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We study a particular first-order partial differential equation which arisen from a biologic model. We found that the solution
semigroup of this partial differential equation is a frequently hypercyclic semigroup. Furthermore, we show that it satisfies the
frequently hypercyclic criterion, and hence the solution semigroup is also a chaotic semigroup.

1. Introduction

The first-order partial differential equations appear in differ-
ent branches of science and succeed to demonstrate events of
nature. In this paperwe focus on the particular formof partial
differential equation

𝜕

𝜕𝑡
𝑢 + 𝑐 (𝑥)

𝜕

𝜕𝑥
𝑢 = 𝑓 (𝑡, 𝑢) , 𝑡 ≥ 0, 0 ≤ 𝑥 ≤ 1, (1)

with an initial condition

𝑢 (0, 𝑥) = V (𝑥) , 0 ≤ 𝑥 ≤ 1, (2)

where V and 𝑐 are given continuous function defined on [0, 1]
with

𝑐 (0) = 0, 𝑐 (𝑥) > 0 for 𝑥 ∈ (0, 1] , ∫
1

0

𝑑𝑥

𝑐 (𝑥)
= ∞. (3)

The function 𝑓 : [0,∞) × [0,∞) → 𝑅 in (1) is a given
continuously differentiable function satisfying

𝑓 (𝑡, 𝑦) ≤ 𝑘
1
𝑦 + 𝑘
2

for 𝑡 ∈ [0,∞) , 𝑦 ≥ 0, (4)

𝑓 (𝑡, 0) = 0, 𝑓


𝑦
(𝑡, 0) > 0 for 𝑡 ∈ [0,∞), (5)

where 𝑘
1
, 𝑘
2
are nonnegative constants.

This equation is usually used to represent the models of
age-structured populations. Populations of replicating and

maturing cells are age structured in that the replenishment of
new individuals into the population depends on the density
of a cohort of older individuals. Many biological populations
have similar models; the Lasota equation is the famous
example which is an application of (1). It can be written as

𝜕

𝜕𝑡
𝑢 + 𝑥

𝜕

𝜕𝑥
𝑢 = 𝜆𝑢, 𝑡 ≥ 0, 0 ≤ 𝑥 ≤ 1, 𝜆 > 1 (6)

with the initial condition

𝑢 (0, 𝑥) = 𝜑 (𝑥) , 0 ≤ 𝑥 ≤ 1. (7)

Equation (6) has been developed as a model for the
dynamics of a self-reproducing cell population, such as
the population of developing red blood cell (erythrocyte
precursors). It has also been applied to a conceptualization of
abnormal blood cell production such as leukemia. Although
this equation is linear, the solution has chaotic behavior.
Recently, there has been many authors studying this problem
(e.g., [1–20]).

A lot of researchers are interested in the chaotic behavior
of differential equation and chaotic 𝐶

0
-semigroup. In this

paper, we would like to study a type of semigroup, so-called
frequently hypercyclic semigroup.The frequently hypercyclic
semigroup has some restricted property to the chaotic 𝐶

0
-

semigroup.
Motivated by Birkhoff ’s ergodic Theorem, Bayart and

Grivaux introduced the notion of frequently hypercyclic
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operators in [5]. In that paper, they quantified the frequency
withwhich an orbitmeets the open sets, and several examples
of frequently hypercyclic operator are given. Moreover, the
authors also give an operator which is hypercyclic but not
frequently hypercyclic. Mangino and Peris extended the con-
cept of single operator to the continuous case and defined the
frequently hypercyclic semigroup in [17]. When a semigroup
{𝑆(𝑡)}
𝑡≥0

is a frequently hypercyclic semigroup, then for every
𝑡
0
> 0 the operator 𝑆(𝑡

0
) is frequently hypercyclic, but the

chaotic semigroup does not necessary satisfy this condition.
By recent results of Bayart and Bermúdez [6], there are
chaotic 𝐶

0
-semigroup {𝑆(𝑡)}

𝑡≥0
such that no single operator

𝑆(𝑡) is chaotic and a 𝐶
0
-semigroup {𝑆(𝑡)}

𝑡≥0
containing a

nonchaotic operator 𝑆(𝑡
0
), 𝑡
0
> 0 and a chaotic operator 𝑆(𝑡

1
)

for some 𝑡
1
> 0.

However, if a frequently hypercyclic semigroup {𝑆(𝑡)}
𝑡≥0

satisfies frequently hypercyclic criterion, then 𝑆(𝑡) is also
chaotic for every 𝑡 > 0 [17, Proposition 2.7]. That is one of
the reasons for us to study frequently hypercyclic semigroup.

