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A novel reduced-order adaptive sliding mode controller is developed and experimented in this paper to antisynchronize two
different chaotic systems with different order. Based upon the parameters modulation and the adaptive sliding mode control
techniques, we show that dynamical evolution of third-order chaotic system can be antisynchronized with the projection of a
fourth-order chaotic system even though their parameters are unknown. The techniques are successfully applied to two examples:
firstly Lorenz (4th-order) and Lorenz (3rd-order) and secondly the hyperchaotic Lü (4th-order) and Chen (3rd-order).Theoretical
analysis and numerical simulations are shown to verify the results.

1. Introduction

Nonlinearity is ubiquitous in the natural world around us
such as in chemical reactions, cardiac arrhythmias, brain
neural waves, relativity, population growth rates, and atmo-
spheric changes. The study of the chaotic nature of the
nonlinear dynamical systems, although complex and chal-
lenging, paves a way to understand the laws of nature.
An understanding of the disorder and oscillating nature
of these systems and their instability leads to many useful
real-world science and engineering applications. Until some
decades, the only systems that could be understood were
those that were believed to be linear or systems that follow
predictable patterns and arrangements. However, the advent
of high-speed computers has provided mathematicians some
considerable accessibility in the analysis of nonlinear systems
and the chaos theory is one of the many milestones. Lately,
the theory of chaos has become one of the most noteworthy
and undoubtedly valuable subjects of research due to its wide
and numerous applications. There is a need to understand
and to have a reasonable control over the unforeseen natural
events and phenomena. “A very small cause which escapes
our notice determines a considerable effect that we cannot
fail to see. . .even if the case that the natural laws had no

longer secret for us. . .we could only know the initial situ-
ation approximately. . .It may happen that small differences
in initial conditions produce very great ones in the final
phenomena.” [1–4].

The work of Pecora and Carroll [5] on synchronization
of chaotic systems has immensely influenced the modern
research. This research has led to the development of a wide
range of approaches in the understanding of not only the
synchronization but also the antisynchronization of chaotic
dynamical systems [6–14].

Antisynchronization (AS) or antiphase synchronization
(APS), an extended scope of synchronization, is a phe-
nomenon that the state vectors of the synchronized systems
have the same amplitude but opposite signs as those of the
driving system. There are many methods discussed in the
literature on the synchronization and antisynchronization of
dynamical systems of equal andunequal orders. Synchroniza-
tion of a slave system with projections of a master system is
dealt with in the reduced-order synchronization. However,
it is important to make a distinction here that the problem
of the reduced-order synchronization differs from the partial
synchronization where the latter is mainly for coupling of
two chaotic systems which have an equal order. The main
characteristic feature of the reduced-order synchronization
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is that the order of the slave system is less than the master
system.

In this paper, we address the reduced-order antisynchro-
nization of chaotic systems via adaptive sliding mode con-
troller. A great deal of research has already been undertaken
mainly on the synchronization and the antisynchronization
between two chaotic systems with the same order. However,
due to the complex nature of the chaotic dynamical systems, a
thorough understanding of the antisynchronization between
two chaotic systems of unequal order is vital as they have
much wider applications. This gave us the motivation to
introduce this work.

2. Problem Formulation

Consider a chaotic system described by the following nonlin-
ear differential equation:

𝑥̇ = 𝑓 (𝑥) + 𝐹 (𝑥) 𝛼, (1)

where 𝑥 ∈ 𝑅𝑛 is the state vector, 𝛼 ∈ 𝑅𝑝 is the unknown
parameter vector of the system, 𝑓(𝑥) is an 𝑛 × 1matrix, 𝐹(𝑥)
is an 𝑛 × 𝑝 matrix, and the elements 𝐹

𝑖𝑗
(𝑥) in matrix 𝐹(𝑥)

satisfy 𝐹
𝑖𝑗
(𝑥) ∈ 𝐿

∞
. Equation (1) is assumed to be the master

(drive) system, and nowwe define the slave (response) system
as follows:

