
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 937128, 7 pages
http://dx.doi.org/10.1155/2013/937128

Research Article
Nonperiodic Damped Vibration Systems with Asymptotically
Quadratic Terms at Infinity: Infinitely Many Homoclinic Orbits

Guanwei Chen

School of Mathematics and Statistics, Anyang Normal University, Anyang, Henan 455000, China

Correspondence should be addressed to Guanwei Chen; guanweic@163.com

Received 10 September 2013; Accepted 10 October 2013

Academic Editor: Dumitru Motreanu

Copyright © 2013 Guanwei Chen. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study a class of nonperiodic damped vibration systems with asymptotically quadratic terms at infinity. We obtain infinitely
many nontrivial homoclinic orbits by a variant fountain theorem developed recently by Zou. To the best of our knowledge, there is
no result published concerning the existence (or multiplicity) of nontrivial homoclinic orbits for this class of non-periodic damped
vibration systems with asymptotically quadratic terms at infinity.

1. Introduction and Main Results

In the end of 19th century, Poincaré recognized the impor-
tance of homoclinic orbits for dynamical systems. Since then
the existence and multiplicity of homoclinic solutions have
become one of the most important problems in the research
of dynamical systems. In this paper, we consider the following
nonperiodic damped vibration system (NDVS):

𝑢̈ (𝑡) + 𝑀𝑢̇ (𝑡) − 𝐿 (𝑡) 𝑢 (𝑡) + 𝐻

𝑢
(𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ R, (1)

where𝑀 is an antisymmetric𝑁 ×𝑁 constant matrix, 𝐿(𝑡) ∈
𝐶(R,R𝑁×𝑁) is a symmetric matrix, 𝐻(𝑡, 𝑢) ∈ 𝐶

1

(R ×

R𝑁,R) and 𝐻

𝑢
(𝑡, 𝑢) denotes its gradient with respect to the

𝑢 variable.We say that a solution 𝑢(𝑡) of (1) is homoclinic (to
0) if 𝑢(𝑡) ∈ 𝐶

2

(R,R𝑁) such that

𝑢 (𝑡) 󳨀→ 0, 𝑢̇ (𝑡) 󳨀→ 0 as |𝑡| → ∞. (2)

If 𝑢(𝑡) ̸≡ 0, then 𝑢(𝑡) is called a nontrivial homoclinic solu-
tion.

If 𝑀 = 0 (zero matrix), then (1) reduces to the following
second-order Hamiltonian system:

𝑢̈ (𝑡) − 𝐿 (𝑡) 𝑢 (𝑡) + 𝐻

𝑢
(𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ R, (3)

which is a classical equation which can describe many
mechanical systems, such as a pendulum. In the past decades,

the existence and multiplicity of periodic solutions and hom-
oclinic orbits for (3) have been studied by many authors via
variational methods; see [1–17] and the references therein.
The periodic assumptions are very important in the study of
homoclinic orbits for (3) since periodicity is used to control
the lack of compactness due to the fact that (3) is set on all R.

Nonperiodic problems are quite different from the ones
described in periodic cases. Rabinowitz and Tanaka [10]
introduced a type of coercivity condition on the matrix 𝐿(𝑡):

𝑙 (𝑡) := inf
|𝑢|=1

(𝐿 (𝑡) 𝑢, 𝑢) 󳨀→ +∞ as |𝑡| 󳨀→ ∞ (4)

and obtained the existence of homoclinic orbit for nonperi-
odic (3) under the usual Ambrosetti-Rabinowitz (𝐴𝑅) super-
quadratic condition:

0 < 𝜇𝐻 (𝑡, 𝑢) ≤ (𝐻

𝑢
(𝑡, 𝑢) , 𝑢) , ∀𝑡 ∈ R, ∀𝑢 ∈ R

𝑁

\ {0} ,

(5)

where 𝜇 > 2 is a constant, (⋅, ⋅) denotes the standard inner
product in R𝑁, and the associated norm is denoted by | ⋅ |.

As usual, we say that 𝐻 satisfies the subquadratic (or
superquadratic) growth condition at infinity if

lim
|𝑢|→∞

𝐻(𝑡, 𝑢)

|𝑢|

2
= 0 (or lim

|𝑢|→∞

𝐻(𝑡, 𝑢)

|𝑢|

2
= +∞) . (6)

If 𝑀 ̸= 0, that is, the damped vibration system (1), there are
only a few authors who have studied homoclinic orbits of
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the NDVS (1), see [18–23]. Zhu [18] considered the periodic
case of (1) (i.e., 𝐿(𝑡) and 𝐻(𝑡, 𝑢) are 𝑇-periodic in 𝑡 with
𝑇 > 0) and obtained the existence of nontrivial homoclinic
solutions of (1). The authors [19–23] considered the nonperi-
odic case of (1): Zhang and Yuan [19] obtained the existence
of at least one homoclinic orbit for (1) when 𝐻 satisfies the
subquadratic condition at infinity by using a standard min-
imizing argument. By a symmetric mountain pass theorem
and a generalized mountain pass theorem, Wu and Zhang
[20] obtained the existence and multiplicity of homoclinic
orbits for (1) when 𝐻 satisfies the local (𝐴𝑅) superquadratic
growth condition:

