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We investigate mild solutions of the fractional order nonhomogeneous Cauchy problem 𝐷𝛼

𝑡
𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0, where

0 < 𝛼 < 1. When 𝐴 is the generator of a 𝐶
0
-semigroup (𝑇(𝑡))

𝑡≥0
on a Banach space 𝑋, we obtain an explicit representation of

mild solutions of the above problem in terms of the semigroup. We then prove that this problem under the boundary condition
𝑢(0) = 𝑢(1) admits a unique mild solution for each 𝑓 ∈ 𝐶([0, 1]; 𝑋) if and only if the operator 𝐼 − 𝑆

𝛼
(1) is invertible. Here, we

use the representation 𝑆
𝛼
(𝑡)𝑥 = ∫

∞

0

Φ
𝛼
(𝑠)𝑇(𝑠𝑡

𝛼

)𝑥 𝑑𝑠, 𝑡 > 0 in which Φ
𝛼
is a Wright type function. For the first order case, that is,

𝛼 = 1, the corresponding result was proved by Prüss in 1984. In case 𝑋 is a Banach lattice and the semigroup (𝑇(𝑡))
𝑡≥0

is positive,
we obtain existence of solutions of the semilinear problem𝐷𝛼

𝑡
𝑢(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 > 0, 0 < 𝛼 < 1.

1. Introduction

Let𝑋 be a complex Banach space and𝐴 the generator of a𝐶
0
-

semigroup (𝑇(𝑡))
𝑡≥0

in 𝑋. We consider the following linear
differential equation:

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , 𝑡 > 0, 0 < 𝛼 < 1, (1)

where𝐷𝛼

𝑡
is the Caputo fractional derivative.

In the integer case 𝛼 = 1, it is well known that there
exists a strong connection between the spectrum of (𝑇(𝑡))

𝑡≥0

and solutions of the inhomogeneous differential equation (1)
satisfying the condition 𝑢(0) = 𝑢(1), where 𝑓 is a forcing
term. A complete characterization of the class of generators𝐴
such that for any given𝑓 ∈ 𝐶([0, 1]; 𝑋), (1) with the condition
𝑢(0) = 𝑢(1) has a unique solution which was obtained by
Prüss [1] in 1984, extending earlier results byHaraux (see [2]).

Denoting the resolvent set of an operator 𝐿 by 𝜌(𝐿), the
result of Prüss reads as follows: 1 ∈ 𝜌(𝑇(1)) if and only if for
any 𝑓 ∈ 𝐶([0, 1]; 𝑋), the equation 𝑢 = 𝐴𝑢+𝑓 admits exactly
one mild solution satisfying 𝑢(0) = 𝑢(1).

After Prüss theorem, many interesting consequences and
related results have appeared. For example, the corresponding
connection with the spectrum of strongly continuous sine
functions [3], cosine functions [4], and connections with
maximal 𝐿𝑝-regularity are discussed in [5–7].

More recently, Nieto [8] studied periodic boundary
valued solutions of (1) considering the scalar case. Nieto
considers the Riemann-Liouville fractional derivative, and
the meaning he gives to a “periodic” boundary condition is
the following:

lim
𝑡→0
+

𝑡
1−𝛼

𝑢 (𝑡) = lim
𝑡→1
−

𝑡
1−𝛼

𝑢 (𝑡) , 0 < 𝛼 < 1. (2)

Further results along these lines are given in [9]. One
disadvantage of this condition is that continuity of 𝑢(𝑡) for
𝑡 ≥ 0 forces the condition 𝑢(1) = 0. It thus appears that
Riemann-Liouville is not the most appropriate choice when
one considers periodic boundary valued problems. In con-
trast, the Caputo derivative needs higher regularity condi-
tions of 𝑢(𝑡) than the Riemann-Liouville derivative.
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Our objective in this paper is twofold: first, we reformu-
late Nieto’s results for the vector-valued case of (1) consid-
ering Caputo’s fractional derivative and the natural periodic
boundary condition:

𝑢 (0) = 𝑢 (1) . (3)

Even more, we are successful in extending to the range 0 <
𝛼 < 1 the above mentioned characterization given by Prüss,
in terms of the following strongly continuous resolvent family
associated to (1):

𝑆
𝛼
(𝑡) 𝑥=∫

∞

0

Φ
𝛼
(𝑠) 𝑇 (𝑠𝑡

𝛼

) 𝑥 𝑑𝑠, 𝑡 ≥ 0, 0 < 𝛼 < 1, 𝑥 ∈ 𝑋,

(4)

where Φ
𝛼
is a Wright type function defined by Φ

𝛼
(𝑧) =

∑
∞

𝑛=0
((−𝑧)

𝑛

/𝑛!Γ(−𝛼𝑛+1−𝛼)) for every 𝑧 ∈ C (see Section 2 for
more properties of the function Φ

𝛼
). We observe that Φ

𝛼
(𝑡)

is a probability density function on [0,∞), whose Laplace
transform is theMittag-Leffler function in thewhole complex
plane.

A remarkable consequence of our extension result given
in Theorem 9 is the following: if 𝐴 generates a uniformly
stable semigroup, then for each 𝑓 ∈ 𝐶([0, 1]; 𝑋) (1) admits
exactly one mild solution fulfilling the boundary conditions
𝑢(0) = 𝑢(1). In order to do this, we study mild solutions
of (1) and show that any mild solution has the following
representation:

𝑢 (𝑡) = 𝑆
𝛼
(𝑡) 𝑢 (0) + ∫

𝑡

0

𝑃
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0, (5)

where (𝑆
𝛼
(𝑡)) is given by (4) and (𝑃

𝛼
(𝑡)) is a second operator

family associated with (𝑇(𝑡))
𝑡≥0

(see Section 2).
Secondly, we study positivity of mild solutions and obtain

a simple spectral condition that ensures positivity thereof in
the periodic boundary value case. More precisely, let 𝛼 ∈
(0, 1) and 𝐴 be the generator of a positive 𝐶

0
-semigroup

(𝑇(𝑡))
𝑡≥0

. Suppose (𝐼 − 𝑆
𝛼
(1))

−1

𝑥 ≥ 0 for all 𝑥 ∈ 𝑋
+
and

assume that 𝑢 is a mild solution of (1) and that

𝐷
𝛼

𝑡
𝑢 (𝑡) − 𝐴𝑢 (𝑡) ≥ 0, 𝑢 (0) = 𝑢 (1) . (6)

Then, 𝑢(𝑡) ≥ 0 for all 𝑡 ∈ [0, 1].
Finally, we study in Banach lattices existence of mild

solutions for the semilinear problem:

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 > 0, 0 < 𝛼 < 1, (7)

under the hypothesis that 𝐴 generates a positive 𝐶
0
-

semigroup. This is an extension of recent results given by
Zhang [10] in the integer case 𝛼 = 1 (cf. Theorem 16).

Typical operators to which the results apply are elliptic
operators in divergence form: namely, letΩ be an open subset
of R𝑁. We consider on 𝐿𝑝(Ω) the operator formally given by

𝐴𝑢 =

𝑁

∑

𝑖,𝑗=1

𝐷
𝑖
(𝑎

𝑖,𝑗
(𝑥)𝐷

𝑗
𝑢) = div (𝑎 (𝑥) ∇𝑢) , (8)

in which (𝑎
𝑖,𝑗
)
1≤𝑖,𝑗≤𝑁

are bounded real valued functions.
Under various boundary conditions (including Dirichlet,
Neumann, Robin, and Wentzell), the results apply (see
Section 4).

While in the present paper, we concentrate on periodic
boundary conditions, we mention the recent papers [11–
13] dealing with fractional differential equations. The first
two deal with nonlocal Cauchy problems, while the third
considers the fractional evolution problem governed by an
almost sectional operator and proceeds to construct the
corresponding evolution operators bymean of a certain func-
tional calculus.

The paper is organized as follows. In Section 2, we present
some preliminaries on the resolvent families needed in
the sequel. In Section 3, assuming that 𝐴 generates a 𝐶

0
-

semigroup, we represent the resolvent families of Section 2
using the subordination principle. In Section 4, we studymild
solutions in general and in the periodic boundary valued
case in particular. Positivity of mild solutions as well as the
semilinear equation are considered in Section 5.

2. Preliminaries

The algebra of bounded linear operators on a Banach space𝑋
will be denoted byB(𝑋), the resolvent set of a linear operator
𝐴 by 𝜌(𝐴), and the spectral radius of a bounded operator
𝑆 will be denoted by 𝑟

𝜎
(𝑆). Let 𝜏 > 0 be a real number.

The space of continuous functions 𝑓 : [0, 𝜏] → 𝑋 is denoted
by𝐶([0, 𝜏]; 𝑋) and its norm by ‖𝑓‖ := sup{‖𝑓(𝑡)‖ : 𝑡 ∈ [0, 𝜏]}.
We denote 𝑔

𝛼
(𝑡) := 𝑡

𝛼−1

/Γ(𝛼), 𝛼 > 0, where Γ is the usual
gamma function. It will be convenient to write 𝑔

0
:= 𝛿

0
,

the Dirac measure concentrated at 0. Note the semigroup
property: 𝑔

𝛼+𝛽
= 𝑔

𝛼
∗ 𝑔

𝛽
for all 𝛼, 𝛽 > 0.

