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We consider step and soft skew products over the Bernoulli shift which have an 𝑚-dimensional closed manifold as a fiber. It is
assumed that the fiber maps Hölder continuously depend on a point in the base. We prove that, in the space of skew product maps
with this property, there exists an open domain such that maps from this open domain have dense sets of periodic points that are
attracting and repelling along the fiber. Moreover, robust properties of invariant sets of diffeomorphisms, including the coexistence
of dense sets of periodic points with different indices, are obtained.

1. Introduction

In [1], Gorodetski and Ilyashenko studied certain properties
of skew product maps over the Bernoulli shift and the Smale-
Williams solenoid, with a fiber 𝑆1. They provided an open set
in the space of these skew products such that each mapping
from this open set has a dense set of periodic orbits that are
attracting and repelling along the fiber.

In this paper, we improve their results to skew product
maps which have an 𝑚-dimensional closed manifold𝑀 as a
fiber. Moreover, we prove that small perturbations of these
skew products in the space of all diffeomorphisms have
partially hyperbolic invariant sets. Also, they admit dense
subsets of periodic points with different indices.

To be more precise, let us describe skew product maps
which apply here in detail.

From now on, the ambient fiber space 𝑀 will be an
𝑚-dimensional closed manifold and its metric is geodesic
distance and the measure is the Riemannian volume.

Consider diffeomorphisms 𝑓
𝑖
, 𝑖 = 1, . . . , 𝑘, defined

on 𝑀. The iterated function system F(𝑀; 𝑓
1
, . . . , 𝑓

𝑘
) is the

semigroup generated by 𝑓
1
, . . . , 𝑓

𝑘
, that is, the set of all maps

𝑓
𝑡𝑗
∘ ⋅ ⋅ ⋅ ∘ 𝑓

𝑡1
, where 𝑡

𝑗
, . . . , 𝑡

1
∈ {1, . . . , 𝑘}.

TheF-orbit of 𝑥 ∈ 𝑀 is the set of points 𝑓
𝑡𝑖
∘ ⋅ ⋅ ⋅ ∘ 𝑓

𝑡1
(𝑥),

𝑡
𝑗
≥ 0.

An iterated function system 𝐹(𝑀;𝑓
1
, . . . , 𝑓

𝑘
) is called

minimal if each closed subset 𝐴 with 𝑓
𝑖
(𝐴) ⊂ 𝐴, for all 𝑖, is

empty or coincides with𝑀. This means thatF-orbit of each
𝑥 ∈ 𝑀 is dense in𝑀.

Let 𝑓
𝑖
, 𝑖 = 0, 1, be diffeomorphisms of 𝑀. A step skew

product over the Bernoulli shift 𝜎 : Σ2 → Σ
2 is defined by

𝐹 : Σ
2
×𝑀 󳨀→ Σ

2
×𝑀; (𝜔, 𝑥) 󳨀→ (𝜎𝜔, 𝑓

𝑤0
(𝑥)) ,

(1)

where Σ2 is the space of two-sided sequences of 2 symbols
{0, 1}. Consider the following standard metric on Σ2:

𝑑 (𝜔, 𝜔
󸀠
) = 2

−𝑛
, (2)

where 𝑛 = min{|𝑘|; 𝜔
𝑘
̸= 𝜔

󸀠

𝑘
} and 𝜔, 𝜔󸀠

∈ Σ
2.

Let us note that an iterated function system can be
embedded in a single dynamical system, the skew product
𝐹 of the form (1), such that the action orbits of the iterated
function system F with generators 𝑓

𝑖
coincide with the

projections of positive semitrajectories of the skew product
𝐹 onto the fiber along the base.

A soft skew product over the Bernoulli shift is a map

𝐺 : Σ
2
×𝑀 󳨀→ Σ

2
×𝑀; (𝜔, 𝑥) 󳨀→ (𝜎𝜔, 𝑔

𝜔
(𝑥)) ,

(3)
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where the fibermaps 𝑔
𝜔
are diffeomorphisms of the fiber into

itself.
We would like to mention that in contrast to step skew

products, the fiber maps of soft skew products depend on the
whole sequence 𝜔.

Skew products play an important role in the theory
of dynamical systems. Many properties observed for these
products appear to persist as properties of diffeomorphisms
[1, 2].

Let 𝑤 be a finite segment on the alphabets {0, 1}. We
denote by {⋅ ⋅ ⋅ | 𝑤 ⋅ ⋅ ⋅ } an arbitrary infinite sequence 𝜔 in
which𝑤 occurs starting from the zeroth position. In a similar
way, we introduce the notation {⋅ ⋅ ⋅ 𝑤 | ⋅ ⋅ ⋅ } and {⋅ ⋅ ⋅ 𝑤 |

𝑤
󸀠
⋅ ⋅ ⋅ }. We also denote by |𝑤| the length of 𝑤.
We recall that a map 𝐹 is called topologically mixing if for

each nonempty open sets 𝑈,𝑉 ∈ Σ
2
× 𝑀, 𝐹𝑛(𝑈) intersects

with 𝑉 for all large enough 𝑛 ∈ N.
For a diffeomorphism 𝑓 of𝑀, a compact 𝑓-invariant set

Λ has a dominated splitting if

𝑇
Λ
𝑀 = 𝐸

1
⊕ ⋅ ⋅ ⋅ ⊕ 𝐸

𝑘
, (4)

where each 𝐸
𝑖
is nontrivial and 𝐷𝑓-invariant for 1 ≤ 𝑖 ≤ 𝑘

and there exists an𝑚 ∈ N such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝑓

𝑛
|
𝐸𝑖(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐷𝑓
𝑛
|
𝐸𝑗(𝑥)

)

−1󵄩󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

1

2

, (5)

for every 𝑛 ≥ 𝑚, 𝑖 > 𝑗 and 𝑥 ∈ Λ.
The set Λ is partially hyperbolic if it has a dominated

splitting

𝑇
Λ
𝑀 = 𝐸

1
⊕ ⋅ ⋅ ⋅ ⊕ 𝐸

𝑘 (6)

and there exists some 𝑛 ∈ N such that 𝐷𝑓𝑛 either uniformly
contracts 𝐸

1
or uniformly expands 𝐸

𝑘
.

We are now ready to state our main results. The first
result describes the robust density of attracting and repelling
periodic orbits along the fiber.

Theorem 1. There exist 𝐶1 diffeomorphisms 𝑓
𝑖
: 𝑀 → 𝑀,

𝑖 = 0, 1, and 𝐶1-neighborhoods 𝑈
0
(𝑓

0
), 𝑈

1
(𝑓

1
) ⊂ 𝐷𝑖𝑓𝑓

1
(𝑀)

such that for any 𝑔
0
∈ 𝑈

0
and 𝑔

1
∈ 𝑈

1
, the periodic orbits

of the step skew product 𝐹 of the form (1) with the fiber maps
𝑔
𝑖
, 𝑖 = 0, 1, which are attracting (or repelling) along 𝑀, are

dense in Σ2 ×𝑀.

By applying the Hölder property, one can translate the
properties of step skew products to the case of soft skew
products.