0 < 𝜇𝐻 (𝑡, 𝑢) ≤ (𝐻

𝑢
(𝑡, 𝑢) , 𝑢) , ∀𝑡 ∈ R, ∀ |𝑢| ≥ 𝑟, (7)

where 𝜇 > 2 and 𝑟 > 0 are two constants. We should notice
that the matrix 𝐿(𝑡) in (1) is required to satisfy condition (4)
in the Previously mentioned two papers [19, 20]. Later, Sun
et al. [21] obtained the existence of at least one homoclinic
orbit for (1) when 𝐻 satisfies the superquadratic condition at
infinity by using the following conditions which are weaker
than condition (4).

(𝐿

1
) There exists a constant 𝛽 > 1 such that

meas {𝑡 ∈ R : |𝑡|

−𝛽

𝐿 (𝑡) < 𝑏𝐼

𝑁
} < +∞, ∀𝑏 > 0. (8)

(𝐿

2
) There exists a constant 𝛾 ≥ 0 such that

𝑙 (𝑡) := inf
|𝑢|=1

(𝐿 (𝑡) 𝑢, 𝑢) ≥ −𝛾, ∀𝑡 ∈ R. (9)

Recently, by using conditions (𝐿

1
) and (𝐿

2
), Chen [22, 23]

obtained infinitely many nontrivial homoclinic orbits of (1)
when 𝐻 satisfies the subquadratic [22] (or superquadratic
[23]) growth condition at infinity. In fact, conditions (𝐿

1
) and

(𝐿

2
) are first used in [14]. Asmentioned in [21], there are some

matrix-valued functions 𝐿(𝑡) satisfying (𝐿

1
) and (𝐿

2
) but not

satisfying (4). For example, 𝐿(𝑡) := (𝑡

4sin2𝑡 + 1)𝐼

𝑁
. That is,

conditions (𝐿

1
) and (𝐿

2
) are weaker than condition (4).

Remark 1. To the best of our knowledge, there is no result
published concerning the existence (or multiplicity) of non-
trivial homoclinic orbits for the NDVS (1) when 𝐻 satisfies
the asymptotically quadratic condition at infinity (see the fol-
lowing condition (𝐻

3
)).

Let ̃

𝐻(𝑡, 𝑢) := 𝐻(𝑡, 𝑢)−(1/2)(𝐻

𝑢
(𝑡, 𝑢), 𝑢). We assume the

following.

(𝐻

1
) There are constants 𝜇 ∈ (1, 2) and 𝑐

1
, 𝑐

2
, 𝑐

3
> 0 such

that

𝑐

3
|𝑢|

𝜇

≤ |𝐻 (𝑡, 𝑢)| ≤ 𝑐

1
|𝑢| , ∀𝑡 ∈ R, |𝑢| ≤ 𝑐

2
. (10)

(𝐻

2
) 𝐻(𝑡, 𝑢) ≥ (1/2)(𝐻

𝑢
(𝑡, 𝑢), 𝑢) ≥ 0 for all (𝑡, 𝑢) ∈ R ×

R𝑁.
(𝐻

3
) lim
|𝑢|→∞

((𝐻(𝑡, 𝑢))/|𝑢|

2

) = 𝑉(𝑡) uniformly in 𝑡,
where 0 < inf

𝑡∈R𝑉(𝑡) ≤ sup
𝑡∈R𝑉(𝑡) < +∞.

(𝐻

4
)

̃

𝐻(𝑡, 𝑢) → +∞ as |𝑢| → ∞ and

lim sup
|𝑢|→0

󵄨

󵄨

󵄨

󵄨

𝐻

𝑢
(𝑡, 𝑢)

󵄨

󵄨

󵄨

󵄨

𝜇/(𝜇−1)

̃

𝐻 (𝑡, 𝑢)

= 𝑃 (𝑡) uniformly in 𝑡, |𝑃 (𝑡)| < ∞.

(11)

We should mention that the coercive-type assumption
(see (𝐻

4
)) of the function ̃

𝐻 was first observed and used by
Costa and Magalhães [24].

Now, our main result reads as follows.

Theorem 2. If (𝐿
1
), (𝐿
2
), (𝐻
1
)–(𝐻
4
), and 𝐻(𝑡, 𝑢) are even

in 𝑢 hold, then (1) possesses infinitely many nontrivial homo-
clinic orbits.

Example 3. Let
𝐻(𝑡, 𝑢) := 𝑉 (𝑡) |𝑢|

2

+ |𝑢|

𝜇

, 𝜇 ∈ (1, 2) ,
(12)

where 𝑉(𝑡) is defined in (𝐻

3
). It is not hard to check that

it satisfies conditions (𝐻

1
)–(𝐻
4
) with 𝑃(𝑡) = (2[2𝑉(𝑡) +

𝜇]

𝜇/(𝜇−1)

)/(2 − 𝜇) in (𝐻

4
).