The Riemann-Liouville fractional integral of order 𝛼, 0 <
𝛼 < 1, of a function 𝑢 : [0, 1] → 𝑋 is given by

𝐼
𝛼

𝑢 (𝑡) := (𝑔
𝛼
∗ 𝑢) (𝑡) := ∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠, (9)

for example, when 𝑢 is locally integrable on (0, 1).
The Caputo fractional derivative of order 0 < 𝛼 < 1 of a

function 𝑢 is defined by

𝐷
𝛼

𝑡
𝑢 (𝑡) := 𝐼

1−𝛼

𝑢


(𝑡) = ∫

𝑡

0

𝑔
1−𝛼
(𝑡 − 𝑠) 𝑢



(𝑠) 𝑑𝑠, (10)

where 𝑢 is the distributional derivative of 𝑢(⋅), under
appropriate assumptions. The definition can be extended in
a natural way to 𝛼 > 0.Then, when 𝛼 = 𝑛 is a natural number,
we get𝐷𝑛

𝑡
:= 𝑑

𝑛

/𝑑𝑡
𝑛.

The Laplace transform of a locally integrable function 𝑓 :
[0, ∞) → 𝑋 is defined by

L (𝑓) (𝜆) := 𝑓 (𝜆) := ∫
∞

0

𝑒
−𝜆𝑡

𝑓 (𝑡) 𝑑𝑡 = lim
𝑅→∞

∫

𝑅

0

𝑒
−𝜆𝑡

𝑓 (𝑡) 𝑑𝑡,

(11)

provided that the integral converges for some 𝜆 ∈ C. If, for
example, 𝑓 is exponentially bounded, that is, ‖𝑓(𝑡)‖ ≤ 𝑀𝑒𝜔𝑡,
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𝑡 ≥ 0 for some𝑀 > 0, and 𝜔 ∈ R, then the integral converges
absolutely for Re(𝜆) > 𝜔 and defines an analytic function
there.

Regarding the fractional derivative, we have the following
important property: for𝑓 ∈ 𝐶([0,∞);𝑋) such that𝑔

1−𝛼
∗𝑓 ∈

𝑊
1,1

((0,∞);𝑋),

𝐷
𝛼

𝑡
𝑓 (𝜆) = 𝜆

𝛼

𝑓 (𝜆) − 𝜆
𝛼−1

𝑓 (0) . (12)

The power function 𝜆𝛼 is uniquely defined as 𝜆𝛼 =

|𝜆|
𝛼

𝑒
𝑖 arg(𝜆), with −𝜋 < arg(𝜆) < 𝜋.
The Mittag-Leffler function (see, e.g., [14, 15]) is defined

as follows:

𝐸
𝛼,𝛽
(𝑧) :=

∞

∑

𝑛=0

𝑧
𝑛

Γ (𝛼𝑛 + 𝛽)
=
1

2𝜋𝑖
∫
Ha
𝑒
𝜇
𝜇
𝛼−𝛽

𝜇𝛼 − 𝑧
𝑑𝜇,

𝛼, 𝛽 > 0, 𝑧 ∈ C,

(13)

where Ha is a Hankel path, that is, a contour which starts
and ends at −∞ and encircles the disc |𝜇| ≤ |𝑧|1/𝛼 counter-
clockwise. It is an entire function which provides a general-
ization of several usual functions, for example,

(i) exponential function: 𝐸
1,1
(𝑧) = 𝑒

𝑧;

(ii) cosine functions: 𝐸
2,1
(𝑧

2

) = cosh(𝑧) and 𝐸
2,1
(−𝑧

2

) =

cos(𝑧);
(iii) sine functions: 𝑧𝐸

2,2
(𝑧

2

) = sinh(𝑧) and 𝑧𝐸
2,2
(−𝑧

2

) =

sin(𝑧).

Let 𝑘 ∈ N ∪ {0}. The Laplace transform of the 𝑘th-order
derivative of the Mittag-Leffler function is given by [15]

∫

∞

0

𝑒
−𝜆𝑡

𝑡
𝛼𝑘+𝛽−1

𝐸
(𝑘)

𝛼,𝛽
(±𝜔𝑡

𝛼

) 𝑑𝑡 =
𝑘!𝜆

𝛼−𝛽

(𝜆
𝛼 ∓ 𝜔)

𝑘+1

,

Re (𝜆) > |𝜔|1/𝛼.

(14)

Using this formula, we obtain for 0 < 𝛼 < 1

𝐷
𝛼

𝑡
𝐸
𝛼,1
(𝑧𝑡

𝛼

) = 𝑧𝐸
𝛼,1
(𝑧𝑡

𝛼

) , 𝑡 > 0, 𝑧 ∈ C, (15)

and the identity

𝑑

𝑑𝑡
𝐸
𝛼,1
(𝑧𝑡

𝛼

) = 𝑧𝑡
𝛼−1

𝐸
𝛼,𝛼
(𝑧𝑡

𝛼

) . (16)

To see this, it is sufficient to write

L (𝑡
𝛼−1

𝐸
𝛼,𝛼
(𝑧𝑡

𝛼

)) (𝜆) =
1

𝜆𝛼 − 𝑧
=
1

𝑧
[𝜆
𝜆
𝛼−1

𝜆𝛼 − 𝑧
− 1] (17)

and invert the Laplace transform.
The following two definitions are taken from [16, 17],

respectively.

Definition 1. Let 𝐴 be a closed and linear operator with
domain𝐷(𝐴) defined on a Banach space𝑋 and𝛼 > 0.We call
𝐴 the generator of an (𝛼, 𝛼)-resolvent family if there exists𝜔 ≥
0 and a strongly continuous function 𝑃

𝛼
: [0,∞) → B(𝑋)

(resp., 𝑃
𝛼
: (0,∞) → B(𝑋) in case 0 < 𝛼 < 1) such that

{𝜆
𝛼

: Re(𝜆) > 𝜔} ⊂ 𝜌(𝐴) and

(𝜆
𝛼

− 𝐴)
−1

𝑥 = ∫

∞

0

𝑒
−𝜆𝑡

𝑃
𝛼
(𝑡) 𝑥 𝑑𝑡, Re (𝜆) > 𝜔, 𝑥 ∈ 𝑋.

(18)

In this case, 𝑃
𝛼
(𝑡) is called the (𝛼, 𝛼)-resolvent family gener-

ated by 𝐴.

Definition 2. Let 𝐴 be a closed and linear operator with
domain𝐷(𝐴) defined on a Banach space𝑋 and𝛼 > 0.We call
𝐴 the generator of an (𝛼, 1)-resolvent family if there exists𝜔 ≥
0 and a strongly continuous function 𝑆

𝛼
: [0,∞) → B(𝑋)

such that {𝜆𝛼 : Re(𝜆) > 𝜔} ⊂ 𝜌(𝐴) and

𝜆
𝛼−1

(𝜆
𝛼

− 𝐴)
−1

𝑥 = ∫

∞

0

𝑒
−𝜆𝑡

𝑆
𝛼
(𝑡) 𝑥 𝑑𝑡, Re (𝜆) > 𝜔, 𝑥 ∈ 𝑋.

(19)

In this case, 𝑆
𝛼
(𝑡) is called the (𝛼, 1)-resolvent family gener-

ated by 𝐴.

In the above definitions, the integrals involved are taken
in the sense of Riemann,more precisely as improperRiemann
integrals.

By the uniqueness theorem for the Laplace transform,
a (1, 1)-resolvent family is the same as a 𝐶

0
-semigroup;

a (2, 2)-resolvent family corresponds to the concept of sine
family, while a (2, 1)-resolvent family corresponds to a cosine
family. See, for example, [18] and the references therein for
an overview on these concepts. A systematic study in the
fractional case is carried out in [17].

Some properties of (𝑃
𝛼
(𝑡)) and (𝑆

𝛼
(𝑡)) are included in

the following lemma. Their proof uses techniques from the
general theory of (𝑎, 𝑘)-regularized resolvent families [19]
(see also [16, 17]). It will be of crucial use in the investigation
of mild solutions in Section 4.

Lemma 3. The following properties hold.

(i) 𝑆
𝛼
(0) = 𝐼.

(ii) 𝑆
𝛼
(𝑡)𝐷(𝐴) ⊂ 𝐷(𝐴) and 𝐴𝑆

𝛼
(𝑡)𝑥 = 𝑆

𝛼
(𝑡)𝐴𝑥 for all 𝑥 ∈

𝐷(𝐴), 𝑡 ≥ 0.
(iii) For all 𝑥 ∈ 𝐷(𝐴) : 𝑆

𝛼
(𝑡)𝑥 = 𝑥+∫

𝑡

0

𝑔
𝛼
(𝑡−𝑠)𝐴𝑆

𝛼
(𝑠)𝑥 𝑑𝑠,

𝑡 ≥ 0.
(iv) For all 𝑥 ∈ 𝑋 : (𝑔

𝛼
∗ 𝑆

𝛼
)(𝑡)𝑥 ∈ 𝐷(𝐴) and

𝑆
𝛼
(𝑡) 𝑥 = 𝑥 + 𝐴∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑆

𝛼
(𝑠) 𝑥 𝑑𝑠, 𝑡 ≥ 0. (20)

(v) 𝑃
𝛼
(𝑡)𝐷(𝐴) ⊂ 𝐷(𝐴) and 𝐴𝑃

𝛼
(𝑡)𝑥 = 𝑃

𝛼
(𝑡)𝐴𝑥 for all

𝑥 ∈ 𝐷(𝐴), 𝑡 > 0.
(vi) For all 𝑥 ∈ 𝐷(𝐴) : 𝑃

𝛼
(𝑡)𝑥 = 𝑔

𝛼
(𝑡)𝑥 + ∫

𝑡

0

𝑔
𝛼
(𝑡 −

𝑠)𝐴𝑃
𝛼
(𝑠)𝑥 𝑑𝑠, 𝑡 > 0.

(vii) For all 𝑥 ∈ 𝑋 : (𝑔
𝛼
∗ 𝑃

𝛼
)(𝑡)𝑥 ∈ 𝐷(𝐴) and

𝑃
𝛼
(𝑡) 𝑥 = 𝑔

𝛼
(𝑡) 𝑥 + 𝐴∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑃

𝛼
(𝑠) 𝑥 𝑑𝑠, 𝑡 > 0. (21)
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(viii) For 0 < 𝛼 < 1, lim
𝑡→0
𝑡
1−𝛼

𝑃
𝛼
(𝑡) = (1/Γ(𝛼))𝐼, and

𝑃
1
(0) = 𝐼 and for 𝛼 > 1, 𝑃

𝛼
(0) = 0.

