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The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under
persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-
delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal
sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The
optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and
the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection
control is presented by adopting an exponential trending law, where the state and controlmemory terms are designed to compensate
the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is
designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to
make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance
rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and
the simplicity of the proposed approach.

1. Introduction

Various approaches have been proposed to solve disturbance
rejection problems, such as 𝐻

∞
control [1], adaptive control

[2], internal model control [3], variable structure control
(VSC) [4], and optimal control [5–7]. Optimal disturbance
rejection appears in a variety of applications, vehicle engine
[5], damped systems [6], and spacecraft attitude control [7],
for instance. However, in reality, the factor of nonlinearity,
uncertainty, or time delay exhibits much influence on prac-
tical system [8–19], especially on today’s large information
communication system. The factor of nonlinearity, uncer-
tainty, or time delay leads the system and computation to be
more complex and difficult to calculate. In addition, it brings
discrepancy between the real parameter and the precise one.
Therefore, it is necessary to take account of nonlinearity,
uncertainty, or time delays in system modeling. In recent
years, these issues have been given many attention; for

example, see [1, 8–30]. Moreover, there are series techniques
appeared to design controllers for such systems. Seeing that it
is not an easywork to solve one of these problems, say nothing
of concentrating on all of these issues. This study explores a
disturbance rejection control design for a nonlinear uncer-
tain time-delay system using the variable structure control
approach, for the reason of VSC’s insensitivity to a wide class
of uncertainties or disturbances [4, 8, 12, 13, 16, 30–34]. In
previous VSC investigations, some reports gave the solutions
for uncertain or nonlinear systems, for example, [8, 30, 34];
some gave for the timedelay systems [12, 13]; but few appeared
to focus on systems of both nonlinear uncertain and time-
delay. This paper is different from these bodies of literature.
It presents a relative simple VSC solution to a nonlinear
uncertain and time-delay system.

It is based on the ideas of the approximating sequence
method [25–27] and the finite spectrum assignment
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approach [20–22]. The contributions of this study are
as follows: firstly, the functional transformation method
is applied, which transforms the time-delay system to a
delay-free one and reduces the original problem from
an infinite-dimension space to a finite-dimension one;
subsequently, the optimal sliding mode surface (OSMS)
is designed by using approximating sequence method,
which simplifies the nonlinear OSMS design problem to a
linear two-point boundary value (TPBV) one; furthermore,
the corresponding compensators are designed in the
variable structure disturbance rejection control (VSDC)
so that the nonlinearity, uncertainty, and the time-delay
effects are entirely compensated consequentially; moreover,
the disturbance effect is reduced by the feedforward
compensation term; additionally, to realize its physical
implementation, a reduced-order observer is constructed
to reconstruct the disturbance state vectors, and thus the
observer-based dynamical VSDC is produced; finally, the
designed VSDC is employed to a quarter-car suspension
model which possesses the nonlinear, uncertain, and time-
delay properties, and by comparing the system responses
with the open-loop system (OLS), the effectiveness and the
simplicity of the designed control are demonstrated.

This paper is organized as follows. After an introduction,
in Section 2, system description is done. The OSMS and the
corresponding VSDC in finite-time horizon are designed in
Section 3. In Section 4, the infinite-time horizon ones are
given. In Section 5, numerical simulations are illustrated.
Concluding remarks are given in Section 6.

2. System Descriptions

Consider the uncertain nonlinear system with state and
control delays:

�̇�(𝑡) = 𝐴
0
𝑥(𝑡) + 𝐴

1
𝑥(𝑡 − 𝜎) + 𝐵

0
𝑢(𝑡)

+ 𝐵
1
𝑢(𝑡 − 𝜏) + 𝐷V(𝑡) + 𝑑(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)

𝑥(𝑡) = 𝜙(𝑡) , 𝑡 ∈ [−𝜎, 0]

𝑢(𝑡) = 0, 𝑡 ∈ [−𝜏, 0) ,

(1)

where 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑚 are state and control vector,
respectively; 𝐴

0
, 𝐴
1
∈ R𝑛×𝑛, 𝐵

0
, 𝐵
1
∈ R𝑛×𝑚, and 𝐷 ∈ R𝑛×𝑞

are constant matrices; 𝜏, 𝜎 ∈ R+ are constant control and
state delays, respectively; and 𝜙(𝑡) ∈ C([−𝜎, 0],R𝑛) is the
initial state vector. 𝑑(𝑥, 𝑡) represents a bounded matching
uncertainty produced by the system perturbation or internal
disturbance. 𝑓(𝑥, 𝑡) ∈ C1(R𝑛 × R,R𝑛) is the nonlinearity
with 𝑓(0, 𝑡) = 0 satisfying Lipschitz condition. In this study,
control 𝑢(𝑡) is assumed unlimited. Meanwhile, the following
assumption is needed for the derivation.

Assumption 1. It is assumed that system (1) is spectral con-
trollable.

In system (1), V(𝑡) ∈ R𝑞 is the external disturbance
input whose dynamical characteristic is known and can be
described by the following exosystem:

�̇�(𝑡) = 𝐺𝑤(𝑡)

V(𝑡) = 𝐹𝑤(𝑡) ,

(2)

where𝑤(𝑡) ∈ R𝑝 is the disturbance state vector and 𝐺 ∈ R𝑝×𝑝

and𝐹 ∈ R𝑞×𝑝 are constantmatrices.The pair (𝐺, 𝐹) is observ-
able completely. The initial condition 𝑤(0) can be unknown.
Exosystem (2) can describe most general disturbances, such
as step signalwith unknown amplitude, sinusoidal signalwith
known frequency and unknown amplitude and phase [28],
or random signal [29]. Due to the dynamical characteristics
of the external disturbances, exosystem (2) may be Lyapunov
stable or asymptotically stable; that is, Re𝜇

𝑗
(𝐺) = 0 or

Re 𝜇
𝑗
(𝐺) < 0 (𝑗 = 1, 2, . . . , 𝑝), respectively, where 𝜇

𝑗
(⋅)

denote the eigenvalues of a matrix.

In what follows, we will reduce the controller design
problem of original system (1) to that of a delay-free one
referring to the method proposed in [20] which applied this
method to a linear time-delay system. Now, we develop it to
the nonlinear time-delay system (1).

Define the following functional transformation:

𝑦(𝑡) = 𝑥(𝑡) + ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−ℎ−𝜎)

𝐴
1
𝑥(ℎ) 𝑑ℎ

+ ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−ℎ−𝜏)

𝐵
1
𝑢(ℎ) 𝑑ℎ,

(3)

where 𝑦 is absolutely continuous and therefore differentiable
almost everywhere and 𝐴 is an 𝑛 × 𝑛 matrix to be defined.
Employing differentiation under the integral, (3) in conjunc-
tion with (1) which gives

̇𝑦(𝑡) = 𝐴𝑦(𝑡) + (𝐵
0
+ 𝑒
−𝐴𝜏

𝐵
1
) 𝑢(𝑡)

+ 𝐷V(𝑡) + 𝑑(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)

− (𝐴 − 𝐴
0
− 𝑒
−𝐴𝜎

𝐴
1
) 𝑥(𝑡) .

(4)

From (4), it is observed that the range of (3) defines an
ordinary differential system given by

̇𝑦(𝑡) = 𝐴𝑦(𝑡) + 𝐵𝑢(𝑡) + 𝐷V(𝑡) + 𝑑(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)

𝑦(0) = 𝜙
0
= 𝜙(0) + ∫

0

−𝜎

𝑒
−𝐴(ℎ+𝜎)

𝐴
1
𝑥(ℎ) 𝑑ℎ

(5a)

𝑥(𝑡) = 𝑦(𝑡) − ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−𝛿)

𝐴
1
𝑥(𝛿) 𝑑𝛿

− ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−𝛿)

𝐵
1
𝑢(𝛿) 𝑑𝛿.

(5b)

If the following definitions are adopted:

𝐴 = 𝐴
0
+ 𝐴
1
, 𝐵 = 𝐵

0
+ 𝐵
1
,

𝐴
1
= 𝑒
−𝐴𝜎

𝐴
1
, 𝐵

1
= 𝑒
−𝐴𝜏

𝐵
1
,

(6)
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in which𝐴 is referred to as the characteristic matrix equation
and the method of its solution can be found in the researches
of Fiagbedzi and Pearson [20, 21] and Zheng, Cheng, andGao
[22], and so forth, system (1) is assumed spectral controllable,
which implies that system (5a) and (5b) is completely control-
lable [20]. Actually, here, 𝑓(𝑦, 𝑡) ≜ 𝑓(𝑥(𝑦), 𝑡); but we choose
the denotation 𝑓(𝑥, 𝑡) instead of 𝑓(𝑦, 𝑡) in order to simplify
the derivation in the rest of the sections. Hence, time-delay
system (1) is transformed into the delay-free system (5a) and
(5b).

Notice that system (5a) and (5b) is coupled with 𝑦

and 𝑥(𝑦). Indeed, the term 𝑓(𝑥, 𝑡) is nonlinear. From the
previous investigations, it can be seen that by the functional
transformation method [20–22], 𝑦 is admissible to system
(5a) and (5b) if and only if 𝑥 is admissible to system (1).
Moreover, the controller stabilizing (1) also stabilizes (5a) and
(5b). Based on this idea, in what follows, we will develop this
approach to solve the VSDC problem of system (1) through
the equivalent delay-free system (5a) and (5b).