̇𝑦 = 𝑔 (𝑦) + 𝐺 (𝑦) 𝛽 + 𝑢 (𝑡) , (2)

where 𝑦 ∈ 𝑅𝑚 is the state vector, 𝛽 ∈ 𝑅𝑞 is the unknown
parameter vector of the system, 𝑔(𝑦) is an𝑚 × 1matrix,𝐺(𝑦)
is an 𝑚 × 𝑞 matrix and the elements 𝐺

𝑖𝑗
(𝑦) in matrix 𝐺(𝑦)

satisfy 𝐺
𝑖𝑗
(𝑦) ∈ 𝐿

∞
, and 𝑢(𝑡) ∈ 𝑅𝑚 is the controller to be

designed such that it antisynchronizes the states of themaster
and slave systems.

We assume that systems (1) and (2) satisfy the condition
𝑚 < 𝑛; that is, the order of the slave system is lower than that
of the master system. With this condition, we can only attain
the antisynchronization in reduced-order that is controlling a
slave system to be the projection of the master system. To this
end, we break the master system into two parts as follows:

𝑥̇

1
= 𝑓

1
(𝑥) + 𝐹

1
(𝑥) 𝛼, (3)

where 𝑥
1
∈ 𝑅

𝑚

, 𝑓

1
: 𝑅

𝑛

→ 𝑅

𝑚, and 𝐹
1
: 𝑅

𝑛

→ 𝑅

𝑚×𝑝, the
rest of the projections, can be denoted as

̇

𝑥

1
= 𝑓

1
(𝑥) + 𝐹

1
(𝑥) 𝛼,

(4)

where 𝑥
1
∈ 𝑅

𝑙

, 𝑓

1
: 𝑅

𝑛

→ 𝑅

𝑙, and 𝐹
1
: 𝑅

𝑛

→ 𝑅

𝑙×𝑝 where
𝑚 + 𝑙 = 𝑛; errors can be expressed as

̇𝑒 = 𝑓

1
(𝑥) + 𝐹

1
(𝑥) 𝛼 + 𝑔 (𝑦) + 𝐺 (𝑦) 𝛽 + 𝑢 (𝑡) , (5)

where 𝑒 = 𝑦 + 𝑥
1
.

To gain reduced order antisynchronization between the
master and slave system is to basically design the controller
𝑢(𝑡) ∈ 𝑅

𝑚 such that

lim
𝑡→∞

‖𝑒‖ = lim
𝑡→∞

󵄩

󵄩

󵄩

󵄩

𝑦 (𝑡, 𝑦

0
) + 𝑥 (𝑡, (𝑥

1
)

0
)

󵄩

󵄩

󵄩

󵄩

= 0, (6)

where ‖ ⋅ ‖ is the Euclidean norm.

The sliding mode control method of antisynchronization
involves two major stages: (1) choosing a suitable switching
surface for the desired sliding motion and (2) designing
the sliding mode controller that brings any orbit in phase
space to the switching surface and then achieves the anti-
synchronization of the chaotic systems even in the presence
of parameter and disturbance uncertainties. This is precisely
why this method of antisynchronization is considered to be
robust under uncertainties and external disturbances.

2.1. Sliding Surface Design. The sliding surface can be defined
as follows:

𝑠 (𝑒) = 𝐶𝑒, (7)

where 𝐶 = [𝑐

1
, 𝑐

2
, 𝑐

3
] is a constant vector. The equivalent

control approach is found by the fact that ̇𝑠(𝑒) = 0 is a
necessary condition for the state trajectory to stay on the
switching surface 𝑠(𝑒) = 0. Hence, when in sliding mode, the
controlled system satisfies the following conditions:

𝑠 (𝑒) = 0,

̇𝑠 (𝑒) = 0.

