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Let 𝐺 be a locally compact group Ω an arbitrary family of the weight functions on 𝐺, and 1 ≤ 𝑝 < ∞. The locally convex space
𝐼𝐿𝑝(𝐺,Ω) as a subspace of∩𝜔∈Ω𝐿

𝑝
(𝐺, 𝜔) is defined. Also, some sufficient conditions for that space to be a Banach space are provided.

Furthermore, for an arbitrary subset 𝐽 of [1,∞) and a positive submultiplicative weight function𝜔 on𝐺, Banach subspace 𝐼𝐿𝐽(𝐺, 𝜔)

of ∩𝑝∈𝐽𝐿
𝑝
(𝐺, 𝜔) is introduced. Then some algebraic properties of 𝐼𝐿𝐽(𝐺, 𝜔), as a Banach algebra under convolution product, are

investigated.

1. Introduction
Throughout the paper, let𝐺 be a locally compact groupwith a
fixed leftHaarmeasure 𝜆 or 𝑑𝑥. We call any Borel measurable
function 𝜔 : 𝐺 → [0,∞) a weight function. For 1 ≤ 𝑝 ≤ ∞,
the weighted 𝐿𝑝-space 𝐿𝑝(𝐺, 𝜔) with respect to 𝜆 is the set
of all complex valued measurable functions 𝑓 on 𝐺 such that
𝑓𝜔 ∈ 𝐿

𝑝
(𝐺), the usual Lebesgue space as defined in [1]. This

space will be denoted by ℓ𝑝(𝐺, 𝜔), when 𝐺 is discrete. Two
functions in 𝐿𝑝(𝐺, 𝜔) are considered equal if they are equal
𝜆-almost everywhere on 𝐺. If 1 ≤ 𝑝 < ∞, then 𝐿𝑝(𝐺, 𝜔) is
a locally convex space endowed with the topology generated
by the seminorms 𝜌𝜔 : 𝐿

𝑝
(𝐺, 𝜔) → R defined by

𝜌𝜔 (𝑓) =
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝜔 = (∫

𝐺

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨
𝑝
𝜔(𝑥)

𝑝
𝑑𝜆 (𝑥))

1/𝑝

. (1)

For 𝜆-measurable functions 𝑓 and 𝑔 on 𝐺, the convolu-
tion multiplication is defined by

(𝑓 ∗ 𝑔) (𝑥) = ∫
𝐺

𝑓 (𝑦) 𝑔 (𝑦
−1
𝑥) 𝑑𝜆 (𝑦) (𝑥 ∈ 𝐺) (2)

at each point 𝑥 ∈ 𝐺 for which this makes sense. Then 𝑓∗𝑔 is
said to exist if (𝑓 ∗ 𝑔)(𝑥) exists for almost all 𝑥 ∈ 𝐺. Several
authors have studied the convolution properties on the space
𝐿
𝑝
(𝐺) and 𝐿𝑝(𝐺, 𝜔), where 𝜔 is positive and submultiplica-

tive. It has been shown in [2–4] that the convolution of
elements in 𝐿𝑝(𝐺) and also 𝐿𝑝(𝐺, 𝜔) does not exist in general.
If this is the case, then it is desirable to study the closedness
of these spaces under the convolution. For related results on

the subject related to 𝐿
𝑝
(𝐺) see also [5]. Also we refer to

[3, 6–12] for the more general case of weighted 𝐿
𝑝-spaces.

Besides these significant issues, some authors considered and
investigated the intersection of the 𝐿𝑝-spaces to each other
and also together with other Banach spaces; for example, see
[13–15].

It should be noted that weighted 𝐿
𝑝-spaces and its

intersections have been studied more completely years ago,
especially in the decade of 1970. We first refer to the Ph.D.
thesis of Feichtinger titled by “subconvolutive functions” for
a survey, which also contains many invaluable information
related to the weight functions. Moreover, we found a lot
of invaluable results related to weighted 𝐿𝑝-spaces and also
weight functions in many earlier publications. We refer to
some of them such as [16–21]. Note that [17] (downloadable
as [fe74] from http://www.univie.ac.at/nuhag-php/bibtex/) is
a technical report which contains many remarkable results
related to the weight functions. Moreover, we found more
complete results related to distributions and weighted spaces
in [22]. In fact, some of our results in the present work, have
been inspired by the results given in [22].

Also recently we considered an arbitrary intersection of
the 𝐿𝑝-spaces denoted by ∩𝑝∈𝐽𝐿

𝑝
(𝐺), where 𝐽 ⊆ [1,∞]. Then

we introduced the subspace 𝐼𝐿𝐽(𝐺) of ∩𝑝∈𝐽𝐿
𝑝
(𝐺) as

𝐼𝐿𝐽 (𝐺) =
{

{

{

𝑓 ∈ ⋂

𝑝∈𝐽

𝐿
𝑝
(𝐺) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐽 = sup

𝑝∈𝐽

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝 < ∞

}

}

}

(3)
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and studied 𝐼𝐿𝐽(𝐺) as a Banach algebra under convolution
product, for the case where 1 ∈ 𝐽; see [23].

The purpose of the present work is to generalize the
results of [23] to the weighted case. We first give general
information about the weight functions and collect most
of the available results in a more concise way. Then for an
arbitrary family Ω of the weight functions on 𝐺 and 1 ≤ 𝑝 <

∞, we introduce the subspace 𝐼𝐿𝑝(𝐺,Ω) of the locally convex
space 𝐿𝑝(𝐺,Ω) = ∩𝜔∈Ω𝐿

𝑝
(𝐺, 𝜔). Moreover, we provide some

sufficient conditions on 𝐺 and also Ω to construct a norm
on 𝐼𝐿𝑝(𝐺,Ω). Particularly, we show the deficiency of this
space in taking a norm in the general case, with presenting
some fundamental examples. The third section is assigned
to the Lorentz spaces, which are suggested to us by the
referee. We first give some preliminaries related to Lorentz
spaces 𝐿𝑝,𝑞(𝐺). Then for the case where 𝑝 is fixed and 𝑞 runs
through 𝐽 ⊆ (0,∞), we introduce 𝐼𝐿𝑝,𝐽(𝐺) as a subspace of
∩𝑞∈𝐽𝐿𝑝,𝑞(𝐺). As the main result, we prove that 𝐼𝐿𝑝,𝐽(𝐺) =

𝐿𝑝,𝑚𝐽
(𝐺), where𝑚𝐽 = inf{𝑞 : 𝑞 ∈ 𝐽} is positive.

Stimulated by these results, in the last two sections, we
assume Ω consists just of one positive and submultiplicative
weight function 𝜔. Then we introduce the Banach space
𝐼𝐿𝑝(𝐺, 𝜔) and also the space 𝐼𝐿𝐽(𝐺, 𝜔), where 𝐽 ⊆ [1,∞),
to imitate of the recent work of the authors [23]. Then we
generalize the results of the third section in [23] to the space
𝐼𝐿𝐽(𝐺, 𝜔). The last section is essentially devoted to 𝐼𝐿𝐽(𝐺, 𝜔)
as a Banach algebra under convolution product. We first
show that 𝐼𝐿𝐽(𝐺, 𝜔) is always an abstract Segal algebra with
respect to 𝐿1(𝐺, 𝜔). At the end we obtain some results on the
amenability of 𝐼𝐿𝐽(𝐺, 𝜔) and its second dual.

2. Weighted 𝐿
𝑝-Algebra 𝐿𝑝(𝐺,𝜔)

Let 𝐺 be a locally compact group and 𝜔 a weight function
on 𝐺 and 1 ≤ 𝑝 < ∞. It is plain to verify that the function
‖ ⋅ ‖𝑝,𝜔 defines a norm on 𝐿𝑝(𝐺, 𝜔) if and only if 𝜔 is almost
everywhere positive on 𝐺. Due to the importance of this
subject, most of the time the authors assume positivity in
the general definition of a weight function. Thus in this and
the last two sections, all weight functions are assumed to be
positive.The present section is completely devoted to Banach
space 𝐿𝑝(𝐺, 𝜔). In fact, some important results connected
to the properties of convolution product on 𝐿

𝑝
(𝐺, 𝜔) are

gathered. First we recall two important kinds of positive
weight functions which play an essential role in this survey.
We refer to [17, 24] and also [21] which containmany valuable
information related to the weight functions.

(i)Theweight function 𝜔 is called submultiplicative if for
all 𝑥, 𝑦 ∈ 𝐺

𝜔 (𝑥𝑦) ≤ 𝜔 (𝑥) 𝜔 (𝑦) . (4)

The class of weights defining convolution algebras 𝐿1(𝐺, 𝜔)
admits a complete description, and it turns out that every
weight is equivalent to a continuous function. Moreover, it
should be noted that 𝐿1(𝐺, 𝜔) is closed under convolution
product if and only if 𝜔 is equivalent to a continuous
submultiplicative weight function; see [19, 24, 25] for a full
description. But the condition of submultiplicativity of 𝜔 is

not a necessary condition, whenever 1 < 𝑝 < ∞; see [11,
Example 2.1].However, for all 1 ≤ 𝑝 < ∞, on a discrete group,
a weight function of any ℓ𝑝(𝐺, 𝜔) that are Banach algebra is
submultiplicative; indeed, for all 𝑥, 𝑦 ∈ 𝐺

𝜔 (𝑥𝑦) =
󵄩󵄩󵄩󵄩󵄩
𝛿𝑥 ∗ 𝛿𝑦

󵄩󵄩󵄩󵄩󵄩

1/𝑝

𝑝,𝜔
≤
󵄩󵄩󵄩󵄩𝛿𝑥

󵄩󵄩󵄩󵄩
1/𝑝

𝑝,𝜔

󵄩󵄩󵄩󵄩󵄩
𝛿𝑦
󵄩󵄩󵄩󵄩󵄩

1/𝑝

𝑝,𝜔
= 𝜔 (𝑥) 𝜔 (𝑦) , (5)

where 𝛿𝑥 is the Dirac measure at 𝑥.
(ii)The weight function 𝜔 is called of moderate growth if

ess sup
𝑦∈𝐺

𝜔 (𝑥𝑦)

𝜔 (𝑦)
< ∞, (6)

for all 𝑥 ∈ 𝐺. It is remarkable to note that if 𝜔 is of moderate
growth, then inclusion (6) implies that

ess inf
𝑦∈𝐺

𝜔 (𝑥𝑦)

𝜔 (𝑦)
> 0. (7)

Also the condition of moderate growth for 𝜔 is equivalent to
the space 𝐿𝑝(𝐺, 𝜔), for all 1 ≤ 𝑝 < ∞, being left translation-
invariant.