Theorem 2. There exist diffeomorphisms 𝑓
0
and 𝑓

1
on any𝑚-

dimensional closedmanifold𝑀, and𝐶2 neighborhoods𝑈
0
(𝑓

0
),

𝑈
1
(𝑓

1
) ⊂ 𝐷𝑖𝑓𝑓

2
(𝑀) such that, for each 𝐶 > 1 and 𝛼 > 0, if a

soft skew product map 𝐺 of the form (3) satisfies the following
conditions:

(1) 𝑔
𝜔
∈ 𝑈

𝜔0
, for any 𝜔 ∈ Σ2,

(2) 𝑑
𝐶
1(𝑔

𝜔
, 𝑔

𝜔
󸀠) ≤ 𝐶(𝑑

Σ
2(𝜔, 𝜔

󸀠
))

𝛼, for 𝜔, 𝜔󸀠
∈ Σ

2,
(3) 𝐿 ⋅ 2−𝛼 < 1,

then the periodic orbits of 𝐺 which are attracting (or repelling)
along the fiber are dense in Σ2 ×𝑀.

Now by using the smooth realizations of step skew
products, we prove that the above properties are preserved
under small perturbations of these products in the space of
𝐶
2 diffeomorphisms.

Theorem 3. Let 𝑛 and 𝑚 be positive integers with 𝑛 ≥ 𝑚 +

3, 𝑛 ≥ 5, and 𝑚 ≥ 1. Suppose that 𝑁 is an 𝑛-dimensional
closed manifold. Then there exists an open set U ⊂ 𝐷𝑖𝑓𝑓

2
(𝑁)

such that, for any 𝑓 ∈ U, there is a partially hyperbolic locally
maximal invariant setΔ ⊂ 𝑁 and two numbers 𝑙

1
and 𝑙

2
= 𝑙

1
+

𝑚, such that the hyperbolic periodic orbits with stablemanifolds
of dimension 𝑙

𝑖
are dense in Δ.

2. Step Skew Products

This section is devoted to proveTheorem 1.We will show that
there exists an open set U in the space of step skew product
maps of the form (1) such that, for any map 𝐹 ∈ U, the
periodic orbits of 𝐹 which are attracting along𝑀 are dense
in Σ2 ×𝑀. The same property holds for periodic orbits which
are repelling along𝑀.

First, let us recall some notations and definitions. We
consider the iterations of step skew product map 𝐹. Clearly,
for 𝑛 > 0

𝐹
𝑛
(𝜔, 𝑥) = (𝜎

𝑛
𝜔, 𝑓

𝑛
[𝑤] (𝑥)) ,

𝐹
−𝑛
(𝜔, 𝑥) = (𝜎

−𝑛
𝜔, 𝑓

−𝑛
[𝑤] (𝑥)) ,

(7)

where 𝑓
𝑛
[𝜔] = 𝑓

𝜔𝑛−1
∘ ⋅ ⋅ ⋅ ∘ 𝑓

𝜔0
, 𝑓

−𝑛
[𝜔] = 𝑓

−1

𝜔−𝑛
∘ ⋅ ⋅ ⋅ ∘ 𝑓

−1

𝜔−1
,

𝑓
0
[𝜔] = id. A periodic orbit of a step skew product map 𝐹

is determined by its initial point (𝜔, 𝑥), where 𝑥 ∈ 𝑀 and
𝜔 ∈ Σ

2 is a periodic sequence

𝜔 = ⋅ ⋅ ⋅ 𝑤𝑤𝑤 ⋅ ⋅ ⋅ = (𝑤) , (8)

with a finite zero-one segment 𝑤 = (𝑤
0
⋅ ⋅ ⋅ 𝑤

𝑛−1
). We say

that a periodic orbit ((𝑤), 𝑥) is attracting along 𝑀 if ‖𝐷𝑓
|𝑤|

[𝑤](𝑥)‖ < 1 and is repelling along 𝑀 if ‖𝐷𝑓
|𝑤|
[𝑤](𝑥)‖ > 1.

From now on, the ambient𝑀 is a compact connected𝑚-
dimensional manifold without boundary. Also, let𝑈,𝑊 ⊂ 𝑀

be twodisjoint openneighborhoodswhich are the domains of
two local charts (𝑊, 𝜑), (𝑈, 𝜓) of𝑀. Take two gradientMorse-
Smale vector fields on𝑀, each of which possesses a unique
hyperbolic repelling equilibrium 𝑞

𝑖
and a unique hyperbolic

attracting equilibrium 𝑝
𝑖
, 𝑖 = 0, 1, and finitely many saddle

points 𝑟𝑖
𝑗
, 𝑖 = 0, 1, 𝑗 = 1, . . . , 𝑙, contained in open domains

𝑉
𝑗
⊂ 𝑀 \ (𝑈 ∪𝑊).
Assume that the fixed points 𝑝

0
and 𝑞

1
are distinct points

contained in 𝑈 and 𝑝
1
and 𝑞

0
are also distinct points that

are contained in 𝑊. Let 𝑓
0
and 𝑓

1
be their time-1 maps.

Suppose that the mappings 𝑓
𝑖
, 𝑖 = 0, 1, have no saddle

connection. Also, we can choose the coordinate functions 𝜑
and 𝜓 satisfying the following conditions.
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(i) If we take ̂𝑓
𝑖
:= 𝜓 ∘ 𝑓

𝑖
∘ 𝜓

−1, then ̂𝑓
𝑖
are affine maps

which are defined by

̂
𝑓
0
(𝑥

1
, . . . , 𝑥

𝑚
) = (±𝑟𝑥

𝑚
+ 𝑠, 𝑟𝑥

1
, . . . , 𝑟𝑥

𝑚−1
) ,

̂
𝑓
1
(𝑥

1
, . . . , 𝑥

𝑚
) = (−𝑎𝑥

1
, 𝑎𝑥

2
, . . . , 𝑎𝑥

𝑚−1
, −𝑎𝑥

𝑚
− 2

𝑠

𝑟

) ,

(9)

for constants 0 < 𝑟 < 1, 0 < 𝑠 < 𝑎 − 1, 𝑎 > 1 and
𝑎𝑟 < 1. We consider a minus sign for even 𝑚 and a
plus sign for odd𝑚. By construction,

̂
𝑓
0
∘
̂
𝑓
1
(𝑥

1
, . . . , 𝑥

𝑚
)

= (±𝑎𝑟𝑥
𝑚
− 𝑠, −𝑎𝑟𝑥

1
, 𝑎𝑟𝑥

2
, . . . , 𝑎𝑟𝑥

𝑚−1
) ,

(10)

is a contracting map.

(ii) If we take ̃𝑓
𝑖
:= 𝜑∘𝑓

𝑖
∘𝜑

−1, 𝑖 = 0, 1, theñ𝑓
0
=
̂
𝑓
0

−1

and
̃
𝑓
1
=
̂
𝑓
0
∘
̂
𝑓
1

−1

∘
̂
𝑓
0

−1

. So ̃𝑓
0

−1

=
̂
𝑓
0
and (̃𝑓

0
∘
̃
𝑓
1
)
−1
=

̂
𝑓
0
∘
̂
𝑓
1
. Moreover, ̃𝑓

1
is an affine contracting map.

