contradiction and implies that (26) holds.
We finally show that 𝑙 = lim inf

𝑡→∞
𝑥(𝑡) > 𝜅. By way of

contradiction, we assume that 0 ≤ 𝑙 ≤ 𝜅. By the fluctuation
lemma [18, Lemma A.1.], there exists a sequence {𝑡

𝑘
}
𝑘≥1

such
that

𝑡
𝑘
󳨀→ +∞, 𝑥 (𝑡

𝑘
) 󳨀→ lim inf

𝑡→+∞

𝑥 (𝑡) ,

𝑥󸀠 (𝑡
𝑘
) 󳨀→ 0 as 𝑘 󳨀→ +∞.

(29)

Since {𝑥
𝑡𝑘
} is bounded and equicontinuous, by the Ascoli-

Arzelá theorem, there exists a subsequence, still denoted by
itself for simplicity of notation, such that

𝑥
𝑡𝑘
󳨀→ 𝜑∗ (𝑘 󳨀→ +∞) for some 𝜑∗ ∈ 𝐶

+
. (30)

Moreover,
𝜑∗ (0) = 𝑙 ≤ 𝜑∗ (𝜃) ≤ 𝑀 for 𝜃 ∈ [−𝑟, 0) . (31)

Without loss of generality, we assume that all 𝑎(𝑡
𝑘
), 𝑏
𝑖
(𝑡
𝑘
), and

𝜏
𝑖
(𝑡
𝑘
) are convergent to 𝑎∗, 𝑏∗

𝑖
, and 𝜏∗

𝑖
, respectively. This can

be achieved because of almost periodicity. It follows from

𝑥󸀠 (𝑡
𝑘
) = −𝑎 (𝑡

𝑘
) 𝑥 (𝑡
𝑘
) +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡
𝑘
)

1 + 𝑥𝑛 (𝑡
𝑘
− 𝜏
𝑖
(𝑡
𝑘
))

(32)

that (taking limits)

0 = −𝑎∗𝑙 +
𝑚

∑
𝑖=1

𝑏∗
𝑖

1 + (𝜑∗ (−𝜏∗
𝑖
))
𝑛

≥ −𝑎∗𝑙 +
𝑚

∑
𝑖=1

𝑏∗
𝑖

1 +𝑀𝑛

≥ −𝑎∗𝜅 +
𝑚

∑
𝑖=1

𝑏∗
𝑖

1 +𝑀𝑛

≥ inf
𝑡∈𝑅

{−𝑎 (𝑡) 𝜅 +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

1 +𝑀𝑛
} > 0,

(33)

is a contradiction. This proves that 𝑙 > 𝜅. Hence, from (26),
we can choose 𝑡

𝜑
> 𝑡
0
such that

𝜅 < 𝑥 (𝑡; 𝑡
0
, 𝜑) < 𝑀, ∀𝑡 ≥ 𝑡

𝜑
. (34)

This ends the proof of Lemma 8.

3. Main Results

Theorem 9. Suppose that

𝑎, 𝜏
𝑖
∈ 𝐴𝑃 (R,R) , 𝜏󸀠

𝑖
(⋅) ∈ 𝐵𝐶 (R,R) , 𝑏

𝑖
∈ 𝑃𝐴𝑃 (R,R) ,

inf
𝑡∈R

(1 − 𝜏󸀠
𝑖
(𝑡)) > 0, 𝑖 = 1, 2, . . . , 𝑚,

(35)

and there exist two positive constants 𝜅 and 𝑀 satisfying (19)
and

sup
𝑡∈𝑅

{−𝑎 (𝑡) +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

𝑛

4𝜅
} < 0. (36)

Then, there exists a unique positive pseudo almost periodic
solution of (1) in the region 𝐵∗ = {𝜑 | 𝜑 ∈ 𝑃𝐴𝑃(R,R), 𝜅 ≤
𝜑(𝑡) ≤ 𝑀, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ R}.