2.1. Local Integrable Property of the Positive Weight Functions.
Let 𝐺 be a locally compact group and 𝜔 a positive weight
function on 𝐺 and 1 ≤ 𝑝 < ∞. We say that 𝜔 is locally
integrable if 𝜔 ∈ 𝐿

1
(𝐾), for all compact subsets 𝐾 of

𝐺. This property is very vital in this research. Thus most
of the authors take it as an assumption. However, this is
redundant if 𝐿𝑝(𝐺, 𝜔) is a Banach algebra [11, Lemma 2.1].
It also should be emphasized that if 𝜔 is submultiplicative,
then it is bounded and bounded away from zero on every
compact subset of𝐺 [24, Proposition 1.16]. It follows that 𝜔 is
obviously locally integrable. It is required for the progress to
give some special properties of the class of locally integrable
positive weight functions. Two important results created by
the local integrability of 𝜔 are obtained in the following. See
[11, 12, 19, 24] for more information.

(1) If 𝜔 is locally integrable, then

𝐵0 (𝐺) ⊆ 𝐿
𝑝
(𝐺, 𝜔) , (8)

where 𝐵0(𝐺) is the space of all bounded compactly
supported functions on 𝐺. It implies that 𝐵0(𝐺) is
dense in 𝐿

𝑝
(𝐺, 𝜔) [11, Lemma 2.2]. Note that when

𝜔 is continuous, one can easily replace 𝐶00(𝐺) rather
than𝐵0(𝐺), where𝐶00(𝐺) is the space consisting of all
continuous functions with compact support.

(2) An important result related to the weight functions
has been proved in [19,Theorem 2.7]. Indeed, let 𝜔 be
both of moderate growth and also locally integrable.
Then 𝜔 is equivalent to a continuous weight function
𝛼; that is, for some constants 𝐶1, 𝐶2,

𝐶1 ≤
𝜔 (𝑥)

𝛼 (𝑥)
≤ 𝐶2 (9)

locally almost everywhere on 𝐺. It follows that 𝜔
is bounded and bounded away from zero on every
compact subset of 𝐺.
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2.2. The Main Results. Let us recall the function Ω𝜔 : 𝐺 →

(0,∞] on 𝐺 for 1 < 𝑝 ≤ ∞, from [7], as the following:

Ω
𝑝

𝜔
(𝑥) = ∫

𝐺

(
𝜔 (𝑥)

𝜔 (𝑦) 𝜔 (𝑦−1𝑥)
)

𝑞

𝑑𝜆 (𝑦) (𝑥 ∈ 𝐺) , (10)

where 𝑞 is the exponential conjugate of 𝑝, defined by 1/𝑝 +
1/𝑞 = 1. It is known that for 1 < 𝑝 < ∞, if Ω𝑝

𝜔
∈

𝐿
∞
(𝐺), then 𝐿𝑝(𝐺, 𝜔) is closed under convolution; see [26] as

a more general case and also [7,Theorem 2.2].This result has
also been pointed out in [10]. Furthermore, we asked about
the converse of this result whenever 𝜔 is a submultiplicative
weight function in [7]. It is noticeable to know that this
conjecture has been rejected by the examples given by
Kuznetsova in [10], for an arbitrary positive weight function.
Also the conjecture is rejected in a simultaneous work with
[7], for a suitable submultiplicative weight function; see [12,
Theorem 1.1]. It is unlike the result [27, Corollary 4.10]. In
fact, as it is shown by this counterexample, the claim given
in [27, Corollary 4.10] is not true. However, in the following
proposition we show that the conjecture holds for the case
where 𝑝 = ∞. Anyway, the conjecture given in [7] had been
settled only for 1 < 𝑝 < ∞. It should be noted that one can
extract this result from [28, Lemma 1] and also [17, page 12].

Proposition 1. Let 𝐺 be a locally compact group and 𝜔 a
positive weight function on 𝐺. Then 𝐿∞(𝐺, 𝜔) is closed under
convolution if and only if Ω∞

𝜔
∈ 𝐿

∞
(𝐺).

Proof. First let 𝐿∞(𝐺, 𝜔) be closed under convolution. Since
1/𝜔 ∈ 𝐿

∞
(𝐺, 𝜔), it follows that 1/𝜔∗1/𝜔 ∈ 𝐿

∞
(𝐺, 𝜔), and so

the function

Ω
∞

𝜔
(𝑥) = ∫

𝐺

𝜔 (𝑥)

𝜔 (𝑦) 𝜔 (𝑦−1𝑥)
𝑑𝜆 (𝑦) (11)

belongs to 𝐿
∞
(𝐺), clearly. For the converse, suppose that

Ω
∞

𝜔
∈ 𝐿

∞
(𝐺) and 𝑓, 𝑔 ∈ 𝐿

∞
(𝐺, 𝜔). Then for each 𝑥 ∈ 𝐺,

the function 𝜃 defined by

𝑦 󳨃󳨀→ 𝑓 (𝑦) 𝜔 (𝑦) 𝑔 (𝑦
−1
𝑥)𝜔 (𝑦

−1
𝑥) (12)

belongs to 𝐿∞(𝐺) and so

󵄨󵄨󵄨󵄨𝑓 ∗ 𝑔 (𝑥)
󵄨󵄨󵄨󵄨 𝜔 (𝑥) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐺

𝑓 (𝑦) 𝜔 (𝑦) 𝑔 (𝑦
−1
𝑥)𝜔 (𝑦

−1
𝑥)

×
𝜔 (𝑥)

𝜔 (𝑦) 𝜔 (𝑦−1𝑥)
𝑑𝜆 (𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨Ω

∞

𝜔
(𝑥)

󵄨󵄨󵄨󵄨 ‖𝜃‖∞

≤
󵄩󵄩󵄩󵄩Ω

∞

𝜔

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞,𝜔

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩∞,𝜔

,

(13)

almost everywhere on 𝐺. Consequently
󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔

󵄩󵄩󵄩󵄩∞,𝜔
≤
󵄩󵄩󵄩󵄩Ω

∞

𝜔

󵄩󵄩󵄩󵄩∞
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞,𝜔

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩∞,𝜔

, (14)

and the result is obtained.

Concisely, we indicate the results of almost all surveys
done by the mathematicians in this field in the following
remark.

Remarks. Let 𝐺 be a locally compact group and 𝜔 a positive
weight function on 𝐺 and 1 ≤ 𝑝 ≤ ∞.

(i) 𝐿1(𝐺, 𝜔) is closed under convolution if and only if 𝜔
is equivalent to a continuous submultiplicative weight
function [11, Theorem 3.1].

(ii) If Ω𝑝

𝜔
∈ 𝐿

∞
(𝐺), for some 1 ≤ 𝑝 ≤ ∞, then

the function 𝑦 󳨃→ 𝜔(𝑥)
𝑞
/𝜔(𝑦)

𝑞
𝜔(𝑦

−1
𝑥)

𝑞 belongs to
𝐿
1
(𝐺), for almost everywhere 𝑥 ∈ 𝐺. Since this

function is positive, it follows that 𝐺 is 𝜎-compact.
(iii) If 2 < 𝑝 < ∞,𝜔 is submultiplicative, and𝑓∗𝑔 exists as

a function for all𝑓, 𝑔 ∈ 𝐿𝑝(𝐺, 𝜔), then𝐺 is 𝜎-compact
[3, Theorem 2.5].

(iv) If 1 < 𝑝 < ∞, 𝐺 is amenable, and 𝐿𝑝(𝐺, 𝜔) is clo-
sed under convolution, then 𝐺 is 𝜎-compact [12,
Corollary 3.3].

(v) 𝐺 is 𝜎-compact if and only if for some 1 < 𝑝 < ∞,
there exists a weight 𝜔 satisfying Ω𝑝

𝜔
∈ 𝐿

∞
(𝐺) [11,

Theorem 1.1].
(vi) If 1 < 𝑝 ≤ 2, then the 𝜎-compactness of 𝐺 is not in

general a necessary condition for the closedness of
𝐿
𝑝
(𝐺, 𝜔) under convolution [11, Theorem 1.1 and

Proposition 1.2].
(vii) If 1 < 𝑝 < ∞ and Ω𝑝

𝜔
∈ 𝐿

∞
(𝐺), then [7, Theorem

2.2] and also [10] imply that 𝐿𝑝(𝐺, 𝜔) is closed under
convolution.

(viii) 𝐿∞(𝐺, 𝜔) is closed under convolution if and only if
Ω
∞

𝜔
∈ 𝐿

∞
(𝐺), as we proved in Proposition 1. Also [28,

Lemma 1] and [17, page 12].

3. General Properties of Arbitrary
Weight Functions

Let 𝐺 be a locally compact group and 1 ≤ 𝑝 < ∞. Take Ω to
be an arbitrary family of the weight functions on 𝐺 such that
the function𝑊 defined as

𝑊(𝑥) = sup
𝜔∈Ω

𝜔 (𝑥) (15)

is finite everywhere on𝐺.Then𝑊 is in fact a weight function
on 𝐺. Set

𝐿
𝑝
(𝐺,Ω) = ⋂

𝜔∈Ω

𝐿
𝑝
(𝐺, 𝜔) . (16)

We equip the space 𝐿𝑝(𝐺,Ω) with the natural locally convex
topology 𝜏Ω generated by the family of seminorms {𝜌𝜔}𝜔∈Ω,
where

𝜌𝜔 : 𝐿
𝑝
(𝐺,Ω) 󳨀→ R, 𝑓 󳨃󳨀→ 𝜌𝜔 (𝑓) =

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝜔, (17)

and 𝜔 runs through Ω. We will explain that the topology 𝜏Ω
on 𝐿𝑝(𝐺,Ω) is generated by the neighborhoods

𝑉 (𝑓, 𝜌𝜔, 𝜀) = {𝑔 ∈ 𝐿
𝑝
(𝐺,Ω) : 𝜌𝜔 (𝑓 − 𝑔) < 𝜀} , (18)

where𝑓 ∈ 𝐿
𝑝
(𝐺,Ω), 𝜀 is any positive real number, and𝜔 ∈ Ω.