First, system (5a) and (5b) will be converted into a regular
form. Assume that the uncertainty is matched; that is, there
exists rank [𝐵 𝑑] = rank 𝐵, where [𝐵 𝑑] is of full column
rank [34], so that there exists a nonsingular matrix Ξ ∈ R𝑛×𝑛

such that

Ξ𝐷 = [
𝐷

0
] , Ξ𝐵 = [

0

𝐵
] , Ξ𝑑(𝑥, 𝑡) = [

0

𝑑 (𝑥, 𝑡)
] ,

(7)

where 𝐷 ∈ R(𝑛−𝑛1)×𝑞 and 𝐵 ∈ R𝑛1×𝑚 is nonsingular. Then,
denote the following nonsingular transformations:

𝑧(𝑡) = [
𝑧
1
(𝑡)

𝑧
2
(𝑡)

] ≜ Ξ𝑦(𝑡) ,

�̃� = [
𝑀
11

𝑀
12

𝑀
21

𝑀
22

] ≜ Ξ𝐴Ξ
−1

,

𝑓 (𝑥, 𝑡) = [
𝑓
1
(𝑥, 𝑡)

𝑓
2
(𝑥, 𝑡)

] ≜ Ξ𝑓(𝑥, 𝑡) ,

𝐵 ≜ Ξ𝐵, 𝐷 ≜ Ξ𝐷,

𝑑(𝑥, 𝑡) ≜ Ξ𝑑(𝑥, 𝑡) ,

(8)

where 𝑧
1
(𝑡) ∈ R𝑛−𝑛1 , 𝑧

2
(𝑡) ∈ R𝑛1 . Via above transformations,

system (5a) and (5b) can be converted into the regular form
of

�̇�
1
(𝑡) = 𝑀

11
𝑧
1
(𝑡) + 𝑀

12
𝑧
2
(𝑡) + 𝐷V(𝑡) + 𝑓

1
(𝑥, 𝑡) (9a)

�̇�
2
(𝑡) = 𝑀

21
𝑧
1
(𝑡) + 𝑀

22
𝑧
2
(𝑡) + 𝐵𝑢(𝑡) + 𝑓

2
(𝑥, 𝑡) + 𝑑(𝑥, 𝑡),

(9b)

where 𝑓
𝑖
(𝑥, 𝑡), 𝑖 = 1, 2 is the nonlinear and Lips-

chitz functions with 𝑓
𝑖
(0, 𝑡) = 0. The pair (𝐴, 𝐵) is

controllable and guarantees (𝑀
11
,𝑀
12
) controllable. And

𝑑(𝑥, 𝑡) = [𝑑
1
(𝑥, 𝑡), 𝑑

2
(𝑥, 𝑡), . . . , 𝑑

𝑛
1

(𝑥, 𝑡)]
𝑇 is the uncertain

function, where there exists a vector function 𝜌(𝑥, 𝑡) =

[𝜌
1
(𝑥, 𝑡), 𝜌

2
(𝑥, 𝑡), . . . , 𝜌

𝑛
1

(𝑥, 𝑡)]
𝑇

: R𝑛 × R+ → R𝑛1 , subject
to

𝑑(𝑥, 𝑡) ≤ 𝜌(𝑥, 𝑡) , (10)

in which 𝜌
𝑖
(𝑥, 𝑡) (𝑖 = 1, 2, . . . , 𝑛

1
) are scalar functions and

the components of 𝑑(𝑥, 𝑡) are less than or equivalent to the
relevant components of 𝜌(𝑥, 𝑡), that is,

𝑑
𝑖
(𝑥, 𝑡) ≤ 𝜌

𝑖
(𝑥, 𝑡) , ∀𝑖 = 1, 2, . . . , 𝑛

1
. (11)

This is supposed a known to be condition to the controller
designers [34].

Thereby, we will demonstrate the control law design
process of finite-time horizon and infinite-time horizon in
Sections 3 and 4, respectively.

3. Design of VSDC in Finite-Time Horizon

This section is to outline the sufficient and necessary con-
dition for the optimality of an optimal sliding mode surface
𝑠
∗

(𝑡) subject to the nonlinear dynamical constraint (9a) and
(9b). Inwhat follows, wewill give the design procedure in two
steps: OSMS design and VSDC design.

3.1. Design of OSMS in Finite-Time Horizon. To design a
sliding mode surface 𝑠(𝑧) = 𝐶

1
𝑧
1
(𝑡) + 𝐶

2
𝑧
2
(𝑡) for system

(9a) and (9b), treat 𝑧
2
as a virtual control of system (9a). And

respecting the finite-time performance index

𝐽(⋅) =
1

2
𝑧
𝑇

1
(𝑡
𝑓
)𝑄
𝑓
𝑧
1
(𝑡
𝑓
)

+
1

2
∫

𝑡
𝑓

0

[𝑧
𝑇

1
(𝑡) 𝑄𝑧

1
(𝑡) + 𝑧

𝑇

2
(𝑡) 𝑅𝑧

2
(𝑡)] 𝑑𝑡,

(12)

where 𝑄
𝑓

∈ R(𝑛−𝑛1)×(𝑛−𝑛1) and 𝑄 = 𝐶
𝑇

𝐶 ∈ R(𝑛−𝑛1)×(𝑛−𝑛1)

are positive semidefinite matrices, 𝑅 ∈ R𝑛1×𝑛1 is a positive
definite matrix, and (𝐴, 𝐶) is assumed observable; the OSMS
will be obtained by solving the optimal control problem of
system (9a) with performance index (12).

3.1.1. Global OSMS of Nonlinear Systems. Consider the opti-
mal control problem (9a) subject to (12), treating 𝑓

1
(𝑥, 𝑡) as

an excitation term despite its relationship with 𝑦. Thus, the
main result of Theorem 2 is achieved.

Theorem 2. Consider the optimal sliding mode surface design
problem described by system (1) under disturbance (2) with
quadratic performance index (12). The optimal sliding mode
surface is existent and unique which is given by

𝑠
∗

= [𝑀
𝑇

12
𝑃
1
(𝑡) 𝑅]

× Ξ(𝑥
∗

(𝑡) + ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−ℎ)

𝐴
1
𝑥
∗

(ℎ) 𝑑ℎ

+∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−ℎ)

𝐵
1
𝑢
∗

(ℎ) 𝑑ℎ)

+ 𝑀
𝑇

12
[𝑃
2
(𝑡) 𝑤(𝑡) + 𝑔(𝑡)] ,

(13)
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where 𝑃
1
(𝑡) is the unique positive definite solution of Riccati

matrix differential equation:

−�̇�
1
(𝑡) = 𝑀

𝑇

11
𝑃
1
(𝑡) + 𝑃

1
(𝑡)𝑀
11

− 𝑃
1
(𝑡)𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
1
(𝑡) + 𝑄

𝑃
1
(𝑡
𝑓
) = 𝑄

𝑓
, 𝑡 ∈ [0, 𝑡

𝑓
] .

(14)

𝑃
2
(𝑡) is the unique solution of Sylvester matrix differential

equation:

−�̇�
2
(𝑡) = [𝑀

11
− 𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
1
(𝑡)]
𝑇

𝑃
2
(𝑡)

+ 𝑃
2
(𝑡) 𝐺 + 𝑃

1
(𝑡) 𝐷𝐹

𝑃
2
(𝑡
𝑓
) = 0,

(15)

and 𝑔(𝑡) is the unique solution of the adjoint equation:

̇𝑔(𝑡) = [𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
1
(𝑡) − 𝑀

11
]
𝑇

𝑔(𝑡)

− 𝑃
1
(𝑡) 𝑓
1
(𝑥(𝑡) , 𝑡)

𝑔 (𝑡
𝑓
) = 0.

(16)

The optimal state 𝑥∗(𝑡) is the solution of the closed-loop system:

�̇�
∗

1
(𝑡) = (𝑀

11
− 𝑀
12
𝑅
−1

𝑀
𝑇

12
) 𝑧
∗

1
(𝑡)

+ [𝐷𝐹 − 𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
1
(𝑡)]𝑤(𝑡)

+ 𝑓
1
(𝑥
∗

, 𝑡) − 𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑔(𝑡)

𝜙
1
(0) = 𝜙

1

𝑧
∗

2
(𝑡) = − 𝑅

−1

𝑀
𝑇

12
[𝑃
1
(𝑡) 𝑧
∗

1
(𝑡)

+𝑃
2
(𝑡) 𝑤(𝑡) + 𝑔(𝑡)]

𝑥
∗

(𝑡) = Ξ
−1

𝑧
∗

(𝑡) − ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−𝛿)

𝐴
1
𝑥
∗

(𝛿)𝑑𝛿

− ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−𝛿)

𝐵
1
𝑢
∗

(𝛿) 𝑑𝛿.