Note that there is a compact invariant set Δ = ΔF ⊂ 𝑈

with nonempty interior which contains the fixed points 𝑝
0

and 𝑞
1
, such that the acting of the iterated function system

generated by {𝑓
0
, 𝑓

0
∘ 𝑓

1
} on Δ is minimal. Moreover, the

iterated function systemF(𝑀; 𝑓
0
, 𝑓

1
) is𝐶1-robustlyminimal

(see [3] for more detail).
Put ℎ

0
:= 𝑓

0
and ℎ

1
:= 𝑓

0
∘ 𝑓

1
. Let us define L(Δ) =

ℎ
0
(Δ)∪ℎ

1
(Δ). Suppose that Δ in ⊂ Δ ⊂ Δ out are two open sets

close to Δ on which ℎ
0
and ℎ

1
are contracting. Then

Δ in ⊂L (Δ in) ⊂ Δ ⊂L (Δ out) ⊂ Δ out, (11)

andL𝑖
(Δ in),L

𝑖
(Δ out) converge to Δ in the Hausdorff topol-

ogy, as 𝑖 → ∞, provided that the fibermaps𝑓
𝑖
are sufficiently

close to the identity map. This requires that the constants 𝑎
and 𝑟 are sufficiently close to 1.

Moreover, our construction shows that the iterated func-
tion systemF(𝑀; 𝑓−1

0
, 𝑓

−1

1
) is alsominimal. Also, there exists

a compact invariant set Δ󸀠
= Δ

󸀠

F ⊂ 𝑊 that contains the fixed
points 𝑞

0
and 𝑝

1
in its interior such that the iterated function

systemF(Δ󸀠
; 𝑓

−1

0
, (𝑓

0
∘ 𝑓

1
)
−1
) is minimal. In particular, there

exist open sets Δ󸀠

in ⊂ Δ
󸀠
⊂ Δ

󸀠

out satisfying the inclusion
relations (11).

In the rest of this section, we fix the mappings 𝑓
𝑖
, 𝑖 = 0, 1,

satisfying all the propertiesmentioned above andwe consider
the skew product map

𝐹 : Σ
2
×𝑀 󳨀→ Σ

2
×𝑀, (𝜔, 𝑥) 󳨃󳨀→ (𝜎𝜔, 𝑓

𝜔0
(𝑥)) ,

(12)

with the fiber maps 𝑓
𝑖
, 𝑖 = 0, 1.

In [3], the authors proved that 𝐹 is 𝐶1-robustly topo-
logically mixing on Σ2

11
× Δ, where Σ2

11
⊂ Σ

2 is the set
of all sequences from Σ

2 in which the segment “11” is not
encountered to the right of any element.

Since 𝑓
𝑖
, 𝑖 = 0, 1, are Morse-Smale diffeomorphisms with

a unique attracting fixed point 𝑝
𝑖
and unique repelling fixed

point 𝑞
𝑖
and they have not any saddle connection, so the stable

and unstable sets 𝑊𝑠
(𝑝

0
, 𝑓

0
) and 𝑊𝑢

(𝑞
1
, 𝑓

1
) are open and

dense subsets of𝑀.

Lemma4. Consider the iterated function systemF(𝑀; 𝑓
0
, 𝑓

1
)

as aforementioned. For every nonempty open set𝑈 ⊂ 𝑀, there
exist 𝑘 ≤ 𝑘

0
∈ N and 𝜌 = 𝜌(𝑈) > 0 such that, for every

ball 𝐵 ⊂ 𝑀 of radius less than 𝜌, there exists a finite word
𝑤 = 𝑡

1
⋅ ⋅ ⋅ 𝑡

𝑘
on the alphabets {0, 1} and with the length 𝑘 ≤ 𝑘

0

such that 𝑓
𝑘
[𝑤](𝐵) ⊂ 𝑈.

Proof. Let𝑈 ⊂ 𝑀 be an open subset. Since the acting ofF on
𝑀 is minimal, for each 𝑥 ∈ 𝑀 there exists a word𝑤(𝑥) on the
alphabets {0, 1} such that𝑓

|𝑤(𝑥)|
[𝑤(𝑥)](𝑥) ∈ 𝑈. By continuity,

there is a neighborhood𝑉
𝑥
of 𝑥 such that 𝑓

|𝑤(𝑥)|
[𝑤(𝑥)](𝑉

𝑥
) ⊂

𝑈.
Since 𝑀 is compact, we can cover 𝑀 by finitely many

open sets 𝑉
𝑥𝑖
, 𝑖 = 1, . . . , 𝑛. We take 𝑘

0
as the maximum of

the lengths of the words 𝑤(𝑥
𝑖
), 𝑖 = 1, . . . , 𝑛, and 𝜌 > 0 the

Lebesgue number of this covering. Then every ball 𝐵 ⊂ 𝑀 of
radius less than 𝜌 is contained in some 𝑉

𝑥𝑖
. So there exists a

word 𝑤 = 𝑡
1
⋅ ⋅ ⋅ 𝑡

𝑘
on the alphabets {0, 1} of the length 𝑘 ≤ 𝑘

0

such that 𝑓
𝑘
[𝑤](𝐵) ⊂ 𝑈.

Remark 5. Since the iterated function systemF(𝑀; 𝑓−1

0
, 𝑓

−1

1
)

is minimal, we can apply the argument used in the proof
of Lemma 4 to prove the following statement: for every
nonempty open set 𝑈 ⊂ 𝑀, there exists 𝑙 ≤ 𝑙

0
∈ N and

󰜚 = 󰜚(𝑈) > 0 such that, for every ball 𝐵 ⊂ 𝑀 of radius less
than 󰜚, there exists a finite word𝑤 = 𝑠

1
⋅ ⋅ ⋅ 𝑠

𝑙
on the alphabets

{0, 1} of the length 𝑙 ≤ 𝑙
0
such that 𝑓−1

𝑠𝑙
∘ ⋅ ⋅ ⋅ ∘ 𝑓

−1

𝑠1
(𝐵) ⊂ 𝑈.

In the following, we will use the notation

𝐶
𝛼
= {𝜔 ∈ Σ

2
| 𝜔

𝑗
= 𝛼

𝑗
, −𝑛 ≤ 𝑗 ≤ 𝑛 − 1} , (13)

where 𝛼 = 𝛼
−𝑛
⋅ ⋅ ⋅ 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
is a segment of the symbols

{0, 1}.
The rest of this section is devoted to proveTheorem 1.

Proof. First, we will prove that the statement of Theorem 1
holds for the step skew product map 𝐹 with generators 𝑓

0
, 𝑓

1

which are introduced in the aforementioned. Note that the
open sets 𝐶

𝛼
× 𝑈 ⊂ Σ

2
× 𝑀, form a base of the topology of

the space Σ2 ×𝑀 where 𝛼 = 𝛼
−𝑛
⋅ ⋅ ⋅ 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
is a segment of

{0, 1}, 𝐶
𝛼
is the cylinder set corresponding to the segment 𝛼,

and 𝑈 is an open set of𝑀.
Suppose that the segment 𝛼 = 𝛼

−𝑛
⋅ ⋅ ⋅ 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
and open

subset 𝑈 ⊂ 𝑀 are given. We seek a periodic point ((𝛽), 𝑥) ∈
𝐶
𝛼
× 𝑈 of the skew product map 𝐹 which is attracting along

𝑀. From now on, we fix the open subset 𝐶
𝛼
× 𝑈 ⊂ Σ

2
×𝑀.