In general, 𝐿𝑝(𝐺,Ω) is not necessarily Hausdorff under 𝜏Ω.
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In fact, a locally convex space is Hausdorff if and only if it has
a separated family of seminorms; see [29] for full information
about the locally convex vector spaces. Now, consider the
following subset of 𝐿𝑝(𝐺,Ω):

𝐼𝐿𝑝 (𝐺,Ω) = {𝑓 ∈ 𝐿
𝑝
(𝐺,Ω) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,Ω = sup

𝜔∈Ω

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝜔 < ∞} .

(19)

It is obvious that in general

𝐿
𝑝
(𝐺,𝑊) ⊆ 𝐼𝐿𝑝 (𝐺,Ω) ⊆ 𝐿

𝑝
(𝐺,Ω) , (20)

and ‖𝑓‖
𝑝,Ω

≤ ‖𝑓‖
𝑝,𝑊

, for each 𝑓 ∈ 𝐿
𝑝
(𝐺,𝑊). Also some

elementary calculations show that if Ω = {𝜔1, . . . , 𝜔𝑛} is a
finite set, then

𝐼𝐿𝑝 (𝐺,Ω) = 𝐿
𝑝
(𝐺,Ω) = 𝐿

𝑝
(𝐺,𝑊) , (21)

and for each 𝑓 ∈ 𝐼𝐿𝑝(𝐺,Ω),

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,Ω ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝑊 ≤

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝜔𝑖

≤ 𝑛
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,Ω. (22)

The following example shows that the inclusions (20) can be
proper.

Example 2. Take 𝐺 to be the additive group of the real
numbers R endowed with the discrete topology. Set Ω =

{𝜔𝑥 : 𝑥 ∈ R}, where 𝜔𝑥 = 𝜒𝑥, the characteristic function
of the set {𝑥}. Obviously 𝐿𝑝(R, Ω) is the space of all complex
valued functions onR, which is in fact a locally convex space.
Moreover, 𝐼𝐿𝑝(R, Ω) = ℓ

∞
(R) and ||𝑓||𝑝,Ω = ||𝑓||∞. Also

ℓ
𝑝
(R,𝑊) = ℓ

𝑝
(R). It follows that

ℓ𝑝 (R,𝑊) ⫋ 𝐼𝐿𝑝 (R, Ω) ⫋ 𝐿
𝑝
(R, Ω) . (23)

The main purpose of this section is to provide some
conditions for that ‖ ⋅ ‖𝑝,Ω acts as a norm function on
𝐼𝐿𝑝(𝐺,Ω). Although all of them are sufficient conditions and
occur naturally in applications, they can be useful in their
own right. Let us first turn the attention to the following
example.

Example 3. Consider the additive group of real numbers R
endowed with its standard topology, and let

Ω = {𝜔𝑛 = 𝜒[𝑛,𝑛+1] : 𝑛 ∈ N} . (24)

Suppose that 𝑓 = 𝜒[0,1]. Thus 𝑓 ∈ 𝐿
𝑝
(R, 𝜔𝑛) for all 𝑛 ∈ N.

Also

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝜔𝑛

= ∫

∞

−∞

󵄨󵄨󵄨󵄨𝑓(𝑡)
󵄨󵄨󵄨󵄨
𝑝
𝜔𝑛(𝑡)

𝑝
𝑑𝜆 (𝑡) = 0, (25)

and so
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,Ω = sup

𝑛∈N

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝜔𝑛

= 0, (26)

whereas 𝑓 ̸= 0. It follows that 𝐼𝐿𝑝(R, Ω) is not a normed
space.

According to Example 3, ‖ ⋅ ‖𝑝,Ω may not be treated as
a norm function, even for a countable set Ω of the weight
functions. The following result shows that countability of Ω
can be a sufficient condition for normability of 𝐼𝐿𝑝(𝐺,Ω),
whenever𝑊 is positive almost everywhere on 𝐺.

Proposition 4. Let 𝐺 be a locally compact group and 1 ≤ 𝑝 <
∞ and letΩ be a countable family of weight functions such that
𝑊(𝑥) > 0 almost everywhere on 𝐺. Then (𝐼𝐿𝑝(𝐺,Ω), ‖ ⋅ ‖𝑝,Ω)
is a normed space.

Proof. Assume that 𝑓 ∈ 𝐼𝐿𝑝(𝐺,Ω) and ||𝑓||𝑝,Ω = 0. It follows
that ‖𝑓‖

𝑝,𝜔
= 0 and so 𝑓𝜔 = 0 almost everywhere on 𝐺, for

all 𝜔 ∈ Ω. Let 𝐴 = {𝑥 : 𝑊(𝑥) = 0}, and for each 𝜔 ∈ Ω,
𝐵𝜔 = {𝑥 : 𝑓(𝑥)𝜔(𝑥) ̸= 0}, and put 𝐶 = 𝐴 ∪ (∪𝜔∈Ω𝐵𝜔). Since
Ω is countable and 𝜆(𝐵𝜔) = 𝜆(𝐴) = 0, then 𝜆(𝐶) = 0. Now
let 𝑥 ∈ 𝐺 \ 𝐶. Since𝑊(𝑥) > 0, there exists at least one 𝜔 ∈ Ω

such that 𝜔(𝑥) > 0. It follows that 𝑓(𝑥) = 0. Consequently,
𝑓 = 0 almost everywhere on𝐺 and the result is obtained.

In the following examples, we determine 𝐼𝐿𝑝(R, Ω) for
two families of the weight functions.

Example 5. Take 𝐺 = R, the additive group of real numbers
endowed with the usual topology.

(1) Let 𝜔1 = 𝛿(−∞,0), 𝜔2 = 𝛿[0,∞), and Ω = {𝜔1, 𝜔2}. Since
Ω is finite and also, for every 𝑥 ∈ R,𝑊(𝑥) = 1, then

𝐼𝐿𝑝 (R, Ω) = 𝐿
𝑝
(R,𝑊) = 𝐿

𝑝
(R, Ω) = 𝐿

𝑝
(R) . (27)

We explain this example in detail. For each 𝑓 ∈

𝐿
𝑝
(R, Ω), we have

∫

0

−∞

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑝
< ∞, ∫

∞

0

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑝
< ∞, (28)

and so 𝑓 ∈ 𝐿
𝑝
(R). It follows that 𝐿𝑝(R, Ω) = 𝐿

𝑝
(R).

Now suppose that 𝑓 ∈ 𝐼𝐿𝑝(R, Ω). Then

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,Ω = max{(∫

∞

0

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑝
)

1/𝑝

, (∫

0

−∞

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑝
)

1/𝑝

}

≤ (∫

∞

−∞

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑝
)

1/𝑝

=
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

≤ 2
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,Ω,

(29)

and so

1

2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,Ω ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝. (30)

(2) Let Ω = {𝜔𝑛 : 𝑛 ∈ Z}, where 𝜔𝑛 = 𝜒(𝑛,𝑛+1]. Since, for
each 𝑥 ∈ R, 𝑊(𝑥) = 1, it follows that 𝐿𝑝(R,𝑊) =

𝐿
𝑝
(R). Now let 𝑓(𝑥) ≡ 1, the constant function of

value 1 and 𝑔(𝑥) = [𝑥], the bracket function on R.
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Then, 𝑓 ∈ 𝐼𝐿𝑝(R, Ω) but 𝑓 ∉ 𝐿
𝑝
(R). Also 𝑔 ∈ 𝐿

𝑝

(R, Ω) and since ||𝑔||𝑝,𝜔𝑛 = 𝑛, it follows that 𝑔 ∉

𝐼𝐿𝑝(R, Ω). Therefore

𝐿
𝑝
(R) ⫋ 𝐼𝐿𝑝 (R, Ω) ⫋ 𝐿

𝑝
(R, Ω) . (31)

Moreover, 𝐼𝐿𝑝(R, Ω) is a normed space by
Proposition 4.

It is clear that the existence of at least one positive weight
inΩ is enough for normability of 𝐼𝐿𝑝(𝐺,Ω)with the topology
induced by ‖ ⋅ ‖𝑝,Ω. Such a condition is not imposed in
the present section. Instead, we introduce a more delicate
framework forΩ as the following.

Definition 6. Let𝐺 be a locally compact group andΩ a family
of weight functions. Then Ω is called locally positive if for
each 𝑥 ∈ 𝐺 there exist 𝜔𝑥 ∈ Ω and an open neighborhood
𝑈𝑥 of 𝑥 such that 𝜔𝑥 is positive on 𝑈𝑥.

It is obvious that ifΩ consists of just one element 𝜔, then
local positivity ofΩ is equivalent to the fact that 𝜔 is positive.
In this situation, 𝐼𝐿𝑝(𝐺,Ω) is always a normed space under
‖ ⋅ ‖𝑝,Ω.

Note that if Ω is locally positive, then𝑊(𝑥) > 0 for each
𝑥 ∈ 𝐺. Thus the following result is obtained clearly from
Proposition 4.

Corollary 7. Let 𝐺 be a locally compact group and 1 ≤

𝑝 < ∞ and let Ω be countable and locally positive. Then
(𝐼𝐿𝑝(𝐺,Ω), ‖ ⋅ ‖𝑝,Ω) is a normed space.

We give another criterion for the normability of 𝐼𝐿𝑝
(𝐺,Ω) under ‖ ⋅ ‖𝑝,Ω in the next result. It shows that count-
ability ofΩ can be removed in Corollary 7, in the case where
𝐺 is 𝜎-compact.

Proposition 8. Let 𝐺 be a 𝜎-compact locally compact group
1 ≤ 𝑝 < ∞ and let Ω be locally positive. Then (𝐼𝐿𝑝(𝐺,Ω),
‖ ⋅ ‖𝑝,Ω) is a normed space.