Proof. Consider Υ : [0; 1] → R defined by

Υ (𝑢) = sup
𝑡∈𝑅

{−𝑎 (𝑡) +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

𝑛

4𝜅
𝑒𝑢} , 𝑢 ∈ [0, 1] . (37)

Then, we have

Υ (0) = sup
𝑡∈𝑅

{−𝑎 (𝑡) +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

𝑛

4𝜅
} < 0, (38)

which implies that there exists a constant 𝜍 ∈ (0, 1] such that

Υ (𝜍) = sup
𝑡∈𝑅

{−𝑎 (𝑡) +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

𝑛

4𝜅
𝑒𝜍} < 0. (39)

For any 𝜙 ∈ PAP(R,R), from (35), Remark 3, and the
composition theorem of pseudo almost periodic functions
[16], we have

𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

1 + 𝜙𝑛 (𝑡 − 𝜏
𝑖
(𝑡))

∈ PAP (R,R) . (40)

We next consider an auxiliary equation:

𝑥󸀠 (𝑡) = −𝑎 (𝑡) 𝑥 (𝑡) +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

1 + 𝜙𝑛 (𝑡 − 𝜏
𝑖
(𝑡))

. (41)

Notice that𝑀[𝑎] > 0; it follows fromLemma 6 that the linear
equation

𝑥󸀠 (𝑡) = −𝑎 (𝑡) 𝑥 (𝑡) (42)

admits an exponential dichotomy on R. Thus, by Lemma 5,
we obtain that the system (41) has exactly one pseudo almost
periodic solution:

𝑥𝜙 (𝑡) = ∫
𝑡

−∞

𝑒−∫
𝑡

𝑠
𝑎(𝑢)𝑑𝑢 [

𝑚

∑
𝑖=1

𝑏
𝑖
(𝑠)

1 + 𝜙𝑛 (𝑡 − 𝜏
𝑖
(𝑠))

] 𝑑𝑠. (43)



Abstract and Applied Analysis 5

Define a mapping 𝑇 : PAP(R,R) → PAP(R,R) by setting

𝑇 (𝜙 (𝑡)) = 𝑥𝜙 (𝑡) , ∀𝜙 ∈ PAP (R,R) . (44)

Since 𝐵∗ = {𝜑 | 𝜑 ∈ PAP(R,R), 𝜅 ≤ 𝜑(𝑡) ≤ 𝑀, for all
𝑡 ∈ R}, it is easy to see that 𝐵∗ is a closed subset of PAP(𝑅, 𝑅).
For any 𝜙 ∈ 𝐵∗, from (19), we have

𝑥𝜙 (𝑡) ≤ ∫
𝑡

−∞

𝑒−∫
𝑡

𝑠
𝑎(𝑢)𝑑𝑢 [

𝑚

∑
𝑖=1

𝑏
𝑖
(𝑠)] 𝑑𝑠

≤ ∫
𝑡

−∞

𝑒−∫
𝑡

𝑠
𝑎(𝑢)𝑑𝑢𝑎 (𝑠)𝑀𝑑𝑠 = 𝑀, ∀𝑡 ∈ 𝑅,

(45)

𝑥𝜙 (𝑡) ≥ ∫
𝑡

−∞

𝑒−∫
𝑡

𝑠
𝑎(𝑢)𝑑𝑢 [

𝑚

∑
𝑖=1

𝑏
𝑖
(𝑠)

1 +𝑀𝑛
]𝑑𝑠

≥ ∫
𝑡

−∞

𝑒−∫
𝑡

𝑠
𝑎(𝑢)𝑑𝑢𝑎 (𝑠) 𝜅 𝑑𝑠 = 𝜅, ∀𝑡 ∈ 𝑅.