(17)

Proof. In analogy to classical linear quadratic regulator opti-
mal control theory from minimum principle, the Hamil-
tonian for the linear-quadratic control problem (9a) with
respect to (10) and (11) becomes

𝐻[𝑧
1
(𝑡) , 𝑧
2
(𝑡) , 𝜆(𝑡) , 𝑡]

=
1

2
[𝑧
𝑇

1
(𝑡) 𝑄𝑧

1
(𝑡) + 𝑧

𝑇

2
(𝑡) 𝑅𝑧

2
(𝑡)]

+ 𝜆
𝑇

(𝑡) [𝑀
11
𝑧
1
(𝑡) + 𝑀

12
𝑧
2
(𝑡)

+ 𝐷V(𝑡) + 𝑓
1
(𝑥, 𝑡)] ,

(18)

which satisfies the canonical equations:

�̇�
1
(𝑡) =

𝜕𝐻

𝜕𝜆(𝑡)
= 𝑀
𝑇

11
𝑧
1
(𝑡) − 𝑀

12
𝑅
−1

𝑀
𝑇

12
𝜆(𝑡)

+ 𝐷V(𝑡) + 𝑓
1
(𝑥, 𝑡) ,

(19)

�̇�(𝑡) = −
𝜕𝐻

𝜕𝑧
1
(𝑡)

= −𝑄𝑧
1
(𝑡) − 𝑀

𝑇

11
𝜆(𝑡) , (20)

with the transversality condition:

𝜆(𝑡
𝑓
) = 𝑄

𝑓
𝑧
1
(𝑡
𝑓
) (21)

and the control equation:

𝜕𝐻

𝜕𝑧
2
(𝑡)

= 𝑅𝑧
2
(𝑡) + 𝑀

𝑇

11
𝜆(𝑡) = 0 (22)

giving

𝑧
∗

2
(𝑡) = −𝑅

−1

𝑀
𝑇

12
𝜆(𝑡) (23)

along an optimal trajectory. Then, the canonical equations
(19) and (20) result in the coupled nonlinear TPBV problem:

[
�̇�
1
(𝑡)

�̇�(𝑡)
] = [

𝑀
11

−𝑀
12
𝑅
−1

𝑀
𝑇

12

−𝑄 −𝑀
𝑇

11

][
𝑧
1
(𝑡)

𝜆(𝑡)
]

+ [
𝐷

0
]V(𝑡) + [

𝑓
1
(𝑥, 𝑡)

0
]

[
𝑧
1
(0)

𝜆(𝑡
𝑓
)
] = [

𝜙
1

0
] .

(24)

The virtual optimal control law is (23). The optimal sliding
mode surface is defined by

𝑠
∗

(𝑧) = 𝑅𝑧
∗

2
(𝑡) + 𝑀

𝑇

12
𝜆(𝑡) = 0. (25)

For 𝑠 = [𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
1

] ∈ R𝑛1 . The objective is to design 𝑧
∗

2
(𝑡)

forcing system trajectories reach sliding mode surface (25).
From (21), it shows that the costate 𝜆 has linear relation-

ship with state 𝑧
1
(𝑡). Thus, denote the costate vector

𝜆(𝑡) = 𝑃
1
(𝑡) 𝑧
1
(𝑡) + 𝑃

2
(𝑡)𝑤(𝑡) + 𝑔(𝑡) , (26)

where unknown matrices 𝑃
1
(𝑡), 𝑃
2
(𝑡), and continuous func-

tion 𝑔(𝑡) are to be determined. Differentiating (26) and
substituting the first equation of (24) and (26) into the result
follow the following equation:

�̇�(𝑡) = [�̇�
1
(𝑡) + 𝑃

1
(𝑡)𝑀
11

− 𝑃
1
(𝑡)𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
1
(𝑡)]𝑧
1
(𝑡)

+ [�̇�
2
(𝑡) + 𝑃

1
(𝑡) 𝐷𝐹 + 𝑃

2
(𝑡) 𝐺

− 𝑃
1
(𝑡)𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
2
(𝑡)]𝑤(𝑡)

− 𝑃
1
(𝑡)𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑔(𝑡)

+ 𝑃
1
(𝑡) 𝑓
1
(𝑥, 𝑡) + ̇𝑔(𝑡) .

(27)
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Moreover, putting (26) into the second equation of (24) yields
the following equation:

�̇�(𝑡) =− [𝑄 + 𝑀
𝑇

11
𝑃
1
(𝑡)] 𝑧
1
(𝑡)

− 𝑀
𝑇

11
𝑃
2
(𝑡) 𝑤(𝑡) − 𝑀

𝑇

11
𝑔(𝑡) .

(28)

Equations (27) and (28) are equivalent directly and give
the Riccati differential equation (14), Sylvester differential
equation (15), and the adjoint differential equation (16).Then,
substituting (26) into the optimal sliding mode surface (25)
yields

𝑠
∗

= 𝑅𝑧
∗

2
(𝑡) + 𝑀

𝑇

12
𝑃
1
(𝑡) 𝑧
1
(𝑡)

+ 𝑀
𝑇

12
𝑃
2
(𝑡) 𝑤(𝑡) + 𝑀

𝑇

12
𝑔(𝑡) = 0.

(29)

From the denotation in (8), the OSMS (29) becomes

𝑠
∗

= [𝑀
𝑇

12
𝑃
1
(𝑡) 𝑅] Ξ𝑦(𝑡)

+ 𝑀
𝑇

12
[𝑃
2
(𝑡) 𝑤(𝑡) + 𝑔(𝑡)] .

(30)

Replacing 𝑦(𝑡) of (30) by that of (3) yields the optimal sliding
mode surface (13).

From (23) and (26), it follows the optimal virtual control

𝑧
∗

2
(𝑡) = −𝑅

−1

𝑀
𝑇

12
[𝑃
1
(𝑡) 𝑧
1
(𝑡) + 𝑃

2
(𝑡) 𝑤(𝑡) + 𝑔(𝑡)] . (31)

Substituting (31) into (9a) with (5b) and (8) obtains the
closed-loop system (17).

Matrix differential equations (14)–(16) satisfy the con-
ditions of existence and uniqueness which implies that
the OSMS (13) is existent and unique. The proof is com-
pleted.

3.1.2. Approximations of Sequences of State and Costate Equa-
tions. However, noting that (16) and (17) are coupled nonlin-
ear differential equations, they are complex and seldom have
analysis solutions. So, the sequence approximation method
is adopted to obtain the solutions. Differential equations (16)
and (17) can be replaced by sequences of linear time-varying
(LTV) approximations [27]:

̇𝑔
(𝑘)

(𝑡) = [𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
1
(𝑡) − 𝑀

11
]
𝑇

𝑔
(𝑘)

(𝑡)

− 𝑃
1
(𝑡) 𝑓
1
(𝑥
(𝑘−1)

(𝑡) , 𝑡)

𝑔
(𝑘)

(𝑡
𝑓
) = 0, 𝑘 = 1, 2, . . . ,

(32)

�̇�
(𝑘)

1
(𝑡) = (𝑀

11
− 𝑀
12
𝑅
−1

𝑀
𝑇

12
) 𝑧
(𝑘)

1

+ [𝐷𝐹 − 𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
1
(𝑡)]𝑤(𝑡)

+ 𝑓
1
(𝑥
(𝑘−1)

(𝑡) , 𝑡)

− 𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑔
(𝑘)

(𝑡)

𝑧
(𝑘)

1
(0) = 𝜙

1

𝑧
(𝑘)

2
(𝑡) = − 𝑅

−1

𝑀
𝑇

12
[𝑃
1
(𝑡) 𝑧
(𝑘)

1
(𝑡)

+𝑃
2
(𝑡) 𝑤(𝑡) + 𝑔

(𝑘)

(𝑡)]

𝑥
(𝑘)

(𝑡) = Ξ
−1

𝑧
(𝑘)

(𝑡) − ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−𝛿)

𝐴
1
𝑥
(𝑘)

(𝛿) 𝑑𝛿

− ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−𝛿)

𝐵
1
𝑢
(𝑘)

(𝛿) 𝑑𝛿.

(33)

Notice that approximation sequences (32) and (33) are repre-
sented as inhomogeneous linear differential equations, which
have the following solutions given by the variation of constant
formula:

𝑔
(0)

(𝑡) = 0

𝑔
(𝑘)

(𝑡) = ∫

∞

𝑡

Φ
𝑇

(𝑟 − 𝑡) 𝑃
1
(𝑡) 𝑓
1
(𝑥
(𝑘−1)

(𝑟) , 𝑟) 𝑑𝑟

𝑔
(𝑘)

(𝑡
𝑓
) = 0,

(34)

𝑧
(𝑘)

1
(𝑡) = Φ (𝑡) 𝑧

(𝑘)

1
(0)

+ ∫

𝑡

0

Φ (𝑡 − 𝑟) [[𝐷𝐹 − 𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
2
(𝑡)] 𝑤 (𝑟)

+ 𝑓
1
(𝑥
(𝑘−1)

(𝑟) , 𝑟)

−𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑔
(𝑘)

(𝑟)] 𝑑𝑟

𝑧
(𝑘)

1
(0) = 𝜙

1

𝑧
(𝑘)

2
(𝑡) = − 𝑅

−1

𝑀
𝑇

12
[𝑃
1
(𝑡) 𝑧
(𝑘)

1
(𝑡)

+𝑃
2
(𝑡) 𝑤 (𝑡) + 𝑔

(𝑘)

(𝑡)]

𝑥
(𝑘)

(𝑡) = Ξ
−1

𝑧
(𝑘)

(𝑡) − ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−𝛿)

𝐴
1
𝑥
(𝑘)

(𝛿) 𝑑𝛿

− ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−𝛿)

𝐵
1
𝑢
(𝑘)

(𝛿) 𝑑𝛿

(35)

in which Φ(𝑡) denotes the transition matrix generated by
[𝑀
11

− 𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
1
(𝑡)], that is,

Φ(𝑡) = exp[[𝑀
11

− 𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
1
(𝑡)]𝑡] . (36)

In what follows, with the purpose of proving sequences
{𝑔
(𝑘)

} and {𝑧
(𝑘)

1
}, {𝑥(𝑘)} converge to the solution of (16) and

(17), and some preliminaries should be carried out.
Firstly, we should arrange the equations in compact

forms. Noting that (32) and (33) are equivalent to (34) and
(35), respectively, one formula will be chosen for proving.
We select the latter giving the proof. In order to simplify the
derivation, denote (16) and (17) in a compact form:

�̇�
1
(𝑡) = 𝐾

1
𝑧
1
(𝑡) + ℎ(𝑡, 𝑥) 𝑧

1
(0)

= 𝜙
1
𝑥(𝑡)

= Ξ
−1

𝑧(𝑡) − ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−𝛿)

𝐴
1
𝑥(𝛿) 𝑑𝛿

− ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−𝛿)

𝐵
1
𝑢(𝛿) 𝑑𝛿

(37)
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and combine (32) and (33) in another compact form:

𝑧
(0)

1
(𝑡) = Ψ(𝑡) 𝑧

(𝑘)

1
(0) , 𝑧
(𝑘)

1
(𝑡)

= Ψ(𝑡) 𝑧
(𝑘)

1
(0)

+ ∫

𝑡

0

Ψ(𝑡 − 𝛿)ℎ(𝛿, 𝑥
(𝑘−1)

(𝛿)) 𝑑𝛿𝑧
(𝑘)

1
(0)

= 𝜙
1
𝑥
(𝑘)

(𝑡)

= Ξ
−1

𝑧
(𝑘)

(𝑡) − ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−𝛿)

𝐴
1
𝑥
(𝑘)

(𝛿) 𝑑𝛿

− ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−𝛿)

𝐵
1
𝑢
(𝑘)

(𝛿) 𝑑𝛿,

(38)

where Ψ denotes the state transition matrix corresponding
to matrix 𝐾

1
and the nonlinear function ℎ(⋅) ∈ C1([𝑡

0
, 𝑡
𝑓
] ×

R𝑛,R𝑛) with ℎ(𝑡, 0) = 0 satisfies the uniformly boundedness
condition and the Lipschitz conditions, respectively; that is,

(A1) ‖ℎ(𝑡, 𝑥)‖ ≤ 𝛾, for all 𝑥 ∈ R𝑛,

(A2) ‖ℎ(𝑡, 𝑥
1
) − ℎ(𝑡, 𝑥

2
)‖ ≤ 𝛽‖𝑥

1
− 𝑥
2
‖, for all 𝑥

1
, 𝑥
2
∈ R𝑛,

where 𝛾 is some finite constant and 𝛽 > 0.

Secondly, we will prove approximating sequences (38)
convergent to the solution of (37). As a result, Lemma 3 is
available.

Lemma 3. Let ℎ(𝑡, 𝑥) satisfy (A1) and (A2). Then, the
limit of the solution of the approximating sequences (38) on
C([𝑡
0
, 𝑡
𝑓
];R𝑛) converges to the unique solution of (37) on

[𝑡
0
, 𝑡
𝑓
].

Proof. Let

sup ‖Ψ(𝑡 − 𝛿)‖ = 𝜁, sup 
ℎ (𝑡, 𝑥

(0)

(𝑡))

= 𝛾. (39)

Note that ‖Ψ(𝑡
0
− 𝑡
0
)‖ = ‖𝐼‖ = 1. Then, 𝜁 ≥ 1. From (38), it

follows that

𝑧
(1)

1
(𝑡) − 𝑧

(0)

1
(𝑡) = ∫

𝑡

0

Ψ(𝑡 − 𝛿) ℎ (𝛿, 𝑥
(0)

(𝛿)) 𝑑𝛿 (40)

With (A2), (5b), and (8), it gives

ℎ (𝑡, 𝑥

(𝑘)

(𝑡)) − ℎ (𝑡, 𝑥
(𝑘−1)

(𝑡))


≤ 𝛽

𝑥
(𝑘)

(𝑡) − 𝑥
(𝑘−1)

(𝑡)


≤ 𝛽

𝑧
(𝑘)

1
(𝑡) − 𝑧

(𝑘−1)

1
(𝑡)


,

(41)

where 𝛽, 𝛽 > 0. The above inequality gives

𝑧
(1)

1
(𝑡) − 𝑧

(0)

1
(𝑡)



= 𝜁∫

𝑡

0


ℎ (𝑡, 𝑥

(0)

(𝑡))

𝑑𝛿 ≤ 𝜁𝛾𝑡.

(42)

Subsequently,

𝑧
(2)

1
(𝑡) − 𝑧

(1)

1
(𝑡)



= 𝜁𝛽∫

𝑡

0


𝑧
(2)

1
(𝑡) − 𝑧

(1)

1
(𝑡)


𝑑𝛿 ≤

1

2
𝜁
2

𝛽𝛾𝑡
2

.

(43)

By analogy, it has


𝑧
(𝑘+1)

1
(𝑡) − 𝑧

(𝑘)

1
(𝑡)


≤ 𝜁
𝑘+1

𝛽
𝑘

𝛾
𝑘

𝑡
𝑘+1

(𝑘 + 1)!
. (44)

According to trigonometry inequality, for any 𝑗, the following
holds:


𝑧
(𝑘+1)

1
(𝑡) − 𝑧

(𝑘)

1
(𝑡)



≤

𝑧
(𝑘+𝑗)

1
(𝑡) − 𝑧

(𝑘+𝑗−1)

1
(𝑡)



+

𝑧
(𝑘+𝑗−1)

1
(𝑡) − 𝑧

(𝑘+𝑗−2)

1
(𝑡)



+ ⋅ ⋅ ⋅ +

𝑧
(𝑘+1)

1
(𝑡) − 𝑧

(𝑘)

1
(𝑡)



≤

𝑘+𝑗−1

∑

𝑖=𝑘

𝜁
𝑖+1

𝛽
𝑖

𝛾
𝑖

𝑡
𝑖+1

(𝑖 + 1)!

≤
𝜁
𝑘+1

𝛽
𝑘

𝛾
𝑘

𝑡
𝑘+1

(𝑘 + 1)!

𝑗−1

∑

𝑖=0

𝜁
𝑖

𝛽
𝑖

𝛾
𝑖

𝑡
𝑖

𝑖!

≤
𝜁
𝑘+1

𝛽
𝑘

𝛾
𝑘

𝑡
𝑘+1

(𝑘 + 1)!
exp(𝜁𝛽𝛾𝑡) ;

(45)

that is, there exists

lim
𝑘→∞


𝑧
(𝑘+𝑗)

1
(𝑡) − 𝑧

(𝑘)

1
(𝑡)


= 0. (46)

Via the sameway, there exists lim
𝑘→∞

‖𝑧
(𝑘+𝑗)

2
(𝑡)−𝑧

(𝑘)

2
(𝑡)‖ = 0.

Hence, lim
𝑘→∞

‖𝑧
(𝑘+𝑗)

(𝑡) − 𝑧
(𝑘)

(𝑡)‖ = 0. From (5b) and (8), it
follows

lim
𝑘→∞


𝑥
(𝑘+𝑗)

(𝑡) − 𝑥
(𝑘)

(𝑡)

= 0 (47)

Therefore, {𝑧
(𝑘)

(𝑡)} and {𝑥
(𝑘)

(𝑡)} are sequences of Cauchy
in Banach space C([𝑡

0
, 𝑡
𝑓
];R𝑛), respectively. Therefore,

𝑧
(𝑘)

(𝑡) → 𝑧(𝑡) on C([𝑡
0
, 𝑡
𝑓
];R𝑛) and 𝑥

(𝑘)

(𝑡) → 𝑥(𝑡) on
C([𝑡
0
, 𝑡
𝑓
];R𝑛). The proof of Lemma 4 is completed.

Thirdly, result of (38) and (37) described by Lemma 3
directly carries out the same result of (32)–(35) and (16)-(17)
described by Lemma 4.

Lemma 4. Let 𝑓
1
(𝑥, 𝑡) be bounded and Lipschitz continuous

in its arguments. Then, the limits of the solutions of the
approximating sequences (32) and (33) (or (34) and (35)) on
C([𝑡
0
, 𝑡
𝑓
];R𝑛) globally converge to the unique solutions of (16)

and (17), respectively, on [𝑡
0
, 𝑡
𝑓
].

Last but not least, the main result of OSMS by approxi-
mation sequences is got as Theorem 5.
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Theorem 5. Given the nonlinear system (1) and the cost
functional (12), then the optimal sliding mode surface is given
by the limit of the sequence

𝑠
∗(𝑘)

(𝑡) = [𝑀
𝑇

12
𝑃
1
(𝑡) 𝑅]

× Ξ(𝑥
(𝑘)

(𝑡) + ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−ℎ)

𝐴
1
𝑥
(𝑘)

(ℎ) 𝑑ℎ

+∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−ℎ)

𝐵
1
𝑢
(𝑘)

(ℎ) 𝑑ℎ)

+ 𝑀
𝑇

12
[𝑃
2
(𝑡) 𝑤(𝑡) + 𝑔

(𝑘)

(𝑡)] ,

(48)

where 𝑃
1
(𝑡) ∈ R𝑛×𝑛 is the unique positive definite solution of

Riccati matrix differential equation (14), 𝑃
2
(𝑡) ∈ R𝑛×𝑝 is the

unique solution of the Sylvester matrix differential equation
(15), and 𝑔

(𝑘)

(𝑡) is given by the converged unique solution of the
LTV differential equation sequence (32) or (34). The optimal
state 𝑥∗(𝑡) is the solution of the closed-loop system (33) or (35).