Proof. Suppose that 𝐺 = ∪
∞

𝑛=1
𝐺𝑛, where 𝐺𝑛 is a compact

subset of 𝐺, for each 𝑛 ∈ N. Take 𝑓 ∈ 𝐼𝐿𝑝(𝐺,Ω) such that
||𝑓||𝑝,Ω = 0. Thus ||𝑓||𝑝,𝜔 = 0, for each 𝜔 ∈ Ω, and so 𝑓𝜔 = 0

almost everywhere on 𝐺. Hence, 𝑓𝜔 = 0 almost everywhere
on 𝐺𝑛, for each 𝑛 ∈ N. By the local positivity of Ω, for each
𝑥 ∈ 𝐺𝑛, there exists the neighborhood𝑈𝑥 of 𝑥 and the weight
function 𝜔𝑥 ∈ Ω such that 𝜔𝑥 is positive on 𝑈𝑥. So 𝑓 = 0

almost everywhere on𝑈𝑥. Since𝐺𝑛 is compact, there exist the
elements 𝑥1, . . . , 𝑥𝑘𝑛 of 𝐺𝑛 such that 𝐺𝑛 ⊆ ∪

𝑘𝑛
𝑖=1
𝑈𝑥𝑖

. It follows
that𝑓 = 0 almost everywhere on𝐺𝑛.Therefore,𝑓 = 0 almost
everywhere on 𝐺, and so the result is obtained.

Nevertheless, in the following example we show that 𝜎-
compactness of𝐺 and also countability ofΩ are not necessary
conditions for normability of 𝐼𝐿𝑝(𝐺,Ω).

Example 9. Consider again the additive group of real num-
bers R endowed with the discrete topology, and let Ω =

{𝜔𝑥 = 𝜒𝑥 : 𝑥 ∈ R}. Then Ω is clearly locally positive and
uncountable. Suppose that 𝑓 ∈ 𝐼𝐿𝑝(R, Ω) with ||𝑓||𝑝,Ω = 0.
Thus ||𝑓||𝑝,𝜔𝑥 = 0, for all 𝑥 ∈ R, and so 𝑓 = 0 everywhere on
R. It follows that ‖ ⋅ ‖𝑝,Ω acts as a normon 𝐼𝐿𝑝(R, Ω), whereas
the group is not 𝜎-compact.

As the final result in this section, we provide some
sufficient conditions for 𝐼𝐿𝑝(𝐺,Ω) to be a Banach space
under the norm ‖ ⋅ ‖𝑝,Ω.

Theorem 10. Let𝐺 be a locally compact group 1 ≤ 𝑝 < ∞ and
let Ω be a countable family of positive weight functions. Then
𝐼𝐿𝑝(𝐺,Ω) is a Banach space.

Proof. By Corollary 7, ‖ ⋅ ‖𝑝,Ω is a norm on 𝐼𝐿𝑝(𝐺,Ω). To that
end, let Ω = {𝜔𝑛 : 𝑛 ∈ N}, and let (𝑓𝑛)𝑛∈N be a Cauchy
sequence in 𝐼𝐿𝑝(𝐺,Ω). Then for each 𝜔𝑘 ∈ Ω, (𝑓𝑛𝜔𝑘)𝑛∈N is a
Cauchy sequence in 𝐿𝑝(𝐺). So there exists a net {𝑔𝑘} ⊆ 𝐿

𝑝
(𝐺)

such that (𝑔𝑘/𝜔𝑘)∈ 𝐿
𝑝
(𝐺, 𝜔𝑘) and lim𝑛→∞‖𝑓𝑛𝜔𝑘 − 𝑔𝑘‖𝑝 = 0,

for each 𝑘 ∈ N.Therefore there exists a subnet {𝑓𝑛𝑙1} of (𝑓𝑛)𝑛∈N
such that 𝑓𝑛𝑙1𝜔1 → 𝑔1 in the pointwise sense, outside a
measurable subset 𝐴1 of 𝐺 with 𝜆(𝐴1) = 0. Continuallty,
there exists a subnet {𝑓𝑛𝑙2} ⊆ {𝑓𝑛𝑙1

} such that 𝑓𝑛𝑙2𝜔2 → 𝑔2

in the pointwise sense, outside a measurable subset 𝐴2 of 𝐺
with 𝜆(𝐴2) = 0. Inductively for each 𝑘, there exists a subnet
{𝑓𝑛𝑙𝑘

} of {𝑓𝑛𝑙𝑘−1 } such that 𝑓𝑛𝑙𝑘𝜔𝑘 tends in the pointwise sense
to 𝑔𝑘, outside a measurable subset 𝐴𝑘 of 𝐺 with 𝜆(𝐴𝑘) = 0.
Set 𝐴 = ∪

∞

𝑘=1
𝐴𝑘. It follows that for all 𝑘,𝑚 ∈ N, (𝑔𝑘/𝜔𝑘) =

(𝑔𝑚/𝜔𝑚) outside the set 𝐴, and so all the functions (𝑔𝑛/𝜔𝑛)
are almost everywhere equivalent to a function 𝑔 on 𝐺. Thus

𝑔 ∈

∞

⋂

𝑘=1

𝐿
𝑝
(𝐺, 𝜔𝑘) = 𝐿

𝑝
(𝐺,Ω) . (32)

We prove that {𝑓𝑛} as a sequence in 𝐼𝐿𝑝(𝐺,Ω) converges to
the function 𝑔. Since {𝑓𝑛} is a Cauchy sequence in 𝐼𝐿𝑝(𝐺,Ω),
for each 𝜀 > 0, one can find a positive integer𝑁 such that for
all𝑚, 𝑛 ≥ 𝑁,

󵄩󵄩󵄩󵄩(𝑓𝑛 − 𝑓𝑚)𝜔𝑘
󵄩󵄩󵄩󵄩𝑝 ≤

󵄩󵄩󵄩󵄩𝑓𝑛 − 𝑓𝑚
󵄩󵄩󵄩󵄩𝑝,Ω <

𝜀

2
, (33)

where 𝑘 ∈ N. It follows that
󵄩󵄩󵄩󵄩𝑓𝑛𝜔𝑘 − 𝑔𝑘

󵄩󵄩󵄩󵄩𝑝 < 𝜀, (34)

and so for each 𝑘 ∈ N,
󵄩󵄩󵄩󵄩𝑓𝑛𝜔𝑘 − 𝑔𝜔𝑘

󵄩󵄩󵄩󵄩𝑝 < 𝜀. (35)

Choosing 𝑛 := 𝑁, for each 𝑘 ∈ N,
󵄩󵄩󵄩󵄩𝑔𝜔𝑘

󵄩󵄩󵄩󵄩𝑝 ≤
󵄩󵄩󵄩󵄩𝑓𝑁𝜔𝑘

󵄩󵄩󵄩󵄩𝑝 + 𝜀 ≤
󵄩󵄩󵄩󵄩𝑓𝑁

󵄩󵄩󵄩󵄩𝑝,Ω + 𝜀. (36)

Then,
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝,Ω ≤

󵄩󵄩󵄩󵄩𝑓𝑁
󵄩󵄩󵄩󵄩𝑝,Ω + 𝜀 < ∞. (37)

Consequently 𝑔 ∈ 𝐼𝐿𝑝(𝐺,Ω). Also inequality (35) implies
that ‖𝑓𝑛 − 𝑔‖𝑝,Ω → 0, and the proof is completed.
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Remarks. It is worth noting that we point out here to the
paper of Beurling [16] in this field. This valuable work was
introduced to us by the referee. Because of the value of this
work, let us mention it again briefly. Let 𝐺 be an abelian
locally compact group and 1 < 𝑝 < ∞ and let Ω be a
collection of the positive locally integrable weight functions
on 𝐺. Also suppose that 𝑁 is a function on Ω such that for
each 𝜔 ∈ Ω, 𝑁(𝜔) takes a finite value and also satisfies the
conditions (1.1) till (1.5) in [16]. Consider the subsetΩ0 ofΩ
consisting of all𝜔 ∈ Ωwith𝑁(𝜔) = 1 (such aweight function
is called normalized). For a fixed 𝑝, let 𝜔󸀠 = 1/𝜔𝑝−1. Set

𝐴
𝑝
= ⋃

𝜔∈Ω0

𝐿
𝑝
(𝐺, 𝜔

󸀠
) ,

𝐵
𝑞
= ⋂

𝜔∈Ω0

𝐿
𝑞
(𝐺, 𝜔) ,

(38)

where 𝑞 is the exponential conjugate of 𝑝 defined by 1/𝑝 +

1/𝑞 = 1. Note that in [16], the definition of the norm functions
‖ ⋅ ‖𝑝,𝜔󸀠 and also ‖ ⋅ ‖𝑞,𝜔 has been given in a slightly different
form from the usual way. In fact for each 𝑓 ∈ 𝐿

𝑝
(𝐺, 𝜔

󸀠
) and

𝑔 ∈ 𝐿
𝑞
(𝐺, 𝜔),

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝜔󸀠 = (∫

𝐺

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨
𝑝
𝜔
󸀠
(𝑥) 𝑑𝜆 (𝑥))

1/𝑝

,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑞,𝜔 = (∫

𝐺

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨
𝑞
𝜔 (𝑥) 𝑑𝜆 (𝑥))

1/𝑞

.

(39)

Now for each 𝐹 ∈ 𝐴
𝑝 and 𝐺 ∈ 𝐵

𝑞, let

‖𝐹‖𝐴𝑝 = inf
𝜔∈Ω0

‖𝐹‖𝑝,𝜔󸀠 , ‖𝐺‖𝐵𝑞 = sup
𝜔∈Ω0

‖𝐹‖𝑞,𝜔. (40)

Then ‖ ⋅ ‖𝐴𝑝 (resp., ‖ ⋅ ‖𝐵𝑞) acts as a norm function on 𝐴
𝑝

(resp., 𝐵𝑞). More importantly, by [16,Theorem 1], (𝐴𝑝
, ‖ ⋅ ‖𝐴𝑝)

is a Banach algebra under convolution and (𝐵
𝑞
, ‖ ⋅ ‖𝐵𝑞) is a

Banach space which is the dual of 𝐴𝑝. Also, we refer to the
examples given in [16, Section 2] for making these spaces
more clear. Indeed, in these examples, the spaces 𝐴𝑝 and 𝐵𝑞
are investigated and characterized for some suitable classes of
the weight functions on the Euclidean space R𝑛.

