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Our aim is to investigate the long-time behavior in terms of upper semicontinuous property of uniform attractors for the
2D nonautonomous Navier-Stokes equations with linear damping and nonautonomous perturbation external force, that is, the
convergence of corresponding attractors when the perturbation tends to zero.

1. Introduction

In the present paper, we investigate the long-time behavior
of uniform attractors for the nonautonomous 2D Navier-
Stokes equations with damping and singular external force
that governs the motion of incompressible fluid

𝑢
𝑡
− ]Δ𝑢 + (𝑢 ⋅ ∇) 𝑢 + 𝛼𝑢 + ∇𝑝 = 𝑓

0
(𝑡, 𝑥) + 𝜀

−𝜌
𝑓
1
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𝑡

𝜀

, 𝑥) ,

(1)

div 𝑢 = 0, (2)

𝑢 (𝑡, 𝑥)|
𝜕Ω
= 0, (3)

𝑢 (𝜏, 𝑥) = 𝑢
𝜏
(𝑥) , (4)

where 𝑥 ∈ Ω ⊂ R2 is a bounded domain with smooth
boundary 𝜕Ω, ] is the kinematic viscosity of the fluid, 𝑢 =

𝑢(𝑡, 𝑥) = (𝑢
1
(𝑡, 𝑥), 𝑢

2
(𝑡, 𝑥)) is the velocity vector field which

is unknown, 𝑝 is the pressure, 𝛼 > 0 is positive constant,
𝑡 ∈ R

𝜏
= [𝜏, +∞), and 𝜀 is a small positive parameter.

Along with (1)–(4), we consider the averaged Navier-
Stokes equation with damping

𝑢
𝑡
− ]Δ𝑢 + (𝑢 ⋅ ∇) 𝑢 + 𝛼𝑢 + ∇𝑝 = 𝑓

0
(𝑡, 𝑥) , (5)

∇ ⋅ 𝑢 = 0, (6)

𝑢 (𝑡, 𝑥)|
𝜕Ω
= 0, (7)

𝑢 (𝜏, 𝑥) = 𝑢
𝜏
(𝑥) , (8)

formally corresponding to the case 𝜀 = 0.
The function

𝑓
𝜀
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0
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−𝜌
𝑓
1
(𝑥,

𝑡

𝜀

) , 0 < 𝜀 < 1,

𝑓
0
(𝑥, 𝑡) , 𝜀 = 0

(9)

represents the external forces of problem (1)–(4) for 𝜀 > 0 and
problem (5)–(8) for 𝜀 = 0, respectively.
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The functions 𝑓
0
(𝑥, 𝑠) and 𝑓

1
(𝑥, 𝑠) are taken from the

space 𝐿2
𝑏
(R; 𝐻) of translational bounded functions in 𝐿2loc(R;

𝐻), namely,
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for some constants𝑀
0
,𝑀

1
≥ 0.
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𝑄
𝜀
= {
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+ 2𝑀

1
𝜀
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, 0 < 𝜀 < 1,

𝑀
0
, 𝜀 = 0,

(12)

and note that 𝑄𝜀 is of the order 𝜀−𝜌 as 𝜀 → 0
+.

As a straightforward consequence of (9), we have
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𝑏
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When 𝛼 = 0 in (5)–(8), the system reduces to the well-
known 2D incompressible Navier-Stokes equation:

𝑢
𝑡
− ]Δ𝑢 + (𝑢 ⋅ ∇) 𝑢 + ∇𝑝 = 𝑓,

∇ ⋅ 𝑢 = 0.

(14)

Since the last century, the global well-posedness and
large-time behavior of solutions to the Navier-Stokes equa-
tions have attracted many mathematicians to study. For the
well posedness of 3D incompressible Navier-Stokes equa-
tions, in 1934, Leray [1, 2] derived the existence of weak
solution by weak convergence method; Hopf [3] improved
Leray’s result and obtained the familiar Leray-Hopf weak
solution in 1951. Since the Navier-Stokes equations lack
appropriate priori estimate and the strong nonlinear prop-
erty, the existence of strong solution remains open. For the
infinite-dimensional dynamical systems, Sell [4] constructed
the semiflow generated by the weak solution which lacks
the global regularity and obtained the existence of global
attractor of the incompressible Navier-Stokes equations on
any bounded smooth domain; Cheskidov and Foias [5] intro-
duced a weak global attractor with respect to the weak topol-
ogy of the natural phase space for 3D Navier-Stokes equation
with periodic boundary; Flandoli and Schmalfuß [6] deduced
the existence of weak solutions and attractors for 3D Navier-
Stokes equations with nonregular force; Kloeden and Valero
[7] investigated the weak connection of the attainability set
of weak solutions of 3D Navier-Stokes equations; Cutland [8]
obtained the existence of global solutions for the 3D Navier-
Stokes equations with small samples and germs; Chepyzhov
and Vishik [9–11] investigated the trajectory attractors for 3D
nonautonomous incompressible Navier-Stokes system which
is based on the works of Leray and Hopf. Using the weak
convergence topology of the space 𝐻 (see below for the
definition), Kapustyan and Valero [12] proved the existence
of a weak attractor in both autonomous and nonautonomous
cases and gave an existence result of strong attractors.
Kapustyan et al. [13] considered a revised 3D incompressible

Navier-Stokes equations generated by an optimal control
problem and proved the existence of pullback attractors by
constructing a dynamical multivalued process. For more
results of the well-posedness and long-time behavior of
the 2D autonomous incompressible Navier-Stokes equations,
such as the existence of global solutions, the existence of
global attractors, Hausdorff dimension, and inertial manifold
approximation, we can refer to Ladyzhenskaya [14], Robinson
[15], Sell and You [16], and Temam [17, 18]. Moreover, Cara-
ballo andReal [19] derived the existence of global attractor for
2D autonomous incompressible Navier-Stokes equation with
delays; Chepyzhov and Vishik [20, 21] investigated the long-
time behavior and convergence of corresponding uniform
(global) attractors for the 2D Navier-Stokes equation with
singularly oscillating forces as the external force tend to be
steady state by virtue of linearization method and estimate
the corresponding difference equations; Foias and Temam
[22, 23] gave a survey about the geometric properties of
solutions and the connection between solutions, dynamical
systems, and turbulence for Navier-Stokes equations, such as
the existence of 𝜔-limit sets; Rosa [24] and Hou and Li [25]
obtained the existence of global (uniform) attractors for the
2D autonomous (nonautonomous) incompressible Navier-
Stokes equations in some unbounded domain, respectively;
Lu et al. [26] and Lu [27] proved the existence of uniform
attractors for 2D nonautonomous incompressible Navier-
Stokes equations with normal or less regular normal external
force by establishing a new dynamical systems framework;
Miranville and Wang [28] derived the attractors for nonau-
tonomous nonhomogeneous Navier-Stokes equations.

However, the infinite-dimensional systems for 3D incom-
pressible Navier-Stokes equations have not been yet com-
pletely resolved, so many mathematicians pay attention to
this challenging problem. In this regard, some mathemati-
cians pay their attentions to the Navier-Stokes equation
with damping. Let us recall some known results for the 3D
incompressible Naver-Stokes equations with damping. For
the 3D autonomous Navier-Stokes equation with damping,
the authors of [29] showed that the initial boundary value
problem of a 3D Navier-Stokes equation with damping has
a unique weak solution and Song and Hou [30] derived the
global attractors for the same autonomous system.Kalantarov
and Titi [31] investigated the Navier-Stokes-Voight equations
as an inviscid regularization of the 3D incompressible Navier-
Stokes equations, and further obtained the existence of global
attractors for Navier-Stokes-Voight equations. Recently, Qin
et al. [32] showed the existence of uniform attractors by
uniform condition-(C) and weak continuous method to
obtain uniformly asymptotical compactness in 𝐻1 and 𝐻2.
However, there are fewer results for the upper semicon-
tinuous and lower semicontinuous for the nonautonomous
system with perturbation case. In this paper, we will show
the long-time behavior in terms of upper semicontinuous
property of uniform attractors for the problem (1)–(4), that
is, the convergence of corresponding attractors when the
perturbation tends to zero.