The rest of our paper is organized as follows. In Section 2,
we establish the variational framework associatedwith (1) and
give some preliminary lemmas, which are useful in the proof
of our result, and then we give the detailed proof of our main
result.

2. Variational Frameworks and
the Proof of Our Main Result

In this section, we always assume that (𝐿
1
), (𝐿
2
), (𝐻
1
)–(𝐻
4
),

and𝐻(𝑡, 𝑢) are even in 𝑢 hold.
In the following, we will use ‖⋅‖

𝑝
to denote the norm of

𝐿

𝑝

(R,R𝑁) for any 𝑝 ∈ [1,∞]. Let 𝐸 := 𝐻

1

(R,R𝑁) be a
Hilbert space with the inner product and the norm given,
respectively, by

⟨𝑢, V⟩
𝐸
= ∫

R
[(𝑢̇ (𝑡) , V̇ (𝑡)) + (𝑢 (𝑡) , V (𝑡))] 𝑑𝑡,

‖𝑢‖

𝐸
= ⟨𝑢, 𝑢⟩

1/2

𝐸
, ∀𝑢, V ∈ 𝐸.

(13)

It is well known that 𝐸 is continuously embedded in
𝐿

𝑝

(R,R𝑁) for 𝑝 ∈ [2,∞). We define an operator 𝐽 : 𝐸 → 𝐸

by

(𝐽𝑢, V) := ∫

R

(𝑀𝑢 (𝑡) , V̇ (𝑡)) 𝑑𝑡, ∀𝑢, V ∈ 𝐸. (14)

Since 𝑀 is an antisymmetric 𝑁 × 𝑁 constant matrix, 𝐽 is
self-adjoint on 𝐸. Moreover, we denote by 𝜒 the self-adjoint
extension of the operator −𝑑

2

/𝑑𝑡

2

+𝐿(𝑡)+𝐽 with the domain
D(𝜒) ⊂ 𝐿

2

(R,R𝑁).
Let 𝑊 := D(|𝜒|

1/2

), the domain of |𝜒|1/2. We define,
respectively, on 𝑊 the inner product and the norm

⟨𝑢, V⟩
𝑊

:= (

󵄨

󵄨

󵄨

󵄨

𝜒

󵄨

󵄨

󵄨

󵄨

1/2

𝑢,

󵄨

󵄨

󵄨

󵄨

𝜒

󵄨

󵄨

󵄨

󵄨

1/2

V)
2

+ (𝑢, V)
2
,

‖𝑢‖

𝑊
= ⟨𝑢, 𝑢⟩

1/2

𝑊
,

(15)

where (⋅, ⋅)

2
denotes the inner product in 𝐿

2

(R,R𝑁).
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Lemma 4 ([21], Lemma 4). If conditions (𝐿
1
) and (𝐿

2
) hold,

then𝑊 is compactly embedded into 𝐿𝑝(R,R𝑁) for all 1 ≤ 𝑝 ≤

+∞.

By Lemma 4, it is easy to prove that the spectrum𝜎(𝜒) has
a sequence of eigenvalues (counted with their multiplicities)

𝜆

1
≤ 𝜆

2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑘
≤ ⋅ ⋅ ⋅ 󳨀→ ∞, (16)

and the corresponding system of eigenfunctions {𝑒
𝑘
: 𝑘 ∈ N}

(𝜒𝑒

𝑘
= 𝜆

𝑘
𝑒

𝑘
) forms an orthogonal basis in 𝐿

2

(R,R𝑁). Let

𝑘

1
:= ♯ {𝑗 : 𝜆

𝑗
< 0}, 𝑘

0
:= ♯ {𝑗 : 𝜆

𝑗
= 0},

𝑘

2
:= 𝑘

0
+ 𝑘

1
,

𝑊

−

:= span {𝑒

1
, . . . , 𝑒

𝑘
1

} ,

𝑊

0

:= span {𝑒

𝑘
1
+1
, . . . , 𝑒

𝑘
2

} ,

𝑊

+

:= cl
𝑊

(span {𝑒

𝑘
2
+1
, . . .}) .

(17)

Then, one has the orthogonal decomposition

𝑊 = 𝑊

−

⊕ 𝑊

0

⊕ 𝑊

+ (18)

with respect to the inner product ⟨⋅, ⋅⟩
𝑊
.

Now, we introduce, respectively, on 𝑊 the following new
inner product and norm:

⟨𝑢, V⟩ := (𝑢

0

, V0)
2

+ (

󵄨

󵄨

󵄨

󵄨

𝜒

󵄨

󵄨

󵄨

󵄨

1/2

𝑢,

󵄨

󵄨

󵄨

󵄨

𝜒

󵄨

󵄨

󵄨

󵄨

1/2

V)
2

,

‖𝑢‖ = ⟨𝑢, 𝑢⟩

1/2

,

(19)

where 𝑢, V ∈ 𝑊 = 𝑊

−

⊕ 𝑊

0

⊕ 𝑊

+ with 𝑢 = 𝑢

−

+ 𝑢

0

+ 𝑢

+,
and V = V− + V0 + V+. Clearly, the two norms ‖⋅‖ and ‖⋅‖

𝑊
are

equivalent (see [3]), and the decomposition 𝑊 = 𝑊

−

⊕𝑊

0

⊕

𝑊

+ is also orthogonal with respect to both inner products
⟨⋅, ⋅⟩ and (⋅, ⋅)

2
.