4. Some Intersections of the Lorentz Spaces

In this section, we investigate the intersection of Lorentz
spaces, which in fact was suggested to us by the referee. First
we give some preliminaries and definitions that will be used
throughout the section. See [30] for complete information in
this field. Let 𝑓 be a complex valued measurable function on
𝐺. For each 𝛼 > 0, let

𝑑𝑓 (𝛼) = 𝜇 ({𝑥 ∈ 𝐺 :
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨 > 𝛼}) . (41)

The decreasing rearrangement of 𝑓 is the function 𝑓
∗

:

[0,∞) → [0,∞] defined by

𝑓
∗
(𝑡) = inf {𝑠 > 0 : 𝑑𝑓 (𝑠) ≤ 𝑡} . (42)

We adopt the convention inf 0 = ∞, thus having 𝑓∗(𝑡) = ∞

whenever 𝑑𝑓(𝛼) > 𝑡 for all 𝛼 ≥ 0. By [30, Proposition 1.4.5]
for each 0 < 𝑝 < ∞ we have

∫
𝐺

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨
𝑝
𝑑𝜆 (𝑥) = ∫

∞

0

𝑓
∗
(𝑡)

𝑝
𝑑𝑡, (43)

where 𝑑𝑡 is the Lebesgue measure. For 0 < 𝑝, 𝑞 < ∞, define

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑞

= (∫

∞

0

(𝑡
(1/𝑝)

𝑓
∗
(𝑡))

𝑞 𝑑𝑡

𝑡
)

1/𝑞

. (44)

The set of all 𝑓 with ‖𝑓‖
𝑝,𝑞

< ∞ is denoted by 𝐿𝑝,𝑞(𝐺) and
is called the Lorentz space with indices 𝑝 and 𝑞. As in 𝐿

𝑝-
spaces, two functions in 𝐿𝑝,𝑞(𝐺) are considered equal if they
are equal to 𝜆-almost everywhere on𝐺. Note that (43) implies
that 𝐿𝑝,𝑝(𝐺) = 𝐿

𝑝
(𝐺).

We recall here [30, Proposition 1.4.10] which is very
useful in our main results.

Proposition 11. Suppose 0 < 𝑝 < ∞ and 0 < 𝑞 < 𝑟 < ∞.
Then there exists a constant 𝐶𝑝,𝑞,𝑟 such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑟

≤ 𝐶𝑝,𝑞,𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑞

, (45)

𝐶𝑝,𝑞,𝑟 = (𝑞/𝑝)
1/𝑞−1/𝑟. In other words, 𝐿𝑝,𝑞(𝐺) is a subspace of

𝐿𝑝,𝑟(𝐺).

Now let 0 < 𝑝 < ∞ be fixed and 𝐽 an arbitrary subset of
(0,∞) with 𝑚𝐽 = inf{𝑞 : 𝑞 ∈ 𝐽}. We introduce 𝐼𝐿𝑝,𝐽(𝐺) as a
subset of ∩𝑞∈𝐽𝐿𝑝,𝑞(𝐺) by

𝐼𝐿𝑝,𝐽 (𝐺) = {𝑓 ∈ ∩𝑞∈𝐽𝐿𝑝,𝑞 (𝐺) :
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝐽

= sup
𝑞∈𝐽

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑞

< ∞} .

(46)

The main result of the present section is provided in the
following.

Theorem 12. Let 𝐺 be a locally compact group 0 < 𝑝 < ∞

and let 𝐽 be an arbitrary subset of (0,∞) such that 𝑚𝐽 > 0.
Then 𝐼𝐿𝑝,𝐽(𝐺) = 𝐿𝑝,𝑚𝐽(𝐺), as two sets. Moreover, for each 𝑓 ∈

𝐿𝑝,𝑚𝐽
(𝐺),

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑚𝐽

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝐽

≤ max{1, (
𝑚𝐽

𝑝
)

1/𝑚𝐽

}
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑚𝐽

. (47)

Proof. Proposition 11 implies that 𝐿𝑝,𝑚𝐽(𝐺) ⊆ 𝐿𝑝,𝑞(𝐺), for
each 𝑞 ∈ 𝐽. Also for each 𝑓 ∈ 𝐿𝑝,𝑚𝐽

(𝐺)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑞

≤ (
𝑚𝐽

𝑝
)

1/𝑚𝐽−1/𝑞
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑚𝐽

≤ max{1, (
𝑚𝐽

𝑝
)

1/𝑚𝐽

}
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑚𝐽

.

(48)

It follows that 𝑓 ∈ 𝐼𝐿𝑝,𝐽(𝐺) and

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝐽

≤ max{1, (
𝑚𝐽

𝑝
)

1/𝑚𝐽

}
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑚𝐽

. (49)
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Thus 𝐿𝑝,𝑚𝐽(𝐺) ⊆ 𝐼𝐿𝑝,𝐽(𝐺). Now we prove the reverse of the
inclusion. If 𝑚𝐽 ∈ 𝐽, then 𝐼𝐿𝑝,𝐽(𝐺) ⊆ 𝐿𝑝,𝑚𝐽

(𝐺), obviously.
Moreover ‖𝑓‖

𝐿𝑝,𝑚𝐽
≤ ‖𝑓‖

𝐿𝑝,𝐽
, for each 𝑓 ∈ 𝐼𝐿𝑝,𝐽(𝐺). Now let

𝑚𝐽 ∉ 𝐽. Thus there is a sequence (𝑥𝑛)𝑛∈N in 𝐽, converging to
𝑚𝐽. For each 𝑓 ∈ 𝐼𝐿𝑝,𝐽(𝐺), Fatou’s lemma implies that

∫

∞

0

(𝑡
1/𝑝
𝑓
∗
(𝑡))

𝑚𝐽 𝑑𝑡

𝑡
= ∫

∞

0

lim inf
𝑛
(𝑡
1/𝑝
𝑓
∗
(𝑡))

𝑥𝑛 𝑑𝑡

𝑡

≤ lim inf
𝑛
∫

∞

0

(𝑡
1/𝑝
𝑓
∗
(𝑡))

𝑥𝑛 𝑑𝑡

𝑡

= lim inf
𝑛

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
𝑥𝑛

𝐿𝑝,𝑥𝑛
≤ lim inf

𝑛

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
𝑥𝑛

𝐿𝑝,𝐽

=
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
𝑚𝐽

𝐿𝑝,𝐽
.

(50)

Consequently

(∫

∞

0

(𝑡
1/𝑝
𝑓
∗
(𝑡))

𝑚𝐽 𝑑𝑡

𝑡
)

1/𝑚𝐽

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝐽

. (51)

It follows that 𝑓 ∈ 𝐿𝑝,𝑚𝐽
(𝐺) and ‖𝑓‖

𝐿𝑝,𝑚𝐽
≤ ‖𝑓‖

𝐿𝑝,𝐽
, as

claimed.

By [30, Theorem 1.4.11], the spaces 𝐿𝑝,𝑞(𝐺) are always
quasi-Banach spaces (i.e., a complete quasi-normed space).
Moreover, [30, Exercise 1.4.3] implies that𝐿𝑝,𝑞(𝐺) is a Banach
space in the case where 1 < 𝑝 < ∞ and 1 ≤ 𝑞 < ∞. We end
this section with the following result, which is immediately
obtained fromTheorem 12 and [30, Exercise 1.4.3].

Corollary 13. Let 𝐺 be a locally compact group 1 < 𝑝 < ∞

and let 𝐽 be an arbitrary subset of [1,∞). Then (𝐼𝐿𝑝,𝐽(𝐺),

‖ ⋅ ‖𝐿𝑝,𝐽
) is a Banach space.

5. Introducing Some Intersection of
Weighted 𝐿

𝑝-Spaces

Let 𝐺 be a locally compact group and 1 ≤ 𝑝 < ∞ and let Ω
consist of just one weight function 𝜔 that is submultiplicative
and positive. Thus 𝐿𝑝(𝐺, 𝜔) is a Banach space under ‖ ⋅ ‖𝑝,𝜔,
as we mentioned in the first section. Moreover, its dual space
is the Banach space 𝐿𝑞(𝐺, 1/𝜔) under the duality

⟨𝑓, 𝑔⟩ := ∫
𝐺

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝜆 (𝑥) , (52)

where 𝑓 ∈ 𝐿
𝑝
(𝐺, 𝜔) and 𝑔 ∈ 𝐿

𝑞
(𝐺, 1/𝜔), and 𝑞 is the

exponential conjugate of 𝑝. The aim of this section is inves-
tigating an arbitrary intersection of the weighted 𝐿𝑝-spaces,
where 𝑝 runs through a subset 𝐽 of [1,∞). It is performed
in a similar way to the structure of 𝐼𝐿𝐽(𝐺) and introduced
in [23]. Since the dual of each 𝐿𝑝-space may be participated
in 𝐼𝐿𝐽(𝐺), then the structure of the dual of 𝐿𝑝(𝐺, 𝜔) leads us
to include it in our definition. Also our expectation of the
behavior of this space as a Banach algebra under convolution
necessitates us to insert 𝐿1(𝐺, 𝜔). We turn the attention to
this fact that 𝐿1(𝐺, 𝜔) is a Banach algebra under convolution

whenever 𝜔 is submultiplicative. It justifies the assumption
of submultiplicativity of 𝜔. All these reasons justify that this
space should be defined in a slightly different way from
𝐼𝐿𝐽(𝐺).We first introduce the space 𝐼𝐿𝑝(𝐺, 𝜔), where 1 ≤ 𝑝 <
∞. Set

𝐼𝐿𝑝 (𝐺, 𝜔) = 𝐿
1
(𝐺, 𝜔) ∩ 𝐿

𝑝
(𝐺, 𝜔) ∩ 𝐿

𝑞
(𝐺,

1

𝜔̆
) , (53)

where 𝜔̆(𝑥) = 𝜔(𝑥
−1
), for each 𝑥 ∈ 𝐺. Then the function

‖ ⋅ ‖𝐼𝐿𝑝
defined by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

= max {󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1,𝜔,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝜔,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑞,1/𝜔̆} (54)

is clearly a normon 𝐼𝐿𝑝(𝐺, 𝜔). Furthermore, we have the next
result that is in fact a partial case of the classical results on
interpolation spaces; see [31].

Proposition 14. Let 𝐺 be a locally compact group and 𝜔 a
positive weight function on 𝐺 and 1 ≤ 𝑝 < ∞. Then 𝐼𝐿𝑝(𝐺, 𝜔)
is a Banach space under ‖ ⋅ ‖𝐼𝐿𝑝 .

Let us recall from [32, Theorem 1] that 𝐿1(𝐺) ⊆ 𝐿
𝑝
(𝐺)

(resp., 𝐿𝑝(𝐺) ⊆ 𝐿
1
(𝐺)), for some 1 < 𝑝 ≤ ∞ if and only if 𝐺

is discrete (resp., compact). Similar arguments can be applied
to get the same consequences in the weighted case.