Remark 6. Actually, in practice, the limit of lim
𝑘→∞

𝑔
(𝑘)

can be obtained by replacing ∞ with a positive integer 𝑀.
Relevantly, the following suboptimal sliding mode surface is
achieved:

𝑠
(𝑀)

(𝑡) = [𝑀
𝑇

12
𝑃
1
(𝑡) 𝑅]

× Ξ(𝑥
(𝑀)

(𝑡) + ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−ℎ)

𝐴
1
𝑥
(𝑀)

(ℎ) 𝑑ℎ

+ ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−ℎ)

𝐵
1
𝑢
(𝑀)

(ℎ) 𝑑ℎ)

+ 𝑀
𝑇

12
[𝑃
2
(𝑡) 𝑤(𝑡) + 𝑔

(𝑀)

(𝑡)] ,

(49)

corresponding to the following performance index:

𝐽
(𝑀)

=
1

2
𝑧
(𝑀)𝑇

1
(𝑡
𝑓
)𝑄
𝑓
𝑧
(𝑀)

1
(𝑡
𝑓
)

+
1

2
∫

𝑡
𝑓

0

[𝑧
(𝑀)𝑇

1
(𝑡) 𝑄𝑧

(𝑀)

1
(𝑡) + 𝑧

(𝑀)𝑇

2
(𝑡) 𝑅𝑧

(𝑀)

2
(𝑡)] 𝑑𝑡,

(50)

where𝑀 is determined by a small enough error criterion 𝜃 >

0 when the following inequality holds:


(𝐽
(𝑀−1)

− 𝐽
(𝑀)

)

𝐽(𝑀)



< 𝜃. (51)

Consequently, we give the algorithm of OSMS.

Algorithm 7. OSMS of system (1).

𝑆𝑡𝑒𝑝 1. Solve 𝑃
1
(𝑡) and 𝑃

2
(𝑡) from (14) and (15). Give some

positive real constant 𝜃 > 0. Set 𝑧(0)
1

(𝑡) = 𝑔
(0)

(𝑡) =

𝐽
(0)

= 0 and 𝑘 = 1.

𝑆𝑡𝑒𝑝 2. Obtain the 𝑘th adjoint vector 𝑔(𝑘)(𝑡) from (34).

𝑆𝑡𝑒𝑝 3. Let𝑀 = 𝑘. Calculate 𝑧(𝑀)
2

from (35) and 𝑠
(𝑀) from

(49).

𝑆𝑡𝑒𝑝 4. Calculate 𝐽
(𝑀) from (50).

𝑆𝑡𝑒𝑝 5. When condition (51) is satisfied, stop and output
𝑠
(𝑀).

𝑆𝑡𝑒𝑝 6. Calculate 𝑥
(𝑘) from (35).

3.2. Design of VSDC in Finite-Time Horizon. In this section,
we will present the VSDC design of finite-time horizon based
on the proposed OSMS in the last section.

3.2.1. VSDC Design. To begin with, a trending law should be
chosen. As known to all, different variable structure control
laws can be designed corresponding to different sliding
mode reachable conditions. In this paper, we will adopt
the exponential trending law introduced by Gao [30, 34] as
follows:

̇𝑠 = −𝑘𝑠 − 𝜀 sign(𝑠) , 𝑘, 𝜀 > 0, (52)

where

𝑘 = diag[𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
1

] ,

𝜀 = diag[𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
1

]

sign(𝑠) = [sign(𝑠
1
) , sign(𝑠

2
) , . . . , sign(𝑠

𝑛
1

)]
𝑇

(53)

and 𝑘
𝑖
, 𝜀
𝑖
are parameters to be selected which determine

system instant response and convergence speed of the sliding
mode reaching, respectively. The related reachable condition
should be satisfied:

̇𝑠
𝑖
≥ −𝑘
𝑖
𝑠
𝑖
− 𝜀
𝑖
sign(𝑠

𝑖
) , 𝑠

𝑖
< 0,

̇𝑠
𝑖
≤ −𝑘
𝑖
𝑠
𝑖
− 𝜀
𝑖
sign(𝑠

𝑖
) , 𝑠

𝑖
> 0,

(54)

for 𝑖 = 1, 2, . . . , 𝑛
1
, that is, 𝑠 ̇𝑠 < 0. For the reason of the

reachable condition (54), variable structure control satisfying
condition (54) will drive the state trajectories to reach the
slidingmode surface in exponential velocity and then remain
on it [30, 34]. Consequentially, in the basis of trending law
(52), the VSDC is presented as Theorem 8.

Theorem 8. Consider system (1) under disturbance (2) with
quadratic performance index (12). The sliding mode surface is
given by (13). Then, the state trajectories can reach the sliding
mode surface in finite time and remain on it by the variable
structure control law:
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𝑢
∗

(𝑡) = −(𝑅𝐵)
−1

{[𝑅𝑀
21

+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
11

+ 𝑘𝑀
𝑇

12
𝑃
1
(𝑡) + 𝑀

𝑇

12
�̇�
1
(𝑡) 𝑅𝑀

22
+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
12

+ 𝑘𝑅]

× Ξ(𝑥(𝑡) + ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−ℎ)

𝐴
1
𝑥(ℎ) 𝑑ℎ + ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−ℎ)

𝐵
1
𝑢(ℎ) 𝑑ℎ)

+ 𝑀
𝑇

12
[ ̇𝑔(𝑡) + 𝑘𝑔(𝑡)] + [𝑘𝑀

𝑇

12
𝑃
2
(𝑡) + 𝑀

𝑇

12
𝑃
2
(𝑡) 𝐺 + 𝑀

𝑇

12
�̇�
2
(𝑡) + 𝑀

𝑇

12
𝑃
1
(𝑡)𝐷𝐹]𝑤(𝑡)

+ 𝑅𝑓
2
(𝑥, 𝑡) + [𝜀 + 𝜌(𝑥, 𝑡) 𝑅]sign(𝑠) } .

(55)

Proof. Differentiating sliding mode surface (29) with respect
to time and substituting system (9a) and (9b) into it give

̇𝑠(𝑡) = [𝑅𝑀
21

+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
11

+ 𝑀
𝑇

12
�̇�
1
(𝑡)]𝑧
1
(𝑡)

+ [𝑅𝑀
22

+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
12
]𝑧
2
(𝑡) + 𝑅𝐵𝑢(𝑡)

+ [𝑀
𝑇

12
𝑃
1
(𝑡) 𝐷𝐹 + 𝑀

𝑇

12
𝑃
2
(𝑡) 𝐺
2
+ 𝑀
𝑇

12
�̇�
2
(𝑡)]𝑤(𝑡)

+ 𝑅𝑓
2
(𝑥, 𝑡) + 𝑀

𝑇

12
̇𝑔(𝑡) .

(56)

Substituting (26) into (25) and putting the result into (52)
yield

̇𝑠 = − 𝑘𝑀
𝑇

12
𝑃
1
(𝑡) 𝑧
1
(𝑡) − 𝑘𝑅𝑧

2
(𝑡)

− 𝑘𝑀
𝑇

12
𝑃
2
(𝑡) 𝑤(𝑡) − 𝑘𝑀

𝑇

12
𝑔(𝑡) − 𝜀sign(𝑠) .

(57)

Comparing (56) and (57), the variable structure control law
is designed:

𝑢
∗

(𝑡)

= −(𝑅𝐵)
−1

{[𝑅𝑀
21

+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
11

+ 𝑘𝑀
𝑇

12
𝑃
1
(𝑡) + 𝑀

𝑇

12
�̇�
1
(𝑡)]𝑧
1
(𝑡)

+ [𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
12

+ 𝑅𝑀
22

+ 𝑘𝑅]𝑧
2
(𝑡)

+ [𝑀
𝑇

12
𝑃
1
(𝑡) 𝐷𝐹 + 𝑀

𝑇

12
𝑃
2
(𝑡) 𝐺

+ 𝑘𝑀
𝑇

12
𝑃
2
(𝑡) + 𝑀

𝑇

12
�̇�
2
(𝑡)]𝑤(𝑡)

+ 𝑀
𝑇

12
[ ̇𝑔(𝑡) + 𝑘𝑔(𝑡)] + 𝑅𝑓

2
(𝑥, 𝑡)

+ [𝜀 + 𝜌(𝑥, 𝑡) 𝑅]sign(𝑠) } .
(58)

Replacing 𝑧
1
, 𝑧
2
in (58) by 𝑥 of (8) and (3) yields the VSDC

(55).
Besides, the reachable condition (54) is verified in what

follows. Substituting the VSDC (58) into (56) gives

̇𝑠 = −𝑘𝑠 − 𝜀 sign(𝑠) + 𝑅[𝑑(𝑥, 𝑡) − 𝜌(𝑥, 𝑡)sign(𝑠)] . (59)

If 𝑠
𝑖
> 0, the following holds:

𝑅 [𝑑 (𝑥, 𝑡) − 𝜌 (𝑥, 𝑡) sign (𝑠)] = 𝑟
𝑖
[𝑑
𝑖
(𝑥, 𝑡) − 𝜌 (𝑥, 𝑡)] (60)

for all 𝑖 = 1, 2, . . . , 𝑛
1
. Since

𝑑
𝑖
(𝑥, 𝑡) ≤ 𝜌

𝑖
(𝑥, 𝑡) (61)

and 𝑟
𝑖
> 0. Thus, (59) becomes

̇𝑠
𝑖
≤ −𝑘
𝑖
𝑠
𝑖
− 𝜀
𝑖
sign (𝑠

𝑖
) < 0. (62)

Alternatively, if 𝑠
𝑖
< 0, employing the same results,

̇𝑠
𝑖
≥ −𝑘
𝑖
𝑠
𝑖
− 𝜀
𝑖
sign(𝑠

𝑖
) > 0. (63)

Therefore, combining (62) and (63), the VSDC (55) which
satisfies reachable condition 𝑠 ̇𝑠 < 0, can make the state
trajectories reach the sliding mode surface (13) in finite time
and remain on it [30, 34]. The proof is completed.