(8)

2.2. Design of the Sliding Mode Controller. In what follows,
the appropriate sliding mode controller will be designed
according to the sliding mode control theory. Choosing the
controller 𝑢(𝑡)

𝑢 (𝑡) = −𝑓

1
(𝑥) − 𝑔 (𝑦) − 𝐹

1
(𝑥) 𝛼̂ − 𝐺 (𝑦)

̂

𝛽 − 𝐾𝑤 (𝑡) ,
(9)

where 𝐾 = [𝑘
1
, 𝑘

2
, 𝑘

3
]

𝑇 is a constant positive gain vector and
𝑤(𝑡) ∈ 𝑅 is the control input that satisfies:

𝑤 (𝑡) = {

𝑤

+

(𝑡) 𝑠 (𝑒) ≥ 0,

𝑤

−

(𝑡) 𝑠 (𝑒) < 0

(10)

and 𝑠 = 𝑠(𝑒) is a switching surface which prescribes the
desired dynamics. And 𝛼̂ and ̂𝛽 are the parameter estimates
of 𝛼 and 𝛽, respectively. The control input can be determined
as:

𝑤 (𝑡) = [

𝑠

|𝑠| + 𝛾

] , (11)

where 𝛾 is a positive real number. The resultant error
dynamics is then

̇𝑒 = 𝐹

1
(𝑥) (𝛼 − 𝛼̂) + 𝐺 (𝑦) (𝛽 −

̂

𝛽) − 𝐾[

𝑠

|𝑠| + 𝛾

] . (12)

The parameters update laws can be chosen as

̇

𝛼̂ = 𝐹

1
(𝑥)

𝑇

𝜆, 𝛼̂ (0) = 𝛼̂

0
,

̇

̂

𝛽 = 𝐺(𝑦)

𝑇

𝜆,

̂

𝛽 (0) =

̂

𝛽

0
,

(13)

where 𝜆 = 𝑠[𝑐
1
, 𝑐

2
, 𝑐

3
]

𝑇

= 𝑠𝐶

𝑇 and 𝛼̂
0
and ̂𝛽

0
are the initial

values of the update parameters 𝛼̂ and ̂𝛽, respectively.
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2.3. Stability Analysis. The following theorem contains the
necessary conditions for the stability of error system in (12).

Theorem 1. Considering that adaptive sliding mode control
input law in (9) is used to control error system in (5) with
update laws of parameters in (13), then error system in (12) is
asymptotically stable.

Proof. To check the stability of the controlled system, one can
consider the following Lyapunov candidate function:

𝑉 =

1

2

𝑠

2

+

1

2

‖𝛼 − 𝛼̂‖

2

+

1

2

󵄩

󵄩

󵄩

󵄩

󵄩

𝛽 −

̂

𝛽

󵄩

󵄩

󵄩

󵄩

󵄩

2

. (14)

The time derivative of (14) is

̇

𝑉 = ̇𝑠𝑠 − (𝛼 − 𝛼̂)

𝑇
̇

𝛼̂ − (𝛽 −

̂

𝛽)

𝑇
̇

̂

𝛽

= 𝑠𝐶 ̇𝑒 − (𝛼 − 𝛼̂)

𝑇
̇

𝛼̂ − (𝛽 −

̂

𝛽)

𝑇
̇

̂

𝛽

= 𝑠 ̇𝑒

𝑇

𝐶

𝑇

− (𝛼 − 𝛼̂)

𝑇
̇

𝛼̂ − (𝛽 −

̂

𝛽)

𝑇
̇

̂

𝛽.

(15)

Introducing update laws in (13) into the right side of (15), one
obtains

̇

𝑉 = [(𝛼 − 𝛼̂)

𝑇

𝐹(𝑥)

𝑇

+ (𝛽 −

̂

𝛽)

𝑇

𝐺(𝑦)

𝑇

− 𝐾

𝑇

[

𝑠

|𝑠| + 𝛾

]] 𝑠𝐶

𝑇

− (𝛼 − 𝛼̂)

𝑇

𝐹(𝑥)

𝑇

𝜆 − (𝛽 −

̂

𝛽)

𝑇

𝐺(𝑦)

𝑇

𝜆

= (𝛼 − 𝛼̂)

𝑇

𝐹(𝑥)

𝑇

𝜆 + (𝛽 −

̂

𝛽)

𝑇

𝐺(𝑦)

𝑇

𝜆 − 𝐾

𝑇

𝐶

𝑇

[

𝑠

2

|𝑠| + 𝛾

]

− (𝛼 − 𝛼̂)

𝑇

𝐹(𝑥)

𝑇

𝜆 − (𝛽 −

̂

𝛽)

𝑇

𝐺(𝑦)

𝑇

𝜆.

