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We study the normal families related to a Hayman conjecture of higher derivative and concerning shared values and get two normal
criteria. Our results improve the related theorems which were obtained independently, respectively by Fang and Yuan (2001), Yuan
et al. ((2011) and (2012)), Wang et al. (2011), and Qiu et al. (2012). Meanwhile, some examples are given to show the sharpness of
our results.

1. Introduction and Main Results

Let 𝑓(𝑧) and 𝑔(𝑧) be two nonconstant meromorphic func-
tions in a domain 𝐷 ⊆ C, and let 𝑎 be a finite complex
value. We say that 𝑓 and 𝑔 share 𝑎 CM (or IM) in𝐷 provided
that 𝑓 − 𝑎 and 𝑔 − 𝑎 have the same zeros counting (or
ignoring) multiplicity in 𝐷. When 𝑎 = ∞, the zeros of 𝑓 − 𝑎
mean the poles of 𝑓 (see [1]). It is assumed that the reader is
familiar with the standard notations and the basic results of
Nevanlinna’s value-distribution theory ([1] or [2–4]).

It is very interesting to find normality criteria from the
point of view of shared values. In this area, Schwick [5] first
proved an interesting result that a family of meromorphic
functions in a domain is normal in which every function
shares three distinct finite complex numbers with their first
derivative. And later, more results about normality criteria
concerning shared values have emerged; for instance, see [6–
8]. In recent years, this subject has attracted the attention of
many researchers worldwide.

We now first introduce a normality criterion related to a
Hayman normal conjecture [9].

Theorem 1. LetF be a family of holomorphic (meromorphic)
functions defined in a domain, 𝑛 ∈ N, 𝑎 ̸= 0, and 𝑏 ∈ C. If
𝑓(𝑧)+𝑎𝑓𝑛(𝑧)−𝑏 does not vanish in𝐷 for each function𝑓(𝑧) ∈
F and 𝑛 ≥ 2 (𝑛 ≥ 3), thenF is normal in𝐷.

The results for the holomorphic case are due to Drasin
[10] for 𝑛 ≥ 3, Pang [11] for 𝑛 = 3, Chen and Fang [12] for 𝑛 =
2, Ye [13] for 𝑛 = 2, and Chen and Gu [14] for the generalized
result with 𝑎 and 𝑏 replaced by meromorphic functions. The
results for the meromorphic case are due to Li [15], Li [16],
and Langley [17] for 𝑛 ≥ 5, Pang [11] for 𝑛 = 4, Chen and
Fang [12] for 𝑛 = 3, and Zalcman [18] for 𝑛 = 3, obtained
independently.

When 𝑛 = 2 and F is meromorphic, Theorem 1 is not
valid in general. Fang and Yuan [19] gave an example to show
this and got a special result below.

Example 2. The family of meromorphic functions F =

{𝑓
𝑗
(𝑧) = 𝑗𝑧/(√𝑗𝑧 − 1)2 : 𝑗 = 1, 2, . . . , } is not normal in

𝐷 = {𝑧 : |𝑧| < 1}. This is deduced by 𝑓#
𝑗
(0) = 𝑗 → ∞, as

𝑗 → ∞ and Marty’s criterion [2], although for any 𝑓
𝑗
(𝑧) ∈

F, 𝑓
𝑗
+ 𝑓2
𝑗
= 𝑗(√𝑗𝑧 − 1)−4 ̸= 0.

Here 𝑓#(𝜉) denotes the spherical derivative

𝑓#
(𝜉) =

𝑓
 (𝜉)



1 +
𝑓 (𝜉)


2
. (1)

Theorem 3. LetF be a family of meromorphic functions in a
domain 𝐷, and 𝑎 ̸= 0, 𝑏 ∈ C. If 𝑓(𝑧) + 𝑎𝑓2(𝑧) − 𝑏 does not



2 Abstract and Applied Analysis

vanish in𝐷 and the poles of𝑓(𝑧) are of multiplicity ≥3 for each
𝑓(𝑧) ∈ F, thenF is normal in𝐷.

In 2008, by the ideas of shared values, Zhang [8] proved
the following.

Theorem 4. LetF be a family of meromorphic (holomorphic)
functions in 𝐷, let 𝑛 be a positive integer and let 𝑎, 𝑏 be two
finite complex numbers such that 𝑎 ̸= 0. If 𝑛 ≥ 4 (𝑛 ≥ 2) and
for every pair of functions 𝑓 and 𝑔 inF, 𝑓 −𝑎𝑓𝑛 and 𝑔 −𝑎𝑔𝑛
share the value 𝑏 IM, thenF is normal in𝐷.

Example 5 (see [8]). The family of meromorphic functions
F = {𝑓

𝑗
(𝑧) = 1/√𝑗(𝑧 − 1/𝑗) : 𝑗 = 1, 2, . . . , } is not normal in

𝐷 = {𝑧 : |𝑧| < 1}. Obviously 𝑓
𝑗
− 𝑓3
𝑗
= −𝑧/√𝑗(𝑧 − 1/𝑗)3. So

for each pair of 𝑚, 𝑗, 𝑓
𝑗
− 𝑓3
𝑗
and 𝑓

𝑚
− 𝑓3
𝑚
share the value 0

in 𝐷, but F is not normal at the point 𝑧 = 0, since 𝑓#
𝑗
(0) =

2(√𝑗)3/(1 + 𝑗) → ∞, as 𝑗 → ∞.

Remark 6. Example 5 shows thatTheorem 4 is not validwhen
𝑛 = 3, and the condition 𝑛 = 4 is best possible for
meromorphic case.

In 2011, Yuan et al. [20] and Wang et al. [21] proved the
following theorems, independently, respectively.

Theorem 7 (see [20, 21]). Let F be a family of meromorphic
functions in 𝐷 and 𝑎, 𝑏 two finite complex numbers such that
𝑎 ̸= 0. Suppose that each 𝑓 ∈ F has no simple pole. If 𝑓 − 𝑎𝑓3
and 𝑔 − 𝑎𝑔3 share the value 𝑏 IM for every pair of functions 𝑓
and 𝑔 inF, thenF is normal in𝐷.

Theorem 8 (see [20]). Let F be a family of meromorphic
functions in 𝐷 and 𝑎 and 𝑏 two finite complex numbers such
that 𝑎 ̸= 0. Suppose that each 𝑓 ∈ F admits zeros of multiple
and the poles of multiplicity at least 3. If 𝑓 − 𝑎𝑓2 and 𝑔 − 𝑎𝑔2
share the value 𝑏 IM for every pair of functions 𝑓 and 𝑔 inF,
thenF is normal in𝐷.