This paper is organized as follows: in Section 2, we will
give some preliminaries of uniform attractors; in Section 3,
the uniform boundedness of uniform attractors of 2D
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Navier-Stokes equation with damping for 𝜀 ≥ 0 will be
obtained; the main result will be stated in the last section.

2. Some Preliminaries of Uniform Attractors

The Hausdorff semidistance in 𝑋 from one set 𝐵
1
to another
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2
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dist
𝑋
(𝐵
1
, 𝐵
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𝐿
𝑝
(Ω) (1 ≤ 𝑝 ≤ +∞) is the generic Lebesgue space and

𝐻
𝑠
(Ω) is the usual Sobolev space. We set 𝐸 := {𝑢 | 𝑢 ∈

(𝐶
∞

0
(Ω))

2
, div 𝑢 = 0},𝐻 is the closure of the set𝐸 in (𝐿2(Ω))2

topology with norm ‖ ⋅ ‖ or ‖ ⋅ ‖
𝐻
, 𝑉 is the closure of the set

𝐸 in (𝐻1

0
(Ω))

2 topology, and𝑊 is the closure of the set 𝐸 in
(𝐻

2

0
(Ω))

2 topology.
The family of functions𝐿2loc(R; 𝐻) denote a local Bochner

integration function class, and 𝐿2
𝑏
(R; 𝐻) denotes all transla-

tion bounded functions which satisfies
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𝑡∈R

∫

𝑡+1

𝑡

‖𝜎 (𝑠, 𝑥)‖
2

𝐻
𝑑𝑠 < +∞ (16)

for all 𝜎 ∈ 𝐿
2

loc(R; 𝐻); that is, 𝜎 is translation bounded
in 𝐿2loc(R; 𝐻). 𝐿

2

tc(R; 𝐻) is translation compact function in
𝐿
2
(R; 𝐻). Obviously, 𝐿2

𝑏
(R; 𝐻) ⊂ 𝐿2loc(R; 𝐻).

Operator𝑃 is theHelmholtz-Leray orthogonal projection
in (𝐿2(Ω))2 onto the space𝐻,𝐴 := −𝑃Δ is the Stokes operator
subject to the nonslip homogeneous Dirichlet boundary
condition with the domain (𝐻2

(Ω))
2
∩ 𝑉, 𝐴 is a self-adjoint

positively defined operator on 𝐻 with domain 𝐷(𝐴) =

(𝐻
2
(Ω))

2
∩ 𝑉, and 𝜆 > 0 is the first eigenvalue for the Stokes

operator 𝐴; we define the Hilbert space𝐻𝜎 as𝐻𝜎
= 𝐷(𝐴
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)
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The problems (1)–(4) and (5)–(8) can be written as a
generalized abstract form

𝑢
𝑡
+ ]𝐴𝑢 + 𝛼𝑢 + 𝐵 (𝑢, 𝑢) = 𝜎 (𝑡, 𝑥) , (17)

div 𝑢 = 0, (18)

𝑢|
𝜕Ω
= 0, (19)

𝑢 (𝜏, 𝑥) = 𝑢
𝜏
, (20)

where the pressure 𝑝 has disappeared by force of the appli-
cation of the Leray-Helmholtz projection 𝑃, and 𝐵(𝑢, V) =
(𝑢 ⋅ ∇)V is the bilinear operator. The bilinear form 𝐵(⋅, ⋅) can
be extended as a continuous trilinear operator 𝑏(𝑢, V, 𝑤) =
(𝐵(𝑢, V), 𝑤) and satisfies

𝑏 (𝑢, V, V) = 0, ∀𝑢, V, 𝑤 ∈ 𝑉, (21)

𝑏 (𝑢, V, 𝑤) = −𝑏 (𝑢, 𝑤, V) , ∀𝑢, V, 𝑤 ∈ 𝑉, (22)
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1
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1
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1
‖V‖

1
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1/2
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1/2

1
, ∀𝑢, V, 𝑤 ∈ 𝑉,

(25)

‖𝑏 (𝑢, V, 𝑤)‖ ≤ 𝐶𝜆1/4
1
‖𝑢‖

1
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1
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1
, ∀𝑢, V, 𝑤 ∈ 𝑉, (26)

‖𝑏 (𝑢, V, 𝑤)‖ ≤ 𝐶‖𝑢‖1/2‖𝐴𝑢‖1/2‖V‖
𝑉
‖𝑤‖ ,

∀ (𝑢, V, 𝑤) ∈ 𝐷 (𝐴) × 𝑉 × 𝐻.
(27)

Firstly, we will give some Lemmas which can be found
in [20], then derive some new results to prove the uniform
boundedness of corresponding attractors in Section 3.

Lemma 1. For each 𝜏 ∈ R, every nonnegative locally sum-
mable function 𝜙 on R

𝜏
and every 𝛽 > 0, one has

∫

𝑡

𝜏

𝜙 (𝑠) 𝑒
−𝛽(𝑡−𝑠)

𝑑𝑠 ≤

1

1 − 𝑒
−𝛽

sup
𝜃≥𝜏

∫

𝜃+1

𝜃

𝜙 (𝑠) 𝑑𝑠, (28)

for all 𝑡 ≥ 𝜏.

Proof. See, for example, Chepyzhov et al. [20].

Lemma 2. Let 𝜁 : R
𝜏
→ R+ fulfill the fact that for almost

every 𝑡 ≥ 𝜏, the differential inequality
𝑑

𝑑𝑡

𝜁 (𝑡) + 𝜙
1
(𝑡) 𝜁 (𝑡) ≤ 𝜙

2
(𝑡) , (29)

where, for every 𝑡 ≥ 𝜏, the scalar functions 𝜙
1
and 𝜙

2
satisfy

∫

𝑡

𝜏

𝜙
1
(𝑠) 𝑑𝑠 ≥ 𝛽 (𝑡 − 𝜏) − 𝛾, ∫

𝑡+1

𝑡

𝜙
2
(𝑠) 𝑑𝑠 ≤ 𝑀, (30)

for some 𝛽 > 0, 𝛾 ≥ 0, and𝑀 ≥ 0. Then

𝜁 (𝑡) ≤ 𝑒
𝛾
𝜁 (𝜏) 𝑒

−𝛽(𝑡−𝜏)
+

𝑀𝑒
𝛾

1 − 𝑒
−𝛽
, ∀𝑡 ≥ 𝜏. (31)

Proof. See, for example, Chepyzhov et al. [20].

The existence of global solution and uniform attractor for
(17)–(20) can be derived by similar methods as [33].

Theorem3. (1)Assume𝜎 ∈ 𝐿2loc(R; 𝐻), 𝑢𝜏 ∈ 𝐻; then problem
(17)–(20) possesses a unique global weak solution 𝑢(𝑡, 𝑥)which
satisfies

𝑢 ∈ 𝐶 ([𝜏, +∞) ;𝐻) ∩ 𝐿
2
(𝜏, 𝑇; 𝑉) ∩ 𝐿

4
(𝜏, 𝑇; (𝐿

4
(Ω))

2

) .

(32)

Moreover, one chooses an arbitrary nonautonomous external
force 𝜎

0
(𝑡, 𝑥) ∈ 𝐿

2

𝑏
(R; 𝐻) and fixed, the global solution 𝑢(𝑡, 𝑥)

generates a process {𝑈
𝜎
(𝜏, 𝑡)} (𝜏 ∈ R, 𝑡 > 𝜏, 𝜎 ∈ Σ) which

is continuous with respect to 𝑢
𝜏
, where 𝜎 is a symbol which

belongs to the symbol space Σ = H(𝜎
0
) = [{𝜎

0
(𝑠 + ℎ) | ℎ ∈

R}]
𝐿
2

loc(R,𝐻)
, and [⋅]

𝐸
means the closure in the topology 𝐸.