For problem (1), we consider the following functional:

Φ (𝑢)

=

1

2

∫

R

[|𝑢̇ (𝑡)|

2

+ (𝑀𝑢 (𝑡) , 𝑢̇ (𝑡)) + (𝐿 (𝑡) 𝑢 (𝑡) , 𝑢 (𝑡))] 𝑑𝑡

− ∫

R

𝐻(𝑡, 𝑢) 𝑑𝑡, 𝑢 ∈ 𝑊.

(20)

Then, Φ can be rewritten as

Φ (𝑢) =

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

− ∫

R

𝐻(𝑡, 𝑢) 𝑑𝑡,

𝑢 = 𝑢

−

+ 𝑢

0

+ 𝑢

+

∈ 𝑊.

(21)

Let 𝐼(𝑢) := ∫

R
𝐻(𝑡, 𝑢)𝑑𝑡. By the assumptions of 𝐻, we know

thatΦ, 𝐼 ∈ 𝐶

1

(𝑊,R) and the derivatives are given by

𝐼

󸀠

(𝑢) V = ∫

R

(𝐻

𝑢
(𝑡, 𝑢) , V) 𝑑𝑡,

Φ

󸀠

(𝑢) V = ⟨𝑢

+

, V+⟩ − ⟨𝑢

−

, V−⟩ − 𝐼

󸀠

(𝑢) V,

(22)

for any 𝑢, V ∈ 𝑊 = 𝑊

−

⊕𝑊

0

⊕𝑊

+ with 𝑢 = 𝑢

−

+𝑢

0

+𝑢

+ and
V = V−+V0+V+. By the discussion of [25], the (weak) solutions
of system (1) are the critical points of the 𝐶

1 functional Φ :

𝑊 → R. Moreover, it is easy to verify that if 𝑢 ̸≡ 0 is a solu-
tion of (1), then 𝑢(𝑡) → 0 and 𝑢̇(𝑡) → 0 as |𝑡| → ∞ (see
Lemma 3.1 in [26]).

Let 𝑊 be a Banach space with the norm ‖⋅‖ and 𝑊 :=

⨁

𝑚∈N𝑋𝑚 with dim𝑋

𝑚
< ∞ for any 𝑚 ∈ N. Set

𝑌

𝑘
:=

𝑘

⨁

𝑚=1

𝑋

𝑚
, 𝑍

𝑘
:=

∞

⨁

𝑚=𝑘

𝑋

𝑚
.

(23)

Consider the following 𝐶

1-functional Φ
𝜆
: 𝑊 → R defined

by

Φ

𝜆
(𝑢) = 𝐴 (𝑢) − 𝜆𝐵 (𝑢) , 𝜆 ∈ [1, 2] . (24)

To continue the discussion, we give the following variant
fountain theorem.

Lemma 5 (see [27]). Assume that the functional Φ
𝜆
defined

previously satisfies

(𝑇

1
) Φ

𝜆
maps bounded sets to bounded sets uniformly for

𝜆 ∈ [1, 2], and

Φ

𝜆
(−𝑢) = Φ

𝜆
(𝑢) ∀ (𝜆, 𝑢) ∈ [1, 2] × 𝑊; (25)

(𝑇

2
) 𝐵(𝑢) ≥ 0 for all 𝑢 ∈ 𝑊 and 𝐵(𝑢) → +∞ as ‖𝑢‖ →

∞ on any finite-dimensional subspace of𝑊;

(𝑇

3
) there exist 𝜌

𝑘
> 𝑟

𝑘
> 0 such that

𝛼

𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘
,‖𝑢‖=𝜌𝑘

Φ

𝜆
(𝑢) ≥ 0 > 𝛽

𝑘
(𝜆)

:= max
𝑢∈𝑌
𝑘
,‖𝑢‖=𝑟𝑘

Φ

𝜆
(𝑢) , ∀𝜆 ∈ [1, 2] ,

(26)

𝜉

𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘
,‖𝑢‖≤𝜌𝑘

Φ

𝜆
(𝑢) 󳨀→ 0 as 𝑘 󳨀→ ∞

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑓𝑜𝑟 𝜆 ∈ [1, 2] .

(27)

Then, there exist 0 < 𝜆

𝑗
→ 1 and 𝑢

𝜆
𝑗

∈ 𝑌

𝑗
such that

Φ

󸀠

𝜆
𝑗

|

𝑌
𝑗

(𝑢

𝜆
𝑗

) = 0,

Φ

𝜆
𝑗

(𝑢

𝜆
𝑗

) → 𝜂

𝑘
∈ [𝜉

𝑘
(2) , 𝛽

𝑘
(1)] as 𝑗 → ∞.