(46)

This implies that the mapping 𝑇 is a self-mapping from 𝐵∗

to 𝐵∗. Now, we prove that the mapping 𝑇 is a contraction
mapping on 𝐵∗. In fact, for 𝜑, 𝜓 ∈ 𝐵∗, we get
󵄩󵄩󵄩󵄩𝑇 (𝜑) − 𝑇 (𝜓)

󵄩󵄩󵄩󵄩∞

= sup
𝑡∈𝑅

󵄨󵄨󵄨󵄨𝑇 (𝜑) (𝑡) − 𝑇 (𝜓) (𝑡)
󵄨󵄨󵄨󵄨

= sup
𝑡∈𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

−∞

𝑒−∫
𝑡

𝑠
𝑎(𝑢)𝑑𝑢

𝑚

∑
𝑖=1

𝑏
𝑖
(𝑠)[

1

1 + 𝜑𝑛 (𝑡 − 𝜏
𝑖
(𝑠))

−
1

1 + 𝜓𝑛 (𝑠 − 𝜏
𝑖
(𝑠))

] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(47)

In view of (39), (45), (46), and (47), from the inequality

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

1 + 𝑥𝑛
−

1

1 + 𝑦𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑛𝜃𝑛−1

(1 + 𝜃𝑛)2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

≤
𝑛𝜃𝑛−1

(2√𝜃𝑛)
2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ≤

𝑛

4𝜅

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ,

(48)

where 𝑥, 𝑦 ∈ [𝜅,𝑀] and 𝜃 lies between 𝑥 and 𝑦, we have
󵄩󵄩󵄩󵄩𝑇 (𝜑) − 𝑇 (𝜓)

󵄩󵄩󵄩󵄩∞

≤ sup
𝑡∈𝑅

∫
𝑡

−∞

𝑒−∫
𝑡

𝑠
𝑎(𝑢)𝑑𝑢

𝑚

∑
𝑖=1

𝑏
𝑖
(𝑠)

𝑛

4𝜅

×
󵄨󵄨󵄨󵄨𝜑 (𝑠 − 𝜏

𝑖
(𝑠)) − 𝜓 (𝑠 − 𝜏

𝑖
(𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ sup
𝑡∈𝑅

∫
𝑡

−∞

𝑒−∫
𝑡

𝑠
𝑎(𝑢)𝑑𝑢𝑎 (𝑠) 𝑒

−𝜍

×
󵄨󵄨󵄨󵄨𝜑 (𝑠 − 𝜏

𝑖
(𝑠)) − 𝜓 (𝑠 − 𝜏

𝑖
(𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝑒−𝜍
󵄩󵄩󵄩󵄩𝜑 − 𝜓

󵄩󵄩󵄩󵄩∞.

(49)

Noting that 𝑒−𝜍 < 1, it is clear that the mapping 𝑇 is a
contraction on 𝐵∗. Using Theorem 0.3.1 of [19], we obtain
that the mapping 𝑇 possesses a unique fixed point 𝜑∗ ∈ 𝐵∗,
𝑇𝜑∗ = 𝜑∗. By (41), 𝜑∗ satisfies (1). So 𝜑∗ is a positive pseudo
almost periodic solution of (1) in 𝐵∗. The proof ofTheorem 9
is now complete.

Theorem 10. Under the assumptions of Theorem 9, (1) has
at least one positive pseudo almost periodic solution 𝑥∗(𝑡).
Moreover, 𝑥∗(𝑡) is globally exponentially stable; that is, there
exist constants 𝐾

𝜑,𝑥
∗ , 𝑡
𝜑,𝑥
∗ , and 𝜆 > 0 such that

󵄨󵄨󵄨󵄨𝑥 (𝑡; 𝑡0, 𝜑) − 𝑥∗ (𝑡)
󵄨󵄨󵄨󵄨 < 𝐾
𝜑,𝑥
∗𝑒−𝜆𝑡, ∀𝑡 > 𝑡

𝜑,𝑥
∗ . (50)

Proof. By Theorem 9, (1) has a positive pseudo almost peri-
odic solution; say 𝑥∗(𝑡). It suffices to show that 𝑥∗(𝑡) is glob-
ally exponentially stable. Define a continuous function Γ(𝑢)
by setting

Γ (𝑢) = sup
𝑡∈𝑅

{− [𝑎 (𝑡) − 𝑢] +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

𝑛

4𝜅
𝑒𝑟𝑢} , 𝑢 ∈ [0, 1] .