(2) Assume that 𝑢
𝜏
∈ 𝐻, 𝜎 ∈ Σ ⊂ 𝐿2loc([𝜏, +∞];𝐻); then

the family of processes {𝑈
𝜎
(𝑡, 𝜏), 𝑡 ≥ 𝜏 ∈ R}, (𝜎 ∈ H(𝜎

0
))

generated by the global weak solution of problem (17)–(20)
possesses a uniform (with respect to 𝜎 ∈ Σ = H(𝜎

0
)) attractor

AH(𝜎
0
)
= A

Σ
in𝐻.
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Theorem 4. Assume that 𝑢
𝜏
∈ 𝐻; the functions 𝑓

0
(𝑥, 𝑠) and

𝑓
1
(𝑥, 𝑠) are taken from the space 𝐿2

𝑏
(R, 𝐻) of translational

bounded functions in 𝐿2loc(R; 𝐻) and (10)–(13) hold, and then
the family of processes {𝑈

𝑓
𝜀(𝑡, 𝜏), 𝑡 ≥ 𝜏, 𝑡, 𝜏 ∈ R} generated by

the global solution of problem (1)–(4) possesses uniform (with
respect to 𝜎 = 𝑓𝜀 ∈ Σ) attractorsA𝜀 for any fixed 𝜀 ∈ (0, 1) in
𝐻.

Proof. As the similar argument in [33], we choose 𝜎(𝑡, 𝑥) =
𝑓
𝜀
(𝑡, 𝑥) in [33], since 𝑓

0
and 𝑓

1
are translational bounded in

𝐿
2

loc(R; 𝐻), and then for any fixed 𝜀 ∈ (0, 1], we can deduce
that 𝑓𝜀(𝑡, 𝑥) is translational bounded in 𝐿2loc(R; 𝐻) and the
existence of uniformly compact attractors A𝜀 for any fixed
𝜀 ∈ (0, 1).

Theorem 5. If the function 𝑓
0
(𝑡, 𝑥) is taken from the space

𝐿
2

𝑏
(R; 𝐻) of translational bounded functions in 𝐿2loc(R; 𝐻),

then the processes {𝑈
𝑓
0

(𝑡, 𝜏), 𝑡 ≥ 𝜏, 𝑡, 𝜏 ∈ R} generated by
system (5)–(8) have a uniformly (with respect to 𝜎 = 𝑓

0
∈ Σ)

compact attractorA0 in𝐻.

Proof. As the similar technique in [33], we can easily deduce
the existence of a uniformly compact attractor A0 if we
choose 𝜎(𝑡, 𝑥) = 𝑓

0
(𝑡, 𝑥) since 𝑓0 is translation bounded in

𝐿
2

loc(R; 𝐻).

The structure of the uniform attractor will be discussed
as follows: since the functions 𝑓

0
(𝑡) and 𝑓

1
(𝑡) are translation

bounded and satisfy (10)–(13), the global solution of problem
(1)–(4) generates the family of processes {𝑈𝜀(𝑡, 𝜏), 𝑡 ≥ 𝜏, 𝜏 ∈
R} acting on𝐻 by the formula𝑈𝜀(𝑡, 𝜏)𝑢𝜀

𝜏
= 𝑢

𝜀
(𝑡), 𝑡 ≥ 𝜏, where

𝑢
𝜀
(𝑡) is a solution to (1)–(4).
Similar to the procedure in [33] and by Theorem 4, the

processes class {𝑈𝜀(𝑡, 𝜏)} has a uniformly (with respect to 𝑡 ∈
R) absorbing set

𝐵
𝜀
:= {𝑢

𝜀
∈ 𝐻 |

󵄩
󵄩
󵄩
󵄩
𝑢
𝜀󵄩
󵄩
󵄩
󵄩𝐻

≤ 𝐶𝑄
𝜀
} (33)

which is bounded in𝐻 for any fixed 𝜀 ∈ (0, 1), which means
that for any bounded set 𝐵 ⊂ 𝐻, there exists a time 𝑇 =

𝑇(𝜀, 𝐵
𝜀
) such that

𝑈
𝜀
(𝑡, 𝜏) 𝐵 ⊆ 𝐵

𝜀
, ∀𝜏 ∈ R, ∀𝑡 ≥ 𝜏 + 𝑇. (34)

Hence,

𝐵
𝜀

1
:= ⋃

𝜏∈𝑅

𝑈
𝜀
(𝜏 + 1, 𝜏) 𝐵

𝜀
,

𝐵
𝜀

2
:= ⋃

𝜏∈𝑅

𝑈
𝜀
(𝜏 + 2, 𝜏) 𝐵

𝜀
,

...

𝐵
𝜀

[𝑇]
:= ⋃

𝜏∈𝑅

𝑈
𝜀
(𝜏 + [𝑇] , 𝜏) 𝐵

𝜀

(35)

are also uniformly absorbing with respect to 𝜎(𝑥, 𝑡) as 𝑓𝜀 or
𝑓
0 which belongs to Σ, [𝑇] is the integer part of 𝑇.

The processes {𝑈𝜀(𝑡, 𝜏)} have a uniform global attractor as
uniform 𝜔-set

A
𝜀
= 𝜔 (𝐵) := ⋂

ℎ>0

[ ⋃

𝑡−𝜏≥ℎ

𝑈
𝜀
(𝑡, 𝜏) 𝐵]

𝐻

, (36)

where [⋅]
𝐻
denotes the closure in 𝐻 and 𝐵 is an arbitrarily

uniformly bounded absorbing set of the processes {𝑈𝜀(𝑡, 𝜏)};
here, we can set 𝐵 = 𝐵𝜀.

On the other hand, for each fixed 𝜀, A𝜀 is also bounded
in 𝐻, since A𝜀

⊆ 𝐵
𝜀

𝑖
(𝑖 = 1, 2, . . . , [𝑇]). Assuming 𝑓

0
, 𝑓
1
∈

𝐿
2

tc(R; 𝐻), then 𝑓
𝜀
(𝑡) ∈ 𝐿

2

tc(R; 𝐻). Besides, if 𝜀 > 0 and ̂
𝑓
𝜀
∈

H(𝑓
𝜀
), then

̂
𝑓
𝜀
(𝑡) =

̂
𝑓
0
(𝑡) + 𝜀

−𝜌 ̂
𝑓
1
(

𝑡

𝜀

) , (37)

for some ̂𝑓
0
∈H(𝑓

0
) and ̂

𝑓
1
∈H(𝑓

1
).

Next, we consider the equation class as follows to describe
the structure of the uniform attractorA𝜀

𝑢̂
𝑡
+ ]𝐴𝑢̂ + 𝛼𝑢̂ + 𝐵 (𝑢̂) = ̂

𝑓
𝜀
(𝑡) ,

̂
𝑓
𝜀
∈H (𝑓

𝜀
) . (38)

For every external force ̂
𝑓
𝜀
∈ H(𝑓

𝜀
), by the well-

poseness of the abstract equation (17), we can derive that
(38) generates a family of processes {𝑈

𝑓
𝜀(𝑡, 𝜏)} on 𝐻, which

shares similar properties to {𝑈𝜀(𝑡, 𝜏)}, corresponding to the
original equation (1) with external force 𝑓𝜀(𝑥, 𝑡). Moreover,
fromTheorem 3 we know the map

(𝑢
𝜏
,
̂
𝑓
𝜀
) 󳨃󳨀→ 𝑈

𝑓
𝜀 (𝑡, 𝜏) 𝑢𝜏 (39)

is (𝐻 ×H(𝑓
𝜀
),𝐻)-continuous.

Definition 6. The kernel K
𝑓
𝜀 of (17) is the family of all

complete orbits {𝑢̂(𝑡), 𝑡 ∈ 𝑅} which are uniformly bounded
in𝐻. The set

K
𝑓
𝜀 (𝜏) = {𝑢̂ (𝜏) | 𝑢̂ ∈K

𝑓
𝜀} ⊂ 𝐻 (40)

is called the kernel section of K
𝑓
𝜀 at time 𝑡 = 𝜏. For every

𝜀 ∈ (0, 1), the following representation (complete orbit) of
uniform attractorsA𝜀 of (1) holds:

A
𝜀
= ⋃

𝑓
𝜀
∈H(𝑓

𝜀
)

K
𝑓
𝜀 (𝜏) . (41)

Definition 7. The structure of uniform attractors for problem
(5)–(8) can be described as the uniform 𝜔-set or kernel
section:

A
0
= 𝜔 (𝐵

0
) := ⋂

ℎ>0

[ ⋃

𝑡−𝜏≥ℎ

𝑈
0
(𝑡, 𝜏) 𝐵

0
]

𝐻

,

A
0
= ⋃

𝑓
0
∈H(𝑓0)

K
𝑓
0

(𝜏) .