(28)

Particularly, if {𝑢
𝜆
𝑗

} has a convergent subsequence for every 𝑘,
then Φ

1
has infinitely many nontrivial critical points {𝑢

𝑘
} ⊂

𝑊 \ {0} satisfying Φ

1
(𝑢

𝑘
) → 0

− as 𝑘 → ∞.

For 𝑚 ∈ N, let 𝑋
𝑚

:= R𝑒

𝑚
(the sequence {𝑒

𝑚
} is defined

in Section 2 just below Lemma 4); then 𝑍

𝑘
and 𝑌

𝑘
can be

defined as before. In order to apply the previously mentioned
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variant fountain theorem to prove our main result, we define
the functionals 𝐴, 𝐵, and Φ

𝜆
on 𝑊 by

𝐴 (𝑢) :=

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

, 𝐵 (𝑢) :=

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+ ∫

R

𝐻(𝑡, 𝑢) 𝑑𝑡,

Φ

𝜆
(𝑢) := 𝐴 (𝑢) − 𝜆𝐵 (𝑢)

=

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

− 𝜆(

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+ ∫

R

𝐻(𝑡, 𝑢) 𝑑𝑡)

(29)

for all 𝑢 = 𝑢

0

+𝑢

−

+𝑢

+

∈ 𝑊 = 𝑊

0

⊕𝑊

−

⊕𝑊

+ and 𝜆 ∈ [1, 2].
Obviously,Φ

𝜆
∈ 𝐶

1

(𝑊,R) for all 𝜆 ∈ [1, 2].
Next, we will prove that conditions (𝑇

2
) and (𝑇

3
) of

Lemma 5 hold, that is, the following two lemmas.

Lemma 6. 𝐵(𝑢) ≥ 0 for all 𝑢 ∈ 𝑊 and 𝐵(𝑢) → ∞ as
‖𝑢‖ → ∞ on any finite-dimensional subspace of𝑊.

Proof. Obviously, condition (𝐻

2
) and the definition of 𝐵

imply that 𝐵(𝑢) ≥ 0 for all 𝑢 ∈ 𝑊. We claim that for any
finite-dimensional subspace 𝑋 ⊂ 𝑊, there exists a constant
𝜖 > 0 such that

𝑚({𝑡 ∈ R : |𝑢| ≥ 𝜖 ‖𝑢‖}) ≥ 𝜖, ∀𝑢 ∈ 𝑋 \ {0} , (30)

where 𝑚(⋅) denotes the Lebesgue measure in R. In fact, the
detailed proof of (30) has been given by Chen (Lemma 2.3 in
[22]).

For the 𝜖 given in (30), let

Λ

𝑢
:= {𝑡 ∈ R : |𝑢| ≥ 𝜖 ‖𝑢‖} , ∀𝑢 ∈ 𝑋 \ {0} . (31)

Then, by (30),

𝑚(Λ

𝑢
) ≥ 𝜖, ∀𝑢 ∈ 𝑋 \ {0} . (32)

By (𝐻

3
), there exist constants 𝑅

1
, 𝑅

2
> 0 such that

𝐻(𝑡, 𝑢) ≥ 𝑅

1
|𝑢|

2

, ∀ (𝑡, 𝑢) ∈ R ×R
𝑁 with |𝑢| ≥ 𝑅

2
.

(33)

The definition of Λ
𝑢
implies that for any 𝑢 ∈ 𝑋 with ‖𝑢‖ ≥

𝑅

2
/𝜖 there holds

|𝑢| ≥ 𝑅

2
, ∀𝑡 ∈ Λ

𝑢
. (34)

Combining (𝐻

2
), (32)–(34), and the definition of Λ

𝑢
, for any

𝑢 ∈ 𝑋 with ‖𝑢‖ ≥ 𝑅

2
/𝜖, we have

𝐵 (𝑢) =

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+ ∫

R

𝐻(𝑡, 𝑢) 𝑑𝑡

≥ ∫

Λ
𝑢

𝐻(𝑡, 𝑢) 𝑑𝑡

≥ ∫

Λ
𝑢

𝑅

1
|𝑢|

2

𝑑𝑡

≥ 𝑅

1
𝜖

2

‖𝑢‖

2

⋅ 𝑚 (Λ

𝑢
)

≥ 𝑅

1
𝜖

3

‖𝑢‖

2

.

(35)

It implies that 𝐵(𝑢) → ∞ as ‖𝑢‖ → ∞ on any finite-
dimensional subspace 𝑋 ⊂ 𝑊. The proof is finished.