The arrangement of this paper as follows. we will find
the solution semigroup {𝑆(𝑡)}

𝑡≥0
of (1) and some prosperities

of it in Section 2. We prove that the solution semigroup is
a frequently hypercyclic semigroup and some useful propo-
sitions in Section 3. In Section 4, we find the set of period
points of the solution semigroup of (1) and prove this solution
semigroup is chaotic directly.

2. The Solution Semigroup {𝑆(𝑡)}
𝑡≥0

of (1)
Using the method of characteristics to find the unique
solution of problem (1)∼(3) is equivalent to solving the
following two initial value problems:

𝜕

𝜕𝑡
𝑥 = 𝑐 (𝑥) ;

𝑥 (𝑝) = 𝑠,

(8)

𝜕

𝜕𝑡
𝑦 = 𝑓 (𝑡, 𝑦) ;

𝑦 (0) = 𝑟.

(9)

Under condition (3), there exists a unique solution of the
initial value problem (8). Denote it by 𝜑(𝑡; 𝑝, 𝑠) for 𝑝 > 0

and 𝑠 ∈ [0, 1]. For simplicity, we denote 𝜑
𝑠
(𝑡) = 𝜑(𝑡; 0, 𝑠) for

𝑠 ∈ [0, 1] and 𝑡 ∈ [0, 𝜏(𝑠)], where 𝜏(𝑠) is the first point such
that 𝜑

𝑠
(𝜏(𝑠)) = 1. We admit that 𝜏(0) = ∞.

For describing 𝜑(𝑡; 𝑝, 𝑠), we set

𝐺 (𝑥) = ∫

1

𝑥

𝑑𝜉

𝑐 (𝜉)
for 𝑥 ∈ (0, 1] . (10)

From (3), it follows that 𝐺 is strictly decreasing and hence
𝐺
−1exist. Moreover,

𝜑 (𝑡; 𝑝, 𝑠) = 𝐺
−1
(𝑝 − 𝑡 + 𝐺 (𝑠)) (11)

for 𝑠 ∈ [0, 1], 𝑡 ∈ [0, 𝑝 + 𝐺(𝑠)]. In particular,

𝜑
𝑠
(𝑡) = 𝐺

−1
(𝐺 (𝑠) − 𝑡) for 𝑠 ∈ [0, 1] , 𝑡 ∈ [0, 𝐺 (𝑠)] . (12)

From (11), 𝜑(𝑡; 𝑝, 𝑠) is nonnegative and nondecreasing in 𝑡.
Furthermore, it is increasing and positive for 𝑠 > 0.

Secondly, we are going to solve the initial value problem
(9). According to conditions (4) and (5), the unique solution
Ψ(𝑡; 𝑠, 𝑟) of (9) exists for all 𝑡 ∈ [0, 𝜏(𝑠)] and (𝑠, 𝑟) ∈ [0, 1] ×
[0,∞).

The characteristic of (1) is given by (𝜑
𝑠
(𝑡), Ψ(𝑡; 𝑠, 𝑟)).Thus,

for each pair of (1) and (3), we have that

𝑢 (𝑡, 𝜑
𝑠
(𝑡)) = Ψ (𝑡; 𝑠, 𝑟) for 𝑡 ∈ [0, 𝜏 (𝑠)] , (13)

where 𝑟 = 𝑢(0, 𝑠) = V(𝑠). Setting 𝑠 = 𝜑(0; 𝑡, 𝑥), we obtain
𝜑
𝑠
(𝑡) = 𝑥, and hence

𝑢 (𝑡, 𝑥) = Ψ (𝑡; 𝜑 (0; 𝑡, 𝑥) , V (𝜑 (0; 𝑡, 𝑥)))

for (𝑡, 𝑥) ∈ [0,∞) × [0, 1] .
(14)

Formula (14) shows the existence and uniqueness of solution
of (1) and (3).

Let𝐶
+
([0, 1]) be the space of nonnegative and continuous

functions defined on [0, 1] and 𝐶
1

+
([0, 1]) the subspace

of 𝐶
+
([0, 1]) which contains all continuously differentiable

functions. Because the functions 𝑐 and 𝑓 do not depend
explicitly on 𝑡, formula (14) can define a semigroup on
𝐶
1

+
([0, 1]) of the form

𝑆 (𝑡) V (𝑥) = Ψ (𝑡; 𝜑 (0; 𝑡, 𝑥) , V (𝜑 (0; 𝑡, 𝑥)))

for (𝑡, 𝑥) ∈ [0,∞) × [0, 1] .
(15)

The space 𝐶
+
([0, 1]) with the supremum norm is a Banach

space. Since the transformations {𝑆(𝑡)}
𝑡≥0

are continuous
operators and 𝐶1

+
([0, 1]) is a dense subspace of 𝐶

+
([0, 1]),

hence, {𝑆(𝑡)}
𝑡≥0

is also a semigroup on 𝐶
+
([0, 1]).