(42)
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3. Uniform Boundedness of A𝜀 in 𝐻

Firstly, we consider the auxiliary linear equation with nonau-
tonomous external force𝐾(𝑡) and give some useful estimates
and then prove the uniform boundedness ofA𝜀 in𝐻.

Considering the linear equation

𝑌
𝑡
+ ]𝐴𝑌 + 𝛼𝑌 = 𝐾 (𝑡) , 𝑌|

𝑡=𝜏
= 0, (43)

we obtain the following lemmas.

Lemma 8. Assume 𝐾 ∈ 𝐿
2

𝑏
(R; 𝑉) ⊂ 𝐿2loc(R; 𝑉) ⊂ 𝐿

2

loc(R; 𝐻);
then problem (43) has a unique solution

𝑌 ∈ 𝐿
2
((𝜏, 𝑇) ; (𝐻

3
(Ω))

2

) ∩ 𝐶 ((𝜏, 𝑇) ;𝑊) ,

𝜕
𝑡
𝑌 ∈ 𝐿

2
((𝜏, 𝑇) ;𝑊

󸀠
) .

(44)

Moreover, the following inequalities

‖𝑌 (𝑡)‖
2

𝑉
≤ 𝐶∫

𝑡

𝜏

𝑒
−(𝐶/])(𝑡−𝑠)

‖𝐾 (𝑠)‖
2

𝐻
𝑑𝑠, (45)

‖𝑌 (𝑡)‖
2

𝑊
≤ 𝐶∫

𝑡

𝜏

𝑒
−(𝐶/])(𝑡−𝑠)

‖𝐾 (𝑠)‖
2

𝑉
𝑑𝑠, (46)

∫

𝑡+1

𝑡

‖𝑌 (𝑡)‖
2

𝐻
𝑑𝑠 ≤ 𝐶(‖𝑌 (𝑡)‖

2

𝐻
+ ∫

𝑡+1

𝑡

‖𝐾 (𝑠)‖
2

𝐻
𝑑𝑠) , (47)

∫

𝑡+1

𝑡

‖𝑌 (𝑠)‖
2

𝑊
𝑑𝑠 ≤ 𝐶(‖𝑌 (𝑡)‖

2

𝑉
+ ∫

𝑡+1

𝑡

‖𝐾 (𝑠)‖
2

𝐻
𝑑𝑠) , (48)

∫

𝑡+1

𝑡

‖𝑌 (𝑠)‖
2

𝐻
3𝑑𝑠 ≤ 𝐶(‖𝑌 (𝑡)‖

2

𝑊
+ ∫

𝑡+1

𝑡

‖𝐾 (𝑠)‖
2

𝑉
𝑑𝑠) (49)

hold for every 𝑡 ≥ 𝜏 and some constant 𝐶 = 𝐶(𝜆) > 0,
independent of the initial time 𝜏 ∈ 𝑅.

Proof. Firstly, similar to the discussion in [32] or [34], by the
Galerkin approximationmethod, we can obtain the existence
of global solution; here we omit the details.

Then, multiplying (43) by 𝑌, 𝐴𝑌, and 𝐴2𝑌, respectively,
using the Poincaré inequality, we get

1

2

𝑑

𝑑𝑡

‖𝑌‖
2
+ ]‖∇𝑌‖2 + 𝛼‖𝑌‖2 = (𝐾 (𝑡) , 𝑌)

≤

2

𝛼

‖𝐾(𝑡)‖
2
+

𝛼

2

‖𝑌‖
2
,

(50)

1

2

𝑑

𝑑𝑡

‖∇𝑌‖
2
+ ]‖𝐴𝑌‖2 + 𝛼‖∇𝑌‖2 = (𝐾 (𝑡) , 𝐴𝑌)

≤

1

]
‖𝐾 (𝑡)‖

2
+ ]‖𝐴𝑌‖2,

(51)

1

2

𝑑

𝑑𝑡

‖∇𝑌‖
2
+ ]‖𝐴𝑌‖2 + 𝛼‖∇𝑌‖2 = (𝐾 (𝑡) , 𝐴𝑌)

≤

2

]
‖𝐾 (𝑡)‖

2
+

]

2

‖𝐴𝑌‖
2
,

(52)

1

2

𝑑

𝑑𝑡

‖𝐴𝑌‖
2
+ ]
󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
3
𝑌

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝛼‖𝐴𝑌‖
2
= (𝐾 (𝑡) , 𝐴

2
𝑌)

≤

𝐶

]
‖𝐾 (𝑡)‖

2

𝑉
+

]

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴
3
𝑌

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(53)

By the Gronwall inequality to (51), (53), integrating over
(𝑡, 𝑡 + 1) for (50), (52), and (53), we can easily complete the
proof.

Setting 𝐾(𝑡, 𝜏) = ∫

𝑡

𝜏
𝑘(𝑠)𝑑𝑠, 𝑡 ≥ 𝜏, 𝜏 ∈ R, we have the

following lemma.

Lemma 9. Let 𝑘 ∈ 𝐿2
𝑙𝑜𝑐
(R, 𝐻). Assume that

sup
𝑡≥𝜏,𝜏∈R

{‖𝐾 (𝑡, 𝜏)‖
2

𝐻
+ ∫

𝑡+1

𝑡

‖𝐾(𝑠, 𝜏)‖
2

𝑉
𝑑𝑠} ≤ 𝑙

2 (54)

holds for some constant 𝑙 ≥ 0. Then the solution 𝑦(𝑡) to the
following Cauchy problem

𝑦
𝑡
+ ]𝐴𝑦 + 𝛼𝑦 = 𝑘 (

𝑡

𝜀

) , 𝑦|
𝑡=𝜏

= 0 (55)

with 𝜀 ∈ (0, 1) satisfies the inequality

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝐻
+ ∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
𝑦(𝑠)

󵄩
󵄩
󵄩
󵄩

2

𝑉
𝑑𝑠 ≤ 𝐶𝑙

2
𝜀
2
, ∀𝑡 ≥ 𝜏, (56)

where constant 𝐶 > 0 is independent of 𝐾.

Proof. Noting that

𝐾
𝜀
(𝑡) = ∫

𝑡

𝜏

𝑘 (

𝑠

𝜀

) 𝑑𝑠 = 𝜀∫

𝑡/𝜀

𝜏/𝜀

𝑘 (𝑠) 𝑑𝑠 = 𝜀𝐾(

𝑡

𝜀

,

𝜏

𝜀

) (57)

and then using (54) and (57), we can deduce the following
estimates of 𝐾

𝜀
(𝑡) as

sup
𝑡≥𝜏

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑡)
󵄩
󵄩
󵄩
󵄩𝐻

≤ 𝐶𝑙𝜀, (58)

∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑑𝑠 ≤ ∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝑉
𝑑𝑠

= 𝜀
2
∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐾(

𝑠

𝜀

,

𝜏

𝜀

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑉

𝑑𝑠

≤ 𝐶𝜀
2sup
𝑡≥𝜏

{∫

𝑡+1

𝑡

‖𝐾 (𝑠, 𝜏)‖
2

𝑉
𝑑𝑠} ≤ 𝐶𝑙

2
𝜀
2
.