Let 𝑈
0
be an open ball which is contained in the basin of

the attracting fixed point 𝑝
0
of 𝑓

0
such that ‖𝐷𝑓

0
|
𝑈0
‖ ≤ 𝜆 < 1,

for some 0 < 𝜆 < 1. By Lemma 4, there exist 𝜌
0
:= 𝜌

0
(𝑈

0
) and

𝑘
0
:= 𝑘

0
(𝑈

0
) ∈ N such that, for every open neighborhood 𝑉

of diameter less than 𝜌
0
, there exists a word 𝑤 = 𝑤(𝑉,𝑈

0
) on

the alphabets {0, 1} and with the length at most 𝑘, such that
𝑓
|𝑤|
[𝑤](𝑉) ⊂ 𝑈

0
.
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Now the following statements hold.
(a) Consider an open ball 𝑊 ⊂ 𝑈 of radius less than

𝜌
0
/𝐿

𝑛 . Take 𝑊
𝛼
+ := 𝑓

𝑛
[𝛼](𝑊); then diam(𝑊

𝛼
+) < 𝜌

0
.

By Lemma 4, there exists a finite word 𝑤 = 𝑡
1
⋅ ⋅ ⋅ 𝑡

𝑙1
on

the alphabets {0, 1} of the length at most 𝑘
0
, such that

𝑓
𝑙1
[𝑤](𝑊

𝛼
+) ⊂ 𝑈

0
.

(b) Take𝑊
𝛼
− := 𝑓

−𝑛
[𝛼](𝑊). So there exist 𝜌

2
:= 𝜌

2
(𝑊

𝛼
−)

and 𝑘
2
:= 𝑘

2
(𝑊

𝛼
−) ∈ N satisfying the statement of Lemma 4.

Since𝑈
0
is contained in the basin of attracting fixed point

𝑝
0
of 𝑓

0
, so there exists a positive integer 𝑙

2
such that

diam (𝑓𝑙2

0
(𝑓

𝑙1
[𝑤] (𝑊𝛼

+))) < 𝜌
2
, 𝐿

𝑘1+𝑘2
𝜆
𝑙2
< 1. (14)

By statement (b), there exists a word 𝑤󸀠
= 𝑠

1
⋅ ⋅ ⋅ 𝑠

𝑙3
on the

alphabets {0, 1} and with the length 𝑙
3
≤ 𝑘

2
such that 𝑓

𝑙3
[𝑤

󸀠
]

(𝑓
𝑙2

0
(𝑓

𝑙1
[𝑤](𝑊

𝛼
+))) ⊂ 𝑊

𝛼
− .

We set 𝛽 = 𝛽
−𝑚
⋅ ⋅ ⋅ 𝛽

−1
𝛽
0
⋅ ⋅ ⋅ 𝛽

𝑚−1
, where

𝛽
−𝑚
⋅ ⋅ ⋅ 𝛽

−1
= 𝛽

0
⋅ ⋅ ⋅ 𝛽

𝑚−1

= 𝛼
0
⋅ ⋅ ⋅ 𝛼

𝑛−1
𝑡
1
. . . 𝑡

𝑙1
0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑙2 times
𝑠
1
⋅ ⋅ ⋅ 𝑠

𝑙3
𝛼
−𝑛
⋅ ⋅ ⋅ 𝛼

−1

(15)

and𝑚 = 𝑙
1
+ 𝑙

2
+ 𝑙

3
+ 2𝑛, which implies that 𝑓

2𝑚
[𝛽](𝑊) ⊂ 𝑊.

Moreover, the choice of 𝑙
2
shows that ‖𝐷𝑓

2𝑚
[𝛽]|

𝑊
‖ < 1.

According to these facts, there exists an attracting fixed
point𝑥 for themapping𝑓

2𝑚
[𝛽]which is contained in𝑊 ⊂ 𝑈.

So the periodic point ((𝛽), 𝑥) which is attracting along the
fiber lies in 𝐶

𝛼
× 𝑈.

Density of periodic orbits which are repelling along 𝑀
can be established similarly.

Indeed, by applying Remark 5 and since the mapping 𝑓−1

1

is contracting on Δ󸀠, there exist an open set 𝑊 ⊂ 𝑈 and a
finite word 𝑤󸀠󸀠

= 𝑟
1
⋅ ⋅ ⋅ 𝑟

𝑘
on the alphabets {0, 1}, such that

𝑓
−1

𝑟𝑘
∘ ⋅ ⋅ ⋅ ∘ 𝑓

−1

𝑟1
∘ 𝑓

−𝑛
[𝛼] (𝑊) ⊂ 𝑓

𝑛
[𝛼] (𝑊) ,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝑓
𝑛
[𝛼])

−1

∘ 𝑓
−1

𝑟𝑘
∘ ⋅ ⋅ ⋅ ∘ 𝑓

−1

𝑟1
∘ 𝑓

−𝑛
[𝛼] |𝑊

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

< 1.

(16)

So there exists an attracting fixed point 𝑦 for the map

(𝑓
𝛼−1
∘ ⋅ ⋅ ⋅ ∘ 𝑓

𝛼−𝑛
∘ 𝑓

𝑘
[𝑤

󸀠󸀠
] ∘ 𝑓

𝑛
[𝛼])

−1

= (𝑓
𝑛
[𝛼])

−1

∘ 𝑓
−1

𝑟𝑘
∘ ⋅ ⋅ ⋅ ∘ 𝑓

−1

𝑟1
∘ 𝑓

−𝑛
[𝛼]

(17)

which is contained in𝑊.
Now, we take 𝛾 = 𝛾

−𝑙
⋅ ⋅ ⋅ 𝛾

−1
𝛾
0
⋅ ⋅ ⋅ 𝛾

𝑙−1
, where

𝛾
−𝑙
⋅ ⋅ ⋅ 𝛾

−1
= 𝛾

0
⋅ ⋅ ⋅ 𝛾

𝑙−1
= 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
𝑟
1
⋅ ⋅ ⋅ 𝑟

𝑘
𝛼
−𝑛
⋅ ⋅ ⋅ 𝛼

−1

(18)

and 𝑙 = 𝑘 + 2𝑛. Then ((𝛾), 𝑦) is a periodic point for the skew
product map 𝐹which is repelling along𝑀 and lies in𝐶

𝛼
×𝑈.

Now, let us prove that the statement holds for small
perturbations of 𝐹, that is, step skew product maps generated
by small perturbations of 𝑓

0
and 𝑓

1
. Choose 𝑔

0
∈ 𝑈

0
and

𝑔
1
∈ 𝑈

1
, sufficiently close to 𝑓

0
and 𝑓

1
and consider the

step skew product map 𝐺 given by (1) and with the fiber
maps 𝑔

𝑖
, 𝑖 = 0, 1. Therefore, 𝑔

𝑖
, 𝑖 = 0, 1, possesses a

unique hyperbolic repelling fixed point close to 𝑞
𝑖
, 𝑖 = 0, 1,

a unique hyperbolic attracting fixed point close to 𝑝
𝑖
, 𝑖 =

0, 1, and finitely many saddle points which are close to 𝑟𝑖
𝑗
,

𝑖 = 0, 1, 𝑗 = 1, . . . , 𝑙. Moreover, the iterated function system
G(𝑀; 𝑔

0
, 𝑔

1
) is minimal and admits an invariant set Δ =

ΔG with nonempty interior which contains the attracting
fixed point of 𝑔

0
and the repelling fixed of 𝑔

1
, such that

G(Δ; 𝑔
0
, 𝑔

0
∘ 𝑔

1
) is minimal. Moreover, the iterated function

system G(𝑀; 𝑔−1
0
, 𝑔

−1

1
) is also minimal. So similar reasoning

implies the existence of an attracting (repelling) periodic
orbit for the map 𝐺 which is contained in 𝐶

𝛼
× 𝑈. This

terminates the proof of Theorem 1.