Proof. Let 𝜔 be as in Definitions 1 or 2. Let 𝜇, 𝜆 > 𝜔 and
𝑥 ∈ 𝐷(𝐴). Then, 𝑥 = (𝐼 − 𝜇−𝛼𝐴)−1𝑦 for some 𝑦 ∈ 𝑋. Since
(𝐼−𝜆

−𝛼

𝐴)
−1 and (𝐼−𝜇−𝛼𝐴)−1 are bounded and commute and

since the operator 𝐴 is closed, we obtain from the definition
of 𝑃

𝛼
(𝑡)

�̂�
𝛼
(𝜆) 𝑥 = ∫

∞

0

𝑒
−𝜆𝑡

𝑃
𝛼
(𝑡) 𝑥 𝑑𝑡

= �̂�
𝛼
(𝜆) (𝐼 − 𝜇

−𝛼

𝐴)
−1

𝑦

= 𝜆
−𝛼

(𝐼 − 𝜆
−𝛼

𝐴)
−1

(𝐼 − 𝜇
−𝛼

𝐴)
−1

𝑦

= (𝐼 − 𝜇
−𝛼

𝐴)
−1

𝜆
−𝛼

(𝐼 − 𝜆
−𝛼

𝐴)
−1

𝑦

= (𝐼 − 𝜇
−𝛼

𝐴)
−1

�̂�
𝛼
(𝜆) 𝑦

= ∫

∞

0

𝑒
−𝜆𝑡

(𝐼 − 𝜇
−𝛼

𝐴)
−1

𝑃
𝛼
(𝑡) 𝑦 𝑑𝑡

(22)

and, analogously, from the definition of 𝑆
𝛼
(𝑡)

𝑆
𝛼
(𝜆) 𝑥 = ∫

∞

0

𝑒
−𝜆𝑡

𝑆
𝛼
(𝑡) 𝑥 𝑑𝑡

= 𝑆
𝛼
(𝜆) (𝐼 − 𝜇

−𝛼

𝐴)
−1

𝑦

= 𝜆
−1

(𝐼 − 𝜆
−𝛼

𝐴)
−1

(𝐼 − 𝜇
−𝛼

𝐴)
−1

𝑦

= (𝐼 − 𝜇
−𝛼

𝐴)
−1

𝜆
−1

(𝐼 − 𝜆
−𝛼

𝐴)
−1

𝑦

= (𝐼 − 𝜇
−𝛼

𝐴)
−1

𝑆
𝛼
(𝜆) 𝑦

= ∫

∞

0

𝑒
−𝜆𝑡

(𝐼 − 𝜇
−𝛼

𝐴)
−1

𝑆
𝛼
(𝑡) 𝑦 𝑑𝑡.

(23)

Hence, by uniqueness of the Laplace transform,

𝑃
𝛼
(𝑡) 𝑥 = (𝐼 − 𝜇

−𝛼

𝐴)
−1

𝑃
𝛼
(𝑡) (𝐼 − 𝜇

−𝛼

𝐴) 𝑥,

𝑆
𝛼
(𝑡) 𝑥 = (𝐼 − 𝜇

−𝛼

𝐴)
−1

𝑆
𝛼
(𝑡) (𝐼 − 𝜇

−𝛼

𝐴) 𝑥,

(24)

for all 𝑡 > 0. From these two equalities and the continuity of
𝑆
𝛼
on [0,∞), we immediately get (ii) and (v).
On the other hand, from the convolution theorems we

obtain, for 𝑥 ∈ 𝐷(𝐴),

∫

∞

0

𝑒
−𝜆𝑡

𝑔
𝛼
(𝑡) 𝑥 𝑑𝑡

= 𝜆
−𝛼

𝑥 = �̂�
𝛼
(𝜆) (𝐼 − 𝜆

−𝛼

𝐴) 𝑥

= �̂�
𝛼
(𝜆) 𝑥 − 𝜆

−𝛼

�̂�
𝛼
(𝜆) 𝐴𝑥

= ∫

∞

0

𝑒
−𝜆𝑡

[𝑃
𝛼
(𝑡) 𝑥 − ∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑃

𝛼
(𝑠) 𝐴𝑥 𝑑𝑠] 𝑑𝑡,

∫

∞

0

𝑒
−𝜆𝑡

𝑥 𝑑𝑡

= 𝜆
−1

𝑥 = 𝑆
𝛼
(𝜆) (𝐼 − 𝜆

−𝛼

𝐴) 𝑥

= 𝑆
𝛼
(𝜆) 𝑥 − 𝜆

−𝛼

𝑆
𝛼
(𝜆) 𝐴𝑥

= ∫

∞

0

𝑒
−𝜆𝑡

[𝑆
𝛼
(𝑡) 𝑥 − ∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑆

𝛼
(𝑠) 𝐴𝑥 𝑑𝑠] 𝑑𝑡.

(25)

The uniqueness theorem for the Laplace transform yields (iii)
and (vi).

We now prove (iv) and (vii). Let 𝑥 ∈ 𝑋 and define 𝑦 =
(𝜆 − 𝐴)

−1

𝑥 ∈ 𝐷(𝐴), where 𝜆 ∈ 𝜌(𝐴) is fixed. Let 𝑧 = (𝑔
𝛼
∗

𝑆
𝛼
)(𝑡)𝑥, 𝑡 ≥ 0. We have to show that 𝑧 ∈ 𝐷(𝐴) and 𝐴𝑧 =
𝑆
𝛼
(𝑡)𝑥 − 𝑥. Indeed, using (ii) and (iii), we obtain that

𝑧 = (𝜆 − 𝐴) (𝑔
𝛼
∗ 𝑆

𝛼
) (𝑡) 𝑦

= 𝜆 (𝑔
𝛼
∗ 𝑆

𝛼
) (𝑡) 𝑦 − 𝐴 (𝑔

𝛼
∗ 𝑆

𝛼
) (𝑡) 𝑦

= 𝜆 (𝑔
𝛼
∗ 𝑆

𝛼
) (𝑡) 𝑦 − (𝑆

𝛼
(𝑡) 𝑦 − 𝑦) ∈ 𝐷 (𝐴) ,

𝐴𝑧 = 𝜆𝐴 (𝑔
𝛼
∗ 𝑆

𝛼
) (𝑡) 𝑦 − 𝐴𝑆

𝛼
(𝑡) 𝑦 + 𝐴𝑦

= 𝜆 (𝑔
𝛼
∗ 𝐴𝑆

𝛼
) (𝑡) 𝑦 − 𝑆

𝛼
(𝑡) 𝐴𝑦 + (𝜆𝑦 − 𝑥)

= 𝜆 (𝑔
𝛼
∗ 𝐴𝑆

𝛼
) (𝑡) 𝑦 − 𝑆

𝛼
(t) (𝜆𝑦 − 𝑥) + 𝜆𝑦 − 𝑥

= 𝜆 [(𝑔
𝛼
∗ 𝐴𝑆

𝛼
) (𝑡) 𝑦 − 𝑆

𝛼
(𝑡) 𝑦 + 𝑦] + 𝑆

𝛼
(𝑡) 𝑥 − 𝑥

= 𝑆
𝛼
(𝑡) 𝑥 − 𝑥,

(26)

proving the claim. Analogously, we prove that (𝑔
𝛼
∗𝑃

𝛼
)(𝑡)𝑥 ∈

𝐷(𝐴) and

𝑃
𝛼
(𝑡) 𝑥 = 𝑔

𝛼
(𝑡) 𝑥 + 𝐴∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑃

𝛼
(𝑠) 𝑥 𝑑𝑠. (27)

From the continuity of 𝑆
𝛼
on [0,∞) and from (iv), we obtain

(i). That 𝑃
1
(0) = 𝐼 and 𝑃

𝛼
(0) = 0 for 𝛼 > 1 follow from

(vi) by using the fact that 𝑔
1
(0) = 1, 𝑔

𝛼
(0) = 0 for 𝛼 > 1,

and that the operator 𝐴 is closed. We notice that (iv) implies
that the domain 𝐷(𝐴) of the operator 𝐴 is necessarily dense
in 𝑋. Now, if 𝑥 ∈ 𝐷(𝐴), the first assertion in (viii), that is,
lim

𝑡→0
𝑡
1−𝛼

𝑃
𝛼
(𝑡)𝑥 = (1/Γ(𝛼))𝑥, for 0 < 𝛼 < 1, follows from

(vi), and we obtain that lim
𝑡→0
𝑡
1−𝛼

𝑃
𝛼
(𝑡) = (1/Γ(𝛼))𝐼, for 0 <

𝛼 < 1, by using this and the fact that 𝐷(𝐴) is dense in 𝑋.
The proof of the lemma is finished.