(16)

Then (16) reduces to

̇

𝑉 = −𝐶𝐾[

𝑠

2

|𝑠| + 𝛾

] . (17)

Since both 𝑠2 > 0 and |𝑠| > 0 when 𝑒 ̸= 0 and 𝐶𝐾 > 0, the
inequality ̇

𝑉 < 0 holds.
Since𝑉 is positive definite and ̇

𝑉 is negative semidefinite,
then the error system is stable in the sense of Lyapunov and
the slave system (1) antisynchronizes the master system (2)
asymptotically and globally. This completes the proof.

3. Systems Description

The hyperchaotic Lorenz system [15] is written as

𝑥̇ = 𝑎 (𝑦 − 𝑥) + 𝑤,

̇𝑦 = 𝑏𝑥 − 𝑥𝑧 − 𝑦,

𝑧̇ = 𝑥𝑦 − 𝑐𝑧,

𝑤̇ = 𝑥𝑧 + 𝑟𝑤,

(18)

where 𝑥, 𝑦, 𝑧, and 𝑤 are state variables and 𝑎, 𝑏, 𝑐, and 𝑟 are
the system unknown parameters. When 𝑎 = 36, 𝑏 = 20, 𝑐 =
8/3, and 𝑟 = 1.3, system (18) has hyperchaotic attractor. The
projections of the hyperchaotic Lorenz system attractor are
shown in Figure 1.The three-dimensional Lorenz system [16]
is given by

𝑥̇ = 𝑎 (𝑦 − 𝑥) ,

̇𝑦 = 𝑏𝑥 − 𝑥𝑧 − 𝑦,

𝑧̇ = 𝑥𝑦 − 𝑐𝑧,

(19)

where𝑥,𝑦, and 𝑧 are, respectively, proportional to the convec-
tive velocity, the temperature difference between descending
and ascending flows, and the mean convective heat flows.
Also, 𝑎, 𝑏, and the so-called bifurcation parameter 𝑐 are real
constants. Throughout this paper, we set 𝑎 = 10, 𝑏 = 28, and
𝑐 = 8/3 such that the system exhibits chaotic behavior. The
chaotic attractor is shown in Figure 2. The hyperchaotic Lü
system [17] is described by

𝑥̇ = 𝑎 (𝑦 − 𝑥) + 𝑤,

̇𝑦 = − 𝑥𝑧 + 𝑏𝑦,

𝑧̇ = 𝑥𝑦 − 𝑐𝑧,

𝑤̇ = 𝑥𝑧 + 𝑟𝑤,

(20)

where 𝑥, 𝑦, 𝑧, and 𝑤 are state variables and 𝑎, 𝑏, 𝑐, and 𝑟 are
real constants. When 𝑎 = 36, 𝑏 = 20, and 𝑐 = 3, −1.03 ≤
𝑟 ≤ −0.46, system (20) has periodic orbit; when 𝑎 = 36, 𝑏 =
3, 𝑐 = 20, and −0.46 < 𝑟 ≤ −0.35, system (20) has chaotic
attractor, when 𝑎 = 36, 𝑏 = 3, 𝑐 = 20, and −0.35 < 𝑟 ≤
1.3, system (20) has hyperchaotic attractor. The projections
of the hyperchaotic Lü system system attractor are shown in
Figure 3.The three-dimensional Chen system [18] is given by

𝑥̇ = 𝑎 (𝑦 − 𝑥) ,

̇𝑦 = (𝑏 − 𝑎) 𝑥 − 𝑥𝑧 + 𝑏𝑦,

𝑧̇ = 𝑥𝑦 − 𝑐𝑧,

(21)

where 𝑥, 𝑦, and 𝑧 are state variables and 𝑎, 𝑏, and 𝑐 are
positive parameters. Bifurcation studies show that, with the
parameters 𝑎 = 35 and 𝑏 = 28, system (21) exhibits chaotic
behavior when 𝑐 = 3. The chaotic attractor is shown in
Figure 4.