Let

𝑉 = {V ∈ 𝐶
+
([0, 1]) : V (0) = 0} (16)

with the metric

𝜌 (𝑢, V) = ‖𝑢 − V‖ , ∀𝑢, V ∈ 𝑉, (17)

where ‖ ⋅ ‖ is the supremum norm on 𝐶
+
([0, 1]). Then, (𝑉, 𝜌)

is a complete metric space. For convenience, we will denote it
as 𝑉.

Lemma 1. The space 𝑉 is invariant with respect to the
semigroup {𝑆(𝑡)}

𝑡≥0
given by (15).

Proof. We need only to show that 𝑆(𝑡)V(0) = 0 for V ∈ 𝑉

and 𝑡 ≥ 0. By (3), (11), and (15), we have 𝜑(0; 𝑡, 0) = 0 and
𝑆(𝑡) V(0) = Ψ(𝑡; 𝜑(0; 𝑡, 0), V(𝜑(0; 𝑡, 0))) = Ψ(𝑡; 0, 0). From (5),
𝑦 = 0 is the unique solution of (9) for initial value 𝑦(0) = 𝑟 =
0. This implies that 𝑆(𝑡)V(0) = Ψ(𝑡; 0, 0) = 0 and the proof of
this lemma is completed.

Since𝑉 is complete separable metric space and 𝑆(𝑡)(𝑉) ⊂
𝑉 for 𝑡 ≥ 0 (Lemma 1), the semigroup {𝑆(𝑡)}

𝑡≥0
can be

considered on the space 𝑉.
For proving Lemma 2, given any 𝑡

0
> 0 with 𝑡

0
⩾ 𝐺(𝛼),

we will define a transformation 𝑇
0
on 𝑉. From (4) and (5), it
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follows thatΨ(𝑡; 𝑠, ⋅) is a bijection.Thus, there exists a unique
function 𝜎(𝑡; 𝑠, ⋅) : 𝑅

+
→ 𝑅
+
satisfying

Ψ (𝑡; 𝑠, 𝜎 (𝑡; 𝑠, 𝑟)) = 𝑟 for 𝑠 ∈ [0, 1] , 𝑡 ∈ [0, 𝜏 (𝑠)] . (18)

For every 𝑡
0
≥ 𝐺(𝛼) and 𝑑

0
≡ 𝐺
−1
(𝑡
0
) = 𝜑(0; 𝑡

0
, 1), we can

define a transformation 𝑇
0
: 𝑉 → 𝑉 by the formula

𝑇
0
V (𝑥) : {

𝜎 (𝑡
0
; 𝑥, V (𝜑 (𝑡

0
; 0, 𝑥))) for 0 ≤ 𝑥 ≤ 𝑑

0
,

𝜎 (𝑡
0
; 𝑑
0
, V (1)) for 𝑑

0
≤ 𝑥 ≤ 1,

(19)

for every V ∈ 𝑉.

Lemma 2. There exists a closed subset 𝑈 ⊆ 𝑉 which is
invariant with respect to 𝑇

0
.

Proof. Let 𝑈 = {V ∈ 𝑉 : 0 ≤ V(𝑥) ≤ 𝑀
0
, for 0 ≤ 𝑥 ≤ 1},

where𝑀
0
will be determined later. By the differentiation of

(18) with respect to 𝑟 and the fact that Ψ(𝑡; 𝑠, ⋅) is a bijection,
we obtain

𝜎


𝑟
(𝑡; 𝑠, 𝑟) = (Ψ



𝑟
(𝑡; 𝑠, 𝜎 (𝑡; 𝑠, 𝑟)))

−1

. (20)

Using (9), we have

Ψ


𝑟
(𝑡; 𝑠, 𝜎 (𝑡; 𝑠, 𝑟))

= exp(∫
𝑡

0

𝑓


𝑦
(𝜑
𝑠
(𝑝) , Ψ (𝑝; 𝑠, 𝜎 (𝑡; 𝑠, 𝑟))) 𝑑𝑝)