Note that it follows from (vii) and (viii) that (𝑃
𝛼
(𝑡))

exhibits a singular behavior at the origin if 0 < 𝛼 < 1.
However, 𝑡 → ‖𝑃

𝛼
(𝑡)‖ is in 𝐿1loc[0,∞) since by (viii), we have

that if 𝑡 is near zero, then

𝑃𝛼 (𝑡)
 ≤

1

Γ (𝛼) 𝑡
1−𝛼
. (28)
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Recall the definition of theWright type function [20, page 10,
Formula (28)]:

Φ
𝛼
(𝑧) :=

∞

∑

𝑛=0

(−𝑧)
𝑛

𝑛!Γ (−𝛼𝑛 + 1 − 𝛼)

=
1

2𝜋𝑖
∫
𝛾

𝜇
𝛼−1

𝑒
𝜇−𝑧𝜇
𝛼

𝑑𝜇, 0 < 𝛼 < 1,

(29)

where 𝛾 is a contour which starts and ends at −∞ and
encircles the origin once counterclockwise. By [17, page 14],
Φ
𝛼
(𝑡) is a probability density function, that is,

Φ
𝛼
(𝑡) ≥ 0, 𝑡 > 0, ∫

∞

0

Φ
𝛼
(𝑡) 𝑑𝑡 = 1. (30)

We also have Φ
𝛼
(0) = 1/Γ(1 − 𝛼), and as 𝑡 → +∞, Φ

𝛼
has

the following asymptotic expansion:

Φ
𝛼
(𝑡) = 𝑌

𝛼−1/2

𝑒
−𝑌

(

𝑀−1

∑

𝑚=0

𝐴
𝑚
𝑌
−𝑚

+ 𝑂 (𝑌
−𝑀

)) , (31)

for any𝑀 ∈ N, with 𝑌 = (1 − 𝛼)(𝛼𝛼𝑡)1/(1−𝛼), where 𝐴
𝑚
are

real numbers.
The following identity holds: for every 𝛼 ∈ (0, 1) and

𝑠 > 0,

𝑒
−𝜆
𝛼
𝑠

=L(𝛼
𝑠

𝑡𝛼+1
Φ
𝛼
(𝑠𝑡

−𝛼

)) (𝜆) . (32)

See [20, Formulas (40) and (41)]. We note that the above
Laplace transform was formerly first given by Pollard and
Mikusinski (see [20] and references therein). Formore details
on the Wright type functions, we refer to the monographs
[17, 20–22] and the references therein.

Let𝑋 be a Banach lattice with positive cone𝑋
+
. We recall

that a semigroup (𝑇(𝑡))
𝑡≥0

on 𝑋 is positive if for any 𝑥 ∈ 𝑋
+

and 𝑡 ≥ 0, 𝑇(𝑡)𝑥 ≥ 0. Similarly, an operator (𝐴,𝐷(𝐴)) is
resolvent positive if there is 𝜔 ∈ R such that (𝜔,∞) ⊂ 𝜌(𝐴)
and (𝜆 − 𝐴)−1𝑥 ≥ 0 for all 𝜆 > 𝜔 and any 𝑥 ∈ 𝑋

+
.

It is a well-known fact that a strongly continuous semi-
group is positive if and only if its generator is resolvent
positive. We finally will need the following result due to
Zhang [10].

Theorem 4. Let 𝑋 be a Banach lattice and 𝐴 : 𝑋 → 𝑋

a nonlinear operator. Suppose that there exists a positive linear
bounded operator 𝐵 : 𝑋 → 𝑋 with 𝑟

𝜎
(𝐵) < 1 and

−𝐵 (𝑥 − 𝑦) ≤ 𝐴 (𝑥) − 𝐴 (𝑦) ≤ 𝐵 (𝑥 − 𝑦) , (33)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≥ 𝑦. Then, the equation 𝑥 = 𝐴(𝑥) has
a unique solution in𝑋.

3. Subordination

Let𝐴 be a linear closed densely defined operator in a complex
Banach space 𝑋. If 𝐴 generates a 𝐶

0
-semigroup (𝑇(𝑡))

𝑡≥0

then, 𝐴 generates an (𝛼, 1)-resolvent family (𝑆
𝛼
(𝑡)) for all

0 < 𝛼 < 1 and they are related by the following formula [17]:

𝑆
𝛼
(𝑡) 𝑥 = ∫

∞

0

𝑡
−𝛼

Φ
𝛼
(𝑠𝑡

−𝛼

) 𝑇 (𝑠) 𝑥 𝑑𝑠, 𝑡 ≥ 0, 𝑥 ∈ 𝑋. (34)

A change of variables shows that the above is equivalent to

𝑆
𝛼
(𝑡) 𝑥 = ∫

∞

0

Φ
𝛼
(𝜏) 𝑇 (𝜏𝑡

𝛼

) 𝑥 𝑑𝜏, 𝑡 ≥ 0, 𝑥 ∈ 𝑋. (35)

In particular, it follows from the above representation formu-
las that (𝑆

𝛼
(𝑡)) is analytic and 𝑆

𝛼
(0) = 𝐼.

Concerning (𝛼, 𝛼)-resolvent families, we prove the fol-
lowing important theorem, which is the main result of this
section.

Theorem 5. Let 0 < 𝛼 < 1. If 𝐴 generates a 𝐶
0
-semigroup

(𝑇(𝑡))
𝑡≥0

, then 𝐴 generates an (𝛼, 𝛼)-resolvent family (𝑃
𝛼
(𝑡))

given for every 𝑥 ∈ 𝑋 and 𝑡 > 0 by

𝑃
𝛼
(𝑡) 𝑥 = 𝛼∫

∞

0

𝑠

𝑡𝛼+1
Φ
𝛼
(𝑠𝑡

−𝛼

) 𝑇 (𝑠) 𝑥 𝑑𝑠

= 𝛼∫

∞

0

𝜏

𝑡1−𝛼
Φ
𝛼
(𝜏) 𝑇 (𝜏𝑡

𝛼

) 𝑥 𝑑𝜏.

(36)

Moreover, for all 𝑥 ∈ 𝐷(𝐴), 𝑃
𝛼
(𝑡)𝑥 ∈ 𝐷(𝐴), and

𝑆


𝛼
(𝑡) 𝑥 = 𝐴𝑃

𝛼
(𝑡) 𝑥, 𝑡 > 0, 𝑥 ∈ 𝑋, (37)

(𝑔
1−𝛼
∗ 𝑃

𝛼
) (𝑡) 𝑥 = 𝑥 + ∫

𝑡

0

𝐴𝑃
𝛼
(𝑠) 𝑥 𝑑𝑠 = 𝑆

𝛼
(𝑡) 𝑥, 𝑡 ≥ 0.

(38)

Proof. Since 𝐴 generates a 𝐶
0
-semigroup (𝑇(𝑡))

𝑡≥0
, there

exists 𝜔 > 0 such that {𝜇 : Re(𝜇) > 𝜔} ⊂ 𝜌(𝐴) and

(𝜇 − 𝐴)
−1

𝑥 = ∫

∞

0

𝑒
−𝜇𝑡

𝑇 (𝑡) 𝑥 𝑑𝑡, 𝑥 ∈ 𝑋, Re (𝜇) > 𝜔.

(39)

In particular, {𝜆𝛼 : Re(𝜆) > 𝜔1/𝛼} ⊂ 𝜌(𝐴). It is clear that
(𝑃

𝛼
(𝑡)) is strongly continuous (and in fact analytic) for 𝑡 > 0.
We next show that �̂�

𝛼
(𝜆) = (𝜆

𝛼

− 𝐴)
−1 for Re(𝜆) large

enough. In fact, by (32) and Fubini’s theorem, we obtain for
every 𝑥 ∈ 𝑋,

�̂�
𝛼
(𝜆) 𝑥 = ∫

∞

0

𝑒
−𝜆𝑡

𝛼∫

∞

0

𝑠

𝑡𝛼+1
Φ
𝛼
(𝑠𝑡

−𝛼

) 𝑇 (𝑠) 𝑥 𝑑𝑠 𝑑𝑡

= ∫

∞

0

(∫

∞

0

𝛼𝑒
−𝜆𝑡
𝑠

𝑡𝛼+1
Φ
𝛼
(𝑠𝑡

−𝛼

) 𝑑𝑡)𝑇 (𝑠) 𝑥 𝑑𝑠

= ∫

∞

0

𝑒
−𝜆
𝛼
𝑠

𝑇 (𝑠) 𝑥 𝑑𝑠 = (𝜆
𝛼

− 𝐴)
−1

𝑥,

(40)

for all Re(𝜆) sufficiently large, proving the claim.We conclude
that 𝑃

𝛼
(𝑡) is an (𝛼, 𝛼) resolvent family with generator 𝐴.

On the other hand, from (35) and the fact that 𝐴 is
closed, we obtain for all 𝑥 ∈ 𝐷(𝐴) that 𝑃

𝛼
(𝑡)𝑥 ∈ 𝐷(𝐴) and

the identity

𝑆


𝛼
(𝑡) 𝑥 = ∫

∞

0

𝛼𝜏𝑡
𝛼−1

Φ
𝛼
(𝜏) 𝑇



(𝜏𝑡
𝛼

) 𝑥 𝑑𝜏

= ∫

∞

0

𝛼𝜏𝑡
𝛼−1

Φ
𝛼
(𝜏) 𝐴𝑇 (𝜏𝑡

𝛼

) 𝑥 𝑑𝜏

= 𝐴𝑃
𝛼
(𝑡) 𝑥, 𝑡 > 0,

(41)
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proving (37). Integrating the above identity, we obtain

𝑥 + ∫

𝑡

0

𝐴𝑃 (𝑠) 𝑥 𝑑𝑠 = 𝑆
𝛼
(𝑡) 𝑥, 𝑡 ≥ 0. (42)

Finally, from (vi) in Lemma 3, we get

(𝑔
1−𝛼
∗ 𝑃

𝛼
) (𝑡) 𝑥 = (𝑔

1−𝛼
∗ 𝑔

𝛼
) (𝑡) 𝑥

+ (𝑔
1−𝛼
∗ 𝑔

𝛼
∗ 𝐴𝑃

𝛼
) (𝑡) 𝑥

= 𝑥 + (1 ∗ 𝐴𝑃
𝛼
) (𝑡) 𝑥,

(43)

proving the theorem.

Remark 6. We observe that the paper [13] uses a different
approach for the evolution operators 𝑆

𝛼
and 𝑃

𝛼
. More pre-

cisely, the authors consider an almost sectorial operator𝐴 in a
Banach space and give a direct construction using theMittag-
Leffler functions.