In order to observe reduced order antisynchronization
behavior between chaotic systems via adaptive sliding mode
control, we consider two examples. The first one is hyper-
chaotic Lorenz system in (18) as a master system with
three-dimensional Lorenz system in (19) as the slave system.
The second example is hyperchaotic Lü system (20) as a
master system with three-dimensional Chen system which is
described in (21) as the slave system.
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Figure 1: Typical dynamical behavior of hyperchaotic Lorenz system. (a) Projection in (𝑥, 𝑦, 𝑧) space; (b) projection in (𝑤, 𝑥, 𝑦) space; (c)
projection in (𝑥, 𝑤, 𝑧) space; (d) projection in (𝑤, 𝑦, 𝑧) space.

4. Adaptive Reduced-Order Sliding Mode
Antisynchronization between Hyperchaotic
Lorenz System and the Three-Dimensional
Lorenz System

For the hyperchaotic Lorenz system, the master system is
considered to be the projections in the direction of 𝑥, 𝑦, and
𝑧 only. So it can be written as follows:

𝑥̇

1
= 𝑎

1
(𝑦

1
− 𝑥

1
) + 𝑤

1
,

̇𝑦

1
= 𝑏

1
𝑥

1
− 𝑥

1
𝑧

1
− 𝑦

1
,

𝑧̇

1
= 𝑥

1
𝑦

1
− 𝑐

1
𝑧

1

(22)

and the slave system can be written as

𝑥̇

2
= 𝑎

2
(𝑦

2
− 𝑥

2
) + 𝑢

1
,

̇𝑦

2
= 𝑏

2
𝑥

2
− 𝑥

2
𝑧

2
− 𝑦

2
+ 𝑢

2
,

𝑧̇

2
= 𝑥

2
𝑦

2
− 𝑐

2
𝑧

2
+ 𝑢

3
,

(23)

where 𝑢
1
, 𝑢
2
, and 𝑢

3
are three control functions to be

designed.
The error dynamics is represented by

̇𝑒

1
= 𝑎

1
(𝑦

1
− 𝑥

1
) + 𝑎

2
(𝑦

2
− 𝑥

2
) + 𝑤

1
+ 𝑢

1
,

̇𝑒

2
= 𝑏

1
𝑥

1
− 𝑥

1
𝑧

1
− 𝑦

1
+ 𝑏

2
𝑥

2
− 𝑥

2
𝑧

2
− 𝑦

2
+ 𝑢

2
,

̇𝑒

3
= 𝑥

1
𝑦

1
− 𝑐

1
𝑧

1
+ 𝑥

2
𝑦

2
− 𝑐

2
𝑧

2
+ 𝑢

3
,

(24)
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Figure 2: Typical dynamical behavior of three-dimentsional Lorenz system. (a) Projection in (𝑥, 𝑦, 𝑧) space; (b) projection in (𝑥, 𝑦) space;
(c) projection in (𝑥, 𝑧) space; (d) projection in (𝑦, 𝑧) space.

where 𝑒
1
= 𝑥

1
+𝑥

2
, 𝑒
2
= 𝑦

1
+𝑦

2
, and 𝑒

3
= 𝑧

1
+𝑧

2
. The control

parameters are chosen as 𝐶 = (−1, 1, 1), 𝐾 = (0, 6, 0)