(59)
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From Lemmas 2 and 8, we have

∫

𝑡

𝜏

𝑒
−(𝐶/])(𝑡−𝑠)󵄩

󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑑𝑠

≤ ∫

𝑡

𝑡−1

𝑒
−(𝐶/])(𝑠−𝑡)󵄩

󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑑𝑠

+ ∫

𝑡−1

𝑡−2

𝑒
−(𝐶/])(𝑠−𝑡)󵄩

󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑑𝑠 + ⋅ ⋅ ⋅

≤ ∫

𝑡

𝑡−1

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑑𝑠 + 𝑒

−(𝐶/])
∫

𝑡−1

𝑡−2

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑑𝑠

+ 𝑒
−2(𝐶/])

∫

𝑡−2

𝑡−3

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑑𝑠 + ⋅ ⋅ ⋅

≤ (1 + 𝑒
−(𝐶/])

+ 𝑒
−2(𝐶/])

+ ⋅ ⋅ ⋅ )
󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐿
2

𝑏
(R;𝐻)

≤

1

(1 − 𝑒
−(𝐶/])

)

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐿
2

𝑏
(R;𝐻)

≤

1

(1 − 𝑒
−(𝐶/])

)

sup
𝑡≥𝜏

∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑑𝑠

≤

1

𝜆 (1 − 𝑒
−(𝐶/])

)

sup
𝑡≥𝜏

∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝑉
𝑑𝑠

≤ 𝐶𝑙
2
𝜀
2
.

(60)

Similarly, we derive that

∫

𝑡

𝜏

𝑒
−(𝐶/])(𝑡−𝑠)󵄩

󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝑉
𝑑𝑠 ≤ 𝐶𝑙

2
𝜀
2
. (61)

Hence, using the Poincaré inequality, by (45)–(47) and
(58)–(60), we derive

‖𝑌 (𝑡)‖
2

𝑉
≤ 𝐶𝑙

2
𝜀
2
, (62)

∫

𝑡+1

𝑡

‖𝑌 (𝑠)‖
2

𝐻
𝑑𝑠 ≤ 𝐶(‖𝑌 (𝑡)‖

2

𝐻
+ ∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑑𝑠)

≤ 𝐶𝑙
2
𝜀
2
,

(63)

∫

𝑡+1

𝑡

‖𝑌 (𝑠)‖
2

𝑊
𝑑𝑠 ≤ 𝐶(‖𝑌 (𝑡)‖

2

𝑉
+ ∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑑𝑠)

≤ 𝐶𝑙
2
𝜀
2
.

(64)

Next, we set

𝑌 (𝑡) = ∫

𝑡

𝜏

𝑦 (𝑠) 𝑑𝑠, (65)

which implies that for any 𝑡 ≥ 𝜏,

𝜕
𝑡
𝑌 (𝑡) = 𝑦 (𝑡) = ∫

𝑡

𝜏

𝜕
𝑡
𝑦 (𝑠) 𝑑𝑠, (66)

since 𝑦(𝜏) = 0 in (55).

Integrating (55) with respect to time from 𝜏 to 𝑡, we see
that 𝑌(𝑡) is a solution to the problem

𝜕
𝑡
𝑌 (𝑡) + ]𝐴𝑌 (𝑡) + 𝛼𝑌 (𝑡) = 𝐾

𝜀
(𝑡) , 𝑌 (𝑡) |

𝑡=𝜏
= 0, (67)

such that we can deduce that

‖𝑌 (𝑡)‖
2

𝐻
+ ‖∇𝑌 (𝑡)‖

2

𝐻
+ ∫

𝑡+1

𝑡

‖𝑌 (𝑠)‖
2

𝐻
𝑑𝑠

= ‖𝑌 (𝑡)‖
2

𝑉
+ ∫

𝑡+1

𝑡

‖𝑌 (𝑠)‖
2

𝐻
𝑑𝑠 ≤ 𝐶𝑙

2
𝜀
2

(68)

from (62) to (63).
Using (46) and (61), we conclude

‖𝑌 (𝑠)‖
2

𝑊
≤ 𝐶𝑙

2
𝜀
2
. (69)

Noting that 𝑦(𝑡) = 𝜕
𝑡
𝑌(𝑡), (𝐴𝑌(𝑡), 𝑌(𝑡)) ∼ ‖𝑌(𝑡)‖

2

𝑉
, and

(𝐴𝑌(𝑡), 𝐴𝑌(𝑡)) ∼ ‖𝑌(𝑡)‖
𝑊
, using (58), (68), and (69), we

derive that
󵄩
󵄩
󵄩
󵄩
𝜕
𝑡
𝑌 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝐻
=
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝐻

≤ 𝐶 (]‖𝑌 (𝑡)‖2
𝑊
+ 𝛼‖𝑌 (𝑡)‖

2

𝐻
+
󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐻
) ≤ 𝐶𝑙

2
𝜀
2
.

(70)

Hence, by (51), (58), and (62), we conclude

∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
𝑦 (𝑠)

󵄩
󵄩
󵄩
󵄩

2

𝑉
𝑑𝑠 = ∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑑

𝑑𝑠

𝑌 (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑉

≤ 2𝛼‖𝑌‖
2

𝑉
+ 2𝐶

󵄩
󵄩
󵄩
󵄩
𝐾
𝜀
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝐻
≤ 𝐶𝑙

2
𝜀
2
.

(71)

Combining (70) and (71), the proof for the lemma is
finished.

Now, we will use the auxiliary linear equation and some
estimates to prove the uniform boundedness ofA𝜀 in𝐻. For
convenience, we set

𝐹
1
(𝑡, 𝜏) = ∫

𝑡

𝜏

𝑓
1
(𝑠) 𝑑𝑠, 𝑡 ≥ 𝜏, (72)

and assume

sup
𝑡≥𝜏,𝜏∈R

{
󵄩
󵄩
󵄩
󵄩
𝐹
1
(𝑡, 𝜏)

󵄩
󵄩
󵄩
󵄩

2

+ ∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
𝐹
1
(𝑠, 𝜏)

󵄩
󵄩
󵄩
󵄩

2

𝑉
𝑑𝑠} ≤ 𝑙

2
, (73)

for some constants 𝑙 ≥ 0 since 𝑓
0
(𝑠) and 𝑓

1
(𝑠) are translation

bounded in 𝐿2loc(R; 𝑉) ⊂ 𝐿
2

loc(R; 𝐻).

Theorem 10. The attractors A𝜀 of problem (1)–(4) with 𝜀 ∈
(0, 1) (or (5)–(8) with 𝜀 = 0) are uniformly (with respect to 𝜀)
bounded in𝐻, namely,

sup
𝜀∈[0,1)

󵄩
󵄩
󵄩
󵄩
A
𝜀󵄩
󵄩
󵄩
󵄩𝐻

< +∞. (74)

Proof. Let 𝑢𝜀(𝑡) = 𝑈
𝜀
(𝑡, 𝜏)𝑢

𝜀

𝜏
be the solution to (1)–(4) with

the initial data as 𝑢𝜀
𝜏
∈ 𝐻. For 𝜀 > 0, we consider the auxiliary

linear equation

V
𝑡
+ ]𝐴V + 𝛼V = 𝜀−𝜌𝑓

1
(

𝑡

𝜀

) , V|
𝑡=𝜏

= 0. (75)
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By Lemma 9, we have the estimate

‖V (𝑡)‖2
𝐻
+ ∫

𝑡+1

𝑡

‖V (𝑠)‖2
𝑉
𝑑𝑠 ≤ 𝐶𝑙

2
𝜀
2(1−𝜌)

, ∀𝑡 ≥ 𝜏. (76)

Multiplying (75) with 𝐴V and integrating over Ω, using
the boundary value condition, we derive that

𝑑

𝑑𝑡

‖∇V‖2 + 2𝛼‖∇V‖2 + 2]‖𝐴V‖2

= (𝜀
−𝜌
𝑓
1
(

𝑡

𝜀

) , 𝐴V)

≤

4

]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜀
−𝜌
𝑓
1
(

𝑡

𝜀

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐻

+ 2]‖𝐴V‖2.