4. Boundary Conditions

In this section, we give a spectral characterization of existence
of mild solutions of (1) with the boundary condition 𝑢(0) =
𝑢(1).The approach is based on the representation of solutions
using the solution families (𝑆

𝛼
(𝑡)) and (𝑃

𝛼
(𝑡)) of the previous

section. Assume that 𝐴 generates a 𝐶
0
semigroup (𝑇(𝑡))

𝑡≥0
.

Let 𝑆
𝛼
(𝑡) and𝑃

𝛼
(𝑡) be given by (34) and (36), respectively.The

linear fractional equation

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , 𝑡 > 0, (44)

with initial condition

𝑢 (0) = 𝑢
0
, (45)

has the unique (classical) solution 𝑢 given by

𝑢 (𝑡) = 𝑆
𝛼
(𝑡) 𝑢

0
+ ∫

𝑡

0

𝑃
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, (46)

whenever 𝑓 ∈ 𝑊1,1

(R
+
; 𝑋) and 𝑢

0
∈ 𝐷(𝐴). Indeed, note that

by (37),

𝑢


(𝑡) = 𝑆


𝛼
(𝑡) 𝑢

0
+ 𝑃

𝛼
(𝑡) 𝑓 (0) + (𝑃

𝛼
∗ 𝑓



) (𝑡) , 𝑡 > 0.

(47)

Hence, using (37), (38), and Lemma 3, we obtain

𝐷
𝛼

𝑡
𝑢 (𝑡) = (𝑔

1−𝛼
∗ 𝑢



) (𝑡)

= (𝑔
1−𝛼
∗ 𝐴𝑃

𝛼
) (𝑡) 𝑢

0
+ (𝑔

1−𝛼
∗ 𝑃

𝛼
) (𝑡) 𝑓 (0)

+ (𝑔
1−𝛼
∗ 𝑃

𝛼
∗ 𝑓



) (𝑡)

= 𝐴𝑆
𝛼
(𝑡) 𝑢

0
+ 𝑆

𝛼
(𝑡) 𝑓 (0) + (𝑆

𝛼
∗ 𝑓



) (𝑡)

= 𝐴𝑆
𝛼
(𝑡) 𝑢

0
+ 𝑓 (𝑡) + (𝑆



𝛼
∗ 𝑓) (𝑡)

= 𝐴𝑆
𝛼
(𝑡) 𝑢

0
+ 𝐴 (𝑃

𝛼
∗ 𝑓) (𝑡) + 𝑓 (𝑡)

= 𝐴𝑢 (𝑡) + 𝑓 (𝑡) .

(48)

Note that for 𝛼 = 1, the representation (46) is nothing
else but the well-known variation of constant formula for
the abstract Cauchy problem of first order, 𝑆

1
(𝑡) ≡ 𝑃

1
(𝑡)

and corresponds exactly to 𝑇(𝑡), the𝐶
0
-semigroup generated

by 𝐴.

Definition 7. Let 𝐴 with domain 𝐷(𝐴) be a closed linear
operator on a Banach space 𝑋. Let 𝑓 ∈ 𝐿1loc((0,∞);𝑋) and
0 < 𝛼 < 1. Let 𝐼𝛼 be the operator defined in (9). A function
𝑢 ∈ 𝐶([0,∞);𝑋) is called a mild solution of the equation

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , 𝑡 > 0, 𝑢 (0) = 𝑥, (49)

if 𝐼𝛼𝑢(𝑡) ∈ 𝐷(𝐴), 𝑡 ≥ 0 and

𝑢 (𝑡) = 𝑥 + 𝐴∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠.

(50)

Equivalently,

𝑢 (𝑡) = 𝑥 + 𝐴𝐼
𝛼

𝑢 (𝑡) + 𝐼
𝛼

𝑓 (𝑡) , 𝑡 ≥ 0. (51)

We have the following representation of mild solutions.

Lemma 8. Suppose that the operator 𝐴 generates a 𝐶
0
-

semigroup (𝑇(𝑡))
𝑡≥0

, and let 𝑓 ∈ 𝐿1loc((0,∞);𝑋) such that
the mapping 𝑡 → ∫

𝑡

0

𝑓(𝑠)𝑑𝑠 is exponentially bounded. Let
𝑢 ∈ 𝐶([0,∞);𝑋), 0 < 𝛼 < 1 and 𝑢(0) := 𝑥 ∈ 𝑋. Then,
the following assertions are equivalent:

(i) 𝐼𝛼𝑢(𝑡) ∈ 𝐷(𝐴), 𝑡 ≥ 0 and 𝑢(𝑡) = 𝑥 + 𝐴𝐼𝛼𝑢(𝑡) +
𝐼
𝛼

𝑓(𝑡), 𝑡 ≥ 0, that is, 𝑢 is a mild solution of (49),

(ii) 𝑢(𝑡) = 𝑆
𝛼
(𝑡)𝑥 + ∫

𝑡

0

𝑃
𝛼
(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠 for all 𝑡 > 0.

Note that the mapping 𝑡 → ∫
𝑡

0

𝑓(𝑠)𝑑𝑠 is exponentially
bounded if, for example, the function 𝑓 ∈ ∪

𝑝≥1
𝐿
𝑝

((0,∞);𝑋)

or 𝑓 itself is exponentially bounded.

Proof of Lemma 8. (i)⇒ (ii): Assume that assertion (i) holds.
Then, 𝑢(𝑡) − 𝑢(0) = 𝐴𝐼𝛼𝑢(𝑡) + 𝐼𝛼𝑓(𝑡). Taking the Laplace
transform of this equality, we get that, �̂�(𝜆) − 1/𝜆𝑢(0) =
𝐴𝜆

−𝛼

�̂�(𝜆) + 𝜆
−𝛼

𝑓(𝜆), that is, �̂�(𝜆) − 𝐴𝜆−𝛼�̂�(𝜆) = 1/𝜆𝑢(0) +
𝜆
−𝛼

𝑓(𝜆).Therefore, (𝐼−𝐴𝜆−𝛼)�̂�(𝜆) = 1/𝜆𝑢(0)+𝜆−𝛼𝑓(𝜆), and
𝜆
−𝛼

(𝜆
𝛼

− 𝐴)�̂�(𝜆) = 1/𝜆𝑢(0) + 𝜆
−𝛼

𝑓(𝜆). Hence,

�̂� (𝜆) =
1

𝜆
𝜆
𝛼

(𝜆
𝛼

− 𝐴)
−1

𝑢 (0) + 𝜆
𝛼

𝜆
−𝛼

(𝜆
𝛼

− 𝐴)
−1

𝑓 (𝜆)

= 𝜆
𝛼−1

(𝜆
𝛼

− 𝐴)
−1

𝑢 (0) + (𝜆
𝛼

− 𝐴)
−1

𝑓 (𝜆) .

(52)

Taking the inverse Laplace transform of this equality, we get
the assertion (ii).

(ii)⇒ (i): As a consequence of (iv) and (vii) in Lemma 3,
we have

𝐼
𝛼

𝑢 (𝑡) = (𝑔
𝛼
∗ 𝑢) (𝑡)

= (𝑔
𝛼
∗ 𝑆

𝛼
) (𝑡) 𝑥 + (𝑔

𝛼
∗ 𝑃

𝛼
∗ 𝑓) (𝑡) ∈ 𝐷 (𝐴) ,
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𝐴 (𝑔
𝛼
∗ 𝑢) (𝑡) = 𝐴 (𝑔

𝛼
∗ 𝑆

𝛼
) (𝑡) 𝑥 + 𝐴 (𝑔

𝛼
∗ 𝑃

𝛼
∗ 𝑓) (𝑡)

= 𝑆
𝛼
(𝑡) 𝑥 − 𝑥 + [𝐴 (𝑔

𝛼
∗ 𝑃

𝛼
) ∗ 𝑓] (𝑡)

= 𝑆
𝛼
(𝑡) 𝑥 − 𝑥 + (𝑃

𝛼
− 𝑔

𝛼
) ∗ 𝑓 (𝑡)

= 𝑆
𝛼
(𝑡) 𝑥 − 𝑥 + (𝑃

𝛼
∗ 𝑓) (𝑡) − (𝑔

𝛼
∗ 𝑓) (𝑡)

= 𝑢 (𝑡) − 𝑥 − (𝑔
𝛼
∗ 𝑓) (𝑡) ,

(53)

proving the lemma.

Uniqueness of the classical solution follows from the
lemma upon observing that any classical solution is neces-
sarily a mild solution.

The following problem was considered by Prüss [1] when
𝛼 = 1 and 𝐴 generates a strongly continuous semigroup.
If one starts with 𝑓 ∈ 𝐶([0, 1]; 𝑋) and solves the problem
𝑢


(𝑡) = 𝐴𝑢(𝑡)+𝑓(𝑡)with the boundary condition 𝑢(0) = 𝑢(1),
then the resulting solution can be extended to a periodic
continuous function on R. We observe that Haraux [2] had
considered similar problems earlier.

For the fractional differential Equation (44), we obtain
a mild solution on [0,∞). In the next result (Theorem 9),
we obtain a necessary and sufficient condition that the mild
solution will satisfy the boundary condition 𝑢(0) = 𝑢(1).

We remark that the concept of periodic boundary valued
solutions for fractional differential equations has been intro-
duced in the literature by Belmekki et al. in the paper [9] as
described in the introduction. In this line of research, we note
that the paper [23] by Kaslik and Sivasundaram considers
existence and nonexistence of periodic solutions of fractional
differential equations for various definitions of the fractional
derivative.

We consider the following problem

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ (0, 1) , 0 < 𝛼 < 1,

𝑢 (0) = 𝑢 (1) .