Proposition 15. Let 𝐺 be a discrete group and 𝜔 a positive
submultiplicative weight function on 𝐺 and 1 ≤ 𝑝 < ∞. Then
𝐼𝐿𝑝(𝐺, 𝜔) = ℓ

1
(𝐺, 𝜔), as Banach spaces. Moreover, ‖𝑓‖

𝐼𝐿𝑝
=

‖𝑓‖
1,𝜔

, for each 𝑓 ∈ ℓ
1
(𝐺, 𝜔).

Proof. Let 𝑓 ∈ ℓ
1
(𝐺, 𝜔). If 𝑝 = 1, since 𝜔 is submultiplicative,

then for each 𝑥 ∈ 𝐺 we have
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨

𝜔̆ (𝑥)
≤
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨 𝜔 (𝑥) ≤ ∑

𝑦∈𝐺

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝜔 (𝑦) =

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1,𝜔. (55)

Thus 𝑓 ∈ ℓ
∞
(𝐺, 1/𝜔̆) and ‖𝑓‖

∞,1/𝜔̆
≤ ‖𝑓‖

1,𝜔
, and conse-

quently ℓ1(𝐺, 𝜔) ⊆ ℓ
∞
(𝐺, 1/𝜔̆). It follows that 𝐼𝐿1(𝐺, 𝜔) =

ℓ
1
(𝐺, 𝜔) and also ‖𝑓‖

𝐼𝐿1
= ‖𝑓‖

1,𝜔
. Now let 1 < 𝑝 < ∞. We

first show that 𝑓 ∈ ℓ
𝑞
(𝐺, 1/𝜔̆). Again the submultiplicativity

of 𝜔 yields that

∑

𝑥∈𝐺

(

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝜔̆ (𝑥)
)

𝑞

≤ ∑

𝑥∈𝐺

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨
𝑞
𝜔(𝑥)

𝑞

≤ (∑

𝑥∈𝐺

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 𝜔 (𝑥))

𝑞

=
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
𝑞

1,𝜔
< ∞.

(56)

It follows that 𝑓 ∈ ℓ
𝑞
(𝐺, 1/𝜔̆), and so ℓ1(𝐺, 𝜔) ⊆ ℓ

𝑞
(𝐺, 1/𝜔̆).

Also the explanation preceding the proposition implies that
ℓ
1
(𝐺, 𝜔) ⊆ ℓ

𝑝
(𝐺, 𝜔). Consequently 𝐼𝐿𝑝(𝐺, 𝜔) = ℓ

1
(𝐺, 𝜔) and

‖𝑓‖
1,𝜔

= ‖𝑓‖
𝐼𝐿𝑝

.

Proposition 16. Let 𝐺 be a compact group and 𝜔 a positive
submultiplicative weight function on 𝐺 and 1 ≤ 𝑝 < ∞. Then
the following assertions hold.
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(i) If 1 ≤ 𝑝 < 𝑞 < ∞, then 𝐼𝐿𝑝(𝐺, 𝜔) = 𝐿
𝑞
(𝐺, 1/𝜔̆), as

Banach spaces.
(ii) If 1 < 𝑞 ≤ 𝑝 < ∞, then 𝐼𝐿𝑝(𝐺, 𝜔) = 𝐿

𝑝
(𝐺, 𝜔), as

Banach spaces.

Proof. (i) To get the result, it is sufficient to show that
𝐿
𝑞
(𝐺, 1/𝜔̆) ⊆ 𝐿

𝑝
(𝐺, 𝜔). First let 𝑝 = 1 and 𝑓 ∈ 𝐿

∞
(𝐺, 1/𝜔̆).

Since 𝜔∗ = 𝜔𝜔̆ is also a positive submultiplicative weight on
𝐺, thus there is a positive constant𝑀 such that 𝜔∗(𝑥) ≤ 𝑀,
for each 𝑥 ∈ 𝐺 [24, Proposition 1.16]. By normalizing Haar
measure on 𝐺 appropriately, we may assume that 𝜆(𝐺) = 1

and thus

∫
𝐺

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 𝜔 (𝑥) 𝑑𝑥 = ∫

𝐺

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝜔̆ (𝑥)
𝜔
∗
(𝑥) 𝑑𝑥

≤ 𝑀
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞,1/𝜔̆

< ∞.

(57)

It follows that 𝑓 ∈ 𝐿
1
(𝐺, 𝜔), and so 𝐼𝐿1(𝐺, 𝜔) = 𝐿∞(𝐺, 1/𝜔̆).

Also
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞,1/𝜔̆

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿1

≤ (1 +𝑀)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞,1/𝜔̆

. (58)

Now let 1 < 𝑝 < 𝑞 < ∞ and 𝑓 ∈ 𝐿
𝑞
(𝐺, 1/𝜔̆). By some easy

calculations we have

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝜔 =

󵄩󵄩󵄩󵄩𝑓𝜔
󵄩󵄩󵄩󵄩𝑝 ≤ 𝑀

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓

𝜔̆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝
≤ 𝑀

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓

𝜔̆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑞
= 𝑀

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑞,1/𝜔̆ < ∞.

(59)

Thus, 𝑓 ∈ 𝐿
𝑝
(𝐺, 𝜔), and so 𝐿

𝑞
(𝐺, 1/𝜔̆) ⊆ 𝐿

𝑝
(𝐺, 𝜔) ⊆ 𝐿

1

(𝐺, 𝜔). It follows that

𝐼𝐿𝑝 (𝐺, 𝜔) = 𝐿
𝑞
(𝐺,

1

𝜔̆
) . (60)

Also
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑞,1/𝜔̆ ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

≤ (𝑀 + 1)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑞,1/𝜔̆. (61)

(ii) It is obtained by some similar arguments above that

𝐿
𝑝
(𝐺, 𝜔) ⊆ 𝐿

𝑞
(𝐺,

1

𝜔̆
) ⊆ 𝐿

1
(𝐺, 𝜔) . (62)

Also ‖𝑓‖
𝑝,𝜔

= ‖𝑓‖
𝐼𝐿𝑝

, for each𝑓 ∈ 𝐿
𝑝
(𝐺, 𝜔), and so the result

is provided.

Corollary 17. Let 𝐺 be a compact group and 𝜔 a positive
submultiplicative weight function on𝐺 and 1 ≤ 𝑝 < ∞. Consi-
der the following.

(i) If 1 ≤ 𝑝 < 2, then 𝐼𝐿𝑝(𝐺, 𝜔) = 𝐿𝑞(𝐺, 1/𝜔̆)

(ii) If 2 < 𝑝 < ∞, then 𝐼𝐿𝑝(𝐺, 𝜔) = 𝐿𝑝(𝐺, 𝜔).

(iii) 𝐼𝐿2(𝐺, 𝜔) = 𝐿
2
(𝐺, 1/𝜔̆) = 𝐿

2
(𝐺, 𝜔).

5.1. The Banach Space 𝐼𝐿𝐽(𝐺,𝜔). For a locally compact group
𝐺 and 𝐽 ⊆ [1,∞), set

𝑚𝐽 = inf {𝑝 : 𝑝 ∈ 𝐽} , 𝑀𝐽 = sup {𝑝 : 𝑝 ∈ 𝐽} . (63)

Let 𝜔 be a positive submultiplicative weight function on 𝐺.
Similarly to our recent work [23], we introduce 𝐼𝐿𝐽(𝐺, 𝜔) by

𝐼𝐿𝐽 (𝐺, 𝜔)=
{

{

{

𝑓 ∈ ⋂

𝑝∈𝐽

𝐼𝐿𝑝 (𝐺, 𝜔) :
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐽 = sup

𝑝∈𝐽

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

< ∞
}

}

}
(64)

as a subspace of ∩𝑝∈𝐽𝐼𝐿𝑝(𝐺, 𝜔). Then ‖ ⋅ ‖𝐽 is obviously
a norm on 𝐼𝐿𝐽(𝐺, 𝜔). The main purpose of the present
section is describing the properties of 𝐼𝐿𝐽(𝐺, 𝜔) as a Banach
space under the norm function ‖ ⋅ ‖𝐽. We will discuss first
Proposition 2.2 in [23] for 𝐼𝐿𝐽(𝐺, 𝜔) that is in fact a partial
usage of the Riesz convexity Theorem [33, Theorem 13.19].

Proposition 18. Let 𝐺 be a locally compact group and 𝜔 a
positive submultiplicative weight function on 𝐺 and 1 ≤ 𝑝 <

𝑡 < ∞. Then

⋂

𝑟∈[𝑝,𝑡]

𝐼𝐿𝑟 (𝐺, 𝜔) = 𝐼𝐿𝑝 (𝐺, 𝜔) ∩ 𝐼𝐿 𝑡 (𝐺, 𝜔) (65)

and for each 𝑓 ∈ 𝐼𝐿𝑝(𝐺, 𝜔)∩ 𝐼𝐿 𝑡(𝐺, 𝜔) and 𝑝 ≤ 𝑟 ≤ 𝑡, one has

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑟

≤ max {󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑡

} . (66)

Proof. Let 𝑓 ∈ 𝐼𝐿𝑝(𝐺, 𝜔) ∩ 𝐼𝐿 𝑡(𝐺, 𝜔). Then

𝑓𝜔 ∈ 𝐿
1
(𝐺) ∩ 𝐿

𝑝
(𝐺) ∩ 𝐿

𝑡
(𝐺) ,

𝑓

𝜔̆
∈ 𝐿

𝑞
(𝐺) ∩ 𝐿

𝑡/(𝑡−1)
(𝐺) .

(67)

Thus, [23, Proposition 2.2] implies that

𝑓𝜔 ∈ 𝐿
1
(𝐺) ∩ ( ⋂

𝑟∈[𝑝,𝑡]

𝐿
𝑟
(𝐺)) ,

𝑓

𝜔̆
∈ ⋂

𝑟∈[𝑝,𝑡]

𝐿
(𝑟/(𝑟−1))

(𝐺) .

(68)

Hence,

𝑓 ∈ ⋂

𝑟∈[𝑝,𝑡]

𝐼𝐿𝑟 (𝐺, 𝜔) , (69)

and since ||𝑓||𝑟,𝜔 ≤ max{||𝑓||𝑝,𝜔, ||𝑓||𝑡,𝜔} and ||𝑓||𝑟/(𝑟−1),1/𝜔̆ ≤
max{||𝑓||𝑞,1/𝜔̆, ||𝑓||𝑡/(𝑡−1),1/𝜔̆}, then

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑟

≤ max {󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1,𝜔,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝜔,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑞,1/𝜔̆,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑡,𝜔,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑡/(𝑡−1),1/𝜔̆}

= max {󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑡

} ,

(70)

and the proof is complete.