(77)

By theGronwall inequality and similar to (60), noting that
when 𝑡 tends to infinite, we can set 𝑒−𝛼(𝑡−𝜏) < 𝜀2 such that

‖V‖2
𝑉

≤ 𝐶‖∇V‖2
𝐻

≤ 𝑒
−2𝛼(𝑡−𝜏)

‖∇V (𝜏)‖2
𝐻
+

4

]
∫

𝑡

𝜏

𝑒
−2𝛼(𝑡−𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜀
−𝜌
𝑓
1
(

𝑠

𝜀

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐻

𝑑𝑠

≤ 𝑒
−2𝛼(𝑡−𝜏)

‖∇V (𝜏)‖2
𝐻
+

4

]
∫

𝑡

𝜏

𝑒
−2𝛼(𝑡−𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜀
−𝜌
𝑓
1
(

𝑠

𝜀

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐻

𝑑𝑠

≤ 𝑒
−2𝛼(𝑡−𝜏)

‖∇V (𝜏)‖2
𝐻
+

4

]
𝑒
−𝛼(𝑡−𝜏)

∫

𝑡

𝜏

𝑒
−𝛼(𝑡−𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜀
−𝜌
𝑓
1
(

𝑠

𝜀

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐻

𝑑𝑠

≤ 𝐶𝜀
4
+ 𝐶𝜀

2(1−𝜌)

≈ 𝐶𝜀
2(1−𝜌)

,

(78)

since 𝜀 ∈ (0, 1).
Setting the function 𝑤(𝑡) as

𝑤 (𝑡) = 𝑢 (𝑡) − V (𝑡) , (79)

which satisfies the problem

𝑤
𝑡
+ ]𝐴𝑤 + 𝛼𝑤 + 𝐵 (𝑤 + V, 𝑤 + V) = 𝑓

0
, 𝑤|

𝑡=𝜏
= 𝑢

𝜏
,

(80)

where 𝑢(𝑡) is a solution for problem (1)–(4), and V(𝑡) is a
solution to (75), 𝐵(𝑢, V) is the bilinear operator which is
defined in Section 2.

Taking the scalar product of (80) with 𝑤 in𝐻, we obtain

1

2

𝑑

𝑑𝑡

‖𝑤‖
2
+ ]‖𝑤‖2

𝑉
+ 𝛼‖𝑤‖

2
+ (𝐵 (𝑤 + V, 𝑤 + V) , 𝑤)

=

1

2

𝑑

𝑑𝑡

‖𝑤‖
2
+ ]‖𝑤‖2

𝑉
+ 𝛼‖𝑤‖

2
+ 𝑏 (𝑤 + V, 𝑤 + V, 𝑤)

=

1

2

𝑑

𝑑𝑡

‖𝑤‖
2
+ ]‖𝑤‖2

𝑉
+ 𝛼‖𝑤‖

2
+ 𝑏 (𝑤 + V, V, 𝑤)

+ 𝑏 (𝑤 + V, 𝑤, 𝑤)

=

1

2

𝑑

𝑑𝑡

‖𝑤‖
2
+ ]‖𝑤‖2

𝑉
+ 𝛼‖𝑤‖

2
+ 𝑏 (𝑤, V, 𝑤) + 𝑏 (V, V, 𝑤)

= (𝑓
0
, 𝑤) .

(81)

Here we use the property of trilinear operator (21)-(22); we
observe that

|𝑏 (𝑤, V, 𝑤)| ≤ 𝐶 ‖𝑤‖ ‖𝑤‖
𝑉
‖V‖

𝑉
≤

]

2

‖𝑤‖
2

𝑉
+ 𝐶‖𝑤‖

2
‖V‖2

𝑉
,

|𝑏 (V, V, 𝑤)| ≤ 𝐶‖V‖1/2‖V‖1/2
𝑊
‖V‖

𝑉
‖𝑤‖

≤ ‖V‖2
𝑉
‖𝑤‖

2
+ 𝐶‖V‖

𝐻
‖V‖

𝑊
,

(82)

so that

|𝑏 (𝑤 + V, V, 𝑤)| ≤ ]‖𝑤‖2
𝑉
+ 𝐶‖𝑤‖

2
‖V‖2

𝑉

+ ‖V‖2
𝑉
‖𝑤‖

2
+ 𝐶‖V‖

𝐻
‖V‖

𝑊
.

(83)

Moreover,

(𝑓
0
, 𝑤) ≤

]

2

‖𝑤‖
2

𝑉
+ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑓
0

󵄩
󵄩
󵄩
󵄩

2

. (84)

Inserting (82)–(84) into (81) and then using the inequality

‖V (𝑡)‖2 = ‖V (𝑡)‖2
𝑉
≤ 𝐶𝑙

2
𝜀
2(1−𝜌)

, ∀𝑡 ≥ 𝜏, (85)

and (78), we have

1

2

𝑑

𝑑𝑡

‖𝑤‖
2
+ ]‖𝑤‖

𝑉
+ 𝛼‖𝑤‖

2

≤ ]‖𝑤‖2
𝑉
+ 𝐶‖𝑤‖

2
‖V‖2

𝑉
+ ‖V‖2

𝑉
‖𝑤‖

2

+ 𝐶‖V‖
𝐻
‖V‖

𝑊
+ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑓
0

󵄩
󵄩
󵄩
󵄩

2

≤ ]‖𝑤‖2
𝑉
+ 2𝐶𝑙

2
𝜀
2(1−𝜌)

‖𝑤‖
2

+ 𝐶‖V‖2‖V‖2
𝑉
+ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑓
0

󵄩
󵄩
󵄩
󵄩

2

(86)

which implies that

𝑑

𝑑𝑡

‖𝑤‖
2

𝐻
+ 𝜙

1
‖𝑤‖

2

𝐻
≤ 𝜙

2
, (87)

where

𝜙
1
(𝑡) ≡ 𝛼 − 2𝐶𝑙𝜀

(1−𝜌)
≥ 𝛼,

𝜙
2
(𝑡) ≡ 𝐶‖V‖2‖V‖2

𝑉
+ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑓
0

󵄩
󵄩
󵄩
󵄩

2

.

(88)
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Therefore, from Theorem 3, we derive from (88) that for
any 𝑡 ≥ 𝜏,

∫

𝑡

𝜏

𝜙
1
(𝑠) 𝑑𝑠 ≥ 𝛼 (𝑡 − 𝜏) ,

∫

𝑡+1

𝑡

𝜙
2
(𝑠) 𝑑𝑠 ≤ 𝐶 (𝑀

2

0
+ 𝑙

4
) .

(89)

Applying Lemma 2 with 𝜁(𝑡) = ‖𝑤‖2, 𝛽 = 𝛼, 𝛾 = 0,𝑀 =

𝐶(𝑀
2

0
+ 𝑙

4
), we get

‖𝑤‖
2

𝐻
≤ 𝐶𝑒

−𝛼(𝑡−𝜏)󵄩
󵄩
󵄩
󵄩
𝑢
𝜏

󵄩
󵄩
󵄩
󵄩

2

+ 𝐶 (𝑀
2

0
+ 𝑙

4
) , ∀𝑡 ≥ 𝜏. (90)

Recalling that 𝑢 = 𝑤 + V and using (85) and (90), we end
up with

‖𝑢 (𝑡)‖
2

𝐻
≤ ‖𝑤‖

2

𝐻
+ ‖V‖2

𝐻
≤ 𝐶𝑒

−𝛼(𝑡−𝜏)󵄩
󵄩
󵄩
󵄩
𝑢
𝜏

󵄩
󵄩
󵄩
󵄩

2

+ 𝐶 (𝑙
4
+𝑀

2

0
)

(91)

for all 𝑡 ≥ 𝜏.
Thus, for every 0 < 𝜀 ≤ 𝜀

0
, the processes {𝑈

𝜀
(𝑡, 𝜏)} have

an absorbing set

𝐵
0
:= {𝑢 ∈ 𝐻 | ‖𝑢‖

2

𝐻
≤ 2𝐶 (𝑙

2
+𝑀

2

0
)} . (92)

On the other hand, if 𝜀
0
< 𝜀 < 1, the processes {𝑈

𝜀
(𝑡, 𝜏)}

also possess an absorbing set

𝐵
𝜀
0
= {𝑢 ∈ 𝐻 | ‖𝑢‖

𝐻
≤ 𝐶𝑄

𝜀
0

} . (93)

In conclusion, for every 𝜀
0
∈ [0, 1), the set

𝐵
∗
:= 𝐵

0
⋃𝐵

𝜀
0 (94)

is an absorbing set for the processes {𝑈
𝜀
(𝑡, 𝜏)} which is

independent of 𝜀. SinceA𝜀
⊂ 𝐵

∗
, (74) follows and hence the

proof is finished.