𝑇 and
𝛾 = 0.01. Then the switching surface is equal to

𝑠 (𝑒) = − 𝑒

1
+ 𝑒

2
+ 𝑒

3
,

𝑤 (𝑡) =

𝑠

|𝑠| + 0.01

,

(25)

and then the adaptive slidingmode control law for the system
in (24) is

𝑢

1
= − 𝑎

1
(𝑦

1
− 𝑥

1
) − 𝑎

2
(𝑦

2
− 𝑥

2
) − 𝑤

1
,

𝑢

2
= −

̂

𝑏

1
𝑥

1
+ 𝑥

1
𝑧

1
+ 𝑥

2
𝑧

2
−

̂

𝑏

2
𝑥

2
+ 𝑒

2
−

6𝑠

|𝑠| + 0.01

,

𝑢

3
= − 𝑥

1
𝑦

1
+ 𝑐

1
𝑧

1
− 𝑥

2
𝑦

2
+ 𝑐

2
𝑧

2
,

(26)
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Figure 3: Typical dynamical behavior of hyperchaotic Lü system. (a) Projection in (𝑥, 𝑦, 𝑧) space; (b) projection in (𝑥, 𝑦, 𝑤) space; (c)
projection in (𝑤, 𝑥, 𝑧) space; (d) projection in (𝑦, 𝑧, 𝑤) space.

where 𝑎
𝑗
, ̂𝑏
𝑗
, and 𝑐

𝑗
are the estimates of 𝑎

𝑗
, 𝑏
𝑗
, and 𝑐

𝑗
,

respectively, 𝑗 = 1, 2. Choosing the update parameters law
as

̇

𝑎̂

1
= − 𝑠 (𝑦

1
− 𝑥

1
) ,

̇

̂

𝑏

1
= 𝑠𝑥

1
,

̇

𝑐̂

1
= − 𝑠𝑧

1
,

̇

𝑎̂

2
= − 𝑠 (𝑦

2
− 𝑥

2
) ,

̇

̂

𝑏

2
= 𝑠𝑥

2
,

̇

𝑐̂

2
= − 𝑠𝑧

2
,

(27)

and applying the control law in (26) to (24) yield the resulting
error dynamics as follows:

̇𝑒

1
= (𝑎

1
− 𝑎

1
) (𝑦

1
− 𝑥

1
) − (𝑎

2
− 𝑎

2
) (𝑦

2
− 𝑥

2
) ,

̇𝑒

2
= (𝑏

1
−

̂

𝑏

1
) 𝑥

1
+ (𝑏

2
−

̂

𝑏

2
) 𝑥

2
−

6𝑠

|𝑠| + 0.01

,

̇𝑒

3
= − (𝑐

1
− 𝑐

1
) 𝑧

1
− (𝑐

2
− 𝑐

2
) 𝑧

2

(28)

which is stable by Theorem 1. To show that, we consider the
following Lyapunov candidate function:

𝑉 =

1

2

𝑠

2

+

1

2

‖𝛼 − 𝛼̂‖

2

. (29)
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Figure 4: Typical dynamical behavior of three-dimensional Chen system. (a) Projection in (𝑥, 𝑦, 𝑧) space; (b) projection in (𝑥, 𝑦) space; (c)
projection in (𝑥, 𝑧) space; (d) projection in (𝑦, 𝑧) space.

The time derivative of (29) is
̇

𝑉 = ̇𝑠𝑠 − (𝛼 − 𝛼̂)

𝑇
̇

𝛼̂

= 𝑠 [ ̇𝑒

1
+ ̇𝑒

2
+ ̇𝑒

3
] − [(𝑎 − 𝑎)

̇

𝑎̂ + (𝑏 −

̂

𝑏)

̇

̂

𝑏 + (𝑐 − 𝑐)

̇

𝑐̂]

= 𝑠 [𝑎

1
(𝑦

1
− 𝑥

1
) + 𝑎

2
(𝑦

2
− 𝑥

2
)

−𝑎

1
(𝑦

1
− 𝑥

1
) − 𝑎

2
(𝑦

2
− 𝑥

2
)]

+ 𝑠 [(𝑏

1
−

̂

𝑏

1
) 𝑥

1
+ (𝑏

2
−

̂

𝑏

2
) 𝑥

2
−

6𝑠

|𝑠| + 0.01

]