3. Soft Skew Products

In this section, we prove Theorem 2. In fact, we describe
the properties of soft skew product maps which have an 𝑚-
dimensional closed manifold 𝑀 as a fiber. To translate the
properties of step skew product maps to the case of soft skew
product maps, we need a Hölder property.

In the following, we provide an open set in the space of
soft systems (3) with the Hölder property that has the same
properties of step systems.

To be more precise, let us describe them in details.
First, note that if 𝐺 is a soft skew product of the form (3),

then it is obvious that, for 𝑛 ∈ N,

𝐺
𝑛
(𝜔, 𝑥) = (𝜎

𝑛
𝜔, 𝑔

𝑛
[𝑤] (𝑥)) ,

𝐺
−𝑛
(𝜔, 𝑥) = (𝜎

−𝑛
𝜔, 𝑔

−𝑛
[𝑤] (𝑥)) ,

(19)

where

𝑔
𝑛
[𝜔] = 𝑔𝜎

𝑛−1
𝜔
∘ ⋅ ⋅ ⋅ ∘ 𝑔

𝜎𝜔
∘ 𝑔

𝜔
,

𝑔
−𝑛
[𝜔] = 𝑔

−1

𝜎
−𝑛
𝜔
∘ ⋅ ⋅ ⋅ ∘ 𝑔

−1

𝜎
−1
𝜔
, 𝑔

0
[𝜔] = id.

(20)

Let 𝑓
0
and 𝑓

1
be two diffeomorphisms on 𝑀 generating a

robustly minimal iterated function system as in the previous
section. Write ℎ

0
:= 𝑓

0
, ℎ

1
:= 𝑓

0
∘ 𝑓

1
and let F be the

iterated function system generated by ℎ
0
and ℎ

1
. Recall that

the iterated function systemF acts minimally on a compact
invariant set Δ. Also, there are open sets Δ in ⊂ Δ ⊂ Δ out on
which

Δ in ⊂ F (Δ in) ⊂ Δ ⊂ F (Δ out) ⊂ Δ out, (21)

and ℎ
0
and ℎ

1
are contractions on Δ out.

Moreover, our construction in Section 2 shows that the
iterated function system F(𝑀; 𝑓−1

0
, 𝑓

−1

1
) is also minimal.

Also, there exists a compact invariant set Δ󸀠 which contains
the attracting fixed point of 𝑓

1
and repelling fixed point

of 𝑓
0
in its interior such that the iterated function system

F(Δ󸀠
; 𝑓

−1

0
, (𝑓

0
∘ 𝑓

1
)
−1
) is minimal. In particular, there exist

open sets Δ󸀠

in ⊂ Δ
󸀠
⊂ Δ

󸀠

out satisfying the inclusion relations
(21) corresponding toF(Δ󸀠

; 𝑓
−1

0
, (𝑓

0
∘ 𝑓

1
)
−1
).
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Let 𝐹 on Σ2 ×𝑀 be defined by

𝐹 (𝜔, 𝑥) = (𝜎 (𝜔) , ℎ
𝜔0
(𝑥)) , (22)

where (𝜎(𝜔))
𝑘
= 𝜔

𝑘+1
is the left shift operator. Suppose that

𝐺 is a soft skew product map of the form (3) such that 𝑔
𝜔

depends continuously on 𝜔 and is uniformly close to ℎ
𝜔0
, by

a uniform bound 𝛿 > 0. Then the inclusions (21) get replaced
by

Σ
2
× Δ in ⊂ 𝐺 (Σ

2
× Δ in) , (Σ

2
× Δ out) ⊂ Σ

2
× Δ out,

(23)

for sufficiently small 𝛿. Moreover, the choice of Δ in can be
independent of skew product map 𝐺. This means that if
𝐺 is any soft skew product of the form (3) with the fiber
maps 𝑔

𝜔
, with 𝑑

𝐶
1(𝑔

𝜔
, ℎ

𝜔0
) < 𝛿, for any 𝜔 ∈ Σ

2, then the
inclusions (23) hold for 𝐺. By the argument used in the proof
of [3, Proposition 5.1], the next lemma follows; see also [4,
Proposition 5.1].

Lemma 6. Let 𝐹 be the step skew product map as in the
aforementioned and by fiber maps ℎ

𝑖
, 𝑖 = 0, 1. Then any soft

skew product map𝐺 of the form (3)which is sufficiently close to
𝐹 possesses a maximal invariant set Λ

𝐺
⊂ Σ

2
× Δ

𝑜𝑢𝑡
on which

the acting 𝐺 is topologically mixing. Moreover, there is an open
set Δ

𝑖𝑛
such that for any soft system 𝐺, Δ

𝑖𝑛
⊂ 𝜋(Λ

𝐺
), where

𝜋 : Σ
2
×𝑀 → 𝑀 is the natural projection.

Since the diffeomorphisms 𝑓
𝑖
, 𝑖 = 0, 1, are Morse-Smale

and the set of all Morse-Smale diffeomorphisms is open
subset of Diff2

(𝑀), so we can choose two neighborhoods
𝑈
0
(𝑓

0
), 𝑈

1
(𝑓

1
) ⊂ Diff2

(𝑀) sufficiently small such that the
following statements hold.

If 𝐺 is a soft skew product of the form (3) with fiber maps
𝑔
𝜔
∈ 𝑈

𝜔0
(𝑓

𝜔0
), 𝜔 ∈ Σ2, then

(i) the mapping 𝑔
𝜔
has one hyperbolic attracting fixed

point 𝑝(𝜔), one hyperbolic repelling fixed point 𝑞(𝜔),
and finitely many saddle points 𝑟

𝑖
(𝜔), 𝑖 = 1, . . . , 𝑙;

(ii) all attracting fixed points of the mappings 𝑔
𝜔
, with

𝜔
0
= 0, and all repelling fixed points of the mappings

𝑔
𝜔
, with 𝜔

0
= 1, lie strictly inside Δ in;

(iii) all attracting fixed points of the mappings 𝑔
𝜔
, with

𝜔
0
= 1, and all repelling fixed points of the mappings

𝑔
𝜔
, with 𝜔

0
= 0, lie strictly inside Δ󸀠

in;
(iv) stable sets𝑊𝑠

(𝑝
𝜔
, 𝑔

𝜔
) are open and dense subsets of

𝑀, for any 𝜔 ∈ Σ2 with 𝜔
0
= 0;

(v) unstable sets𝑊𝑢
(𝑞

𝜔
, 𝑔

𝜔
) are open and dense subsets

of𝑀, for any 𝜔 ∈ Σ2 with 𝜔
0
= 1.

We say that the soft skew product map 𝐺 is controllable
if its fiber maps 𝑔

𝜔
, 𝜔 ∈ Σ

2, satisfying the assumptions of
Theorem 2 and all of the properties mentioned above.

In the following, we establish the density of periodic
points of a controllable soft skew product map 𝐺 which are
attracting along the fiber𝑀.