(21)

and consequently

𝜎


𝑟
(𝑡; 𝑥, 𝜃) = exp(−∫

𝑡

0

𝑓


𝑦
(𝜑
𝑠
(𝑝) , Ψ (𝑝; 𝑠, 𝜎 (𝑡; 𝑠, 𝑟))) 𝑑𝑝)

(22)

for 𝑠 ∈ [0, 1], 𝑡 ∈ [0, 𝜏(𝑠)], and 𝑟 ≥ 0. Since Ψ(𝑡; 𝑠, 0) = 0 for
𝑡 ∈ [0, 𝜏(𝑠)] and from (18), we get𝜎(𝑡; 𝑠, 0) = 0 for 𝑡 ∈ [0, 𝜏(𝑠)].
For a given 𝑥 ∈ [0, 𝑑

0
], by mean-value theorem, we have that

𝑇
0
V (𝑥) = 𝜎 (𝑡

0
; 𝑥, V (𝜑 (𝑡

0
; 0, 𝑥))) − 𝜎 (𝑡

0
; 𝑥, 0)

= 𝜎


𝑟
(𝑡
0
; 𝑥, 𝜃) V (𝜑 (𝑡

0
; 0, 𝑥))

for some 𝜃 ∈ [0, V (𝜑 (𝑡
0
; 0, 𝑥))] .

(23)

For estimate 𝑇
0
, according to (22) and (23), we need to

estimate 𝜎
𝑟
and 𝑓

𝑦
.

From (5) there exist numbers 𝛼 ∈ (0, 1] and 𝛽 > 0 such
that

𝑓


𝑦
(𝑡, 𝑦) ≥ 𝛽 for 𝑡 ∈ [0,∞) , 𝑦 ∈ [0, 𝛼] . (24)

By the fact,Ψ(𝑝; 𝑥, 0) = 0, and 𝜎(𝑡
0
; 𝑥, 0) = 0, we may choose

𝑀
0
> 0 such that

Ψ (𝑝; 𝑥, 𝜎 (𝑡
0
; 𝑥, 𝜃)) ≤ 𝛼 (25)

for 𝑝 ∈ [0, 𝑡
0
], 𝑥 ∈ [0, 𝑑

0
], 𝜃 ∈ [0,𝑀

0
] and 𝛼 is chosen in (24).

From (22) and (24), we have

𝜎


𝑟
(𝑡
0
; 𝑥, 𝜃) ≤ 𝐿,

for 𝑥 ∈ [0, 𝑑
0
] , 𝜃 ∈ [0,𝑀

0
] , where 𝐿 = 𝑒−𝛽𝑡0 .

(26)

Using (19), (23), and (26), it is easy to see 𝑇
0
(𝑈) ⊂ 𝑈, and the

proof of this lemma is complete.

From the properties of 𝑆(𝑡) and 𝑇
0
, we have the following

lemma.

Lemma 3. For every 𝑡
𝑜
≥ 𝐺(𝛼),

𝑆 (𝑡
0
) 𝑇
0
V = V for every V ∈ 𝑉. (27)

Proof. Using formula (15), (19), and the definition of 𝜑, we
have

𝑆 (𝑡) 𝑇
0
V (𝑥)

= Ψ (𝑡; 𝜑 (0; 𝑡, 𝑥) , 𝜎 (𝑡
0
; 𝜑 (0; 𝑡, 𝑥) , V (𝜑 (𝑡

0
; 𝑡, 𝑥))))

(28)

for 0 ≤ 𝑡 ≤ 𝑡
0
, 0 ≤ 𝑥 ≤ 𝜑(𝑡; 0, 𝑑

0
), and V ∈ 𝑉.

Pluging 𝑡 = 𝑡
0
into (28), we have

𝑆 (𝑡
0
) 𝑇
0
V (𝑥)

= Ψ (𝑡
0
; 𝜑 (0; 𝑡

0
, 𝑥) , 𝜎 (𝑡

0
; 𝜑 (0; 𝑡

0
, 𝑥) , V (𝜑 (𝑡

0
; 𝑡
0
, 𝑥)))) .

(29)

Furthermore, since 𝜑(𝑡
0
; 𝑡
0
, 𝑥) = 𝑥 and 𝜑(𝑡

0
; 0, 𝑑
0
) = 1,

𝑆 (𝑡
0
) 𝑇
0
V (𝑥)

= Ψ (𝑡
0
; 𝜑 (0; 𝑡

0
, 𝑥) , 𝜎 (𝑡

0
; 𝜑 (0; 𝑡

0
, 𝑥) , V (𝜑 (𝑡

0
; 𝑡
0
, 𝑥))))

= Ψ (𝑡
0
; 𝜑 (0; 𝑡

0
, 𝑥) , 𝜎 (𝑡

0
; 𝜑 (0; 𝑡

0
, 𝑥) , V (𝑥)))

(30)

for 0 ≤ 𝑥 ≤ 𝜑(𝑡; 0, 𝑑
0
) = 1. By (18) we have 𝑆(𝑡

0
)𝑇
0
V = V for

every V ∈ 𝑉, and the assertion of this lemma is established
now.