Remark 9. Actually, for the reason in Remark 6, the subop-
timal sliding mode surface (SOSMS) (49) can be applied in
practice. Thus, the relevant VSDC for SOSMS (49) can be
gotten:

𝑢
(𝑀)

(𝑡) = −(𝑅𝐵)
−1

{[𝑅𝑀
21

+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
11

+ 𝑘𝑀
𝑇

12
𝑃
1
(𝑡) + 𝑀

𝑇

12
�̇�
1
(𝑡) 𝑅𝑀

22
+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
12

+ 𝑘𝑅]

× Ξ(𝑥
(𝑀)

(𝑡) + ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−ℎ)

𝐴
1
𝑥
(𝑀)

(ℎ) 𝑑ℎ + ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−ℎ)

𝐵
1
𝑢
(𝑀)

(ℎ) 𝑑ℎ)

+ 𝑀
𝑇

12
[ ̇𝑔
(𝑀)

(𝑡) + 𝑘𝑔
(𝑀)

(𝑡)] + [𝑀
𝑇

12
𝑃
2
(𝑡) 𝐺 + 𝑘𝑀

𝑇

12
𝑃
2
(𝑡) + 𝑀

𝑇

12
�̇�
2
(𝑡) + 𝑀

𝑇

12
𝑃
1
(𝑡)𝐷𝐹]𝑤 (𝑡)

+ 𝑅𝑓
2
(𝑥
(𝑀−1)

, 𝑡) + [𝜀 + 𝜌(𝑥
(𝑀−1)

, 𝑡) 𝑅] sign(𝑠(𝑀)) } .

(64)
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Remark 10. Summarily, on the ideal sliding mode surface,
there exists ̇𝑠 = 0. And then, putting virtual control (31) into
system (9a) yields the ideal sliding mode equations of system
(1):

�̇�
∗

1
(𝑡) = (𝑀

11
− 𝑀
12
𝑅
−1

𝑀
𝑇

12
) 𝑧
∗

1
(𝑡)

+ [𝐷𝐹 − 𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑃
1
(𝑡)] 𝑤(𝑡)

+ 𝑓(𝑥, 𝑡) − 𝑀
12
𝑅
−1

𝑀
𝑇

12
𝑔(𝑡)

𝜙
1
(0) = 𝜙

1

𝑅𝑧
∗

2
(𝑡) + 𝑀

𝑇

12
[𝑃
1
(𝑡) 𝑧
∗

1
(𝑡)

+ 𝑃
2
(𝑡) 𝑤(𝑡) + 𝑔(𝑡)] = 0.

(65)

At this time, taking 𝑠 = 0 into VSDC (55) leads to the
equivalent control 𝑢

𝑒
(𝑡) of system (1):

𝑢
𝑒
(𝑡) = −(𝑅𝐵)

−1

{[𝑅𝑀
21

+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
11

+ 𝑘𝑀
𝑇

12
𝑃
1
(𝑡) + 𝑀

𝑇

12
�̇�
1
(𝑡) 𝑅𝑀

22
+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
12

+ 𝑘𝑅]

× Ξ(𝑥(𝑡) + ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−ℎ)

𝐴
1
𝑥(ℎ) 𝑑ℎ + ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−ℎ)

𝐵
1
𝑢(ℎ) 𝑑ℎ) + 𝑀

𝑇

12
[ ̇𝑔(𝑡) + 𝑘𝑔(𝑡)]

+ [𝑘𝑀
𝑇

12
𝑃
2
(𝑡) + 𝑀

𝑇

12
𝑃
2
(𝑡) 𝐺 + 𝑀

𝑇

12
�̇�
2
(𝑡) + 𝑀

𝑇

12
𝑃
1
(𝑡) 𝐷𝐹]𝑤(𝑡) + 𝑅𝑓

2
(𝑥, 𝑡) } .

(66)

3.2.2. Closed-Loop Stability Analysis. Select the OSMS func-
tion 𝑠(𝑧) as a Lyapunov function candidate, that is, 𝑉(𝑧) =

(1/2)𝑠
2

(𝑧). Then, the increment of it is �̇� = 𝑠 ̇𝑠. As known, the
OSMS satisfies the reachable condition (54), that is, 𝑠 ̇𝑠 < 0.
Thus, �̇� is negative definite, which implies lim

𝑡→∞
𝑧(𝑡) =

0. Moreover, from (3) and (8), it can be proved that 𝑥 →

0 as 𝑧 → 0 indicating the closed-loop system states
asymptotically stable.

3.2.3. Physical Realization of VSDC. The VSDC 𝑢
∗

(𝑡) in (55)
contains disturbance state 𝑤(𝑡) which is physically unmea-
surable. To solve this problem, one can construct a reduced-
order observer for disturbance vector so as to reconstruct the
disturbance variables [28, 29, 35].

Since rank 𝐹 = 𝑞, there exists an arbitrary matrix 𝐻 ∈

R(𝑝−𝑞)×𝑝 such that Γ = [𝐹
𝑇

𝐻
𝑇

]
𝑇

∈ R𝑝×𝑝 is nonsingular.
Note that Π = Γ

−1

= [Π
1
: Π
2
], where Π

1
∈ R𝑝×𝑞 and Π

2
∈

R𝑝×(𝑝−𝑞). It is obvious that

𝐼
𝑝
= ΓΠ = [

𝐹Π
1

𝐹Π
2

𝐻Π
1

𝐻Π
2

] = [
𝐼
𝑞

0

0 𝐼
𝑝−𝑞

] , (67)

where 𝐼
𝑛
denotes the 𝑛-order identity matrix. Consequently,

the following result can be obtained.

Theorem 11. Consider system (1) under disturbance (2) with
quadratic performance index (12). Respecting the sliding mode
surface (13), the dynamical sliding mode control law is given

�̇�(𝑡) = (𝐻 − 𝐿𝐹)𝐺 [Π
2
𝜓(𝑡) + (Π

1
+ Π
2
𝐿) V(𝑡)]

𝑢
𝑑
(𝑡) = −(𝑅𝐵)

−1

{[𝑅𝑀
21

+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
11

+ 𝑘𝑀
𝑇

12
𝑃
1
(𝑡) + 𝑀

𝑇

12
�̇�
1
(𝑡) 𝑅𝑀

22
+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
12

+ 𝑘𝑅]

× Ξ(𝑥(𝑡) + ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−ℎ)

𝐴
1
𝑥(ℎ) 𝑑ℎ + ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−ℎ)

𝐵
1
𝑢 (ℎ) dℎ) + 𝑀

𝑇

12
[ ̇𝑔(𝑡) + 𝑘𝑔(𝑡)]

+ [𝑘𝑀
𝑇

12
𝑃
2
(𝑡) + 𝑀

𝑇

12
𝑃
2
(𝑡) 𝐺 + 𝑀

𝑇

12
�̇�
2
(𝑡) + 𝑀

𝑇

12
𝑃
1
(𝑡) 𝐷𝐹]

× [Π
2
𝜂(𝑡) + (Π

1
+ Π
2
𝐿) V(𝑡)] + 𝑅𝑓

2
(𝑥, 𝑡) + [𝜀 + 𝜌(𝑥, 𝑡) 𝑅]sign(𝑠) } ,

(68)

by which the state trajectories can reach the sliding mode
surface in finite time and remain on it.

Proof. Defining the nonsingular transformation

Γ𝑤(𝑡) ≜ 𝑤(𝑡) = [
𝑤
1
(𝑡)

𝑤
2
(𝑡)

] , (69)

it gets
�̇�
2
(𝑡) = 𝐻𝐺Π

2
𝜁
2
(𝑡) + 𝐻𝐺Π

1
V(𝑡)

V̇(𝑡) = 𝐹𝐺Π
2
𝑤
2
(𝑡) + 𝐹𝐺Π

1
V(𝑡) .

(70)

Introduce a new variable

𝜓(𝑡) = 𝑤
2
(𝑡) − 𝐿V(𝑡) , (71)

where 𝐿 is the gainmatrix to be selected.Then, differentiating
𝜓(𝑡) in (71) with respect to time and substituting (70) into it
yield the observation state equation:

�̇�(𝑡) = (𝐻 − 𝐿𝐹)𝐺 [Π
2
𝜓(𝑡) + (Π

1
+ Π
2
𝐿) V(𝑡)]

𝑤
2
(𝑡) = 𝜓(𝑡) + 𝐿V(𝑡) ,

(72)
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where𝑤
2
(𝑡) is the component state to be reconstructed. Note

that the other component state can be measured by V(𝑡) =

𝑤
1
(𝑡). On the other hand, from (69), it follows that

𝑤(𝑡) = Π
1
V(𝑡) + Π

2
𝑤
2
(𝑡) . (73)

Thus, substituting the second equation in (72) into (73) yields

�̇�(𝑡) = (𝐻 − 𝐿𝐹)𝐺 [Π
2
𝜓(𝑡) + (Π

1
+ Π
2
𝐿) V(𝑡)]

𝑤(𝑡) = Π
2
𝜓(𝑡) + (Π

1
+ Π
2
𝐿) V(𝑡) .