Lately, Yuan et al. [22] and Qiu et al. [23] studied this
result, independently, respectively, in which the derivative 𝑓

was replaced by 𝑘th derivative𝑓(𝑘), and they got the following
results.

Theorem 9 (see [22]). Let F be a family of meromorphic
functions in 𝐷, and let 𝑘(≥ 2) and 𝑛(≥ 𝑘 + 2) be two positive
integers. Let 𝑎( ̸= 0) and 𝑏 be two finite complex numbers. If

(i) 𝑓(𝑘) −𝑎𝑓𝑛 and 𝑔(𝑘) −𝑎𝑔𝑛 share 𝑏 IM in𝐷 for every pair
of functions 𝑓 and 𝑔 inF,

(ii) 𝑓 has no simple pole and no zero of multiplicity less
than 𝑘 in𝐷 for every function𝑓 ∈ F, thenF is normal
in𝐷.

Theorem 10 (see [22, 23]). LetF be a family of meromorphic
functions in 𝐷, 𝑘(≥ 2) and 𝑛(≥ 𝑘 + 3) be two positive integers.
Let 𝑎( ̸= 0) and 𝑏 be two finite complex numbers. If

(i) 𝑓(𝑘) −𝑎𝑓𝑛 and 𝑔(𝑘) −𝑎𝑔𝑛 share 𝑏 IM in𝐷 for every pair
of functions 𝑓 and 𝑔 inF,

(ii) 𝑓 has no zero of multiplicity less than 𝑘 in 𝐷 for every
function 𝑓 ∈ F, thenF is normal in𝐷.

It is natural to ask whether the condition 𝑛 ≥ 𝑘 + 2 or
𝑛 ≥ 𝑘 + 3 in the previous theorems can be reduced. In this
paper, we study this problem and get the following results.

Theorem 11 (main theorem). Let𝐷 be a domain in C and let
F be a family of meromorphic functions in 𝐷. Let 𝑘, 𝑛, 𝑑 ∈
N+, 𝑛 ≥ 3, 𝑑 ≥ (𝑘+1)/(𝑛−2) and let 𝑎, 𝑏 be two finite complex
numbers with 𝑎 ̸= 0. Suppose that every 𝑓 ∈ F has all its zeros
of multiplicity at least 𝑘 and all its poles of multiplicity at least
𝑑. If 𝑓(𝑘) − 𝑎𝑓𝑛 and 𝑔(𝑘) − 𝑎𝑔𝑛 share the value 𝑏 IM for every
pair of functions (𝑓, 𝑔) ofF, thenF is a normal family in𝐷.

Remark 12. When 𝑛 ≥ 𝑘 + 2 or 𝑛 ≥ 𝑘 + 3, we have 𝑑 = 1 or 2,
respectively. It follows that Theorem 11 generalizes Theorems
4, 7, 9, and 10.

Theorem 13 (main theorem). Let 𝐷 be a domain in C and
let F be a family of meromorphic functions in 𝐷. Let 𝑘 ∈ N+

and 𝑎, 𝑏 be two finite complex numbers with 𝑎 ̸= 0. Suppose that
every𝑓 ∈ F has all its zeros of multiplicity at least 𝑘+1 and all
its poles of multiplicity at least 𝑘+2. If𝑓(𝑘)−𝑎𝑓2 and 𝑔(𝑘)−𝑎𝑔2
share the value 𝑏 IM for every pair of functions (𝑓, 𝑔) ofF, then
F is a normal family in𝐷.

Remark 14. When 𝑘 = 1, it follows that Theorem 13
generalizes Theorem 8.

Example 15 (see [23]). Let 𝑛, 𝑘 ≥ 2 be two positive integers
and 𝑎 a nonzero complex constant. The family of meromor-
phic functions is F = {𝑓

𝑗
(𝑧) = 𝑗𝑧𝑘−1 : 𝑗 = 1, 2, . . . , },

𝐷 = {𝑧 : |𝑧| < 1}. Obviously, for each pair of 𝑚, 𝑗, 𝑓(𝑘)
𝑗

− 𝑎𝑓𝑛
𝑗

and 𝑓(𝑘)
𝑚

− 𝑎𝑓𝑛
𝑚
share the value 0 in𝐷, butF is not normal.

Example 16. Let 𝑘 be a positive integer and 𝑎, 𝑏 two nonzero
complex constants such that 𝑏

𝑗
= 𝑎/(−1)𝑘((2𝑘)!/𝑘!)𝑗𝑘. The

family of meromorphic functions is F = {𝑓
𝑗
(𝑧) = 1/(𝑗𝑧 −

𝑏
𝑗
)𝑘+1 : 𝑗 = 1, 2, . . .}, 𝐷 = {𝑧 : |𝑧| < 1}. Obviously, for each

pair of𝑚, 𝑗, 𝑓(𝑘)
𝑗

− 𝑎𝑓2
𝑗
and 𝑓(𝑘)

𝑚
− 𝑎𝑓2
𝑚
share the value 0 in𝐷,

butF is normal since 𝑓#(0) → ∞ as 𝑗 → ∞.

Remark 17. Example 15 shows that the condition that 𝑓(𝑧)
admits zeros of multiplicity at least 𝑘 is best in Theorem 11.
For the case 𝑘 = 1, 𝑛 = 3, Example 5 shows that the
condition that 𝑓(𝑧) admits poles of multiplicity at least 𝑑 is
sharp in Theorem 11. For the case 𝑛 = 2, Example 16 shows
that the condition that 𝑓(𝑧) admits poles of multiplicity at
least 𝑘 + 2 is sharp in Theorem 13. For the case 𝑘 = 1, 𝑛 = 2,
Example 2 shows that the condition that 𝑓(𝑧) admits zeros of
multiplicity at least 𝑘 + 1 in Theorem 13 is sharp.

2. Preliminary Lemmas

In order to prove our results, we need the following lemmas.
The first is the extended version Zalcman’s [24] concerning
normal families.
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Lemma 1 (see [25]). Let F be a family of meromorphic
functions on the unit disc satisfying all zeros of functions inF
having multiplicity ≥p and all poles of functions in F having
multiplicity ≥q. Let 𝛼 be a real number satisfying −𝑞 < 𝛼 < 𝑝.
ThenF is not normal at 0 if and only if there exist

(a) a number 0 < 𝑟 < 1;
(b) points 𝑧

𝑛
𝑤𝑖𝑡ℎ |𝑧

𝑛
| < 𝑟;

(c) functions 𝑓
𝑛
∈ F;

(d) positive numbers 𝜌
𝑛
→ 0

such that 𝑔
𝑛
(𝜁) := 𝜌−𝛼

𝑛
𝑓
𝑛
(𝑧
𝑛
+ 𝜌
𝑛
𝜁) converges spherically

uniformly on each compact subset of C to a nonconstant
meromorphic function 𝑔(𝜁), whose all zeros have multiplicity
≥p and all poles have multiplicity ≥q and order is at most 2.