3. The Frequently Hypercycle Property of
{𝑆(𝑡)}

𝑡≥0

At beginning of this section, we introduce some terminolo-
gies and propositions which will be used later. According
to Devaney’s definition, a semigroup {𝐾(𝑡)}

𝑡≥0
defined in a

metric space (𝑋, 𝑑) is chaotic if it has following properties:

(1) {𝐾(𝑡)}
𝑡≥0

has a property of sensitive dependence on
initial conditions; that is, there is a positive real
number𝑀 such that for every point V ∈ 𝑋 and every
𝜀 > 0 there is 𝑤 ∈ 𝐵(V, 𝜀) and 𝑡 > 0, such that
𝑑(𝐾(𝑡)V, 𝐾(𝑡)𝑤) ≥ 𝑀;

(2) {𝐾(𝑡)}
𝑡≥0

is transitive; that is, for all nonempty open
subsets 𝑈

1
, 𝑈
2
there is 𝑡 > 0 such that (𝐾(𝑡)𝑈

1
) ∩

𝑈
2
̸= 𝜙;

(3) the set of periodic points of {𝐾(𝑡)}
𝑡≥0

is dense in𝑋.

We recall that the lower density of a measurable set𝑀 ⊂

𝑅
+ is defined by

Dens (𝑀) =
lim inf

𝑁→∞
𝜇 (𝑀 ∩ [0,𝑁])

𝑁
, (31)
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where 𝜇 is the Lebesgue measure on 𝑅+. A 𝐶
0
-semigroup

{𝑆(𝑡)}
𝑡≥0

is called frequently hypercyclic if there exists 𝑥 ∈ 𝑋
such that

Dens ({𝑡 ∈ 𝑅+ : 𝑆 (𝑡) 𝑥 ∈ 𝑈})

> 0 for any nonempty open set 𝑈 ⊂ 𝑋.
(32)

The lower density of a set 𝐴 ⊂ N is defined by

Dens (𝐴) = lim inf
𝑁→∞

♯
{𝑛 ≤ 𝑁 : 𝑛 ∈ 𝐴}

𝑁
. (33)

An operator 𝑆 ⊂ 𝐿(𝑋) is said to be frequently hypercyclic
if there exists 𝑥 ∈ 𝑋 (called frequently hypercyclic vector)
such that, for any non-empty open set 𝑈 ⊂ 𝑋, the set {𝑛 ∈
N : 𝑆

𝑛
𝑥 ∈ 𝑈} has positive lower density. In [6], Bayart and

Bermúdez proved that if 𝑥 ∈ 𝑋 is a frequently hypercyclic
vector for {𝑆(𝑡)}

𝑡≥0
, then for 𝑡 > 0 the 𝑥 is a frequently

hypercyclic vector for the operator 𝑆(𝑡).

Proposition 4 (see [17, Proposition 2.1]). Let {𝑆(𝑡)}
𝑡≥0

be
a 𝐶
0
-semigroup on a separable Banach space 𝑋. Then, the

following conditions are equivalent:

(1) {𝑆(𝑡)}
𝑡≥0

is frequently hypercyclic;
(2) for every 𝑡 > 0 the operator 𝑆(𝑡) is frequently hyper-

cyclic;
(3) there exist 𝑡

0
> 0 such that the operator 𝑆(𝑡

0
) is

frequently hypercyclic.

According to this proposition one wants to show that a
semigroup {𝑆(𝑡)}

𝑡≥0
is frequently hypercyclic just needed to

check the operator 𝑆(𝑡
0
) for some fixed 𝑡

0
is frequently hyper-

cyclic. The following proposition described the sufficient
condition for frequently hypercyclic operator. It is also called
frequently hypercyclic criterion. Frequently hypercyclic cri-
terion builds the relation between frequently hypercyclic
semigroup and chaotic semigroup.