The next proposition shows an intimate relation between
the spaces 𝐼𝐿𝑝(𝐺, 𝜔), whenever 𝑝 runs in an arbitrary subset
of [1,∞). The proof is immediate.
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Proposition 19. Let 𝐺 be a locally compact group and 𝐽 a
subset of [1,∞). Then the following assertions hold.

(1) If 𝑚𝐽,𝑀𝐽 ∈ 𝐽, then ∩𝑝∈[𝑚𝐽,𝑀𝐽]
𝐼𝐿𝑝(𝐺, 𝜔) = 𝐼𝐿𝑚𝐽

(𝐺, 𝜔) ∩ 𝐼𝐿𝑀𝐽
(𝐺, 𝜔).

(2) If𝑚𝐽 ∈ 𝐽 and𝑀𝐽 ∉ 𝐽, then∩𝑝∈𝐽𝐼𝐿𝑝(𝐺, 𝜔) = ∩𝑝∈[𝑚𝐽,𝑀𝐽)
𝐼𝐿𝑝(𝐺, 𝜔).

(3) If𝑀𝐽 ∈ 𝐽 and𝑚𝐽 ∉ 𝐽, then∩𝑝∈𝐽𝐼𝐿𝑝(𝐺, 𝜔) = ∩𝑝∈(𝑚𝐽,𝑀𝐽]
𝐼𝐿𝑝(𝐺, 𝜔).

(4) If𝑀𝐽 ∉ 𝐽 and𝑚𝐽 ∉ 𝐽, then∩𝑝∈𝐽𝐼𝐿𝑝(𝐺, 𝜔) = ∩𝑝∈(𝑚𝐽,𝑀𝐽)
𝐼𝐿𝑝(𝐺, 𝜔).

Using similar tools to the proof of [23, Lemma 3.1], it is
obtained that 𝐼𝐿𝐽(𝐺, 𝜔) ⊆ 𝐼𝐿𝑚𝐽

(𝐺, 𝜔) and also 𝐼𝐿𝐽(𝐺, 𝜔) ⊆
𝐼𝐿𝑀𝐽

(𝐺, 𝜔). It follows that [23, Theorem 3.2] is also valid for
the weighted case. It is given in the next result.

Theorem 20. Let 𝐺 be a locally compact group and 𝐽 a subset
of [1,∞). Then

𝐼𝐿𝐽 (𝐺, 𝜔) = 𝐼𝐿 (𝑚𝐽,𝑀𝐽)
(𝐺, 𝜔) = 𝐼𝐿 [𝑚𝐽,𝑀𝐽)

(𝐺, 𝜔)

= 𝐼𝐿 (𝑚𝐽,𝑀𝐽]
(𝐺, 𝜔) = 𝐼𝐿 [𝑚𝐽,𝑀𝐽]

(𝐺, 𝜔) ,

(71)

and all are equal to 𝐼𝐿𝑚𝐽(𝐺, 𝜔) ∩ 𝐼𝐿𝑀𝐽
(𝐺, 𝜔). Furthermore,

𝐼𝐿𝐽(𝐺, 𝜔) is a Banach space under the following norm:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝐽

= sup
𝑝∈𝐽

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

= max {󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑚𝐽

,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑀𝐽

} . (72)

Note. In [23, Example 2.4] and also the explanation after [23,
Proposition 2.3] of our recent paper, there are fourmisprints.
All four inclusions have been printed in reverse. We correct
them as follows. Suppose that 𝐺 is a locally compact group
and 𝑎, 𝑏 ∈ [1,∞]. Then

⋂

𝑝∈[𝑎,𝑏]

𝐿
𝑝
(𝐺) ⊆ ⋂

𝑝∈[𝑎,𝑏)

𝐿
𝑝
(𝐺) ,

⋂

𝑝∈[𝑎,𝑏]

𝐿
𝑝
(𝐺) ⊆ ⋂

𝑝∈(𝑎,𝑏]

𝐿
𝑝
(𝐺) .

(73)

Also in the example,

⋂

𝑝∈[1,∞]

𝐿
𝑝
(R) ⫋ ⋂

𝑝∈[1,∞)

𝐿
𝑝
(R) ,

⋂

𝑝∈[𝑎,𝑏]

𝐿
𝑝
(R) ⫋ ⋂

𝑝∈(𝑎,𝑏]

𝐿
𝑝
(R) .

(74)

6. 𝐼𝐿𝐽(𝐺,𝜔) as a Banach Algebra under
Convolution Product

Let 𝐺 be a locally compact group and 𝜔 a positive submu-
ltiplicative weight function on 𝐺 and 𝐽 ⊆ [1,∞). It is
appropriate to recall from the first section that 𝐿1(𝐺, 𝜔) is a
Banach algebra under convolution product if and only if 𝜔

is equivalent to a submultiplicative weight function. Further-
more, we provided some satisfactory results for closedness of
𝐿
𝑝
(𝐺, 𝜔) under convolution, in the case where 1 < 𝑝 ≤ ∞.

According to these results, it also is noticeable to know that
𝐼𝐿𝐽(𝐺, 𝜔) is always closed under convolution. It is provided
in the next proposition.

Proposition 21. Let 𝐺 be a locally compact group and 𝜔 a
positive submultiplicative weight function on𝐺 and 𝐽 ⊆ [1,∞).
Then 𝐼𝐿𝐽(𝐺, 𝜔) is a Banach algebra under convolution product
and norm ‖ ⋅ ‖𝐽.

Proof. We first show that 𝐼𝐿𝑝(𝐺, 𝜔) is a Banach algebra, for
each 1 ≤ 𝑝 < ∞. If 𝑝 = 1 and 𝑓, 𝑔 ∈ 𝐼𝐿1(𝐺, 𝜔), then

󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩𝐼𝐿1

= max {󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩1,𝜔,

󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩∞,1/𝜔̆

}

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1,𝜔max {󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩1,𝜔,
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩∞,1/𝜔̆

}

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿1

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐼𝐿1

.

(75)

Now let 1 < 𝑝 < ∞ and 𝑓, 𝑔 ∈ 𝐼𝐿𝑝(𝐺, 𝜔). Since 𝜔 is submu-
ltiplicative, 𝑓 ∗ 𝑔 ∈ 𝐿𝑝(𝐺, 𝜔) by [11, Theorem 3.1], and so

󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩𝑝,𝜔 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1,𝜔

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝,𝜔,

󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩1,𝜔 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1,𝜔

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩1,𝜔.

(76)

Also

󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩
𝑞

𝑞,1/𝜔̆
= ∫

𝐺

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐺

𝑓 (𝑦) 𝑔 (𝑦
−1
𝑥)

𝜔̆ (𝑥)
𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥

≤ ∫
𝐺

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑓𝜔 ∗

𝑔

𝜔̆
) (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓𝜔 ∗

𝑔

𝜔̆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

𝑞

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
𝑞

1,𝜔

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
𝑞

𝑞,1/𝜔̆
.

(77)

It follows that
󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔

󵄩󵄩󵄩󵄩𝐼𝐿𝑝
≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1,𝜔

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

, (78)

and so the result is obtained. Now let 𝑓, 𝑔 ∈ 𝐼𝐿𝐽(𝐺, 𝜔). Then
the implication (78) implies that

󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩𝐼𝐿𝐽

= sup
𝑝∈𝐽

󵄩󵄩󵄩󵄩𝑓 ∗ 𝑔
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

≤ sup
𝑝∈𝐽

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝐽

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐼𝐿𝐽

,

(79)

and the proof is complete.

Proposition 21 leads us to study some algebraic properties
of 𝐼𝐿𝐽(𝐺, 𝜔). The particular object of study in this section is
the amenability of 𝐼𝐿𝐽(𝐺, 𝜔). First, we show that 𝐼𝐿𝐽(𝐺, 𝜔)
is always an abstract Segal algebra with respect to 𝐿1(𝐺, 𝜔),
which is interesting in its own right.
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6.1. 𝐼𝐿𝐽(𝐺,𝜔) as an Abstract Segal Algebra. For the sake of
completeness, we first repeat the basic definitions of abstract
Segal algebras; see [34] for more details.

Let (A, ‖ ⋅ ‖A) be a Banach algebra.Then (B, ‖ ⋅ ‖B) is an
abstract Segal algebra with respect to (A, ‖ ⋅ ‖A) if

(1) B is a dense left ideal inA andB is a Banach algebra
with respect to ‖ ⋅ ‖B;

(2) there exists𝑀 > 0 such that ‖𝑓‖A ≤ 𝑀‖𝑓‖B, for each
𝑓 ∈ B;

(3) there exists𝐶 > 0 such that ‖𝑓𝑔‖B ≤ 𝐶‖𝑓‖A‖𝑔‖B, for
each 𝑓, 𝑔 ∈ B.

Proposition 22. Let 𝐺 be a locally compact group and 𝜔 a
positive submultiplicative weight function on𝐺 and 𝐽 ⊆ [1,∞).
Then 𝐼𝐿𝐽(𝐺, 𝜔) is an abstract Segal algebra with respect to
𝐿
1
(𝐺, 𝜔).

Proof. We first get the result for 𝐼𝐿𝑝(𝐺, 𝜔) whenever 1 ≤ 𝑝 <
∞. Then one can easily prove this statement for 𝐼𝐿𝐽(𝐺, 𝜔).
Let 𝑝 = 1 and 𝑓 ∈ 𝐼𝐿1(𝐺, 𝜔) and 𝑔 ∈ 𝐿

1
(𝐺, 𝜔). Then for each

𝑥 ∈ 𝐺

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔 ∗ 𝑓

𝜔̆
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝐺

󵄨󵄨󵄨󵄨𝑔 (𝑦)
󵄨󵄨󵄨󵄨

𝜔̆ (𝑦
−1
𝑥)

𝜔̆ (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑦

−1
𝑥)
󵄨󵄨󵄨󵄨󵄨

𝜔̆ (𝑦−1𝑥)
𝑑𝑦

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓

𝜔̆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
∫
𝐺

󵄨󵄨󵄨󵄨𝑔 (𝑦)
󵄨󵄨󵄨󵄨 𝜔 (𝑦) 𝑑𝑦 =

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞,1/𝜔̆

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩1,𝜔.