Lemma 2. Let 𝑓(𝑧) be a meromorphic function such that
𝑓(𝑘)(𝑧) ̸≡ 0 and 𝑐 ∈ C \ {0}, 𝑘, 𝑛, 𝑑 ∈ N+ with 𝑛 ≥ 3,
𝑑 ≥ (𝑘 + 1)/(𝑛 − 2). If all zeros of 𝑓 are of multiplicity at least
𝑘 and all poles of 𝑓 are of multiplicity at least 𝑑, then

𝑇 (𝑟, 𝑓) ≤
1

𝑘
𝑁(𝑟,

1

𝑓
) + 𝑁(𝑟,

1

𝑓(𝑘) − 𝑐𝑓𝑛
) + 𝑆 (𝑟, 𝑓) , (2)

where 𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓)), as 𝑟 → ∞, possibly outside a set
with finite linear measure.

Proof. Set

Φ (𝑧) :=
𝑓(𝑘) (𝑧)

𝑐𝑓𝑛 (𝑧)
. (3)

Since 𝑓(𝑘)(𝑧) ̸≡ 0, we have Φ(𝑧) ̸≡ 0. Thus,

𝑓𝑛 (𝑧) =
𝑓(𝑘) (𝑧)

𝑐Φ (𝑧)
. (4)

Hence,

𝑛𝑚 (𝑟, 𝑓) = 𝑚 (𝑟, 𝑓𝑛) ≤ 𝑚(𝑟,
𝑓(𝑘)

Φ
) + log+ 1

|𝑐|

≤ 𝑚(𝑟,
1

Φ
) + 𝑚(𝑟, 𝑓(𝑘)) + log+ 1

|𝑐|

≤ 𝑚(𝑟,
1

Φ
) + 𝑚(𝑟,

𝑓(𝑘)

𝑓
) + 𝑚 (𝑟, 𝑓) + log+ 1

|𝑐|
.

(5)

So that

(𝑛 − 1)𝑚 (𝑟, 𝑓) ≤ 𝑚(𝑟,
1

Φ
) + 𝑚(𝑟,

𝑓(𝑘)

𝑓
) + log+ 1

|𝑐|
. (6)

On the other hand, (4) gives

𝑛𝑁 (𝑟, 𝑓) ≤ 𝑁 (𝑟, 𝑓𝑛) = 𝑁(𝑟,
𝑓(𝑘)

Φ
)

≤ 𝑁(𝑟, 𝑓(𝑘)) + 𝑁(𝑟,
1

Φ
) − 𝑁(𝑟, Φ = 𝑓(𝑘) = 0) ,

(7)

where 𝑁(𝑟,Φ = 𝑓(𝑘) = 0) denotes the counting function of
zeros of both Φ and 𝑓(𝑘).

We obtain

𝑛𝑁 (𝑟, 𝑓) ≤ 𝑁 (𝑟, 𝑓) + 𝑘𝑁 (𝑟, 𝑓)

+ 𝑁(𝑟,
1

Φ
) − 𝑁(𝑟,Φ = 𝑓(𝑘) = 0) ,

(𝑛 − 1)𝑁 (𝑟, 𝑓) ≤ 𝑘𝑁 (𝑟, 𝑓)

+ 𝑁(𝑟,
1

Φ
) − 𝑁(𝑟,Φ = 𝑓(𝑘) = 0) .

(8)

By (4), we have

𝑁(𝑟, 𝜑) + 𝑁(𝑟,
1

𝜑
)

≤ 𝑁(𝑟,
1

𝑓
) + 𝑁 (𝑟, 𝑓) + 𝑁(𝑟,Φ = 𝑓(𝑘) = 0) .

(9)

From (6)∼(9), we obtain

(𝑛 − 1) 𝑇 (𝑟, 𝑓)

≤ 𝑘𝑁 (𝑟, 𝑓)+𝑇(𝑟,
1

Φ
) − 𝑁(𝑟, Φ = 𝑓(𝑘) = 0)+𝑆 (𝑟, 𝑓)

≤ 𝑘𝑁 (𝑟, 𝑓) + 𝑇 (𝑟, Φ) − 𝑁(𝑟,Φ = 𝑓(𝑘) = 0) + 𝑆 (𝑟, 𝑓)

≤ 𝑘𝑁 (𝑟, 𝑓) + 𝑁(𝑟,
1

Φ
) + 𝑁 (𝑟, Φ) + 𝑁(𝑟,

1

Φ − 1
)

− 𝑁(𝑟,Φ = 𝑓(𝑘) = 0) + 𝑆 (𝑟, 𝑓)

≤ (𝑘 + 1)𝑁 (𝑟, 𝑓) + 𝑁(𝑟,
1

𝑓
)

+ 𝑁(𝑟,
1

𝑓(𝑘) − 𝑐𝑓𝑛
) + 𝑆 (𝑟, 𝑓) .

(10)

Since all zeros and poles of 𝑓 are multiplicities at least 𝑘
and 𝑑, we get

𝑁(𝑟, 𝑓) ≤
1

𝑑
𝑁 (𝑟, 𝑓) ≤

1

𝑑
𝑇 (𝑟, 𝑓) ≤

𝑛 − 2

𝑘 + 1
𝑇 (𝑟, 𝑓) ,

𝑁(𝑟,
1

𝑓
) ≤

1

𝑘
𝑁(𝑟,

1

𝑓
) .

(11)

So that

𝑇 (𝑟, 𝑓) ≤
1

𝑘
𝑁(𝑟,

1

𝑓
) + 𝑁(𝑟,

1

𝑓(𝑘) − 𝑐𝑓𝑛
) + 𝑆 (𝑟, 𝑓) .