Proposition 5. Let 𝑆 be a continuous operator on a separable
Banach space 𝑋. If there exist a dense subset 𝑋

0
⊆ 𝑋 and a

map 𝑇 : 𝑋
0
→ 𝑋
0
satisfying

(1) 𝑆𝑇𝑥 = 𝑥, for all 𝑥 ∈ 𝑋
0
;

(2) ∑∞
𝑛=1
𝑆
𝑛
𝑥 is unconditionally convergent for all 𝑥 ∈ 𝑋

0
;

(3) ∑∞
𝑛=1
𝑇
𝑛
𝑥 is unconditionally convergent for all 𝑥 ∈ 𝑋

0
;

then 𝑆 is frequently hypercyclic.

The proof of this proposition can be found in [3].

Theorem 6. Suppose that 𝑈 is the closed set in Lemma 2;
then the solution semigroup {𝑆(𝑡)}

𝑡≥0
in Section 2 is frequently

hypercyclic on 𝑈.

Proof. To show the conclusion of this theorem to be true, we
are planning to apply Proposition 5.

According to Proposition 4, to show that 𝑆(𝑡) is frequently
hypercyclic, we need only to prove that 𝑆(𝑡

0
) is frequently

hypercyclic operator for some fixed 𝑡
0
.

For this purpose, we defined an operator 𝑆
0
on 𝑉 by

𝑆
0
V (𝑥) = 𝑆 (𝑡

0
) V (𝑥)

= Ψ (𝑡
0
; 𝜑 (0; 𝑡

0
, 𝑥) , V (𝜑 (0; 𝑡

0
, 𝑥)))

for 0 ≤ 𝑥 ≤ 1, V ∈ 𝑉.

(34)

It is obvious that the operator 𝑇
0
defined by (19) is a good

candidate for checking condition (1) of Proposition 5. In
fact, by Lemma 3 we have 𝑆

0
𝑇
0
= 𝐼 and condition (1) of

Proposition 5 is satisfied.
For checking condition (2) of Proposition 5, we are

going to find a dense subset of 𝐶
+
([0, 1]). The characteristic

functions 𝜒
[𝑎,𝑏]

, 𝑎, 𝑏 ∈ [0, 1], are candidates. However, 𝜒
[𝑎,𝑏]

does not belong to 𝐶
+
([0, 1]). So we need to modify 𝜒

[𝑎,𝑏]
.

For a suitable small positive constant 𝜀 and 𝑎, 𝑏 ∈ [0, 1],
we define 𝜒

[𝑎,𝑏],𝜀
= 1 for 𝑥 ∈ [𝑎 + 𝜀, 𝑏 − 𝜀], 𝜒

[𝑎,𝑏],𝜀
= 0 for

𝑥 ∈ [0, 1] − [𝑎, 𝑏], and smooth connecting the graph of 𝜒
[𝑎,𝑏],𝜀

for 𝑥 ∈ [𝑎, 𝑎 + 𝜀] ∪ [𝑏 − 𝜀, 𝑏] such that 𝜒
[𝑎,𝑏],𝜀

∈ 𝐶
+
([0, 1]). We

choose some sequences {𝑎
𝑖
} and {𝑏

𝑖
}, 𝑖 ∈ N, 𝑎

𝑖
, 𝑏
𝑖
∈ (0, 1) such

that 𝑎
𝑖
→ 0 and 𝑏

𝑖
→ 1 as 𝑖 → ∞. Let

𝐼
𝑖
= 𝜒
[𝑎𝑖 ,𝑏𝑖],𝜀

; (35)

we have 𝜒
[0,1]

= lim
𝑖→∞

𝐼
𝑖
and V = lim

𝑖→∞
V ⋅ 𝐼
𝑖
for V ∈

𝐶
+
([0, 1]).
Let𝑊 = {V

𝑖
: V
𝑖
= V ⋅ 𝐼

𝑖
, V ∈ 𝐶

+
([0, 1]), where 𝐼

𝑖
were

defined as in (35)}. It is clear that𝑊 is dense in 𝑉, and hence
𝑊 is dense in 𝑈 also.

According to the definitions of 𝐺 and 𝜑, for 𝑘 ∈ N, we
have that

𝑆
𝑘

0
V (𝑥) = Ψ (𝑘𝑡

0
; 𝜑 (0; 𝑘𝑡

0
, 𝑥) , V (𝜑 (0; 𝑘𝑡

0
, 𝑥))) (36)

for 0 ≤ 𝑥 ≤ 1 and V ∈ 𝑉, provided 𝑆(𝑡) is the solution
semigroup. From (11) and the fact that𝐺 is strictly decreasing,
for any fixed 𝐼