(80)

Thus 𝑔 ∗ 𝑓 ∈ 𝐿
∞
(𝐺, 1/𝜔̆), and so 𝑔 ∗ 𝑓 ∈ 𝐼𝐿1(𝐺, 𝜔). Hence

𝐼𝐿1(𝐺, 𝜔) is a left ideal in 𝐿1(𝐺, 𝜔). Since 𝜔 is submultiplica-
tive, then it is equivalent to a continuous function, and so

𝐶00 (𝐺) ⊆ 𝐼𝐿1 (𝐺, 𝜔) ⊆ 𝐿
1
(𝐺, 𝜔) . (81)

It follows that 𝐼𝐿1(𝐺, 𝜔) is dense in 𝐿
1
(𝐺, 𝜔). Thus the first

condition of the theory of abstract Segal algebras is satisfied.
The second condition is clear. Also as we showed in the first
paragraph of the proof, for each 𝑔 ∈ 𝐿

1
(𝐺, 𝜔) and 𝑓 ∈

𝐼𝐿1(𝐺, 𝜔),
󵄩󵄩󵄩󵄩𝑔 ∗ 𝑓

󵄩󵄩󵄩󵄩∞,1/𝜔̆
≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞,1/𝜔̆

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩1,𝜔. (82)

Since 𝜔 is submultiplicative, then
󵄩󵄩󵄩󵄩𝑔 ∗ 𝑓

󵄩󵄩󵄩󵄩1,𝜔 ≤
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩1,𝜔

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1,𝜔. (83)

Thus
󵄩󵄩󵄩󵄩𝑔 ∗ 𝑓

󵄩󵄩󵄩󵄩𝐼𝐿1
≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿1

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩1,𝜔, (84)

and the third condition is also obtained. Now let 1 < 𝑝 <

∞. Similar arguments show that the first and the second con-
ditions of the theory of abstract Segal algebras are satisfied.
Moreover,

󵄩󵄩󵄩󵄩𝑔 ∗ 𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝑝

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩1,𝜔, (85)

for all 𝑓 ∈ 𝐼𝐿𝑝(𝐺, 𝜔) and 𝑔 ∈ 𝐿
1
(𝐺, 𝜔). It follows that

󵄩󵄩󵄩󵄩𝑔 ∗ 𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝐽

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐼𝐿𝐽

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩1,𝜔, (86)

and so the proof is completed.

6.2. Amenability of 𝐼𝐿𝐽(𝐺,𝜔) and Its Second Dual. LetA be a
Banach algebra and𝑋 a BanachA-bimodule. A derivation is
a linear map𝐷 : A → 𝑋 such that

𝐷 (𝑎𝑏) = 𝑎𝐷 (𝑏) + 𝐷 (𝑎) 𝑏 (𝑎, 𝑏 ∈ A) . (87)

A derivation 𝐷 fromA into 𝑋 is inner if there is 𝜉 ∈ 𝑋 such
that

𝐷 (𝑎) = 𝑎𝜉 − 𝜉𝑎 (𝑎 ∈ A) . (88)

The Banach algebra A is amenable if every continuous
derivation𝐷 : 𝐴 → 𝑋

∗ is inner for all BanachA-bimodules
𝑋.

As a vital result, we first turn our attention to the fact
that 𝐼𝐿𝐽(𝐺, 𝜔) admits a bounded left approximate identity just
when it is equal to 𝐿1(𝐺, 𝜔). It is in fact a direct result due to
Burnham [35], as the following.

Lemma 23. Let (B, ‖ ⋅ ‖B) be an abstract Segal algebra with
respect to (A, ‖ ⋅‖A) and (𝑒𝛼)𝛼∈Λ a left approximate identity of
B. IfB is a proper subset ofA, then (𝑒𝛼)𝛼∈Λ is not bounded in
theB norm.

Thenext result is completely fulfilled fromProposition 22
and Lemma 23.

Proposition 24. Let 𝐺 be a locally compact group and 𝜔 a
positive submultiplicative weight function on𝐺 and 𝐽 ⊆ [1,∞).
If 𝐼𝐿𝐽(𝐺, 𝜔) possesses a bounded left approximate identity then
𝐼𝐿𝐽(𝐺, 𝜔) = 𝐿

1
(𝐺, 𝜔), as Banach algebras.

Theorem25. Let𝐺 be a locally compact group and𝜔 a positive
submultiplicative weight function on 𝐺 and 𝐽 ⊆ [1,∞). Then
𝐼𝐿𝐽(𝐺, 𝜔) is amenable if and only if𝐺 is discrete and amenable
and 𝜔∗ is bounded.

Proof. First let 𝐼𝐿𝐽(𝐺, 𝜔) be amenable. Then 𝐼𝐿𝐽(𝐺, 𝜔) pos-
sesses a bounded approximate identity [36, Proposition 1.6],
and by Proposition 24, 𝐼𝐿𝐽(𝐺, 𝜔) = 𝐿

1
(𝐺, 𝜔) as Banach

algebras. Thus 𝐿1(𝐺, 𝜔) is amenable which implies that 𝐺 is
amenable and 𝜔∗ is bounded [37]. To that end, we show that
𝐺 is discrete. If there exists 𝑝 ∈ 𝐽 with 1 < 𝑝 < ∞, then
𝐼𝐿𝐽(𝐺, 𝜔) = 𝐿

1
(𝐺, 𝜔) follows that 𝐿1(𝐺, 𝜔) ⊆ 𝐿𝑝(𝐺, 𝜔), and so

𝐺 is discrete by the explanation before Proposition 15. In the
case where 𝐽 = {1}, note that 𝐼𝐿1(𝐺, 𝜔) = 𝐿

1
(𝐺, 𝜔) implies

that 𝐿1(𝐺, 𝜔) ⊆ 𝐿
∞
(𝐺, 1/𝜔̆). By the boundedness of 𝜔∗, we

have 𝐿1(𝐺) ⊆ 𝐿∞(𝐺), and the discreteness of𝐺 is obtained by
[32, Theorem 1]. Conversely, suppose that 𝐺 is discrete and
amenable and 𝜔

∗ is bounded. By [36, Theorem 2.5], ℓ1(𝐺)
is an amenable Banach algebra. Proposition 15 and also [37]
yield that

𝐼𝐿𝐽 (𝐺, 𝜔) = ℓ
1
(𝐺, 𝜔) = ℓ

1
(𝐺) (89)

as Banach algebra. Therefore, 𝐼𝐿𝐽(𝐺, 𝜔) is an amenable
Banach algebra.

For every Banach algebra A, there exist two (Arens)
products ◻ and ◊ on the second dual A∗∗, extending the
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product of A. For further details on the properties of Arens
products see the survey article [38]. We end this work with
the next theorem which provides a necessary and sufficient
condition for the amenability ofA∗∗.

Theorem26. Let𝐺 be a locally compact group and𝜔 a positive
submultiplicative weight function on 𝐺 and 𝐽 ⊆ [1,∞). Then
the following statements are equivalent.

(i) 𝐼𝐿𝐽(𝐺, 𝜔)
∗∗ is amenable.

(ii) 𝐿1(𝐺, 𝜔)∗∗ is amenable.
(iii) 𝐺 is finite.

Proof. (i) ⇒ (ii) If 𝐼𝐿𝐽(𝐺, 𝜔)
∗∗ is amenable, then so is

𝐼𝐿𝐽(𝐺, 𝜔) by [39] and also [40]. Then Theorem 25 implies
that 𝐺 is discrete and by Proposition 15, 𝐼𝐿𝐽(𝐺, 𝜔) = ℓ

1
(𝐺, 𝜔)

and ‖𝑓‖
𝐼𝐿𝐽

= ‖𝑓‖
1,𝜔

, for each 𝑓 ∈ ℓ
1
(𝐺, 𝜔). It follows that

ℓ
1
(𝐺, 𝜔)

∗∗ is amenable.

(ii) ⇒ (iii) It is obtained from [41, Theorem 4].
(iii) ⇒ (i) If 𝐺 is finite, then 𝐼𝐿𝐽(𝐺, 𝜔) = 𝐿

1
(𝐺, 𝜔),

as Banach algebras and the result is obtained by [41,
Theorem 4].

Acknowledgments

The authors express their sincere gratitude to Professor
Hans Georg Feichtinger for his invaluable comments and
suggestions on the paper. The authors would like to thank
the referee of the paper for his/her invaluable comments.The
referee’s suggestions have helped them to improve the paper.
The authors also would like to thank the Banach Algebra
Center of Excellence for Mathematics, University of Isfahan.

References

[1] E. Hewitt and K. A. Ross,Abstract Harmonic Analysis, Springer,
New York, NY, USA, 2nd edition, 1970.

[2] F. Abtahi, R. Nasr-Isfahani, andA. Rejali, “On the 𝐿𝑝-conjecture
for locally compact groups,” Archiv der Mathematik, vol. 89, no.
3, pp. 237–242, 2007.

[3] F. Abtahi, R. N. Isfahani, and A. Rejali, “Convolution on
weighted 𝐿𝑝-spaces of locally compact groups,” Proceedings of
the Romanian Academy A, vol. 13, no. 2, pp. 97–102, 2012.

[4] N. W. Rickert, “Convolution of 𝐿𝑝 functions,” Proceedings of the
American Mathematical Society, vol. 18, pp. 762–763, 1967.

[5] S. Saeki, “The 𝐿𝑝-conjecture and Young’s inequality,” Illinois
Journal of Mathematics, vol. 34, no. 3, pp. 614–627, 1990.

[6] F. Abtahi, R. Nasr-Isfahani, and A. Rejali, “On the weighted 𝑙𝑝-
space of a discrete group,” Publicationes Mathematicae Debre-
cen, vol. 75, no. 3-4, pp. 365–374, 2009.

[7] F. Abtahi, R. Nasr-Isfahani, and A. Rejali, “Weighted 𝐿
𝑝-

conjecture for locally compact groups,” Periodica Mathematica
Hungarica, vol. 60, no. 1, pp. 1–11, 2010.

[8] F. Abtahi, “Weighted 𝐿
𝑝-spaces on locally compact groups,”

Bulletin of the Belgian Mathematical Society, vol. 19, no. 2, pp.
339–343, 2012.

[9] A. El Kinani and A. Benazzouz, “Structure 𝑚-convexe dans
l’espace à poids 𝐿𝑝
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