4. Convergence of A𝜀 to A0

Next, we will study the difference of two solutions for (1) with
𝜀 > 0 and (4) with 𝜀 = 0, which share the same initial data.
Denote

𝑢
𝜀
(𝑡) := 𝑈

𝜀
(𝑡, 𝜏) 𝑢

𝜏
, (95)

with 𝑢
𝜏
belonging to the absorbing set 𝐵

∗
which can be found

in Section 3. In particular, for 𝜀 = 0, since 𝑢
𝜏
∈ 𝐵

∗
, we obtain

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐻
+ ∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑉
𝑑𝑠 ≤ 𝑅

2

0
, (96)

for some 𝑅
0
= 𝑅

0
(𝜌), as the size of 𝐵∗ depends on 𝜌.

Lemma 11. For every 𝜀 ∈ (0, 1), 𝜏 ∈ R, and 𝑢
𝜏
∈ 𝐵

∗
, the

difference

𝑤 (𝑡) = 𝑢
𝜀
(𝑡) − 𝑢

0
(𝑡) , (97)

where 𝑢𝜀(0) = 𝑢0(0) = 𝑢
𝜏
satisfies the estimate

‖𝑤 (𝑡)‖
𝐻
≤ 𝐷𝜀

1−𝜌
𝑒
𝑅(𝑡−𝜏)

, ∀𝑡 ≥ 𝜏, (98)

for some positive constants 𝐷 = 𝐷(𝜌, 𝑙) and 𝑅 = 𝑅(𝜌, 𝑙), both
independent of 𝜀 > 0.

Proof. Since the difference 𝑤(𝑡) solves

𝑤
𝑡
+ 𝛼𝑤 + ]𝐴𝑤 + 𝐵 (𝑢𝜀, 𝑢𝜀) − 𝐵 (𝑢0, 𝑢0) = 𝜀−𝜌𝑓

1
(

𝜀

𝑡

) ,

𝑤|
𝑡=𝜏

= 0,

(99)

the difference

𝑞 (𝑡) = 𝑤 (𝑡) − V (𝑡) (100)

fulfills the Cauchy problem

𝑞
𝑡
+ 𝛼𝑞 + ]𝐴𝑞 + 𝐵 (𝑢𝜀, 𝑢𝜀) − 𝐵 (𝑢0, 𝑢0) = 0, 𝑞|

𝑡=𝜏
= 0,

(101)

where V(𝑡) is the solution to (75).
Taking inner product in𝐻 of (101) with 𝑞, we obtain

1

2

𝑑

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

2

+ ]󵄩󵄩󵄩
󵄩
∇𝑞
󵄩
󵄩
󵄩
󵄩

2

+ (𝐵 (𝑢
𝜀
, 𝑢
𝜀
) − 𝐵 (𝑢

0
, 𝑢
0
) , 𝑞) = 0.

(102)

Noting

𝐵 (𝑢
𝜀
, 𝑢
𝜀
) − 𝐵 (𝑢

0
, 𝑢
0
)

= 𝐵 (𝑢
0
, 𝑞 + V) + 𝐵 (𝑞 + V, 𝑢0) + 𝐵 (𝑞 + V, 𝑞 + V) ,

(103)

we derive

(𝐵 (𝑢
𝜀
, 𝑢
𝜀
) − 𝐵 (𝑢

0
, 𝑢
0
) , 𝑞)

= 𝑏 (𝑢
0
, V, 𝑞) + 𝑏 (𝑞, 𝑢0, 𝑞) + 𝑏 (V, 𝑢0, 𝑞)

+ 𝑏 (𝑞, V, 𝑞) + 𝑏 (V, V, 𝑞) .

(104)

Next, we estimate each term on the right-hand side of
(104).

Applying (22) to (27), we find
󵄨
󵄨
󵄨
󵄨
󵄨
𝑏 (𝑞, 𝑢

0
, 𝑞)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩𝑉

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0󵄩󵄩
󵄩
󵄩
󵄩1

≤

]

4

󵄩
󵄩
󵄩
󵄩
∇𝑞
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶
󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

2󵄩󵄩
󵄩
󵄩
󵄩
𝑢
0󵄩󵄩
󵄩
󵄩
󵄩

2

𝑉
,

(105)

󵄨
󵄨
󵄨
󵄨
𝑏 (𝑞, V, 𝑞)󵄨󵄨󵄨

󵄨
≤ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩𝑉

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩
‖V‖

𝑉

≤

]

4

󵄩
󵄩
󵄩
󵄩
∇𝑞
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶
󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

2

‖V‖2
𝑉
,

(106)

󵄨
󵄨
󵄨
󵄨
𝑏 (V, V, 𝑞)󵄨󵄨󵄨

󵄨
≤ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩𝑉
‖V‖ ‖V‖

𝑉

≤

]

4

󵄩
󵄩
󵄩
󵄩
∇𝑞
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶‖V‖2‖V‖2
𝑉
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏 (𝑢

0
, V, 𝑞)

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏 (V, 𝑢0, 𝑞)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0󵄩󵄩
󵄩
󵄩
󵄩

1/2󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0󵄩󵄩
󵄩
󵄩
󵄩

1/2

0
‖V‖1/2‖V‖1/2

𝑉

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩𝑉

≤

]

4

󵄩
󵄩
󵄩
󵄩
∇𝑞
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0󵄩󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0󵄩󵄩
󵄩
󵄩
󵄩𝑉
‖V‖ ‖V‖

𝑉
.

(107)
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Hence, from (105) to (107), we obtain
󵄨
󵄨
󵄨
󵄨
󵄨
(𝐵 (𝑢

𝜀
, 𝑢
𝜀
) − 𝐵 (𝑢

0
, 𝑢
0
) , 𝑞)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ ]󵄩󵄩󵄩
󵄩
∇𝑞
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶
󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0󵄩󵄩
󵄩
󵄩
󵄩

2

0
+ ‖V‖2

𝑉
)

+ 𝐶‖V‖2‖V‖2
𝑉
+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0󵄩󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0󵄩󵄩
󵄩
󵄩
󵄩𝑉
‖V‖ ‖V‖

𝑉

≡ ]󵄩󵄩󵄩
󵄩
∇𝑞
󵄩
󵄩
󵄩
󵄩

2

+ ℎ (𝑡)
󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

2

+ 𝑓 (𝑡) ,

(108)

where ‖V‖
𝑉
and ‖𝑢0‖

𝑉
satisfy (76) and (96), respectively, and

ℎ (𝑡) = 𝐶 (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0󵄩󵄩
󵄩
󵄩
󵄩

2

𝑉
+ ‖V (𝑡)‖2

𝑉
) ,

𝑓 (𝑡) = 𝐶𝑙
2
𝜀
2(1−𝜌)

‖V‖2
𝑉
+ 𝐶𝑅

0
𝑙𝜀
1−𝜌󵄩󵄩
󵄩
󵄩
󵄩
𝑢
0
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝑉
‖V (𝑡)‖

𝑉
.