Lemma 7. There exist a positive integer 𝑙

0
and two sequences

0 < 𝑟

𝑘
< 𝜌

𝑘
→ 0 as 𝑘 → ∞ such that

𝛼

𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘
,‖𝑢‖=𝜌𝑘

Φ

𝜆
(𝑢) > 0, ∀𝑘 ≥ 𝑙

0
, (36)

𝜉

𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘
,‖𝑢‖≤𝜌𝑘

Φ

𝜆
(𝑢) 󳨀→ 0 as 𝑘 → ∞

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑓𝑜𝑟 𝜆 ∈ [1, 2] ,

(37)

𝛽

𝑘
(𝜆) := max

𝑢∈𝑌
𝑘
,‖𝑢‖=𝑟𝑘

Φ

𝜆
(𝑢) < 0, ∀𝑘 ∈ N, (38)

where 𝑌

𝑘
= ⨁

𝑘

𝑚=1
𝑋

𝑚
and 𝑍

𝑘
= ⨁

∞

𝑚=𝑘
𝑋

𝑚
for all 𝑘 ∈ N.

Proof. (a) First, we show that (36) holds. Note that 𝑍
𝑘
⊂ 𝑊

+

for all 𝑘 ≥ 𝑘

2
+ 1, where 𝑘

2
is the integer defined in (17) just

below Lemma 4. By Lemma 4, there is a constant 𝜀
0
> 0 such

that ‖𝑢‖
∞

≤ 𝜀

0
‖𝑢‖ for any 𝑢 ∈ 𝑊. It follows that for any

𝑢 ∈ 𝑊 with ‖𝑢‖ ≤ 𝑐

2
/𝜀

0
there holds

|𝑢| ≤ ‖𝑢‖

∞
≤ 𝑐

2
, (39)

where 𝑐

2
is the constant in (𝐻

1
). It follows from (𝐻

1
) and

the definition of Φ
𝜆
that for any 𝑘 ≥ 𝑘

2
+ 1 and 𝑢 ∈ 𝑍

𝑘
with

‖𝑢‖ ≤ 𝑐

2
/𝜀

0
there holds

Φ

𝜆
(𝑢) ≥

1

2

‖𝑢‖

2

− 2∫

R

𝐻(𝑡, 𝑢) 𝑑𝑡

≥

1

2

‖𝑢‖

2

− 2𝑐

1
‖𝑢‖

1
, ∀𝜆 ∈ [1, 2] .

(40)

Let

𝑙

𝑘
:= sup
𝑢∈𝑍
𝑘
\{0}

‖𝑢‖

1

‖𝑢‖

, ∀𝑘 ∈ N. (41)

Then

𝑙

𝑘
󳨀→ 0 as 𝑘 󳨀→ ∞ (42)

by Lemma 4 and the Rellich embedding theorem (see [28]).
Consequently, (40) and (41) imply that

Φ

𝜆
(𝑢) ≥

1

2

‖𝑢‖

2

− 2𝑐

1
𝑙

𝑘
‖𝑢‖

(43)

for any 𝑘 ≥ 𝑘

2
+ 1 and 𝑢 ∈ 𝑍

𝑘
with ‖𝑢‖ ≤ 𝑐

2
/𝜀

0
. For any 𝑘 ∈

N, let

𝜌

𝑘
:= 8𝑐

1
𝑙

𝑘
. (44)

Then, by (42), we have

0 < 𝜌

𝑘
󳨀→ 0 as 𝑘 󳨀→ ∞. (45)

Evidently, (45) implies that there exists a positive integer 𝑙

0
>

𝑘

2
+ 1 such that

𝜌

𝑘
≤

𝑐

2

𝜀

0

, ∀𝑘 ≥ 𝑙

0
. (46)
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(43) together with (44) and (46) implies that

𝛼

𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘
,‖𝑢‖=𝜌𝑘

Φ

𝜆
(𝑢)

≥

𝜌

2

𝑘

2

−

𝜌

2

𝑘

4

=

𝜌

2

𝑘

4

> 0, ∀𝑘 ≥ 𝑙

0
.

(47)

That is, (36) holds.
(b) Second, we show that (37) holds. By (43), for any 𝑘 ≥

𝑙

0
and 𝑢 ∈ 𝑍

𝑘
with ‖𝑢‖ ≤ 𝜌

𝑘
, we have

Φ

𝜆
(𝑢) ≥ −2𝑐

1
𝑙

𝑘
𝜌

𝑘
. (48)

Observing that Φ
𝜆
(0) = 0 by (𝐻

1
), thus

0 ≥ inf
𝑢∈𝑍
𝑘
,‖𝑢‖≤𝜌𝑘

Φ

𝜆
(𝑢) ≥ −2𝑐

1
𝑙

𝑘
𝜌

𝑘
, ∀𝑘 ≥ 𝑙

0
, (49)

which together with (42) and (45) implies that

𝜉

𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘
,‖𝑢‖≤𝜌𝑘

Φ

𝜆
(𝑢) 󳨀→ 0 as 𝑘 󳨀→ ∞

uniformly for 𝜆 ∈ [1, 2] .