(12)

Lemma3. Let𝑓(𝑧) be a transcendentalmeromorphic function
such that 𝑓(𝑘)(𝑧) ̸≡ 0. Let 𝑘 ∈ N+ and 𝑐 ∈ C \ {0}. If all zeros
of 𝑓 are of multiplicity at least 𝑘 + 1 and all poles of 𝑓 are of
multiplicity at least 𝑘 + 2, then 𝑓(𝑘) − 𝑐𝑓2 has infinitely many
zeros.
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Proof. Suppose that 𝑓(𝑘) − 𝑐𝑓2 has only finitely many zeros;
then𝑁(𝑟, 1/(𝑓(𝑘) − 𝑐𝑓2)) = 𝑆(𝑟, 𝑓). Clearly, an arbitrary zero
of𝑓 is a zero of𝑓(𝑘)−𝑐𝑓2 since all zeros of𝑓 are ofmultiplicity
at least 𝑘 + 1; then we can deduce that 𝑓 has only finite zeros,
so𝑁(𝑟, 1/𝑓) = 𝑂(log 𝑟) = 𝑆(𝑟, 𝑓).

Set

Φ (𝑧) :=
𝑓(𝑘) (𝑧)

𝑐𝑓2 (𝑧)
. (13)

Similarly, with the proof of Lemma 2, we can get

𝑇 (𝑟, 𝑓) ≤ (𝑘 + 1)𝑁 (𝑟, 𝑓) + 𝑁(𝑟,
1

𝑓
)

+ 𝑁(𝑟,
1

𝑓(𝑘) − 𝑐𝑓2
) + 𝑆 (𝑟, 𝑓) .

(14)

Since all poles of 𝑓 are multiplicities at least 𝑘 + 2, we
obtain

𝑁(𝑟, 𝑓) ≤
1

𝑘 + 2
𝑁 (𝑟, 𝑓) ≤

1

𝑘 + 2
𝑇 (𝑟, 𝑓) , (15)

so that

𝑇 (𝑟, 𝑓) ≤ (𝑘 + 2)𝑁(𝑟,
1

𝑓
)

+ (𝑘 + 2)𝑁(𝑟,
1

𝑓(𝑘) − 𝑐𝑓2
) + 𝑆 (𝑟, 𝑓) = 𝑆 (𝑟, 𝑓) .

(16)

This is contradicting with the fact that 𝑓 is transcendental.
Hence, Lemma 3 is proved completely.

Lemma 4. Let 𝑓(𝑧) be a nonconstant rational function such
that 𝑓(𝑘)(𝑧) ̸≡ 0. Let 𝑎 ∈ C \ {0}, and 𝑘, 𝑛,𝑚 ∈ N+ with
𝑛 ≥ 2 and𝑚 ≥ (𝑘 + 2)/(𝑛 − 1). If 𝑓 ̸= 0 and all poles of 𝑓 are of
multiplicity at least𝑚, then 𝑓(𝑘) − 𝑎𝑓𝑛 has at least two zeros.

Proof. Suppose, to the contrary, that 𝑓(𝑘) − 𝑎𝑓𝑛 has at most
one zero.

Since 𝑓 ̸= 0, we get that 𝑓 is a rational but not a polyno-
mial.

Case 1. If 𝑓(𝑘) − 𝑎𝑓𝑛 has only zero 𝑧
0
with multiplicity 𝑙, set

𝑓 (𝑧) =
𝐴

(𝑧 − 𝑧
1
)
𝛽
1(𝑧 − 𝑧

2
)
𝛽
2 ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)
𝛽
𝑡

, (17)

where 𝐴 is a nonzero constant and 𝛽
𝑖
≥ (𝑘 + 2)/(𝑛 − 1) (𝑖 =

1, 2, . . . , 𝑡).
For the sake of simplicity, we denote

𝛽
1
+ 𝛽
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑡
= 𝑞. (18)

From (17), we have

𝑓(𝑘) =
𝑔 (𝑧)

(𝑧 − 𝑧
1
)
𝛽
1
+𝑘

(𝑧 − 𝑧
2
)
𝛽
2
+𝑘

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
𝛽
𝑡
+𝑘
, (19)

where 𝑔(𝑧) is a polynomial such that deg(𝑔(𝑧)) ≤ 𝑘(𝑡 − 1).

From (17) and (19), we get

𝑓(𝑘) − 𝑎𝑓𝑛

=
𝑔 (𝑧)

(𝑧 − 𝑧
1
)
𝛽
1
+𝑘

(𝑧 − 𝑧
2
)
𝛽
2
+𝑘

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
𝛽
𝑡
+𝑘

−
𝑎𝐴𝑛

(𝑧 − 𝑧
1
)
𝑛𝛽
1(𝑧 − 𝑧

2
)
𝑛𝛽
2 ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)
𝑛𝛽
𝑡

= [𝑔 (𝑧) (𝑧 − 𝑧
1
)
(𝑛−1)𝛽

1
−𝑘

(𝑧 − 𝑧
2
)
(𝑛−1)𝛽

2
−𝑘

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
(𝑛−1)𝛽

𝑡
−𝑘

− 𝑎𝐴𝑛]

× ((𝑧 − 𝑧
1
)
𝑛𝛽
1(𝑧 − 𝑧

2
)
𝑛𝛽
2 ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)
𝑛𝛽
𝑡)
−1

.

(20)

By the assumption that 𝑓(𝑘) − 𝑎𝑓𝑛 has exactly one zero 𝑧
0

with multiply 𝑙, we have

𝑓(𝑘) − 𝑎𝑓𝑛 =
𝐶(𝑧 − 𝑧

0
)
𝑙

(𝑧 − 𝑧
1
)
𝑛𝛽
1(𝑧 − 𝑧

2
)
𝑛𝛽
2 ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)
𝑛𝛽
𝑡

, (21)

where 𝐶 is a nonzero constant. Thus,

𝐶(𝑧 − 𝑧
0
)
𝑙

≡ 𝑔 (𝑧) (𝑧 − 𝑧
1
)
(𝑛−1)𝛽

1
−𝑘

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
(𝑛−1)𝛽

𝑡
−𝑘

− 𝑎𝐴𝑛.

(22)

Differentiating (22), we obtain

𝐶𝑙(𝑧 − 𝑧
0
)
𝑙−1

≡ (𝑧 − 𝑧
1
)
(𝑛−1)𝛽

1
−𝑘−1

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
(𝑛−1)𝛽

𝑡
−𝑘−1

× [

[

𝑔 (𝑧) (𝑧 − 𝑧
1
) ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)

+𝑔 (𝑧)
𝑡

∑
𝑖=1

((𝑛 − 1) 𝛽
𝑖
− 𝑘)

𝑡

∏
𝑗=1,𝑗 ̸= 𝑖

(𝑧 − 𝑧
𝑗
)]

]

.