− 𝑠 [(𝑐

1
− 𝑐

1
) 𝑧

1
− (𝑐

2
− 𝑐

2
) 𝑧

2
]

= − 𝑠 (𝑎

1
− 𝑎

1
) (𝑦

1
− 𝑥

1
) + 𝑠 (𝑏

1
−

̂

𝑏

1
) 𝑥

1

−

6𝑠

2

|𝑠| + 0.01

− 𝑠 (𝑐

1
− 𝑐

1
) 𝑧

1

− 𝑠 (𝑎

2
− 𝑎

2
) (𝑦

2
− 𝑥

2
) − 𝑠 (𝑏

2
−

̂

𝑏

2
) 𝑥

2
+ 𝑠 (𝑐

2
− 𝑐

2
) 𝑧

2
.

(30)

Then (30) reduces to

̇

𝑉 = −

6𝑠

2

|𝑠| + 0.01

.
(31)
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Figure 5: State trajectories of drive system (22) and response system (23): (a) signals 𝑥
1
and 𝑥

2
; (b) signals 𝑦

1
and 𝑦

2
; (c) signals 𝑧

1
and 𝑧

2
;

(d) the error signals 𝑒
1
, 𝑒
2
, and 𝑒

3
of the hyperchaotic Lorenz and Lorenz systems under the controller (26) and the parameters update law

(27); (e)-(f) changing parameters 𝑎
1
, 𝑏
1
, 𝑟
1
and 𝑎

2
, 𝑏
2
, 𝑐
2
of the hyperchaotic Lorenz and Lorenz systems with time 𝑡.
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Since both 𝑠2 > 0 and |𝑠| > 0, then we get

̇

𝑉 < 0. (32)

Since𝑉 is positive definite and ̇

𝑉 is negative definite, then
according to Lyapunov Stability Theorem response system
(23) can antisynchronize drive system (22) asymptotically. In
what follows, we discuss the simulation result for the adaptive
slidingmode reduced-order antisynchronization between the
hyperchaotic Lorenz system and three-dimensional Lorenz
system. In the numerical simulations, the fourth-order
Runge-Kutta method is used to solve the systems with time
step size 0.0001. For this numerical simulation, we assumed
that the initial conditions (𝑥

1
(0), 𝑦

1
(0), 𝑧

1
(0), 𝑤

1
(0)) =

(6, −3, 2, 2) and (𝑥
2
(0), 𝑦

2
(0), 𝑧

2
(0)) = (2, 7, 4). Hence the

error system has the initial values 𝑒
1
(0) = 8, 𝑒

2
(0) = 4, and

𝑒

3
(0) = 6. The systems parameters are chosen as 𝑎

1
= 10, 𝑏

1
=

28, 𝑐
1
= 8/3, 𝑟

1
= 1.3, 𝑎

2
= 10, 𝑏

2
= 28, and 𝑐

2
= 8/3 in the

simulations such that the first system exhibits hyperchaotic
behavior whereas the second one exhibits chaotic behavior.
The initial values for the estimated parameters are chosen as
𝑎

1
(0) = 1, ̂𝑏

1
(0) = 1, 𝑐

1
(0) = 1, 𝑟

1
(0) = 1, 𝑎

2
(0) = 1, ̂𝑏

2
(0) = 1,

𝑐

2
(0) = 1, and 𝑟

2
(0) = 1. Reduced-order antisynchronization

of the systems (22) and (23) via adaptive slidingmode control
law in (26) is shown in Figure 5. Figures 5(a)–5(c) display the
state trajectories of drive system (22) and response system
(23). Figure 5(d) displays the error signals 𝑒

1
, 𝑒

2
, and 𝑒

3
of

the systems (22) and (23) under the controller (26). And, the
Figures 5(e) and 5(f) show the parameter estimates of the
systems (22) and (23), respectively.