𝑖
, there exists 𝑘

0
∈ N such that for all 𝑘 > 𝑘

0
,

𝑘 ∈ N, we have that 𝜑(0; 𝑘𝑡
0
, 1) < 𝑎

𝑖
and 𝐼
𝑖
(𝜑(0; 𝑘𝑡

0
, 𝑥)) = 0

for 0 ≤ 𝑥 ≤ 1. This implies that

𝑆
𝑘

0
𝐼
𝑖
(𝑥) = Ψ (𝑘𝑡

0
; 𝜑 (0; 𝑘𝑡

0
, 𝑥) , 𝐼

𝑖
(𝜑 (0; 𝑘𝑡

0
, 𝑥))) = 0,

for 0 ≤ 𝑥 ≤ 1, ∀𝑘 > 𝑘
0
𝑘 ∈ N, and consequently,

(37)

𝑆
𝑘

0
V
𝑖
(𝑥) = Ψ (𝑘𝑡

0
; 𝜑 (0; 𝑘𝑡

0
, 𝑥) , V

𝑖
(𝜑 (0; 𝑘𝑡

0
, 𝑥))) = 0. (38)

From the previously mentioned, there have been only finite
many 𝑘 ∈ N such that 𝑆𝑘

0
V
𝑖
(𝑥) ̸= 0, so ∑∞

𝑘=1
𝑆
𝑘

0
V
𝑖
is uncon-

ditionally convergent. This proves that condition (2) of
Proposition 5 is satisfied.

From (19), (27), and the definitions of 𝐺 and 𝜑, for 𝑘 ∈ N,
we have

𝑇
𝑘

0
V (𝑥) : {

𝜎 (𝑘𝑡
0
; 𝑥, V (𝜑 (𝑘𝑡

0
; 0, 𝑥))) for 0 ≤ 𝑥 ≤ 𝑑

𝑘−1
,

𝜎 (𝑘𝑡
0
; 𝑑
𝑘−1
, V (1)) for 𝑑

0
≤ 𝑥 ≤ 1,

(39)

where 𝑑
𝑘−1

= 𝐺
−1
(𝑘𝑡
0
) = 𝜑(0; 𝑘𝑡

0
, 1) for every 𝑘 ∈ N. In fact,

𝑇
𝑘

0
V(𝑥) for 0 ≤ 𝑥 ≤ 𝑑

0
is equal to 𝜎(𝑘𝑡

0
; 𝑥, V(𝜑(𝑘𝑡

0
; 0, 𝑥))) for

0 ≤ 𝑥 ≤ 𝑑
𝑘−1

.
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Using similar estimation of (23), we have that

𝑇
𝑘

0
V (𝑥) = 𝜎

𝑟
(𝑘𝑡
0
; 𝑥, 𝜃) V (𝜑 (𝑘𝑡

0
; 0, 𝑥)) for 𝑥 ∈ [0, 𝑑

0
] ,

𝜎


𝑟
(𝑘𝑡
0
; 𝑥, 𝜃) ≤ 𝐿

𝑘
, for 𝑥 ∈ [0, 𝑑

𝑘−1
] , 𝜃 ∈ [0,𝑀

0
] .

(40)

This implies that ‖𝑇𝑘
0
‖ ≤ 𝐿

𝑘, for every 𝑘 ∈ N, and hence
∑
∞

𝑘=1
‖𝑇
𝑘

0
‖ ≤ 𝐿/(1 − 𝐿). This shows that ∑∞

𝑘=1
𝑇
𝑘

0
V is uncon-

ditionally convergent. Thus, condition (3) of Proposition 5 is
also satisfied.We complete the proof of this theoremnow.

Although from frequently hypercyclic criterion we can
get 𝑆(𝑡) is chaotic for every 𝑡 > 0, we can directly prove
the conclusion without using frequently hypercyclic criterion
and we state in next section.

4. The Chaotic Property of {𝑆(𝑡)}
𝑡≥0

From the definition of chaotic semigroup, we need to find the
set of period points of 𝑆(𝑡

0
) for some 𝑡

0
> 0 which is dense in

𝑉. For this purpose, we first find a special function such that

𝑇
𝑡0
V
0
(𝑥) = 𝜎 (𝑡

0
; 𝑥, V
0
(𝜑 (𝑡
0
; 0, 𝑥))) ,

= V
0
(𝑥) for 0 ≤ 𝑥 ≤ 1.

(41)

We restrict 𝑇
𝑡0
on 𝑈 = {V ∈ 𝑉 : 0 ≤ V(𝑥) ≤ 𝑀

0
, 0 ≤ 𝑥 ≤ 1};

then by (22), (23), and (24), we have

𝑇
𝑡0
V (𝑥) = 𝜎

𝑟
(𝑡
0
; 𝑥, 𝜃) V (𝜑 (𝑡

0
; 0, 𝑥))

≤ 𝑒
−𝛽𝑡0V (𝜑 (𝑡

0
; 0, 𝑥)) , for V ∈ 𝑈.