Indeed, we will find a periodic point in any open set of
the form 𝐶

𝛼
× 𝑈 ⊂ Σ

2
× 𝑀, where 𝛼 = 𝛼

−𝑛
⋅ ⋅ ⋅ 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
is

a finite segment of the alphabets {0, 1}, 𝐶
𝛼
is the cylinder set

corresponding to it, and 𝑈 is an open subset of𝑀.
First, we need the following lemma which controls the

error in the coordinate along the fiber. It is obtained by an
argument used in [1, Lemma 3.1].

Lemma 7. Let𝐺 be a controllable soft skew product map.Then
there exists𝐾 > 0, with𝐾 = 𝐾(𝐿, 𝐶, 𝛼) and being independent
of 𝛿 > 0, such that, for any𝑚 ∈ N, the inequality 𝑑

Σ
2(𝜔, 𝜔

󸀠
) ≤

2
−𝑚 implies

𝑑
𝐶
0 (𝑔

±𝑚
[𝜔] , 𝑔

±𝑚
[𝜔

󸀠
]) ≤ 𝛾 := 𝐾𝛿

𝛽
, (24)

where 𝛽 = 1 − ln 𝐿/ ln 2𝛼.

According to Lemma 7, for each controllable soft skew
product 𝐺 with the fiber maps 𝑔

𝜔
,

diam {𝑔
±𝑚
[𝜔] (𝑥) | 𝜔 = {⋅ ⋅ ⋅ 𝑤

⋆
⋅ ⋅ ⋅ }} ≤ 𝛾, (25)

for any 𝑥 ∈ 𝑀, any 𝑚 ∈ N, and any finite word 𝑤⋆
=

𝑤
−𝑚
⋅ ⋅ ⋅ 𝑤

−1
⋅ 𝑤

0
⋅ ⋅ ⋅ 𝑤

𝑚
.

Let us note that if 𝛿 > 0 is sufficiently small, then 𝛾 > 0
is also small enough. By Lemma 6, the controllable soft skew
product𝐺 is topologically mixing on Σ2

11
×Δ, where Σ2

11
⊂ Σ

2

is the set of all sequences from Σ
2 in which the segment “11”

is not encountered to the right of any element.
We now begin the proof of Theorem 2.

Proof. Suppose that the segment 𝛼 = 𝛼
−𝑛
⋅ ⋅ ⋅ 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
and

open neighborhood 𝑈 ⊂ 𝑀 are given. Our aim is to find
a periodic point in 𝐶

𝛼
× 𝑈, where 𝐶

𝛼
is the cylinder set

corresponding to 𝛼.
We recall that the stable sets 𝑊𝑠

(𝑝
𝜔
, 𝑔

𝜔
) are open and

dense subsets of manifold𝑀, for any 𝜔 ∈ Σ2 with 𝜔
0
= 0,

so

𝑔
𝑚
[𝜔] (𝑈) ∩𝑊

𝑠
(𝑝

𝜎
𝑚
𝜔
, 𝑔

𝜎
𝑚
𝜔
) ̸= 0, (26)

for any𝑚 ∈ N. This implies that there exists a neighborhood
𝑈

1

𝜔
⊂ 𝑈, such that 𝑔

𝑛
[𝜔](𝑈

1

𝜔
) ⊂ 𝑊

𝑠
(𝑝

𝜎
𝑛
𝜔
, 𝑔

𝜎
𝑛
𝜔
), for any

sequence 𝜔 = {⋅ ⋅ ⋅ | 𝛼
0
⋅ ⋅ ⋅ 𝛼

𝑛−1
0 ⋅ ⋅ ⋅ }.

Similarly, 𝑔
𝑛+1
[𝜔](𝑈

1

𝜔
) ∩ 𝑊

𝑠
(𝑝

𝜎
𝑛+1

𝜔
, 𝑔

𝜎
𝑛+1

𝜔
) ̸= 0, which

implies that there is a neighborhood 𝑈
2

𝜔
⊂ 𝑈

1

𝜔
, such

that 𝑔
𝑛+1
[𝜔](𝑈

2

𝜔
) is contained in 𝑊𝑠

(𝑝
𝜎
𝑛+1

𝜔
, 𝑔

𝜎
𝑛+1

𝜔
), for any

sequence 𝜔 = {⋅ ⋅ ⋅ | 𝛼
0
⋅ ⋅ ⋅ 𝛼

𝑛−1
00 ⋅ ⋅ ⋅ }.

By continuing the above procedure, we obtain neighbor-
hoods

𝑈
𝑘

𝜔
⊂ 𝑈

𝑘−1

𝜔
⊂ ⋅ ⋅ ⋅ 𝑈

1

𝜔
⊂ 𝑈 (27)

such that

𝑔
𝑛+𝑘−1

[𝜔] (𝑈
𝑘

𝜔
) ⊂ 𝑊

𝑠
(𝑝

𝜎
𝑛+𝑘−1

𝜔
, 𝑔

𝜎
𝑛+𝑘−1

𝜔
) , (28)

for any sequence

𝜔 = {⋅ ⋅ ⋅ | 𝛼
0
⋅ ⋅ ⋅ 𝛼

𝑛−1
0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

⋅ ⋅ ⋅ } . (29)
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Since attracting fixed points of mappings 𝑔
𝜔
, for any 𝜔 ∈

Σ
2, are contained in Δ in, so by increasing 𝑘, the subset
𝑔
𝑛+𝑘
[𝜔](𝑈

𝑘

𝜔
) intersects withΔ in.Therefore, there exists a pos-

itive integer 𝑘
0
such that 𝑔

𝑛+𝑘0
[𝜔](𝑈

𝑘0

𝜔
) ∩ Δ in ̸= 0. Also, there

is an open set 𝑈̃
𝜔
⊂ 𝑈

𝑘0

𝜔
such that 𝑔

𝑛+𝑘0
[𝜔](𝑈̃

𝜔
) ⊂ Δ in, for any

sequence 𝜔 = {⋅ ⋅ ⋅ | 𝛼
0
⋅ ⋅ ⋅ 𝛼

𝑛−1
0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘0

⋅ ⋅ ⋅ }.

By shrinking 𝑔
𝑛+𝑘0

[𝜔](𝑈̃
𝜔
), we can control the error in

the coordinate along the fiber. To do this, we note that the
map 𝑔

𝜔
, with 𝜔

0
= 0, and the map 𝑔

2
[𝜔], with 𝜔

0
=

1, 𝜔
1
= 0, are contracting on Δ in, so there exists a finite

word 𝑇 = 𝑡
1
⋅ ⋅ ⋅ 𝑡

𝑙1
such that 𝑔

𝑛+𝑘0+𝑙1
[𝜔](𝑈̃

𝜔
) is contained in

an open ball 𝑈+

𝜔
of Δ in with diameter 2𝛾, for any 𝜔 = {⋅ ⋅ ⋅ |

𝛼
0
⋅ ⋅ ⋅ 𝛼

𝑛−1
0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘0

𝑇 ⋅ ⋅ ⋅ }.