(23)

For the sake of simplicity, we denote

𝑔
1
(𝑧) = 𝐶𝑙(𝑧 − 𝑧

0
)
𝑙−1

,

𝑔
2
(𝑧) = (𝑧 − 𝑧

1
)
(𝑛−1)𝛽

1
−𝑘−1

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
(𝑛−1)𝛽

𝑡
−𝑘−1

× [

[

𝑔 (𝑧) (𝑧 − 𝑧
1
) ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)

+𝑔 (𝑧)
𝑡

∑
𝑖=1

((𝑛 − 1) 𝛽
𝑖
− 𝑘)

𝑡

∏
𝑗=1,𝑗 ̸= 𝑖

(𝑧 − 𝑧
𝑗
)]

]

.

(24)

Hence,

𝑔
1
(𝑧) ≡ 𝑔

2
(𝑧) . (25)
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Since (𝑛 − 1)𝛽
𝑖
− 𝑘 − 1 ≥ 1, we have 𝑔

2
(𝑧
𝑖
) = 0. But

𝑔
1
(𝑧
𝑖
) ̸= 0 (𝑖 = 1, 2, . . . , 𝑡), a contradiction.

Case 2. If 𝑓(𝑘) −𝑎𝑓𝑛 has no zeros, then 𝑙 = 0 for (21). We have

𝑓(𝑘) − 𝑎𝑓𝑛 =
𝐶

(𝑧 − 𝑧
1
)
𝑛𝛽
1(𝑧 − 𝑧

2
)
𝑛𝛽
2 ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)
𝑛𝛽
𝑡

, (26)

where 𝐶 is a nonzero constant. Thus,

𝐶 ≡ 𝑔 (𝑧) (𝑧 − 𝑧
1
)
(𝑛−1)𝛽

1
−𝑘

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
(𝑛−1)𝛽

𝑡
−𝑘

− 𝑎𝐴𝑛,

𝑔 (𝑧) (𝑧 − 𝑧
1
)
(𝑛−1)𝛽

1
−𝑘

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
(𝑛−1)𝛽

𝑡
−𝑘

≡ 𝐶 + 𝑎𝐴𝑛.

(27)

Obviously, 𝑔(𝑧)(𝑧− 𝑧
1
)(𝑛−1)𝛽1−𝑘 ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)(𝑛−1)𝛽𝑡−𝑘 is not a

constant, a contradiction.
Lemma 4 is proved.

Lemma 5. Let𝑓(𝑧) be a rational function and 𝑎 ∈ C\{0}, and
𝑘, 𝑛,𝑚 ∈ N+ with 𝑛 ≥ 2 and 𝑚 ≥ (𝑘 + 2)/(𝑛 − 1). If all zeros
of 𝑓 are of multiplicity at least 𝑘 + 1 and all poles of 𝑓 are of
multiplicity at least𝑚, then 𝑓(𝑘) − 𝑎𝑓𝑛 has at least two distinct
zeros.

Proof. Suppose, to the contrary, that 𝑓(𝑘) − 𝑎𝑓𝑛 has at most
one zero.

Case I.When 𝑓 is a nonconstant polynomial, noting that all
zeros of 𝑓 have multiplicity at least 𝑘 + 1, we know that 𝑓(𝑘) −
𝑎𝑓𝑛 must have zeros. We claim that 𝑓 has exactly one zero.
Otherwise, we can get that 𝑓(𝑘) − 𝑎𝑓𝑛 has at least two zeros,
which contradicts our assumption.

Set

𝑓 (𝑧) = 𝐵(𝑧 − 𝑧
0
)
𝑠

, (28)

where 𝑠 ≥ 𝑘 + 1, 𝐵 is a nonzero constant. Then

𝑓(𝑘) (𝑧) − 𝑎𝑓
𝑛

(𝑧)

= 𝐵(𝑧 − 𝑧
0
)
𝑠−𝑘

× [𝑠 (𝑠 − 1) ⋅ ⋅ ⋅ (𝑠 − 𝑘 + 1) − 𝑎(𝑧 − 𝑧
0
)
(𝑛−1)𝑠+𝑘

] .

(29)

Since 𝑠 − 𝑘 ≥ 1, we obtain that 𝑠(𝑠 − 1) ⋅ ⋅ ⋅ (𝑠 − 𝑘 +
1) − 𝑎(𝑧 − 𝑧

0
)𝑠+𝑘 has at least one zero which is not 𝑧

0
from

(29). Therefore, 𝑓(𝑘) − 𝑎𝑓𝑛 has at least two distinct zeros, a
contradiction.

Case II.When𝑓 is rational but not a polynomial, we consider
two cases.

Case 1. Suppose that 𝑓(𝑘) − 𝑎𝑓𝑛 has only zero 𝑧
0
with multi-

plicity at least 𝑙. If 𝑓 ̸= 0, by Lemma 4, we get a contradiction.
So𝑓 has zeros, and thenwe can deduce that 𝑧

0
is the only zero

of 𝑓. Otherwise, 𝑓(𝑘) − 𝑎𝑓𝑛 has at least two distinct zeros, a
contradiction.

We set

𝑓 (𝑧) =
𝐴(𝑧 − 𝑧

0
)
𝑠

(𝑧 − 𝑧
1
)
𝛽
1(𝑧 − 𝑧

2
)
𝛽
2 ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)
𝛽
𝑡

, (30)

where 𝐴 is a nonzero constant and 𝑠 ≥ 𝑘 + 1, 𝛽
𝑖
≥ 𝑚 ≥

((𝑘 + 2)/(𝑛 − 1)) (𝑖 = 1, 2, . . . , 𝑡).
For the sake of simplicity, we denote

𝛽
1
+ 𝛽
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑡
= 𝑞. (31)

From (31), we have

𝑓(𝑘) =
𝐴(𝑧 − 𝑧

0
)
𝑠−𝑘

𝑔 (𝑧)

(𝑧 − 𝑧
1
)
𝛽
1
+𝑘

(𝑧 − 𝑧
2
)
𝛽
2
+𝑘

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
𝛽
𝑡
+𝑘
, (32)

where 𝑔(𝑧) is a polynomial with deg(𝑔) ≤ 𝑘(𝑠 + 𝑡 + 1).
From (30) and (32), we get

𝑓(𝑘) − 𝑎𝑓𝑛

=
𝐴(𝑧 − 𝑧

0
)
𝑠−𝑘

𝑔 (𝑧)

(𝑧 − 𝑧
1
)
𝛽
1
+𝑘

(𝑧 − 𝑧
2
)
𝛽
2
+𝑘

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
𝛽
𝑡
+𝑘

−
𝐴𝑛(𝑧 − 𝑧

0
)
𝑛𝑠

(𝑧 − 𝑧
1
)
𝑛𝛽
1(𝑧 − 𝑧

2
)
𝑛𝛽
2 ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)
𝑛𝛽
𝑡

= (𝐴(𝑧 − 𝑧
0
)
𝑠−𝑘

× [𝑔 (𝑧) (𝑧 − 𝑧
1
)
(𝑛−1)𝛽

1
−𝑘

(𝑧 − 𝑧
2
)
(𝑛−1)𝛽

2
−𝑘

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
(𝑛−1)𝛽

𝑡
−𝑘

− 𝑎𝐴𝑛−1

×(𝑧 − 𝑧
0
)
(𝑛−1)𝑠+𝑘

])

× ((𝑧 − 𝑧
1
)
𝑛𝛽
1(𝑧 − 𝑧

2
)
𝑛𝛽
2 ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)
𝑛𝛽
𝑡)
−1

.