(51)

Then, we have

Γ (0) = sup
𝑡∈𝑅

{−𝑎 (𝑡) +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

𝑛

4𝜅
} < 0, (52)

which implies that there exist two constants 𝜂 > 0 and 𝜆 ∈
(0, 1] such that

Γ (𝜆) = sup
𝑡∈𝑅

{− [𝑎 (𝑡) − 𝜆] +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

𝑛

4𝜅
𝑒𝜆𝑟} < −𝜂 < 0.

(53)

Let 𝑥(𝑡) = 𝑥(𝑡; 𝑡
0
, 𝜑) and 𝑦(𝑡) = 𝑥(𝑡) − 𝑥∗(𝑡), where 𝑡 ∈

[𝑡
0
− 𝑟, +∞). Then

𝑦󸀠 (𝑡) = −𝑎 (𝑡) 𝑦 (𝑡) +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡) [

1

1 + 𝑥𝑛 (𝑡 − 𝜏
𝑖
(𝑡))

−
1

1 + 𝑥∗𝑛 (𝑡 − 𝜏
𝑖
(𝑡))

] .

(54)

It follows from Lemma 8 that there exists 𝑡
𝜑,𝑥
∗ > 𝑡
0
such

that

𝜅 ≤ 𝑥 (𝑡) , 𝑥∗ (𝑡) ≤ 𝑀, ∀𝑡 ∈ [𝑡
𝜑,𝑥
∗ − 𝑟, +∞) . (55)

We consider the Lyapunov functional

𝑉 (𝑡) =
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 𝑒
𝜆𝑡. (56)



6 Abstract and Applied Analysis

Calculating the upper left derivative of𝑉(𝑡) along the solution
𝑦(𝑡) of (54), we have

𝐷− (𝑉 (𝑡))

≤ −𝑎 (𝑡)
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 𝑒
𝜆𝑡 +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

1 + 𝑥𝑛 (𝑡 − 𝜏
𝑖
(𝑡))

−
1

1 + 𝑥∗𝑛 (𝑡 − 𝜏
𝑖
(𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝜆𝑡

+ 𝜆
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 𝑒
𝜆𝑡

= [− (𝑎 (𝑡) − 𝜆)
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡)

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

1 + 𝑥𝑛 (𝑡 − 𝜏
𝑖
(𝑡))

−
1

1 + 𝑥∗𝑛 (𝑡 − 𝜏
𝑖
(𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
] 𝑒𝜆𝑡,

∀𝑡 > 𝑡
𝜑,𝑥
∗ .

(57)

We claim that

𝑉 (𝑡) =
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 𝑒
𝜆𝑡

< 𝑒𝜆𝑡𝜑,𝑥∗ ( max
𝑡∈[𝑡0−𝑟, 𝑡𝜑,𝑥∗ ]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑥∗ (𝑡)
󵄨󵄨󵄨󵄨 + 1)

:= 𝐾
𝜑,𝑥
∗ , ∀𝑡 > 𝑡

𝜑,𝑥
∗ .

(58)

Contrarily, there must exists 𝑡
∗
> 𝑡
𝜑,𝑥
∗ such that

𝑉 (𝑡
∗
) = 𝐾
𝜑,𝑥
∗ , 𝑉 (𝑡) < 𝐾

𝜑,𝑥
∗ , ∀𝑡 ∈ [𝑡

0
− 𝑟, 𝑡
∗
) . (59)

Together with (48), (57), and (59), we obtain

0 ≤ 𝐷− (𝑉 (𝑡
∗
))

≤ [− (𝑎 (𝑡
∗
) − 𝜆)

󵄨󵄨󵄨󵄨𝑦 (𝑡∗)
󵄨󵄨󵄨󵄨 +
𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡
∗
)