(50)

That is, (37) holds.
(c) Last, we show that (38) holds. For any 𝑘 ∈ N and 𝑢 ∈

𝑌

𝑘
with ‖𝑢‖ ≤ 𝑐

2
/𝜀

0
(𝜀
0
is the constant above (39)), similar to

(39), we have

|𝑢| ≤ 𝑐

2
. (51)

Therefore, by (51) and (𝐻

1
), for any 𝑘 ∈ N and 𝑢 ∈ 𝑌

𝑘
with

‖𝑢‖ ≤ 𝑐

2
/𝜀

0
, we have

Φ

𝜆
(𝑢) ≤

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

− ∫

R

𝐻(𝑡, 𝑢) 𝑑𝑡

≤

1

2

‖𝑢‖

2

− 𝑐

3
‖𝑢‖

𝜇

𝜇

≤

1

2

‖𝑢‖

2

− 𝐶

𝑘
‖𝑢‖

𝜇

, ∀𝜆 ∈ [1, 2] ,

(52)

where the last inequality follows by the equivalence of the two
norms ‖⋅‖

𝜇
and ‖⋅‖ on finite dimensional space 𝑌

𝑘
, and𝐶

𝑘
>

0 is a constant depending on 𝑌

𝑘
. For any 𝑘 ∈ N, if we choose

0 < 𝑟

𝑘
< min{𝜌

𝑘
, 𝐶

1/(2−𝜇)

𝑘
,

𝑐

2

𝜀

0

} , (53)

Then, by (52), direct computation shows that

𝛽

𝑘
(𝜆) := max

𝑢∈𝑌
𝑘
,‖𝑢‖=𝑟𝑘

Φ

𝜆
(𝑢) ≤ −

𝑟

2

𝑘

2

< 0, ∀𝑘 ∈ N.
(54)

That is, (38) holds.
Therefore, the proof is finished by (a), (b), and (c).

Proof of Theorem 2. By the assumptions of 𝐻 and the defi-
nition of Φ

𝜆
, we easily get that Φ

𝜆
maps bounded sets to

bounded sets uniformly for 𝜆 ∈ [1, 2]. Note that 𝐻(𝑡, −𝑢) =

𝐻(𝑡, 𝑢), sowehaveΦ
𝜆
(−𝑢) = Φ

𝜆
(𝑢) for all (𝜆, 𝑢) ∈ [1, 2]×𝑊.

Thus, the condition (𝑇

1
) of Lemma 5 holds. Lemma 6 shows

that the condition (𝑇

2
) of Lemma 5 holds. Lemma 7 implies

that the condition (𝑇

3
) of Lemma 5 holds for all 𝑘 ≥ 𝑙

0
,

where 𝑙
0
is given in Lemma 7.Therefore, by Lemma 5, for each

𝑘 ≥ 𝑙

0
, there exist 0 < 𝜆

𝑗
→ 1, 𝑢

𝜆
𝑗

∈ 𝑌

𝑗
such that

Φ

󸀠

𝜆
𝑗

|

𝑌
𝑗

(𝑢

𝜆
𝑗

) = 0,

Φ

𝜆
𝑗

(𝑢

𝜆
𝑗

) 󳨀→ 𝜂

𝑘
∈ [𝜉

𝑘
(2) , 𝛽

𝑘
(1)] as 𝑗 󳨀→ ∞.

(55)

Next, we only need to prove the following two claims to
complete the proof of Theorem 2.

Claim 1. {𝑢

𝜆
𝑗

} is bounded in 𝑊.

Proof of Claim 1. By (55), we have

(1/2)Φ

󸀠

𝜆
𝑗

|

𝑌
𝑗

(𝑢

𝜆
𝑗

) 𝑢

𝜆
𝑗

− Φ

𝜆
𝑗

(𝑢

𝜆
𝑗

)

𝜆

𝑗

≤ 𝐶

1

(56)

for some constant 𝐶
1
> 0. It follows from the definitions of

Φ

𝜆
𝑗

and ̃

𝐻 that

∫

R

̃

𝐻(𝑡, 𝑢

𝜆
𝑗

) 𝑑𝑡 =

(1/2)Φ

󸀠

𝜆
𝑗

|

𝑌
𝑗

(𝑢

𝜆
𝑗

) 𝑢

𝜆
𝑗

− Φ

𝜆
𝑗

(𝑢

𝜆
𝑗

)

𝜆

𝑗

≤ 𝐶

1
.

(57)

Since (𝐻

4
) implies ∫

R
̃

𝐻(𝑡, 𝑢)𝑑𝑡 → +∞ as |𝑢| → +∞, it
follows from (57) that

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝜆
𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

2
, ∀𝑗 ∈ N (58)

for some constant 𝐶
2

> 0. Note that 𝐻(𝑡, 𝑢) ∈ 𝐶

1

(R ×

R𝑁,R); it follows from (𝐻

4
) that there is a constant 𝐶

3
> 0

such that

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝐻

𝑢
(𝑡, 𝑢

𝜆
𝑗

)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜇/(𝜇−1)

≤ 𝐶

3

̃

𝐻(𝑡, 𝑢

𝜆
𝑗

) , 𝑡 ∈ R,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝜆
𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

2
.