(33)

By assumption that𝑓(𝑘)−𝑎𝑓𝑛 has exactly one zero 𝑧
0
with

multiplicity 𝑙, we have

𝑓(𝑘) − 𝑎𝑓𝑛 =
𝐵(𝑧 − 𝑧

0
)
𝑙

(𝑧 − 𝑧
1
)
𝑛𝛽
1(𝑧 − 𝑧

2
)
𝑛𝛽
2 ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)
𝑛𝛽
𝑡

, (34)

where 𝐵 is a nonzero constant. Thus,

𝐵(𝑧 − 𝑧
0
)
𝑙

≡ 𝐴(𝑧 − 𝑧
0
)
𝑠−𝑘

× [𝑔 (𝑧) (𝑧 − 𝑧
1
)
(𝑛−1)𝛽

1
−𝑘

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
(𝑛−1)𝛽

𝑡
−𝑘

−𝑎𝐴𝑛−1(𝑧 − 𝑧
0
)
(𝑛−1)𝑠+𝑘

] .

(35)

Case 1.1. If 𝑙 > 𝑠−𝑘, from (35), we can deduce that 𝑧
0
is a zero

of (𝑧 − 𝑧
1
)(𝑛−1)𝛽1−𝑘 ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)(𝑛−1)𝛽𝑡−𝑘, a contradiction.

Case 1.2. If 𝑙 = 𝑠 − 𝑘, from (35), it follows that

𝑔 (𝑧) (𝑧 − 𝑧
1
)
(𝑛−1)𝛽

1
−𝑘

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
(𝑛−1)𝛽

𝑡
−𝑘

− 𝑎𝐴𝑛−1(𝑧 − 𝑧
0
)
(𝑛−1)𝑠+𝑘

≡
𝐵

𝐴
.

(36)



6 Abstract and Applied Analysis

Differentiating (36), we have

(𝑧 − 𝑧
1
)
(𝑛−1)𝛽

1
−𝑘−1

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
(𝑛−1)𝛽

𝑡
−𝑘−1

× [

[

𝑔 (𝑧) (𝑧 − 𝑧
1
) ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)

+𝑔 (𝑧)
𝑡

∑
𝑖=1

((𝑛 − 1) 𝛽
𝑖
− 𝑘)

𝑡

∏
𝑗=1,𝑗 ̸= 𝑖

(𝑧 − 𝑧
𝑗
)]

]

≡ 𝑎 ((𝑛 − 1) 𝑠 + 𝑘)𝐴
𝑛−1(𝑧 − 𝑧

0
)
(𝑛−1)𝑠+𝑘−1

.

(37)

For the sake of simplicity, we denote

𝑔
1
(𝑧) = (𝑧 − 𝑧

1
)
(𝑛−1)𝛽

1
−𝑘−1

⋅ ⋅ ⋅ (𝑧 − 𝑧
𝑡
)
(𝑛−1)𝛽

𝑡
−𝑘−1

× [

[

𝑔 (𝑧) (𝑧 − 𝑧
1
) ⋅ ⋅ ⋅ (𝑧 − 𝑧

𝑡
)

+𝑔 (𝑧)
𝑡

∑
𝑖=1

((𝑛 − 1) 𝛽
𝑖
− 𝑘)

𝑡

∏
𝑗=1,𝑗 ̸= 𝑖

(𝑧 − 𝑧
𝑗
)]

]

,

𝑔
2
(𝑧) = 𝑎 ((𝑛 − 1) 𝑠 + 𝑘)𝐴

𝑛−1(𝑧 − 𝑧
0
)
(𝑛−1)𝑠+𝑘−1

.

(38)

Thus,
𝑔
1
(𝑧) ≡ 𝑔

2
(𝑧) . (39)

Since (𝑛 − 1)𝛽
𝑖
− 𝑘 − 1 ≥ 1, we get 𝑔

1
(𝑧
𝑖
) = 0, but

𝑔
2
(𝑧
𝑖
) ̸= 0 (𝑖 = 1, 2, . . . , 𝑡), a contradiction.

Case 2. If𝑓(𝑘)−𝑎𝑓𝑛 has no zeros, then 𝑙 = 0 for (34). Similarly,
as the proof of Case 1, we also have a contradiction.

The proof is completed.

3. Proofs of Theorems

Proof. In Theorem 11, suppose that F is not normal in 𝐷.
Then there exists at least one point 𝑧

0
such that F is not

normal at the point 𝑧
0
. Without loss of generality, we assume

that 𝑧
0
= 0. By Lemma 1, there exist points 𝑧

𝑗
→ 0, positive

numbers 𝜌
𝑗
→ 0, and functions 𝑓

𝑗
∈ F such that

𝑔
𝑗
(𝜉) = 𝜌

𝑘/(𝑛−1)

𝑗
𝑓
𝑗
(𝑧
𝑗
+ 𝜌
𝑗
𝜉) ⇒ 𝑔 (𝜉) (40)

locally uniformly with respect to the spherical metric, where
𝑔 is a nonconstant meromorphic function in C and whose
poles and zeros are of multiplicity at least 𝑑 and 𝑘, respec-
tively. Moreover, the order of 𝑔 is at most 2.

From (40), we know that

𝑔(𝑘)
𝑗
(𝜉) = 𝜌

𝑛𝑘/(𝑛−1)

𝑗
𝑓(𝑘)
𝑗

(𝑧
𝑗
+ 𝜌
𝑗
𝜉) ⇒ 𝑔(𝑘) (𝜉) , (41)

𝑔(𝑘)
𝑗
(𝜉) − 𝑎𝑔

𝑛

𝑗
(𝜉) − 𝜌

𝑛𝑘/(𝑛−1)

𝑗
𝑏

= 𝜌𝑛𝑘/(𝑛−1)
𝑗

(𝑓(𝑘)
𝑗

(𝑧
𝑗
+ 𝜌
𝑗
𝜉) − 𝑎𝑓𝑛

𝑗
(𝑧
𝑗
+ 𝜌
𝑗
𝜉) − 𝑏)

⇒ 𝑔(𝑘) (𝜉) − 𝑎𝑔
𝑛

(𝜉)

(42)

also locally uniformly with respect to the spherical metric.