Analogously, since the unstable subsets 𝑊𝑢
(𝑝

𝜔
, 𝑔

𝜔
) are

open and dense subsets of manifold𝑀, for any 𝜔 ∈ Σ2 with
𝜔
0
= 1, so

𝑔
−𝑚
[𝜔] (𝑈) ∩𝑊

𝑠
(𝑞

𝜎
−𝑚−1

𝜔
, 𝑔

−1

𝜎
−𝑚−1

𝜔
) ̸= 0, (30)

for any 𝑚 ∈ N and 𝜔 ∈ Σ
2 with 𝜔

−𝑚−1
= 1. This

implies that there exists a neighborhood𝑊1

𝜔
⊂ 𝑈̃

𝜔
, such that

𝑔
−𝑛
[𝜔](𝑊

1

𝜔
) ⊂ 𝑊

𝑠
(𝑞

𝜎
−𝑛−1

𝜔
, 𝑔

−1

𝜎
−𝑛−1

𝜔
), for any sequence 𝜔 = {⋅ ⋅ ⋅

1𝛼
−𝑛
⋅ ⋅ ⋅ 𝛼

−1
| 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘0

𝑇 ⋅ ⋅ ⋅ }.

Similarly, 𝑔
−𝑛−1

[𝜔](𝑊
1

𝜔
) ∩ 𝑊

𝑠
(𝑞

𝜎
−𝑛−2

𝜔
, 𝑔

−1

𝜎
−𝑛−2

𝜔
) ̸= 0, so

there exists a neighborhood 𝑊2

𝜔
⊂ 𝑊

1

𝜔
, such that 𝑔

−𝑛−1
[𝜔]

(𝑊
2

𝜔
) ⊂ 𝑊

𝑠
(𝑞

𝜎
−𝑛−2

𝜔
, 𝑔

−1

𝜎
−𝑛−2

𝜔
), for any 𝜔 = {⋅ ⋅ ⋅ 11𝛼

−𝑛
⋅ ⋅ ⋅ 𝛼

−1
|

𝛼
0
⋅ ⋅ ⋅ 𝛼

𝑛−1
0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘0

𝑇 ⋅ ⋅ ⋅ }.

By induction, we obtain neighborhoods

𝑊
𝑚

𝜔
⊂ 𝑊

𝑚−1

𝜔
⊂ ⋅ ⋅ ⋅𝑊

1

𝜔
⊂ 𝑈̃

𝜔
(31)

such that

𝑔
−𝑛−𝑚+1

[𝜔] (𝑊
𝑚

𝜔
) ⊂ 𝑊

𝑠
(𝑞

𝜎
−𝑛−𝑚

𝜔
, 𝑔

−1

𝜎
−𝑛−𝑚

𝜔
) , (32)

for any sequence of the form

𝜔 = {⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

𝛼
−𝑛
⋅ ⋅ ⋅ 𝛼

−1
| 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘0

𝑇 ⋅ ⋅ ⋅ } .

(33)

Since repelling fixed points of mappings 𝑔
𝜔
, for any 𝜔 ∈ Σ2

with 𝜔
0
= 1, are contained in Δ in, so by increasing 𝑚, 𝑔

−𝑛−𝑚

[𝜔](𝑊
𝑚

𝜔
) intersects with Δ in; therefore, there exist a positive

integer 𝑚
0
such that 𝑔

−𝑛−𝑚0
[𝜔](𝑊

𝑚0

𝜔
) ∩ Δ in ̸= 0 and an open

set 𝑊̃
𝜔
⊂ 𝑊

𝑚0

𝜔
such that 𝑔

−𝑛−𝑚0
[𝜔](𝑊̃

𝜔
) ⊂ Δ in, for any

sequence

𝜔 = {⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚0

𝛼
−𝑛
⋅ ⋅ ⋅ 𝛼

−1
| 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘0

𝑇 ⋅ ⋅ ⋅ } .

(34)

The construction shows that the mapping 𝑔
−1
[𝜔], with

𝜔
−1
= 0, and the mapping 𝑔

−2
[𝜔], with 𝜔

−1
= 0 and 𝜔

−2
= 1,

are expanding on Δ in ⊂ Δ, so there exists a finite word
𝑆 = 𝑠

𝑙0
⋅ ⋅ ⋅ 𝑠

1
such that, for any sequence 𝜔 of the form

𝜔 = {⋅ ⋅ ⋅ 𝑆 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚0

𝛼
−𝑛
⋅ ⋅ ⋅ 𝛼

−1
| 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘0

𝑇 ⋅ ⋅ ⋅ } ,

(35)

𝑔
−(𝑛+𝑚0+𝑙0)

[𝜔](𝑊̃
𝜔
) contains an open ball𝑊−

𝜔
of diameter 6𝛾.

Note that by shrinking the 𝐶
2-neighborhoods

𝑈
0
(𝑔

0
), 𝑈

1
(𝑔

1
) ⊂ Diff2

(𝑀), if it is necessary, we may
assume that 6𝛾 < diam(Δ in).

Since 𝑊̃
𝜔
⊂ 𝑈̃

𝜔
, the subset 𝑔

𝑛+𝑘0+𝑙1
[𝜔](𝑊̃

𝜔
) is contained

in an open ball 𝑈+

𝜔
of Δ in with diameter 2𝛾, for any sequence

of the form

𝜔 = {⋅ ⋅ ⋅ 𝑆 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚0

𝛼
−𝑛
⋅ ⋅ ⋅ 𝛼

−1
| 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘0

𝑇 ⋅ ⋅ ⋅ } .

(36)

We recall that the acting of 𝐺 is topologically mixing on
Σ
2

11
× Δ, so there exists a finite word 𝑅

𝜔
= 𝑟

1
⋅ ⋅ ⋅ 𝑟

𝑘𝜔
∈ Σ

2

11
,

𝑘
𝜔
> 𝑘

0
, such that, for any sequence 𝜔 = {⋅ ⋅ ⋅ | 𝑅

𝜔
⋅ ⋅ ⋅ },

𝐵
𝛾
(𝑔

𝑘𝜔
[𝜔](𝑈

+

𝜔
)) ⊂ 𝑊

−

𝜔
.

Take the segment

𝑤 := 𝑆 1 ⋅ ⋅ ⋅ 1⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚0

𝛼
−𝑛
⋅ ⋅ ⋅ 𝛼

−1
| 𝛼

0
⋅ ⋅ ⋅ 𝛼

𝑛−1
0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘0

𝑇𝑅 (37)

and the periodic sequence ̃𝛽 := (𝑤).
Now the constructions show that 𝑔

𝑛+𝑘0+𝑙1
[
̃
𝛽](𝑊̃

𝛽
) is

contained in an open ball 𝑈+

𝛽
in Δ in of diam 2𝛾, and

𝑔
−(𝑛+𝑚0+𝑙0)

[
̃
𝛽](𝑊̃

𝛽
) contains an open ball𝑊−

𝛽
of diam 6𝛾. So

(𝑔
−(𝑛+𝑚0+𝑙0)

[
̃
𝛽])

−1

(𝑊
−

𝛽
)

= 𝑔
𝑛+𝑚0+𝑙0

[𝜎
−(𝑛+𝑚0+𝑙0) ̃

𝛽] (𝑊
−

𝛽
) ⊂ 𝑊̃

𝛽
.

(38)

Let𝑚 = 2𝑛+ 𝑙
0
+ 𝑙

1
+𝑚

0
+𝐾

0
+ 𝑘. According to Lemma 7

and the fact 𝑔
𝑘
𝛽
[𝜎

𝑛+𝑘+𝑙1 ̃
𝛽](𝑈

+

𝛽
) ⊂ 𝑊

−

𝛽
, we conclude that

𝑔
𝑚
[
̃
𝛽] (𝑊̃

𝛽
) ⊂ 𝑊̃

𝛽
. (39)

Note that the acting of 𝑔
𝜔
, with 𝜔

0
= 0, and 𝑔

𝜔
󸀠 , with

𝜔
󸀠

0
= 1 and 𝜔󸀠

1
= 0, are contracting on Δ in, so we can choose

𝑘
𝛽
sufficiently large such that ‖𝐷𝑔

𝑚
[
̃
𝛽]‖ < 1 on 𝑊̃

𝛽
.