(42)

Since 𝑒−𝛽𝑡0 < 1, this implies that 𝑇
𝑡0
is contraction on 𝑈, and

hence there exists a V
0
∈ 𝑈 such that 𝑇

𝑡0
V
0
(𝑥) = V

0
(𝑥).

For any 𝑤 ∈ 𝑉, we define 𝑤
𝛿
as

𝑤
𝛿
(𝑥) :

{{{{{

{{{{{

{

V
0
(𝑥) for 0 ≤ 𝑥 ≤ 𝑑

0
,

1

𝛿
(𝑤 (𝑑
0
+ 𝛿) − V

0
(𝑑
0
))

(𝑥 − 𝑑
0
) + V
0
(𝑑
0
) for 𝑑

0
≤ 𝑥 ≤ 𝑑

0
+ 𝛿,

𝑤 (𝑥) for 𝑑
0
+ 𝛿 ≤ 𝑥 ≤ 1.

(43)

From (43), 𝑤
𝛿
is also belonging to 𝑉. Combining (41) and

(43), we obtain

𝑇
𝑡0
𝑤
𝛿
(𝑥) = V

0
(𝑥) = 𝑤

𝛿
(𝑥) , for 0 ≤ 𝑥 ≤ 𝑑

0
. (44)

Using (27), (44), and the fact that 0 ≤ 𝜑(0; 𝑡
0
, 𝑥) ≤ 𝑑

0
for

0 ≤ 𝑥 ≤ 1, we have

𝑆 (𝑡
0
) 𝑤
𝛿
(𝑥) = Ψ (𝑡

0
; 𝜑 (0; 𝑡

0
, 𝑥) , 𝑤

𝛿
(𝜑 (0; 𝑡

0
, 𝑥)))

= Ψ (𝑡
0
; 𝜑 (0; 𝑡

0
, 𝑥) , 𝑇

𝑡0
𝑤
𝛿
(𝜑 (0; 𝑡

0
, 𝑥)))

= 𝑆 (𝑡
0
) 𝑇
𝑡0
𝑤
𝛿
(𝑥) = 𝑤

𝛿
(𝑥) for 0 ≤ 𝑥 ≤ 1.

(45)

In other words, 𝑤
𝛿
is a periodic point of 𝑆(𝑡

0
).

Remark 7. It is not hard to prove that the set of periodic
points of (45) is dense in 𝑉 and the solution semigroup
defined by (15) is transitive in 𝑉. As proved by Bayart and
Matheron [4], the sensitive dependence of the 𝐶

0
-semigroup

on initial conditions in the sense of Guckenheimer appears
immediately from its transitivity and density of the set of its
periodic points. This is expressed by the following corollary.

Corollary 8. The solution 𝐶
0
-semigroup {𝑆(𝑡)}

𝑡≥0
defined by

(15) is chaotic in 𝑉.

Finally, we demonstrate two simple examples. The first
one is

𝜕

𝜕𝑡
𝑢 + 𝑟𝑥

𝜕

𝜕𝑥
𝑢 = 𝛼𝑢 (1 − 𝑢) , 𝑡 ≥ 0, 0 ≤ 𝑥 ≤ 1, (46)

where 𝑟, 𝛼 > 0 are constants, and with the initial condition

𝑢 (0, 𝑥) = 𝜑 (𝑥) , 0 ≤ 𝑥 ≤ 1. (47)

It is easy to see that condition (3) is satisfied.
In fact, the solution semigroup {𝑆(𝑡)}

𝑡≥0
of (46) is given

by

𝑆 (𝑡) 𝜑 (𝑥) =
𝜑 (𝑥𝑒
−𝑟𝑡
) 𝑒
𝛼𝑡

1 − 𝜑 (𝑥𝑒−𝑟𝑡) [1 − 𝑒𝛼𝑡]

= [(𝜑 (𝑥𝑒
−𝑟𝑡
))
−1

⋅ 𝑒
−𝛼𝑡
− 𝑒
−𝛼𝑡
+ 1]
−1

.

(48)

From the previous results, we know that {𝑆(𝑡)}
𝑡≥0

is not only
a frequently hypercyclic semigroup but also chaotic.

Another example is the Lasota equation (6) in Section 1.
It is easy to see that condition (3) is satisfied. The solution
semigroup of (6) is frequently hypercyclic and chaotic as well.
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