Case 1. If 𝑘 = 1, by Theorems 4 and 7, the Theorem 11
assumes.

Case 2. If 𝑘 = 2, 𝑛 ≥ 4, byTheorems 9 and 10, theTheorem 11
assumes.

Case 3. If 𝑘 = 2, 𝑛 = 3 or 𝑘 ≥ 3, 3 ≤ 𝑛 ≤ 𝑘 + 1 (If 𝑛 ≥ 𝑘 + 2, by
Theorems 9 and 10, we can get Theorem 11).

If𝑔(𝑘)(𝜉)−𝑎𝑔𝑛(𝜉) ≡ 0, since all poles of𝑔 havemultiplicity
at least 𝑑, we have

𝑛𝑇 (𝑟, 𝑔) = 𝑇 (𝑟, 𝑔𝑛) = 𝑇 (𝑟, 𝑔(𝑘)) + 𝑂 (1)

= 𝑚 (𝑟, 𝑔(𝑘)) + 𝑁(𝑟, 𝑔(𝑘)) + 𝑂 (1)

≤ 𝑚 (𝑟, 𝑔) + 𝑁 (𝑟, 𝑔) + 𝑘𝑁 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔)

≤ 𝑇 (𝑟, 𝑔) +
𝑘 (𝑛 − 2)

𝑘 + 1
𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔)

≤ (𝑛 − 1) 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔) .

(43)

Therefore, 𝑔(𝜉) is a constant, a contradiction. So 𝑔(𝑘)(𝜉) −
𝑎𝑔𝑛(𝜉) ̸≡ 0.

By Lemma 2, we have

𝑇 (𝑟, 𝑔) ≤
1

𝑘
𝑁(𝑟,

1

𝑔
) + 𝑁(𝑟,

1

𝑔(𝑘) − 𝑎𝑔𝑛
) + 𝑆 (𝑟, 𝑔)

≤
1

𝑘
𝑇(𝑟,

1

𝑔
) + 𝑁(𝑟,

1

𝑔(𝑘) − 𝑎𝑔𝑛
) + 𝑆 (𝑟, 𝑔) .

(44)

Then

(1 −
1

𝑘
)𝑇 (𝑟, 𝑔) ≤ 𝑁(𝑟,

1

𝑔(𝑘) − 𝑎𝑔𝑛
) + 𝑆 (𝑟, 𝑔) , (45)

𝑇 (𝑟, 𝑔) ≤ (1 +
1

𝑘 − 1
)𝑁(𝑟,

1

𝑔(𝑘) − 𝑎𝑔𝑛
) + 𝑆 (𝑟, 𝑔) . (46)

If 𝑔(𝑘)(𝜉) − 𝑎𝑔𝑛(𝜉) ̸= 0, then (46) gives that 𝑔(𝜉) is also a con-
stant. Hence, 𝑔(𝑘)(𝜉) − 𝑎𝑔𝑛(𝜉) is a nonconstant meromorphic
function and has at least one zero.

Next we prove that 𝑔(𝑘)(𝜉)−𝑎𝑔𝑛(𝜉) has just a unique zero.
On the contrary, let 𝜉

0
and 𝜉∗
0
be two distinct zeros of 𝑔(𝑘)(𝜉)−

𝑎𝑔𝑛(𝜉), and choose 𝛿(> 0) small enough such that 𝐷(𝜉
0
, 𝛿) ∩

𝐷(𝜉∗
0
, 𝛿) = 𝜙, where𝐷(𝜉

0
, 𝛿) = {𝜉 : |𝜉−𝜉

0
| < 𝛿} and𝐷(𝜉∗

0
, 𝛿) =

{𝜉 : |𝜉−𝜉∗
0
| < 𝛿}. From (42), by Hurwitz’s theorem, there exist

points 𝜉
𝑗
∈ 𝐷(𝜉

0
, 𝛿), 𝜉∗
𝑗
∈ 𝐷(𝜉∗

0
, 𝛿) such that for sufficiently

large 𝑗

𝑓(𝑘)
𝑗

(𝑧
𝑗
+ 𝜌
𝑗
𝜉
𝑗
) − 𝑎𝑓𝑛

𝑗
(𝑧
𝑗
+ 𝜌
𝑗
𝜉
𝑗
) − 𝑏 = 0,

𝑓(𝑘)
𝑗

(𝑧
𝑗
+ 𝜌
𝑗
𝜉∗
𝑗
) − 𝑎𝑓𝑛

𝑗
(𝑧
𝑗
+ 𝜌
𝑗
𝜉∗
𝑗
) − 𝑏 = 0.

(47)

By the hypothesis that for each pair of functions 𝑓 and 𝑔
inF, 𝑓(𝑘) −𝑎𝑓𝑛 and 𝑔(𝑘) −𝑎𝑔𝑛 share 𝑏 in𝐷, we know that for
any positive integer𝑚

𝑓(𝑘)
𝑚

(𝑧
𝑗
+ 𝜌
𝑗
𝜉
𝑗
) − 𝑎𝑓𝑛

𝑚
(𝑧
𝑗
+ 𝜌
𝑗
𝜉
𝑗
) − 𝑏 = 0,

𝑓(𝑘)
𝑚

(𝑧
𝑗
+ 𝜌
𝑗
𝜉∗
𝑗
) − 𝑎𝑓𝑛

𝑚
(𝑧
𝑗
+ 𝜌
𝑗
𝜉∗
𝑗
) − 𝑏 = 0.