(54)

Theorem 9. Let 𝑋 be a Banach space, and assume that
𝐴 generates a 𝐶

0
semigroup (𝑇(𝑡))

𝑡≥0
. Let (𝑆

𝛼
(𝑡)) be the

subordinated (𝛼, 1)-resolvent family. Then, 1 ∈ 𝜌(𝑆
𝛼
(1)) if and

only if for any 𝑓 ∈ 𝐶([0, 1]; 𝑋); (54) admits precisely one mild
solution.

Proof. Suppose that 1 ∈ 𝜌(𝑆
𝛼
(1)). Note that if the solution

𝑢 of the differential equation in (54) satisfies the condition
𝑢(0) = 𝑢(1), then Lemma 8(ii) implies

(𝐼 − 𝑆
𝛼
(1)) 𝑢 (0) = ∫

1

0

𝑃
𝛼
(1 − 𝑠) 𝑓 (𝑠) 𝑑𝑠. (55)

Hence,

𝑢 (0) = (𝐼 − 𝑆
𝛼
(1))

−1

∫

1

0

𝑃
𝛼
(1 − 𝑠) 𝑓 (𝑠) 𝑑𝑠. (56)

Wenotice that the existence of solutions follows, if one defines
𝑢(0) by (56).

Conversely, define 𝐾
𝛼
: 𝐶([0, 1]; 𝑋) → 𝐶([0, 1]; 𝑋) by

means of (𝐾
𝛼
𝑓)(𝑡) = 𝑢(𝑡), where𝑢(𝑡)denotes the uniquemild

solution of (54). It is clear that 𝐾
𝛼
is linear and everywhere

defined. Moreover, it is not difficult to show, using the closed
graph theorem, that𝐾

𝛼
is bounded. Now, for 𝑥 ∈ 𝑋, consider

𝑓
𝛼
(𝑡) 𝑥 := (𝛼 − 1) 𝑔

2−𝛼
(𝑡) 𝑥 − 𝛼 (𝑔

1−𝛼
∗ 𝑆

𝛼
) (𝑡) 𝑥 (57)

and define𝑄
𝛼
𝑥 := (𝐾

𝛼
𝑓
𝛼
)(0)𝑥. Clearly,𝑄

𝛼
: 𝑋 → 𝑋 is linear

and bounded. We claim that

∫

𝑡

0

𝑃
𝛼
(𝑡 − 𝑠) 𝑓

𝛼
(𝑠) 𝑥 𝑑𝑠 = 𝑡𝑆

𝛼
(𝑡) 𝑥, 𝑡 > 0. (58)

Indeed, the Laplace transform of 𝑓
𝛼
is given by

𝑓
𝛼
(𝜆) = (𝛼 − 1) 𝜆

𝛼−2

− 𝛼𝜆
𝛼−1

𝜆
𝛼−1

(𝜆
𝛼

− 𝐴)
−1

. (59)

Let 𝐼
𝑓
(𝑡) be the left-hand side of (58). Then, taking the

Laplace transform and using (59), we get that

𝐼
𝑓
(𝜆) = (𝜆

𝛼

− 𝐴)
−1

𝑓
𝛼
(𝜆)

= (𝛼 − 1) 𝜆
𝛼−2

(𝜆
𝛼

− 𝐴)
−1

− 𝛼𝜆
𝛼−1

𝜆
𝛼−1

(𝜆
𝛼

− 𝐴)
−2

=
𝑑

𝑑𝜆
(𝜆

𝛼−1

(𝜆
𝛼

− 𝐴)
−1

) =
𝑑

𝑑𝜆
(𝑆

𝛼
(𝜆)) .

(60)

From the uniqueness of the Laplace transform, we obtain (58)
and the claim is proved. Now, using (55) and (58), we get that

(𝐼 − 𝑆
𝛼
(1)) (𝑄

𝛼
𝑥 + 𝑥)

= ∫

1

0

𝑃
𝛼
(1 − 𝑠) 𝑓

𝛼
(𝑠) 𝑥 𝑑𝑠 + 𝑥 − 𝑆

𝛼
(1) 𝑥

= 𝑆
𝛼
(1) 𝑥 + 𝑥 − 𝑆

𝛼
(1) 𝑥 = 𝑥.

(61)

This shows that 𝐼−𝑆
𝛼
(1) is surjective. Now, let 𝑥

0
∈ 𝑋 be such

that (𝐼 − 𝑆
𝛼
(1))𝑥

0
= 0. Then, using (58), we get that

𝑥
0
= 𝑆

𝛼
(1) 𝑥

0
= ∫

1

0

𝑃
𝛼
(1 − 𝑠) 𝑓

𝛼
(𝑠) 𝑥

0
𝑑𝑠. (62)

Using (62), (55) (which follows from Lemma 8(ii)), and (58)
again, we get that

0 = (𝐼 − 𝑆
𝛼
(1)) 𝑥

0
= ∫

1

0

𝑃
𝛼
(1 − 𝑠) 𝑓

𝛼
(𝑠) 𝑥

0
𝑑𝑠 = 𝑆

𝛼
(1) 𝑥

0
.

(63)

We have shown that 𝑥
0
= 0 proving that 𝐼 − 𝑆

𝛼
(1) is injective.

Hence, 𝐼 − 𝑆
𝛼
(1) is invertible and the proof is finished.

Remark 10. Analternative proof of the injectivity of (𝐼−𝑆
𝛼
(1))

in the preceding proof runs as follows: let 𝑥
0
∈ 𝑋 be such

that (𝐼 − 𝑆
𝛼
(1))𝑥

0
= 0 and set 𝑢(𝑡) := 𝑆

𝛼
(𝑡)𝑥

0
. Then, 𝑢 is

a mild solution of (54) with the forcing term 𝑓 = 0. Since
the function 𝑢 = 0 is also of mild solution of (54) (with the
forcing term 𝑓 = 0), the uniqueness of the solution yields
𝑥
0
= 𝑢(0) = 0, proving that 𝐼 − 𝑆

𝛼
(1) is injective.
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We remark that the condition 1 ∈ 𝜌(𝑆
𝛼
(1)) is trivially

satisfied if ‖𝑆
𝛼
(1)‖ < 1.

Corollary 11. Suppose that the operator 𝐴 generates a 𝐶
0
-

semigroup (𝑇(𝑡))
𝑡≥0

satisfying lim
𝑡→∞
‖𝑇(𝑡)‖ = 0. Then, for

𝑓 ∈ 𝐶([0, 1]; 𝑋), (54) admits exactly one mild solution.

Proof. First, observe that 𝑆
𝛼
(1)𝑥 = ∫

∞

0

Φ
𝛼
(𝑠)𝑇(𝑠)𝑥 𝑑𝑠, 𝑥 ∈ 𝑋

and recall that Φ
𝛼
(𝑠) ≥ 0, 𝑠 ≥ 0, and ∫∞

0

Φ
𝛼
(𝑠)𝑑𝑠 = 1. Since

Φ
𝛼
(𝑧) is a nonzero analytic function, it follows that for each

𝜏 > 0, we have ∫∞
𝜏

Φ
𝛼
(𝑠)𝑑𝑠 > 0. We first assume that (𝑇(𝑡))

𝑡≥0

is contractive, that is, ‖𝑇(𝑡)‖ ≤ 1, 𝑡 ≥ 0. Then, for 𝑥 ∈ 𝑋,

𝑆𝛼 (1) 𝑥
 =



∫

∞

0

Φ
𝛼
(𝑠) 𝑇 (𝑠) 𝑥 𝑑𝑠



≤ ∫

∞

0

Φ
𝛼
(𝑠) ‖𝑇 (𝑠) 𝑥‖ 𝑑𝑠

≤ ∫

𝜏

0

Φ
𝛼
(𝑠) 𝑑𝑠 ‖𝑥‖

+ ∫

∞

𝜏

Φ
𝛼
(𝑠) ‖𝑇 (𝑠) 𝑥‖ 𝑑𝑠.

(64)

Let 0 < 𝜀 < 1. We can choose 𝜏 > 0 such that ‖𝑇(𝑠)‖ < 𝜀 for
all 𝑠 ≥ 𝜏. It follows that

𝑆𝛼 (1) 𝑥
 ≤ ∫

𝜏

0

Φ
𝛼
(𝑠) 𝑑𝑠 ‖𝑥‖ + ∫

∞

𝜏

Φ
𝛼
(𝑠) ‖𝑇 (𝑠) 𝑥‖ 𝑑s

≤ (∫

𝜏

0

Φ
𝛼
(𝑠) 𝑑𝑠 + 𝜀∫

∞

𝜏

Φ
𝛼
(𝑠) 𝑑𝑠) ‖𝑥‖

≤ (1 + (𝜀 − 1) ∫

∞

𝜏

Φ
𝛼
(𝑠) 𝑑𝑠) ‖𝑥‖ .

(65)

Therefore, ‖𝑆
𝛼
(1)‖ < 1 and hence, 𝐼 − 𝑆

𝛼
(1) is invertible.

If (𝑇(𝑡))
𝑡≥0

is not contractive, we renorm the space 𝑋 with
‖|𝑥|‖ = sup

𝑡≥0
‖𝑇(𝑡)𝑥‖. This norm is equivalent to the original

one and ‖|𝑇(𝑡)|‖ ≤ 1, 𝑡 ≥ 0. The proof is complete.

Note that by [24, Prop. V.1.2 & V.1.7], the assumption on
(𝑇(𝑡))

𝑡≥0
is equivalent to the fact that (𝑇(𝑡))

𝑡≥0
is exponen-

tially stable.
In the following examples, the semigroups are exponen-

tially stable.

Example 12. (1) Let Ω ⊂ R𝑁 be a bounded open set. Define
the operator 𝐴

𝐷
on 𝐿2(Ω) by

𝐷(𝐴
𝐷
) := {𝑢 ∈ 𝐻

1

0
(Ω) , Δ𝑢 ∈ 𝐿

2

(Ω)} , 𝐴
𝐷
𝑢 := Δ𝑢.