(59)

Thus, by (57)–(59), Φ󸀠
𝜆
𝑗

|

𝑌
𝑗

(𝑢

𝜆
𝑗

)𝑢

+

𝜆
𝑗

= 0, Hölder’s inequality,
and Lemma 4,

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝜆
𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

= 𝜆

𝑗
∫

R

(𝐻

𝑢
(𝑡, 𝑢

𝜆
𝑗

) , 𝑢

+

𝜆
𝑗

) 𝑑𝑡

≤ 𝜆

𝑗
(∫

R

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝐻

𝑢
(𝑡, 𝑢

𝜆
𝑗

)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜇/(𝜇−1)

𝑑𝑡)

(𝜇−1)/𝜇

(∫

R

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

+

𝜆
𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜇

𝑑𝑡)

1/𝜇

≤ 𝐶

4
(∫

R

𝐶

3

̃

𝐻(𝑡, 𝑢

𝜆
𝑗

) 𝑑𝑡)

(𝜇−1)/𝜇
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝜆
𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝐶

5

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝜆
𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

(60)



6 Abstract and Applied Analysis

for some positive constant 𝐶
4
and 𝐶

5
. It implies that ‖𝑢+

𝜆
𝑗

‖ ≤

𝐶

5
. On the other hand, (𝐻

2
) and Φ

󸀠

𝜆
𝑗

|

𝑌
𝑗

(𝑢

𝜆
𝑗

)𝑢

𝜆
𝑗

= 0 imply
that

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝜆
𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

− 𝜆

𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝜆
𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

= 𝜆

𝑗
∫

R

(𝐻

𝑢
(𝑡, 𝑢

𝜆
𝑗

) , 𝑢

𝜆
𝑗

) 𝑑𝑡 ≥ 0;

(61)

that is,

𝜆

𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝜆
𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝜆
𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

2

.
(62)

It follows from
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝜆
𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝐶

5
that {𝑢

𝜆
𝑗

} is bounded in 𝑊.
Therefore, Claim 1 is true.

Claim 2. {𝑢

𝜆
𝑗

} has a strongly convergent subsequence in 𝑊.

Proof of Claim 2. Note that dim(𝑊

0

⊕𝑊

−

) < ∞. By Claim 1,
without loss of generality, we may assume that

𝑢

−

𝜆
𝑗

󳨀→ 𝑢

−

, 𝑢

0

𝜆
𝑗

󳨀→ 𝑢

0

, 𝑢

+

𝜆
𝑗

⇀ 𝑢

+

,

𝑢

𝜆
𝑗

⇀ 𝑢 as 𝑗 󳨀→ ∞

(63)

for some 𝑢 = 𝑢

0

+𝑢

−

+𝑢

+

∈ 𝑊 = 𝑊

0

⊕𝑊

−

⊕𝑊

+. By virtue of
the Riesz Representation Theorem, Φ󸀠

𝜆
𝑗

|

𝑌
𝑗

: 𝑌

𝑗
→ 𝑌

∗

𝑗
and

𝐼

󸀠

: 𝑊 → 𝑊

∗ can be viewed as Φ

󸀠

𝜆
𝑗

|

𝑌
𝑗

: 𝑌

𝑗
→ 𝑌

𝑗
and

𝐼

󸀠

: 𝑊 → 𝑊, respectively, where 𝑌

∗

𝑗
and 𝑊

∗ are the dual
spaces of 𝑌

𝑗
and 𝑊, respectively. Note that

0 = Φ

󸀠

𝜆
𝑗

|

𝑌
𝑗

(𝑢

𝜆
𝑗

) = 𝑢

+

𝜆
𝑗

− 𝜆

𝑗
[𝑢

−

𝜆
𝑗

+ 𝜒

𝑗
𝐼

󸀠

(𝑢

𝜆
𝑗

)] , ∀𝑗 ∈ N,

(64)

where 𝜒

𝑗
: 𝑊 → 𝑌

𝑗
is the orthogonal projection for all

𝑗 ∈ N; that is,

𝑢

+

𝜆
𝑗

= 𝜆

𝑗
[𝑢

−

𝜆
𝑗

+ 𝜒

𝑗
𝐼

󸀠

(𝑢

𝜆
𝑗

)] , ∀𝑗 ∈ N. (65)

By the assumptions of 𝐻 and the standard argument (see [29,
30]), we know 𝐼

󸀠

: 𝑊 → 𝑊

∗ is compact. Therefore, 𝐼󸀠 :
𝑊 → 𝑊 is also compact. Due to the compactness of 𝐼󸀠 and
(63), the right-hand side of (65) converges strongly in 𝑊 and
hence 𝑢+

𝜆
𝑗

→ 𝑢

+ in 𝑊. Combining this with (63), we have

𝑢

𝜆
𝑗

󳨀→ 𝑢 in 𝑊, 𝑗 󳨀→ ∞. (66)

Therefore, Claim 2 is true.
Now, from the last assertion of Lemma 5, we know that

Φ = Φ

1
has infinitely many nontrivial critical points. There-

fore, (1) possesses infinitely many nontrivial homoclinic
orbits.
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