(48)
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Fix𝑚, take 𝑗 → ∞, and note 𝑧
𝑗
+𝜌
𝑗
𝜉
𝑗
→ 0, 𝑧

𝑗
+𝜌
𝑗
𝜉∗
𝑗
→

0; then𝑓(𝑘)
𝑚
(0)−𝑎𝑓𝑛

𝑚
(0)−𝑏 = 0. Since the zeros of𝑓(𝑘)

𝑚
−𝑎𝑓𝑛
𝑚
−𝑏

have no accumulation point, so

𝑧
𝑗
+ 𝜌
𝑗
𝜉
𝑗
= 0, 𝑧

𝑗
+ 𝜌
𝑗
𝜉∗
𝑗
= 0. (49)

Hence, 𝜉
𝑗
= −𝑧

𝑗
/𝜌
𝑗
, 𝜉∗
𝑗
= −𝑧

𝑗
/𝜌
𝑗
. This contradicts 𝜉

𝑗
∈

𝐷(𝜉
0
, 𝛿), 𝜉∗

𝑗
∈ 𝐷(𝜉∗

0
, 𝛿) and 𝐷(𝜉

0
, 𝛿) ∩ 𝐷(𝜉∗

0
, 𝛿) = 𝜙. So

𝑔(𝑘)(𝜉) − 𝑎𝑔𝑛(𝜉) has just a unique zero, which can be denoted
by 𝜉
0
.
Noting that 𝑔 has poles and zeros of multiplicities at least

𝑑 and 𝑘, respectively, (46) deduces that 𝑔(𝜉) is a rational
function with degree at most 2.

If 𝑔(𝜉) is a polynomial, noting that deg𝑔 ≤ 2 and the
multiplicities of zeros are at least 𝑘, we have 𝑘 = 2 and 𝑛 = 3.
Hence, there exist 𝜉

1
and 𝑐 ̸= 0 such that 𝑔(𝜉) = 𝑐(𝜉−𝜉

1
)2, and

then 𝑔(𝜉) − 𝑎𝑔3(𝜉) = 𝑐(2 − 𝑎𝑐2(𝜉 − 𝜉
1
)6) has 6 distinct zeros,

a contradiction.
Suppose that 𝑔(𝜉) is not a polynomial, 𝑘 = 2 and 𝑛 = 3.

Then the multiplicities of poles of 𝑔(𝜉) are at least (𝑘+1)/(𝑛−
2) = 3, which implies that deg𝑔 ≥ 3, a contradiction.

Suppose that 𝑔(𝜉) is not a polynomial, 𝑘 ≥ 3 and 3 ≤ 𝑛 ≤
𝑘 + 1; we distinguish two cases.

Case i. If 𝑔(𝜉) has zeros, since all zeros of 𝑔(𝜉) havemultiplic-
ity at least 𝑘(≥ 3), it follows that deg𝑔 ≥ 3, a contradiction.

Case ii. If 𝑔(𝜉) ̸= 0, then (46) should be as follows

𝑇 (𝑟, 𝑔) ≤ 𝑁(𝑟,
1

𝑔(𝑘) − 𝑎𝑔𝑛
) + 𝑆 (𝑟, 𝑔) . (50)

From (50), we can see that 𝑔(𝜉) is a rational function with
degree at most 1. Since all poles of 𝑔(𝜉) have multiplicity at
least 𝑑(≥ (𝑘 + 1)/(𝑛 − 2) ≥ (𝑘 + 1)/(𝑘 − 1) > 1), which gives
that deg𝑔 ≥ 2, a contradiction.

This completes the proof of Theorem 11.

Proof. In Theorem 13, suppose that F is not normal in 𝐷.
Then there exists at least one point 𝑧

0
such that F is not

normal at the point 𝑧
0
. Without loss of generality, we assume

that 𝑧
0
= 0. By Lemma 1, there exist points 𝑧

𝑗
→ 0, positive

numbers 𝜌
𝑗
→ 0, and functions 𝑓

𝑗
∈ F such that

𝑔
𝑗
(𝜉) = 𝜌

𝑘

𝑗
𝑓
𝑗
(𝑧
𝑗
+ 𝜌
𝑗
𝜉) ⇒ 𝑔 (𝜉) (51)

locally uniformly with respect to the spherical metric, where
𝑔 is a nonconstant meromorphic function in C and whose
poles and zeros are of multiplicity at least 𝑘 + 2 and 𝑘 + 1,
respectively. Moreover, the order of 𝑔 is at most 2.

From (51), we know

𝑔(𝑘)
𝑗
(𝜉) = 𝜌

2𝑘

𝑗
𝑓(𝑘)
𝑗

(𝑧
𝑗
+ 𝜌
𝑗
𝜉) ⇒ 𝑔(𝑘) (𝜉) , (52)

𝑔(𝑘)
𝑗
(𝜉) − 𝑎𝑔

2

𝑗
(𝜉) − 𝜌

2𝑘

𝑗
𝑏

= 𝜌2𝑘
𝑗
(𝑓(𝑘)
𝑗

(𝑧
𝑗
+ 𝜌
𝑗
𝜉) − 𝑎𝑓2

𝑗
(𝑧
𝑗
+ 𝜌
𝑗
𝜉) − 𝑏)

⇒ 𝑔(𝑘) (𝜉) − 𝑎𝑔
2

(𝜉)

(53)

also locally uniformly with respect to the spherical metric.

If𝑔(𝑘)(𝜉)−𝑎𝑔2(𝜉) ≡ 0, since all poles of𝑓 havemultiplicity
at least 𝑘 + 2, we can deduce that 𝑔(𝜉) is an entire function
easily. Thus,

2𝑇 (𝑟, 𝑔) = 𝑇 (𝑟, 𝑔2) = 𝑇 (𝑟, 𝑔(𝑘)) + 𝑂 (1)

= 𝑚 (𝑟, 𝑔(𝑘)) + 𝑁(𝑟, 𝑔(𝑘)) + 𝑂 (1)

≤ 𝑚 (𝑟, 𝑔) + 𝑁 (𝑟, 𝑔) + 𝑘𝑁 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔)

≤ 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔) .

(54)

Therefore, 𝑔(𝜉) is a constant, a contradiction. So 𝑔(𝑘)(𝜉) −

𝑎𝑔2(𝜉) ̸≡ 0. By Lemmas 3, 4, and 5, 𝑔(𝑘)(𝜉) − 𝑎𝑔2(𝜉)
has at least two distinct zeros. Proceeding as in the later
proof of Theorem 11, we will get a contradiction. The proof
is completed.

Similarly, as the proof of Theorem 11, when 𝑓 is a
holomorphic function, we can get the following theorem
which has been gotten in [23].

Theorem 18 (see [23]). Let 𝐷 be a domain in C and letF be
a family of holomorphic functions in 𝐷. Let 𝑘, 𝑛 ∈ N+, 𝑛 ≥ 2
and let 𝑎, 𝑏 be two finite complex numbers with 𝑎 ̸= 0. Suppose
that every 𝑓 ∈ F has all its zeros of multiplicity at least 𝑘. If
𝑓(𝑘) − 𝑎𝑓𝑛 and 𝑔(𝑘) − 𝑎𝑔𝑛 share the value 𝑏 IM for every pair of
functions (𝑓, 𝑔) ofF, thenF is a normal family in𝐷.
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