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

1 + 𝑥𝑛 (𝑡
∗
− 𝜏
𝑖
(𝑡
∗
))

−
1

1 + 𝑥∗𝑛 (𝑡
∗
− 𝜏
𝑖
(𝑡
∗
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
] 𝑒𝜆𝑡∗

≤ − (𝑎 (𝑡
∗
) − 𝜆)

󵄨󵄨󵄨󵄨𝑦 (𝑡∗)
󵄨󵄨󵄨󵄨 𝑒
𝜆𝑡∗ +

𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡
∗
)

×
𝑛

4𝜅
𝑒𝜆𝜏𝑖(𝑡∗)𝑒𝜆(𝑡∗−𝜏𝑖(𝑡∗))

󵄨󵄨󵄨󵄨𝑦 (𝑡∗ − 𝜏
𝑖
(𝑡
∗
))
󵄨󵄨󵄨󵄨

≤ {− (𝑎 (𝑡
∗
) − 𝜆) +

𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡
∗
)
𝑛

4𝜅
𝑒𝜆𝑟}𝐾

𝜑,𝑥
∗ .

(60)

Thus,

0 ≤ − (𝑎 (𝑡
∗
) − 𝜆) +

𝑚

∑
𝑖=1

𝑏
𝑖
(𝑡
∗
)
𝑛

4𝜅
𝑒𝜆𝑟, (61)

which contradicts (53). Hence, (58) holds. It follows that
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 < 𝐾
𝜑,𝑥
∗𝑒−𝜆𝑡 ∀𝑡 > 𝑡

𝜑,𝑥
∗ . (62)

This completes the proof of Theorem 10.

4. An Example

In this section, we present an example to check the validity of
the results we obtained in the previous sections.

Example 1. Consider the following model of hematopoiesis
with multiple time-varying delays:

𝑥󸀠 (𝑡) = −1.3𝑥 (𝑡) +
1

2
(2 +

1

2

󵄨󵄨󵄨󵄨󵄨cos√2𝑡
󵄨󵄨󵄨󵄨󵄨 +

1

100

1

1 + 𝑡2
)

×
1

1 + 𝑥 (𝑡 − 2𝑒(1/10) cos 𝑡)
+
1

2

× (2 +
1

2
|sin 𝑡| + 1

100

1

1 + 𝑡2
)

1

1 + 𝑥 (𝑡 − 2𝑒(1/10) sin 𝑡)
.

(63)

Obviously

𝑎+ = 𝑎− = 1.3, 𝑏−
1
= 𝑏−
2
= 1, 𝑏+

1
= 𝑏+
2
= 1.26,

𝑛 = 1, 𝑟 = 2𝑒1/10.

(64)

Let 𝜅 = 0.5 and𝑀 = 2. Then
−𝑎−𝑀+ 𝑏+

1
+ 𝑏+
2
= −0.08 < 0,

−𝑎+𝜅 +
𝑏−
1
+ 𝑏−
2

1 +𝑀
=

1

60
> 0,

−𝑎− + (𝑏+
1
+ 𝑏+
2
)
𝑛

4𝜅
= −1.3 + 2.52 ×

1

2

= −0.04 < 0,

(65)

which imply that (63) satisfies the assumptions of
Theorem 10. Therefore, (63) has a unique positive
pseudo almost periodic solution 𝑥∗(𝑡), which is globally
exponentially stable with the exponential convergent rate
𝜆 ≈ 0.01. The numerical simulation in Figure 1 strongly
supports the conclusion.

Remark 11. We remark that the results in [9–12] give no opin-
ions about global exponential convergence for the positive
pseudo almost periodic solution. Thus, the results in [9–
12] and the references therein cannot be applied to prove
the global exponential stability of positive pseudo almost
periodic solution for (63). This implies that the results of
this paper are new and they complement previously known
results.
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Figure 1: Numerical solution 𝑥(𝑡) of (63) for initial value 𝜑(𝑡) ≡
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