(74)

Relevant to (74), the reduced-order observer can be written
as

̇̂
𝜓(𝑡) = (𝐻 − 𝐿𝐹)𝐺 [Π

2
�̂�(𝑡) + (Π

1
+ Π
2
𝐿) V(𝑡)]

𝑤(𝑡) = Π
2
�̂�(𝑡) + (Π

1
+ Π
2
𝐿) V(𝑡) ,

(75)

where �̂�(𝑡), 𝑤(𝑡) represent the observed values of 𝜓(𝑡), 𝑤(𝑡),
respectively. Denote the related errors as 𝑒

𝜓
(𝑡) = �̂�(𝑡) − 𝜓(𝑡),

𝑒
𝑤
(𝑡) = 𝑤(𝑡) − 𝑤(𝑡). Subtracting (74) from (75) results in the

error equation

̇𝑒
𝜓
(𝑡) = (𝐻 − 𝐿𝐹)𝐺Π

2
𝑒
𝜓
(𝑡) 𝑒
𝑤
(𝑡) = Π

2
𝑒
𝜓
(𝑡) . (76)

Now, the problem is converted into finding the observer
gain 𝐿 such that error system (76) is asymptotically sta-
ble. That the pair (𝐺, 𝐹) is observable ensures the pair
(𝐹𝐺Π

2
, 𝐻𝐺Π

2
) observable; thus there exists the gain 𝐿 such

that all eigenvalues of matrix (𝐻−𝐿𝐹)𝐺Π
2
can be assigned to

the desired position in left-half plane, which guarantees error
system (76) exponentially stable. It implies lim

𝑡→∞
𝑒
𝑤
(𝑡) =

0, that is, 𝑤(𝑡) → 𝑤(𝑡). Hence, rewriting VSDC (57) by
replacing the disturbance state 𝑤 by the estimated state 𝑤 of
(75):

𝑢
𝑑
(𝑡) = −(𝑅𝐵)

−1

{[𝑅𝑀
21

+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
11

+ 𝑘𝑀
𝑇

12
𝑃
1
(𝑡) 𝑅𝑀

22
+ 𝑀
𝑇

12
𝑃
1
(𝑡)𝑀
12

+ 𝑘𝑅]

× Ξ(𝑥 (𝑡) + ∫

𝑡

𝑡−𝜎

𝑒
𝐴(𝑡−ℎ)

𝐴
1
𝑥(ℎ) 𝑑ℎ + ∫

𝑡

𝑡−𝜏

𝑒
𝐴(𝑡−ℎ)

𝐵
1
𝑢(ℎ) 𝑑ℎ) + 𝑀

𝑇

12
[ ̇𝑔(𝑡) + 𝑘𝑔(𝑡)]

+ [𝑀
𝑇

12
𝑃
1
(𝑡) 𝐷𝐹 + 𝑀

𝑇

12
𝑃
2
(𝑡) 𝐺 + 𝑘𝑀

𝑇

12
𝑃
2
(𝑡)] 𝑤(𝑡) + 𝑅𝑓

2
(𝑥, 𝑡) + [𝜀 + 𝜌(𝑥, 𝑡) 𝑅]sign(𝑠) }

(77)

yields the dynamical VSDC (68).The proof is completed.

At this time, the VSDC design in finite-time horizon is
completed. In the next section, we will discuss the corre-
sponding results of infinite-time horizon.

4. VSDC Design in Infinite-Time Horizon

To design an OSMC in the infinite-time horizon, regarding
the stability situations of exosystem (2), two different perfor-
mance indexes in infinite-time horizon can be chosen. When
the disturbance is asymptotically stable, that is, Re 𝜇

𝑗
(𝐺) < 0,

the following general one should be selected:

𝐽(⋅) = ∫

∞

0

[𝑧
𝑇

1
(𝑡) 𝑄𝑧

1
(𝑡) + 𝑧

𝑇

2
(𝑡) 𝑅𝑧

2
(𝑡)] 𝑑𝑡, (78)

where 𝑄 = 𝐶
𝑇

𝐶 ∈ R(𝑛−𝑛1)×(𝑛−𝑛1) is a positive semidefinite
matrix, 𝑅 ∈ R𝑛1×𝑛1 is a positive definite matrix, and (𝐴, 𝐶)

is observable. On the other hand, when the disturbance is
Lyapunov stable, that is, Re 𝜇

𝑗
(𝐺) = 0, since 𝑧

2
in (78)

concluding disturbance 𝑤 may make the general infinite-
horizon performance index (78) not convergent, in this case,
the following average one can be selected:

𝐽(⋅) = lim
𝑇→∞

1

𝑇
∫

𝑇

0

[𝑧
𝑇

1
(𝑡) 𝑄𝑧

1
(𝑡) + 𝑧

𝑇

2
(𝑡) 𝑅𝑧

2
(𝑡)] 𝑑𝑡. (79)

Then, our object is to design OSMS and VSDC with
respect to performance index (78) and (79) subject to
dynamic constraint (9a) and (9b).

In reality, when 𝑡
𝑓

→ ∞, the time-variable matrices
𝑃
1
(𝑡
𝑓
) and 𝑃

2
(𝑡
𝑓
) of finite-time horizon approach to some

constant matrices denoted by 𝑃
1
and 𝑃

2
, respectively, that

is, lim
𝑡
𝑓
→∞

𝑃
1
(𝑡
𝑓
) = 𝑃

1
and lim

𝑡
𝑓
→∞

𝑃
2
(𝑡
𝑓
) = 𝑃

2
[35].

Therefore, the results of the infinite-time horizon can be
directly obtained from those of the finite-time horizon.
Yet, for the sake of briefness, the corresponding results are
omitted here.

5. Simulation Example

In this section, a 2DOF quarter-car model is applied to
simulate the system responses under the designed VSDC
comparing with those of OLS. The governing dynamic equa-
tions are

(𝑚
𝑠
+ Δ𝑚
𝑠
) �̈�
𝑠
(𝑡) + 𝑏

𝑠
[�̇�
𝑠
(𝑡) − �̇�

𝑢
(𝑡)]

+ (𝑘
1𝑠

+ Δ𝑘
1𝑠
) [𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)]

+ (𝑘
2𝑠

+ Δ𝑘
2𝑠
) [𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)]
3

= 𝑢(𝑡)

𝑚
𝑢
�̈�
𝑢
(𝑡) − 𝑏

𝑠
[�̇�
𝑠
(𝑡) − �̇�

𝑢
(𝑡)] − (𝑘

1𝑠
+ Δ𝑘
1𝑠
)

× [𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)] − (𝑘

2𝑠
+ Δ𝑘
2𝑠
) [𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)]
3

+ (𝑘
𝑡
+ Δ𝑘
𝑡
) [𝑥
𝑢
(𝑡) − 𝑥

𝑟
(𝑡)] = −𝑢 (𝑡),

(80)
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Figure 1: States trajectories of VSDC and OLS under sinusoidal disturbance.

where 𝑚
𝑠
is the sprung mass representing car chassis; 𝑚

𝑢

is the unsprung mass representing wheel assembly; 𝑘
1𝑠

is
the linear stiffness coefficients; 𝑏

𝑠
is the damping of the

uncontrolled suspension; 𝑘
𝑡
stands for the stiffness of tire

respectively;𝑥
𝑠
, 𝑥
𝑢
are displacements of sprung andunsprung

masses, respectively; 𝑥
𝑟
is the road displacement input. The

actuator force 𝑢 acts between sprung and unsprung masses.
Let 𝑘

2𝑠
represent the spring nonlinearity and Δ𝑚

𝑠
, and

let Δ𝑘
𝑖
(𝑖 = 1𝑠, 2𝑠, 𝑡) indicate the uncertainty parameters of

spring mass, stiffness of spring, and tire with known bounds.
Summarizing equations (80), one can get the nonlinearity
𝑓
𝑖
(𝑥) (𝑖 = 1, 2) of the system, which was employed in some

references, for example, [14, 15]

𝑓
1
(𝑥) = 𝑘

2𝑠
[𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)]
3

,

𝑓
2
(𝑥) = −𝑘

2𝑠
[𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)]
3

,

(81)

and the uncertainties Δ𝑓
𝑖
(𝑥) of the system which are referred

to [16–18]:

Δ𝑓
1
(𝑥) = Δ𝑚

𝑠
�̈�
𝑠
(𝑡) + Δ𝑘

1𝑠
[𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)]

+ Δ𝑘
2𝑠
[𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)]
3

Δ𝑓
2
(𝑥) = − Δ𝑘

1𝑠
[𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)]

− Δ𝑘
2𝑠
[𝑥
𝑠
(𝑡) − 𝑥

𝑢
(𝑡)]
3

+ Δ𝑘
𝑡
[𝑥
𝑢
(𝑡) − 𝑥

𝑟
(𝑡)] .

(82)

More characteristic details about these kinds of nonlinearity
and uncertainties can be found in abovementioned [14–18].
By defining the set of state variable

𝑥
1
(𝑡) = 𝑥

𝑠
(𝑡) − 𝑥

𝑢
(𝑡) ,

𝑥
2
(𝑡) = 𝑥

𝑢
(𝑡) − 𝑥

𝑟
(𝑡) ,
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Figure 2: Control inputs and sliding mode surface under sinusoidal disturbance.