(66)

Then, 𝐴
𝐷
is a realization of the Laplace operator on 𝐿2(Ω)

with Dirichlet boundary conditions and it generates a 𝐶
0
-

semigroup on 𝐿2(Ω)which is exponentially stable. Moreover,
the semigroup interpolates on all 𝐿𝑝(Ω) and each semigroup
on 𝐿𝑝(Ω) (1 ≤ 𝑝 < ∞) is also exponentially stable (for a
complete description we refer, e.g., to [25]).

(2) Assume that Ω ⊂ R𝑁 is a bounded domain with
a Lipschitz continuous boundary 𝜕Ω and let 𝛾 ∈ 𝐿∞(𝜕Ω)
satisfy 𝛾(𝑥) ≥ 𝛾

0
> 0 for some constant 𝛾

0
. Define the bilinear

form 𝑎
𝛾
on 𝐿2(Ω) by

𝑎
𝛾
(𝑢, V) = ∫

Ω

∇𝑢∇V 𝑑𝑥 + ∫
𝜕Ω

𝛾𝑢V 𝑑𝜎, 𝑢, V ∈ 𝐻1

(Ω) .

(67)

Then, the operator 𝐴
𝛾
on 𝐿2(Ω) associated with the form 𝑎

𝛾

in the sense that

𝐷(𝐴
𝛾
) = {𝑢 ∈ 𝐻

1

(Ω) , ∃ 𝑓 ∈ 𝐿
2

(Ω) ,

𝑎
𝛾
(𝑢, V) = (𝑓, V)

𝐿
2
(Ω)
∀V ∈ 𝐻1

(Ω)} ,

𝐴
𝛾
𝑢 = −𝑓

(68)

is a realization of the Laplace operator with Robin boundary
conditions. As in part (1), this operator generates an expo-
nentially stable 𝐶

0
-semigroup in 𝐿2(Ω) which interpolates

on 𝐿𝑝(Ω) and each semigroup is exponentially stable in
𝐿
𝑝

(Ω) (1 ≤ 𝑝 < ∞).
(3) Let Ω and 𝛾 be as in part (2). Let 𝐴 be an elliptic

operator in divergence form of the type

𝐴𝑢 =

𝑁

∑

𝑖,𝑗=1

𝐷
𝑖
(𝑎

𝑖𝑗
(𝑥)𝐷

𝑗
𝑢) = div (𝑎 (𝑥) ∇𝑢) , (69)

where 𝑎
𝑖𝑗
(𝑖, 𝑗 = 1, . . . , 𝑁) are real valued bounded measur-

able functions such that 𝑎
𝑖𝑗
(𝑥) = 𝑎

𝑗𝑖
(𝑥) and there exists a

constant 𝛼
0
> 0 such that ∑𝑁

𝑖,𝑗=1
𝑎
𝑖𝑗
(𝑥)𝜉

𝑖
𝜉
𝑗
≥ 𝛼

0
|𝜉|

2 holds for
all 𝜉 ∈ R𝑁 and almost every 𝑥 in Ω. Let Δ

Γ
𝑢 = div

Γ
(∇

Γ
𝑢) be

the Laplace-Beltrami operator on the boundary, where ∇
Γ
𝑢

denotes the tangential gradient at the boundary 𝜕Ω. Define
the bilinear symmetric formA with domainH1

(Ω) := {𝑈 =

(𝑢, 𝑢 |
𝜕Ω
) : 𝑢 ∈ 𝐻

1

(Ω), 𝑢|
𝜕Ω
∈ 𝐻

1

(𝜕Ω)} on the product space
𝐿
2

(Ω) × 𝐿
2

(𝜕Ω) by

A (𝑢, V) =
𝑁

∑

𝑖,𝑗=1

∫
Ω

𝑎
𝑖𝑗
(𝑥)𝐷

𝑖
𝑢𝐷

𝑗
V 𝑑𝑥

+ ∫
𝜕Ω

∇
Γ
𝑢∇

Γ
V 𝑑𝜎 + ∫

𝜕Ω

𝛾 (𝑥) 𝑢V 𝑑𝜎.

(70)

It is straightforward to show thatA is closed and the operator
on 𝐿2(Ω) × 𝐿2(𝜕Ω) associated with it generates a contraction
𝐶
0
-semigroup with generator 𝐴

2
given by

𝐷(𝐴
2
) = {𝑈 ∈H

1

(Ω) , 𝐴𝑢 ∈ 𝐿
2

(Ω) ,

Δ
Γ
𝑢 − 𝜕

𝑎

]𝑢 − 𝛾𝑢 exists in 𝐿
2

(𝜕Ω)} ,

𝐴
2
𝑢 = (𝐴𝑢, Δ

Γ
𝑢 − 𝜕

𝑎

]𝑢 − 𝛾𝑢) ,

(71)

while ]⃗ is the unit outer normal and 𝜕𝑎]𝑢 := (𝑎(𝑥)∇𝑢) ⋅ ]⃗
is the conormal derivative of 𝑢 with respect to the matrix
𝑎(𝑥) = (𝑎

𝑖𝑗
(𝑥))

1≤𝑖,𝑗≤𝑁
. Moreover, the semigroup interpolates

on all 𝐿𝑝(Ω)×𝐿𝑝(𝜕Ω), and each semigroup is contractive and
exponentially stable for every 𝑝 ∈ [1,∞).
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5. Positivity of Solutions and
the Semilinear Equation

Throughout this section,𝑋 will be a real Banach lattice.
It was shown by Nieto [8, 26] that if 𝛼 ∈ (0, 1), 𝜆 ∈ R,

𝐸
𝛼,𝛼
(𝜆) < 1/Γ(𝛼), and 𝑢 is such that

D
𝛼

𝑡
𝑢 (𝑡) − 𝜆𝑢 (𝑡) ≥ 0, (72)

whereD𝛼

𝑡
is the Riemann-Liouville fractional derivative; then

𝑢(𝑡) ≥ 0 for 𝑡 ∈ (0, 1]. Motivated by Nieto’s result, we show
in this section that if we consider the Caputo fractional
derivative in (72) then the same type of result holds assuming
that 𝐸

𝛼,1
(𝜆) < 1 instead of 𝐸

𝛼,𝛼
(𝜆) < 1/Γ(𝛼).

We begin with the following maximum principle based
only on initial conditions.

Proposition 13. Let 𝛼 ∈ (0, 1) and 𝐴 be the generator of
a positive 𝐶

0
-semigroup (𝑇(𝑡))

𝑡≥0
. Assume that 𝑢 is a mild

solution of (49) such that

𝐷
𝛼

𝑡
𝑢 (𝑡) − 𝐴𝑢 (𝑡) ≥ 0, 𝑢 (0) ≥ 0. (73)

Then, 𝑢(𝑡) ≥ 0 for all 𝑡 ∈ [0, 1].

Proof. Let 𝑥 ∈ 𝑋
+
. By the subordination formulae (34) and

(36) and the fact that Φ
𝛼
is a probability density on [0,∞),

we obtain 𝑆
𝛼
(𝑡)𝑥 ≥ 0 and 𝑃

𝛼
(𝑡)𝑥 ≥ 0, respectively. Using the

representation of the solution given in Lemma 8(ii), we see
that 𝑢(𝑡) ≥ 0 for all 𝑡 ∈ [0, 1].

Proposition 14. Let𝛼 ∈ (0, 1) and𝐴 be the generator of a posi-
tive 𝐶

0
-semigroup (𝑇(𝑡))

𝑡≥0
. Suppose that (𝐼 − 𝑆

𝛼
(1))

−1

𝑥 ≥ 0

for all 𝑥 ∈ 𝑋
+
. Assume that 𝑢 is a mild solution of (49) and

that

𝐷
𝛼

𝑡
𝑢 (𝑡) − 𝐴𝑢 (𝑡) ≥ 0, 𝑢 (0) = 𝑢 (1) . (74)

Then, 𝑢(𝑡) ≥ 0 for all 𝑡 ∈ [0, 1].

Proof. Under the given hypothesis, we have 𝑢(0) ≥ 0 by (56).
Hence, the result follows from Proposition 13.

We mention that the condition in (73) or in (74) is
equivalent to 𝑓(𝑡) ≥ 0, since by hypothesis, 𝑢 is a mild
solution of (49).

Note that if the spectral radius of 𝑆
𝛼
(1), that is, 𝑟

𝜎
(𝑆

𝛼
(1)),

is less than 1, then the inverse (𝐼 − 𝑆
𝛼
(1))

−1 is given by the
Neumann series ∑∞

𝑛=0
(𝑆

𝛼
(1))

𝑛, from which it follows that
∑
∞

𝑛=0
(𝑆

𝛼
(1))

𝑛

≥ 0, since 𝑆
𝛼
(1) ≥ 0.

The following corollary shows that the result obtained
by Nieto (mentioned at the beginning of this section) using
the Riemann-Liouville fractional derivative also holds for the
Caputo fractional derivative.

Corollary 15. Let 𝛼 ∈ (0, 1) and 𝜆 ∈ R. Suppose that
𝐸
𝛼,1
(𝜆) < 1. Assume that 𝑢 is a mild solution of (54) with

𝐴 = 𝜆𝐼 and satisfies

𝐷
𝛼

𝑡
𝑢 (𝑡) − 𝜆𝑢 (𝑡) ≥ 0, ∀𝑡 ∈ (0, 1) , 𝑢 (0) = 𝑢 (1) . (75)

Then, 𝑢(𝑡) ≥ 0 for all 𝑡 ∈ [0, 1].