(109)

Thus, it follows from (102) and (104) that
1

2

𝑑

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

2

≤ ℎ (𝑡)
󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

2

+ 𝑓 (𝑡) . (110)

Noting that ‖𝑞(𝜏)‖
𝐻
= 0, by the Gronwall inequality, we

get

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

2

≤ 2 exp{2𝐶∫
𝑡

𝜏

ℎ (𝑠) 𝑑𝑠}∫

𝑡

𝜏

𝑓 (𝑠) 𝑑𝑠. (111)

Moreover,

∫

𝑡

𝜏

ℎ (𝑠) 𝑑𝑠 ≤ 𝐶 (𝑙
4
+ 𝑅

2

0
) (𝑡 − 𝜏 + 1) ,

∫

𝑡

𝜏

𝑓 (𝑠) 𝑑𝑠 = ∫

𝑡

𝜏

[𝐶𝑙
2
𝜀
2(1−𝜌)

‖V‖2
𝑉

+ 𝐶𝑅
0
𝑙𝜀
1−𝜌󵄩󵄩
󵄩
󵄩
󵄩
𝑢
0
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝑉
‖V (𝑡)‖

𝑉
] 𝑑𝑠

≤ 𝐶𝑙
4
𝜀
4(1−𝜌)

(𝑡 − 𝜏 + 1)

+ 𝐶𝑅
0
𝑙𝜀
(1−𝜌)

∫

𝑡

𝜏

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩𝑉
‖V (𝑠)‖

𝑉
𝑑𝑠

≤ 𝐶𝑙
4
𝜀
4(1−𝜌)

(𝑡 − 𝜏 + 1)

+ 𝐶𝑅
0
𝑙𝜀
(1−𝜌)

(∫

𝑡

𝜏

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
0
(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑉
𝑑𝑠)

1/2

× (∫

𝑡

𝜏

‖V (𝑠)‖2
𝑉
𝑑𝑠)

1/2

≤ 𝐶𝑙
4
𝜀
4(1−𝜌)

(𝑡 − 𝜏 + 1)

+ 𝐶𝑅
2

0
𝑙
2
𝜀
2(1−𝜌)

(𝑡 − 𝜏 + 1)

≤ 𝐶𝜀
2(1−𝜌)

(𝑙
4
+ 𝐶𝑅

2

0
𝑙
2
) (𝑡 − 𝜏 + 1) .

(112)

Consequently,
󵄩
󵄩
󵄩
󵄩
𝑞 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝐻
≤ 𝐶𝜀

2(1−𝜌)
(𝑙
4
+ 𝐶𝑅

2

0
𝑙
2
) (𝑡 − 𝜏 + 1)

× 𝑒
𝐶(𝑡−𝜏+1)(𝑙

4
+𝑅
2

0
)

≤ 𝐶
󸀠
𝐷
2

1
𝜀
2(1−𝜌)

𝑒
2𝑅
1
(𝑡−𝜏)

(113)

holds for some positive constants 𝐷
1
= 𝐷

1
(𝜌, 𝑙) and 𝑅

1
=

𝑅
1
(𝜌, 1).
Finally, since 𝑤 = 𝑞 + V, using (76) to control ‖V‖

𝐻
, we

may obtain

‖𝑤 (𝑡)‖
2

𝐻
≤ 𝐶 (

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

2

𝐻
+ ‖V‖2

𝐻
)

≤ 𝐶
󸀠
𝐷
2

1
𝜀
2(1−𝜌)

𝑒
2𝑅
1
(𝑡−𝜏)

+ 𝐶𝑙
2
𝜀
2(1−𝜌)

≤ 𝐷
2
𝜀
2(1−𝜌)

𝑒
2𝑅(𝑡−𝜏)

,

(114)

where 𝑅 is a positive constant.

Next, we want to generalize Lemma 11 to derive the con-
vergence of corresponding uniform attractors. Let the exter-
nal force in (38) be ̂𝑓 = ̂

𝑓
𝜀
∈H(𝑓

𝜀
), then ̂

𝑓
1
∈H(𝑓

1
) satisfies

inequality (73).
Define

𝐺
1
(𝑡, 𝜏) = ∫

𝑡

𝜏

̂
𝑓
1
(𝑠) 𝑑𝑠, 𝑡 ≥ 𝜏, (115)

and we have

sup
𝑡≥𝜏,𝜏∈R

{

󵄩
󵄩
󵄩
󵄩
󵄩
𝐺
1
(𝑡, 𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐻
+ ∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
𝐺 (𝑠, 𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑑𝑠} ≤ 𝑙

2
. (116)

For any 𝜀 ∈ [0, 1], we observe that 𝑢̂𝜀(𝑡) = 𝑈
𝑓
𝜀(𝑡, 𝜏)𝑦𝜏

is
a solution to (38) with external force ̂𝑓𝜀 = ̂

𝑓
0
+ 𝜀

−𝜌 ̂
𝑓
1
(⋅/𝜀) ∈

H(𝑓
𝜀
) and𝑦

𝜏
(𝑓
𝜀
) ∈ 𝐵

∗
. For 𝜀 > 0, we investigate the property

of the difference

𝑤 (𝑡) = 𝑢̂
𝜀
(𝑡) − 𝑢̂

0
(𝑡) . (117)

Lemma 12. The inequality

‖𝑤 (𝑡)‖ ≤ 𝐷𝜀
1−𝜌
𝑒
𝑅(𝑡−𝜏)

, ∀𝑡 ≥ 𝜏 (118)

holds; here𝐷 and 𝑅 are defined as in Lemma 11.

Proof. As the similar discussion to the proof of Lemma 11,
replacing 𝑢̂𝜀, ̂𝑓

0
, and ̂

𝑓
1
by 𝑢𝜀, 𝑓

0
, and 𝑓

1
, respectively, noting

that (96) still holds for 𝑢̂0, and the family {𝑈
𝑓
𝜀(𝑡, 𝜏)}, ( ̂𝑓𝜀 ∈

H(𝑓
𝜀
)), is (𝐻 × H𝜀

(𝑓
𝜀
),𝐻)-continuous, and using (116)

in place of (73), we can finally complete the proof of the
lemma.

The main result of this paper reads as follows.

Theorem 13. Let 𝑓
0
, 𝑓
1
∈ 𝐿

2

tc(R; 𝐻) ⊂ 𝐿
2

𝑏
(R; 𝐻), and let

(73) hold. Then the uniform attractor A𝜀 for problem (1)–(4)
converges toA0 of problem (5)–(8) in the limit 𝜀 → 0

+ in the
following sense:

lim
𝜀→0
+

dist
𝐻
(A

𝜀
,A

0
) = 0. (119)

Proof. For 𝜀 > 0, 𝑢𝜀 ∈ A𝜀, from (110)-(111), we obtain that
there exists a complete bounded trajectory 𝑢̂𝜀(𝑡) of (38), with
some external force

̂
𝑓
𝜀
=
̂
𝑓
0
+ 𝜀

−𝜌 ̂
𝑓
1
(

⋅

𝜀

) ∈H (𝑓
𝜀
) , (120)

such that 𝑢̂𝜀(0) = 𝑢𝜀.
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We choose 𝐿 ≥ 0 such that

𝑢̂
𝜀
(−𝐿) ∈ A

𝜀
⊂ 𝐵

∗
. (121)

From the equality

𝑢
𝜀
= 𝑈

𝑓
0 (0, −𝐿) 𝑢̂

𝜀
(−𝐿) (122)

and applying Lemma 12 with 𝑡 = 0, 𝜏 = −𝐿, we obtain

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝜀
− 𝑈

𝑓
0 (0, −𝐿) 𝑢̂

𝜀
(−𝐿)

󵄩
󵄩
󵄩
󵄩
󵄩𝐻

≤ 𝐷𝜀
1−𝜌
𝑒
𝑅𝐿
. (123)

On the other hand, the setA0 attracts all sets𝑈
𝑓
0(𝑡, −𝐿)𝐵∗

uniformly when ̂
𝑓
0
∈ H(𝑓

0
). Then, for all 𝛿 > 0, there exists

some time 𝑇 = 𝑇(𝛿) ≥ 0 which is independent on 𝐿, such
that

dist
𝐻
(𝑈

𝑓
0 (𝑇 − 𝐿, −𝐿) 𝑢̂

𝜀
(−𝐿) ,A

0
) ≤ 𝛿. (124)

Choosing 𝐿 = 𝑇 and using (123)-(124), we readily get

dist
𝐻
(𝑢
𝜀
,A

0
) ≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝜀
− 𝑈

𝑓
0 (0, −𝑇) 𝑢̂

𝜀
(−𝑇)

󵄩
󵄩
󵄩
󵄩
󵄩𝐻

+ dist
𝐻
(𝑈

𝑓
0 (0, −𝑇) 𝑢̂

𝜀
(−𝑇) ,A

0
)

≤ 𝐷𝜀
1−𝜌
𝑒
𝑅𝑇
+ 𝛿.

(125)

Since 𝑢𝜀 ∈ A𝜀 and 𝛿 > 0 is arbitrary, taking the limit
𝜀 → 0

+, we can prove the theorem.
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