𝑥
3
(𝑡) = �̇�

𝑠
(𝑡) , 𝑥

4
(𝑡) = �̇�

𝑢
(𝑡), (83)

where 𝑥
1
is the suspension deflection, 𝑥

2
the tire deflec-

tion, 𝑥
3
the sprung mass velocity, and 𝑥

4
the unsprung

mass velocity, the state vector is denoted by 𝑥(𝑡) =

[𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡), 𝑥
4
(𝑡)]
𝑇. Then, the vehicle suspension sys-

tem is rewritten in state-space representation (1) with

𝐴
1
=

[
[
[
[
[
[
[
[

[

0 0 1 −1

0 0 0 1

−𝑘
1𝑠

𝑚
𝑠

0
−𝑏
𝑠

𝑚
𝑠

𝑏
𝑠

𝑚
𝑠

𝑘
1𝑠

𝑚
𝑢

−𝑘
𝑡

𝑚
𝑢

𝑏
𝑠

𝑚
𝑢

−𝑏
𝑠

𝑚
𝑢

]
]
]
]
]
]
]
]

]

,

𝐵
1
=

[
[
[
[
[
[
[

[

0

0

1

𝑚
𝑠

−1

𝑚
𝑢

]
]
]
]
]
]
]

]

, 𝐷 =

[
[
[

[

0

−1

0

0

]
]
]

]

,

𝑓(𝑥) =

[
[
[
[
[
[
[

[

0

0

−𝑘
2𝑠

𝑚
𝑠

𝑥
3

1

𝑘
2𝑠

𝑚
𝑢

𝑥
3

1

]
]
]
]
]
]
]

]

,

𝑑 (𝑥) =

[
[
[
[
[
[
[

[

0

0

−
Δ𝑘
1𝑠

𝑚
𝑠

𝑥
1
−

Δ𝑘
2𝑠

𝑚
𝑠

𝑥
3

1
−

Δ𝑚
𝑠

𝑚
𝑠

�̇�
3

Δ𝑘
1𝑠

𝑚
𝑢

𝑥
1
+

Δ𝑘
2𝑠

𝑚
𝑢

𝑥
3

1
−

Δ𝑘
𝑡

𝑚
𝑢

𝑥
2

]
]
]
]
]
]
]

]

.

(84)

Table 1: Parameters and values of quarter-car suspension.

Variable Value Unit
𝑚
𝑠

350 kg
𝑚
𝑢

59 kg
𝑘
1𝑠

14500 N/m
𝑘
2𝑠

160000 N/m
𝑘
𝑡

190000 N/m
𝑏
𝑠

1100 N ⋅ s/m

Adopting the parameter values listed in Table 1 [19], the
associated matrices and vectors of (84) are as follows:

𝐴
1
=

[
[
[

[

0 0 1 −1

0 0 0 1

−43.941 0 −1.126 1.126

376.053 −890.097 9.639 −9.768

]
]
]

]

,

𝑓(𝑥) =

[
[
[
[
[

[

0

0

−4.394𝑥
3

1

37.605𝑥
3

1

]
]
]
]
]

]

,

𝐵
1
=

[
[
[

[

0 0

0 0

0.001 0.001

−0.009 −0.009

]
]
]

]

, 𝐴
0
= 𝐵
0
= 0.

(85)

Set the initial value 𝑥
0

= [1, 0.1, 0.1, 0.1]
𝑇 and time-

delays 𝜏 = 0.01𝑠, 𝜎 = 0.02𝑠. Take Δ𝑚
𝑠
= 𝑚
𝑠
𝑑
𝑚
𝑠

𝛿
𝑚
𝑠

, Δ𝑘
𝑖
=

𝑘
𝑖
𝑑
𝑙
𝛿
𝑙
for 𝑖 = 1𝑠, 2𝑠, 𝑡; 𝑙 = 𝑘

1𝑠
, 𝑘
2𝑠
, 𝑘
𝑡
, where 𝑑

𝑙
indicates

the percentage of variation allowed around its nominal value
and 𝛿

𝑗
(𝑗 = 𝑚

𝑠
, 𝑘
1𝑠
, 𝑘
2𝑠
, 𝑘
𝑡
) determine the actual parameter

derivation changing in interval [0, 1] [18]. Referring to [16,
17], given the possible variations of uncertain parameters:
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Figure 3: States trajectories of VSDC and OLS under attenuated disturbance.

𝑑
𝑚
𝑠

= 0.285,𝑑
𝑘
1𝑠

= 0.15,𝑑
𝑘
2𝑠

= 0.15, and𝑑
𝑘
𝑡

= 0.25, note they
represent 28.5% uncertainty in 𝑚

𝑠
, 15% in 𝑘

1𝑠
and 𝑘

2𝑠
, and

25% in 𝑘
𝑡
, which yields the uncertainty bound parameters:

Δ𝑚
𝑠
≤ 100 kg, Δ𝑘

1𝑠
≤ 2175N/m, Δ𝑘

2𝑠
≤ 24000N/m, Δ𝑘

𝑡
≤

47500N/m. Consequentially, the bound vector function 𝜌 is
produced:

𝜌(𝑥) =

[
[
[
[
[

[

0

0

−6.21𝑥
1
− 68.57𝑥

3

1
− 0.29�̇�

3

36.86𝑥
1
+ 406.78𝑥

3

1
− 805.08𝑥

2

]
]
]
]
]

]

. (86)

Then, transform the system in the form of (9a) and (9b).
To simulate the road profiles, two cases of sinusoidal signal
and attenuated signal are employed.

Case 1. Consider sinusoidal disturbance described by exosys-
tem (2) with

𝐺 =

[
[
[

[

0 0 1 0

0 0 0 1

−1 0 0 0

0 −2 0 0

]
]
]

]

, (87)

which produces the eigenvalues of𝐺 are ±1𝑗, ± 1.4142𝑗. Take
the performance index (79) with 𝑄 = 𝑅 = 𝐼

2
. First of all,

with (14) and (15) thematrices𝑃
1
,𝑃
2
are computed.Moreover,

from (32) and (33),𝑔(𝑀) and𝑥
(𝑀) are solved. Consequentially,

setting 𝑘 = 1 and 𝜀 = 0.05 in trending law (52), the OSMS
(49) is gotten as well as VSDC (77) is obtained. Finally, the
suspension responses by VSDC and OLS are demonstrated
in Figures 1 and 2.
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Figure 4: Control inputs and sliding mode surface under attenuated disturbance.

From Figure 1, it can be seen that the states are stabilized
and become stable by using VSDC and the magnitudes of the
suspension response are obviously reduced comparing with
those of the OLS.The reason can be concluded from Figure 2,
that by using VSDC, the states were controlled towards the
OSMS; while being forced onto the OSMS, the equivalent
control 𝑢

𝑒
drove them stabilized and hold good dynamical

characteristics.

Case 2. Consider attenuated disturbance described by exo-
system (2) with

𝐺 =

[
[
[

[

0 0 1 0

0 0 0 1

−0.05 0 −0.4 0

0 −0.34 0 −0.3

]
]
]

]

, (88)

which yields that the eigenvalues of𝐺 are −0.2±0.1𝑗, −0.15±
0.5635𝑗. Take performance index (12) with 𝑄 = 𝑅 = 𝐼

2
.

Through the same way, from (14) and (15), it yields the values
of matrix 𝑃

1
, 𝑃
2
. And from (32) and (33), 𝑔(𝑀) and 𝑥

(𝑀) are
solvable. Then, the OSMS (49) and VSDC (77) are obtained
taking 𝑘 = 1 and 𝜀 = 0.05 in trending law (52). Hence, as
displayed in Figures 3 and 4, the suspension responses by
VSDC and OLS are illustrated.

It is shown that the state variables are reduced by VSDC
comparing with OLS, which are controlled asymptotically
stable at about 30 sec. Clearly, the VSDC rejected the dis-
turbance which is faced by the system and makes the state
variable of OLS vibrate.

Summarily, comparing the simulation results between
Figures 1 and 2 and Figures 3 and 4, we can see that,
although the states are reduced by VSDC and lower than
those of OLS when facing sinusoidal disturbance, it still
vibrates a little; whereas when facing attenuated disturbance,
they converge to zero gradually. The reason lies in the main
different feature of these two kinds of signals. Notice that in
VSDC (55), there exists the feedforward compensation term

described as −(𝑅𝐵)
−1

[𝑀
𝑇

12
𝑃
2
(𝑡)𝐺 + 𝑘𝑀

𝑇

12
𝑃
2
(𝑡) + 𝑀

𝑇

12
�̇�
2
(𝑡) +

𝑀
𝑇

12
𝑃
1
(𝑡)𝐷𝐹]𝑤(𝑡), which causes the closed-loop system to

still be affected by disturbance 𝑤(𝑡). For this reason, facing
sinusoidal disturbance, the VSDC is able to compensate the
effect generated by disturbance so that the state amplitudes
are reduced but is not able to eliminate it entirely; while
when facing attenuated disturbance, the disturbance effect
can be entirely eliminated and state variables approach zero.
In addition, the sinusoidal and random disturbances can be
entirely eliminated by using dynamic internal-model com-
pensator, which can be referred to some bodies of literature,
for example, [35] or our previous studies [28, 36].

6. Conclusions

In this paper, the variable structure disturbance rejection
strategy for nonlinear systems with uncertainty and time
delay is presented. The original system has been transformed
into the delay-free one as well as the optimal problem has
been reduced to that of lower dimensions. The designed
OSMS and VSDC in both finite-time and infinite-time hori-
zon are proposed, where the disturbance is reduced and the
uncertainty and the nonlinearity are entirely compensated.
Numerical simulations have demonstrated the effectiveness
of the designed control law as well as the simplicity of the
proposed approach. It is verified that this proposed approach
is easy to implement and of reduced complexity.
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