Proof. By Definition 2 and formula (14), we have 𝑆
𝛼
(𝑡) =

𝐸
𝛼,1
(𝜆𝑡

𝛼

). Moreover, the semigroup generated by 𝐴 is given
by 𝑇(𝑡) = 𝑒𝜆𝑡𝐼 which is positive. The condition 𝐸

𝛼,1
(𝜆) < 1

implies that (𝐼 − 𝑆
𝛼
(1))

−1

𝑥 = (1 − 𝐸
𝛼,1
(𝜆))

−1

𝑥 ≥ 0 for all
𝑥 ∈ 𝑋

+
. Hence, the result follows from Proposition 14.

Now, we consider on a Banach lattice 𝑋 the following
semilinear problem:

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 𝜏, 0 < 𝛼 < 1,

𝑢 (0) = 𝑥 ∈ 𝑋,

(76)

where 𝐴 is the generator of a positive semigroup (𝑇(𝑡))
𝑡≥0

,
𝑓 : [0, 𝜏] ×𝑋 → 𝑋 is a locally integrable given function, and
𝜏 > 0 is a fixed real number.

If 𝑢 ∈ 𝐶([0, 𝜏]; 𝑋) satisfies the integral equation

𝑢 (𝑡) = 𝑆
𝛼
(𝑡) 𝑢 (0) + ∫

𝑡

0

𝑃
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 > 0,

(77)

then 𝑢 is called the mild solution of the semilinear problem
(76) on [0, 𝜏]. The following is the main result in this section.

Theorem 16. Let𝐴 generate a positive𝐶
0
-semigroup (𝑇(𝑡))

𝑡≥0

on aBanach lattice𝑋. Let 𝜏 > 0 be a fixed real number. Suppose
that there exist constants𝑀 ≥ 0, 𝑁 ≥ 0 such that for all 𝑠 ∈
[0, 𝜏] and 𝑥

1
, 𝑥

2
∈ 𝑋 with 𝑥

1
≥ 𝑥

2
,

−𝑀(𝑥
1
− 𝑥

2
) ≤ 𝑓 (𝑠, 𝑥

1
) − 𝑓 (𝑠, 𝑥

2
) ≤ 𝑁 (𝑥

1
− 𝑥

2
) . (78)

Then, (76) has a unique mild solution in 𝐶([0, 𝜏]; 𝑋).

Proof. Define the operator 𝑄
𝛼
: 𝐶([0, 𝜏]; 𝑋) → 𝐶([0, 𝜏]; 𝑋)

by

(𝑄
𝛼
𝑢) (𝑡) = 𝑆

𝛼
(𝑡) 𝑢 (0) + ∫

𝑡

0

𝑃
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 𝜏] .

(79)

Then, 𝑢 ∈ 𝐶([0, 𝜏]; 𝑋) is the mild solution of (76) if and only
if 𝑢 = 𝑄

𝛼
𝑢. Thus, existence of mild solutions is achieved by

proving that 𝑄
𝛼
has a fixed point.

For any 𝑢, V ∈ 𝐶([0, 𝜏]; 𝑋), 𝑢 ≤ V, and 𝑡 ∈ [0, 𝜏], we have

(𝑄
𝛼
V) (𝑡) − (𝑄

𝛼
𝑢) (𝑡) ≥ −∫

𝑡

0

𝑃
𝛼
(𝑡 − 𝑠)𝑀 (V (𝑠) − 𝑢 (𝑠)) 𝑑𝑠,

(𝑄
𝛼
V) (𝑡) − (𝑄

𝛼
𝑢) (𝑡) ≤ ∫

𝑡

0

𝑃
𝛼
(𝑡 − 𝑠)𝑁 (V (𝑠) − 𝑢 (𝑠)) 𝑑𝑠.

(80)

Let 𝐶 := max{𝑀,𝑁}; then,

−𝐵
𝛼
(V (𝑡) − 𝑢 (𝑡)) ≤ (Q

𝛼
V) (𝑡) − (𝑄

𝛼
𝑢) (𝑡)

≤ 𝐵
𝛼
(V (𝑡) − 𝑢 (𝑡)) , 𝑡 ∈ [0, 𝜏] ,

(81)

where

(𝐵
𝛼
𝑥) (𝑡) := ∫

𝑡

0

𝑃
𝛼
(𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠. (82)
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Note that since the semigroup (𝑇(𝑡))
𝑡≥0

is positive, then
(𝑃

𝛼
(𝑡)) is positive, and hence, 𝐵

𝛼
is a positive operator. We

will show that 𝑟
𝜎
(𝐵

𝛼
) = 0. Indeed, using (28), we have that

for any 𝑡 ∈ [0, 𝜏],

(𝐵𝛼𝑥) (𝑡)
 ≤ ∫

𝑡

0

𝑃𝛼 (𝑡 − 𝑠)
 ‖𝑥 (𝑠)‖ 𝑑𝑠

≤
1

Γ (𝛼)
sup
𝑠∈[0,𝜏]

‖𝑥 (𝑠)‖ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑑𝑠

=
𝑡
𝛼

Γ (𝛼) 𝛼
‖𝑥‖ .

(83)

Let B denote the beta function defined by

B (𝛾, 𝜌) = ∫
1

0

𝑠
𝛾−1

(1 − 𝑠)
𝜌−1

𝑑𝑠. (84)

It is well known that B(𝛾, 𝜌) = Γ(𝛾)Γ(𝜌)/Γ(𝛾 + 𝜌). Therefore,


(𝐵

2

𝛼
𝑥) (𝑡)


≤ ∫

𝑡

0

𝑃𝛼 (𝑡 − 𝑠)


(𝐵𝛼𝑥) (𝑠)
 𝑑𝑠

≤
1

Γ (𝛼) 𝛼
‖𝑥‖∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛼

𝑑𝑠

=
𝑡
2𝛼

Γ (𝛼) 𝛼
‖𝑥‖∫

1

0

(1 − 𝑠)
𝛼−1

𝑠
𝛼

𝑑𝑠

=
𝑡
2𝛼

Γ (𝛼) 𝛼
‖𝑥‖B (𝛼 + 1, 𝛼)

=
𝑡
2𝛼

Γ (𝛼) 𝛼

Γ (𝛼+1) Γ (𝛼)

Γ (2𝛼+1)
‖𝑥‖=𝑡

2𝛼
Γ (𝛼)

Γ (2𝛼+1)
‖𝑥‖ .

(85)

By induction, it is easy to prove that for any 𝑛 ∈ N, we have

(𝐵
𝑛

𝛼
𝑥) (𝑡)

 ≤
(𝑡
𝛼

)
𝑛

(Γ (𝛼))
𝑛−1

Γ (𝑛𝛼 + 1)
‖𝑥‖ , 𝑡 ∈ [0, 𝜏] . (86)

Hence, ‖𝐵𝑛
𝛼
𝑥‖ ≤ ((𝜏

𝛼

)
𝑛

(Γ(𝛼))
𝑛−1

/Γ(𝑛𝛼 + 1))‖𝑥‖, and conse-
quently ‖𝐵𝑛

𝛼
‖ ≤ (𝜏

𝛼

)
𝑛

(Γ(𝛼))
𝑛−1

/Γ(𝑛𝛼 + 1). Therefore,

𝑟
𝜎
(𝐵

𝛼
) := lim

𝑛→∞

𝐵
𝑛

𝛼



1/𝑛

≤ lim
𝑛→∞

𝜏
𝛼

(Γ (𝛼))
1−1/𝑛

(Γ (𝑛𝛼 + 1))
1/𝑛

= 0. (87)

Hence, by Theorem 4 the result follows.

Remark 17. The above result remains valid if instead of
𝑓(𝑡, 𝑢(𝑡)) we consider the more general nonlinearity of [10],
namely,

𝑓(𝑡, 𝑢 (𝑡) , ∫

𝑡

0

𝑘
1
(𝑡, 𝑠) 𝑔

1
(𝑠, 𝑢 (𝑠)) 𝑑𝑠,

∫

𝜏

0

𝑘
2
(𝑡, 𝑠) 𝑔

2
(𝑠, 𝑢 (𝑠)) 𝑑𝑠) ,

(88)

where 𝑘
1
and 𝑘

2
are nonnegative and satisfy 𝑘

1
∈ 𝐶(𝐷), 𝑘

2
∈

𝐶([0, 𝜏] × [0, 𝜏]), with 𝐷 := {(𝑡, 𝑠) ∈ [0, 𝜏] × [0, 𝜏] : 𝑠 ≤ 𝑡,

the functions 𝑔
𝑗
(𝑠, ⋅) (𝑠 ∈ [0, 𝜏], 𝑗 = 1, 2) are nondecreasing,

and there are constants𝑀
𝑗
, 𝑁

𝑗
, 𝐿 ≥ 0 such that for every 𝑠 ∈

[0, 𝜏] and 𝑥
𝑗
, 𝑦

𝑗
, 𝑧

𝑗
∈ 𝑋 (𝑗 = 1, 2), 𝑥

1
≥ 𝑥

2
, 𝑦

1
≥ 𝑦

2
, and

𝑧
1
≥ 𝑧

2
, we have

−𝑀
1
(𝑥

2
− 𝑥

1
) − 𝑀

2
(𝑦

2
− 𝑦

1
)

≤ 𝑓 (𝑠, 𝑥
2
, 𝑦

2
, 𝑧

2
) − 𝑓 (𝑠, 𝑥

1
, 𝑦

1
, 𝑧

1
) ,

𝑓 (𝑠, 𝑥
2
, 𝑦

2
, 𝑧

2
) − 𝑓 (𝑠, 𝑥

1
, 𝑦

1
, 𝑧

1
)

≤ 𝑁
1
(𝑥

2
− 𝑥

1
) + 𝑁

2
(𝑦

2
− 𝑦

1
) ,

𝑔
1
(𝑠, 𝑥

2
) − 𝑔

1
(𝑠, 𝑥

1
) ≤ 𝐿 (𝑥

2
− 𝑥

1
) .

(89)
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