Hence,𝑔
𝑚
[
̃
𝛽]has an attracting fixed point𝑦 ∈ 𝑊̃

𝛽
. So 𝑌̃ =

((
̃
𝛽), 𝑦) is a periodic point in𝐶

𝛼
×𝑈which is attracting along

the fiber. By a similar argument, we conclude the existence of
a periodic point in 𝐶

𝛼
× 𝑈 which is repelling along the fiber.

This completes the proof of Theorem 2.

4. Perturbations

Let 𝑛 and 𝑚 be positive integers with 𝑛 ≥ 𝑚 + 3, 𝑛 ≥ 5, and
𝑚 ≥ 1. Suppose that𝑁 is an 𝑛-dimensional closed manifold.
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In this section, we will construct an open set U of Diff2
(𝑁)

that satisfies the following property: each diffeomorphism of
U possesses a partially hyperbolic locally maximal invariant
set with a dense subset of periodic points with different
indices.

In fact, we will find diffeomorphisms such that the
restriction of them to their locally maximal invariant sets is
conjugated to step randomdynamical systems of the form (1).

As we have mentioned before, many properties observed
for these products appear to persist as properties of diffeo-
morphisms [1, 2].

In the following, first we need to introduce skew products
over the horseshoe which can be considered as smooth
realizations of skew products over the Bernoulli shift of the
forms (1) and (3).

Indeed, suppose that ℎ : 𝑆2 → 𝑆
2 is a diffeomorphism

with a horseshoe type hyperbolic set Λ, which has a Markov
partition with two rectangles 𝐷

0
, 𝐷

1
such that 𝐷

0
∩ 𝐷

1
=

0, with the rate of contraction 𝑘 ∈ (0, 1) which is small
enough (see [1, Theorem 2]). Put 𝐷 := 𝐷

0
∪ 𝐷

1
and ℎ(𝐷) :=

𝐷
󸀠. It is well known that the hyperbolic invariant set Λ

is homeomorphic to Σ2 with restriction of ℎ to Λ being
conjugate to the Bernoulli shift 𝜎 on Σ2.

Now we define a skew product over the horseshoe map
ℎ : Λ → Λ with the fiber map𝑀 as follows:

F : 𝐷 ×𝑀 󳨀→ 𝐷
󸀠
×𝑀,

F|
𝐷𝑖×𝑀

= ℎ × 𝑓
𝑖
, 𝑖 = 0, 1,

(40)

where the diffeomorphism 𝑓
𝑖
: 𝑀 → 𝑀, 𝑖 = 0, 1, are the

generators of a skew products 𝐹 of the form (1). The skew
productF is called a smooth realization of the skew product
𝐹. It is easy to see that Λ × 𝑀 is partially hyperbolic for F
and F|

Λ×𝑀
is conjugate to step skew product 𝐹. This fact

implies that the properties found during the investigation of
a semigroup generated by the diffeomorphisms𝑓

𝑖
: 𝑀 → 𝑀

are realized by smooth mappingF.
Suppose that G is a 𝐶2 skew product which is 𝐶1-close

to F. Then G has an invariant set YG homeomorphic to
Σ
2
× 𝑀 by a homeomorphism 𝐾 (see [2]). Let 𝜋 : Σ

2
×

𝑀 → 𝑀 be the projection to the fiber along the base. The
homeomorphism 𝐾 : Σ

2
× 𝑀 → YG, YG ⊂ 𝐷 × 𝑀, can

be taken so that the coordinate 𝑥 is preserved, and hence the
restriction of𝐾 to a single fiber is a 𝐶2-diffeomorphism. One
can consider the induced mapping

𝐺 = 𝐾
−1
∘G ∘ 𝐾 : Σ

2
×𝑀 󳨀→ Σ

2
×𝑀. (41)

Let us denote the mapping 𝜋 ∘ 𝐾−1
∘ G ∘ 𝐾(𝜔, ⋅) : 𝑀 → 𝑀

by 𝑔
𝜔
which depends on 𝜔. Then 𝑔

𝜔
is 𝐶2 and the mapping𝐺

has the following form:

𝐺 : Σ
2
×𝑀 󳨀→ Σ

2
×𝑀, (𝜔, 𝑥) 󳨀→ (𝜎𝜔, 𝑔

𝜔
(𝑥)) ,

(42)

which is a soft skew product (see [2] for more detail). We say
that 𝐺 is a soft skew product corresponding toG orG is a 𝑘-
realization of 𝐺. Moreover, the bundle map 𝑔

𝜔
is 𝐶1-close to

𝑓
𝜔0

for each 𝜔 ∈ Σ2.

Here, we take𝑀 = 𝑆
𝑚, the𝑚-dimensional sphere. Let 𝑓

0

and 𝑓
1
be two diffeomorphisms on 𝑆𝑚 generating a robustly

minimal iterated function system as in Sections 2 and 3. Also,
let 𝐹 be the step skew product map of the form (1) with the
fiber maps 𝑓

0
and 𝑓

1
, and letF be its smooth realization. Let

us take neighborhoods 𝑈
0
, 𝑈

1
as inTheorem 1.

Now, let G be 𝐶1-close to F. Then G is conjugate to a
controllable soft skew product map 𝐺, with fiber maps 𝑔

𝜔

which is 𝐶1-close to 𝑓
𝜔0
; see Section 3 for more detail.

Let H be a 𝐶2 diffeomorphism which is 𝐶1-close to
G. Then, H has an invariant set YH homeomorphic to
Σ
2
× 𝑆

𝑚 such that the projection (YH,H) 󳨃→ (Σ
2
, 𝜎) is

semiconjugacy and so the dynamics of H restricted to YG

resembles the dynamics ofF|
Λ×𝑆
𝑚 . Also,H restricted toYH

is conjugate to skew product 𝐻 on Σ2 × 𝑆𝑚 (see [2]). In
particular, the fiber maps ℎ

𝜔
are 𝐶1-close to 𝑔

𝜔
and therefore

it is 𝐶1-close to 𝑓
𝜔0
, for each 𝜔 ∈ Σ2.

Now, we can apply Theorem 2 to conclude that the
periodic orbits of the skew product 𝐻 which are attracting
(repelling) along 𝑆𝑚 are dense in Σ2 × 𝑆𝑚. Therefore, H
restricted to YH has a dense subset of periodic orbits of
indices (dimension of their stable manifolds) 𝑙

1
= 1 and

𝑙
2
= 𝑚 + 1.
Finally, one can see that H restricted to YH can be

extended to a diffeomorphism on the closed manifold𝑁.
Indeed, one can embed the 𝑚-sphere 𝑆𝑚 in R𝑚+1 and a

two-dimensional rectangle 𝐵 in R𝑛−𝑚−1, where 𝐷 ⊂ 𝐵, 𝐷 =

𝐷
0
∪𝐷

1
. So𝐵× 𝑆𝑚 can be embedded in the closedmanifold𝑁,

by a local chart of𝑁 (see [2] for more detail). This completes
the proof of Theorem 3.
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