5. Adaptive Reduced-Order Sliding Mode
Antisynchronization between Hyperchaotic
Lü System and Three-Dimensional Chen
System

In the manner, similar to the previous example, for the
hyperchaotic Lü system, the master system is considered to
be the projections in the direction of 𝑥, 𝑦, and 𝑧 only. So it
can be written as follows:

𝑥̇

1
= 𝑎

1
(𝑦

1
− 𝑥

1
) + 𝑤

1
,

̇𝑦

1
= − 𝑥

1
𝑧

1
+ 𝑏

1
𝑦

1
,

𝑧̇

1
= 𝑥

1
𝑦

1
− 𝑐

1
𝑧

1

(33)

and the slave system is considered as the three-dimensional
Chen system and can be written as

𝑥̇

2
= 𝑎

2
(𝑦

2
− 𝑥

2
) + 𝑢

1
,

̇𝑦

2
= (𝑏

2
− 𝑎

2
) 𝑥

2
− 𝑥

2
𝑧

2
+ 𝑏

2
𝑦

2
+ 𝑢

2
,

𝑧̇

2
= 𝑥

2
𝑦

2
− 𝑐

2
𝑧

2
+ 𝑢

3
,

(34)

where 𝑢
1
, 𝑢
2
, and 𝑢

3
are three control functions to be

designed. The error dynamics is represented by

̇𝑒

1
= 𝑎

1
(𝑦

1
− 𝑥

1
) + 𝑎

2
(𝑦

2
− 𝑥

2
) + 𝑤

1
+ 𝑢

1
,

̇𝑒

2
= − 𝑥

1
𝑧

1
+ 𝑏

1
𝑦

1
+ (𝑏

2
− 𝑎

2
) 𝑥

2
− 𝑥

2
𝑧

2
+ 𝑏

2
𝑦

2
+ 𝑢

2
,

̇𝑒

3
= 𝑥

1
𝑦

1
− 𝑐

1
𝑧

1
+ 𝑥

2
𝑦

2
− 𝑐

2
𝑧

2
+ 𝑢

3
,

(35)

where 𝑒
1
= 𝑥

1
+ 𝑥

2
, 𝑒
2
= 𝑦

1
+ 𝑦

2
, 𝑒
3
= 𝑧

1
+ 𝑧

2
. The control

parameters are chosen as 𝐶 = (1, 1, 1), 𝐾 = (1, 1, 0)

𝑇 and
𝛾 = 0.01. Then the switching surface is equal to

𝑠 (𝑒) = 𝑒

1
+ 𝑒

2
+ 𝑒

3
,

𝑤 (𝑡) =

𝑠

|𝑠| + 0.01

(36)

and then the adaptive slidingmode control law for the system
in (35) is

𝑢

1
= −𝑎

1
(𝑦

1
− 𝑥

1
) − 𝑎

2
(𝑦

2
− 𝑥

2
) − 𝑤

1
−

𝑠

|𝑠| + 0.01

,

𝑢

2
= −

̂

𝑏

1
𝑦

1
− (

̂

𝑏

2
− 𝑎

2
) 𝑥

2
−

̂

𝑏

2
𝑦

2
+ 𝑥

1
𝑧

1

+ 𝑥

2
𝑧

2
−

𝑠

|𝑠| + 0.01

,

𝑢

3
= −𝑥

1
𝑦

1
+ 𝑐

1
𝑧

1
− 𝑥

2
𝑦

2
+ 𝑐

2
𝑧

2
,

(37)

where 𝑎
𝑗
, ̂𝑏
𝑗
, and 𝑐

𝑗
are the estimates of 𝑎

𝑗
, 𝑏
𝑗
, and 𝑐

𝑗
,

respectively, 𝑗 = 1, 2. Choosing the update parameters law
as

̇

𝑎̂

1
= 𝑠 (𝑦

1
− 𝑥

1
) ,

̇

̂

𝑏

1
= 𝑠𝑦

1
,

̇

𝑐̂

1
= − 𝑠𝑧

1
,

̇

𝑎̂

2
= 𝑠 (𝑦

2
− 𝑥

2
) ,

̇

̂

𝑏

2
= 𝑠 (𝑥

2
+ 𝑦

2
) ,

̇

𝑐̂

2
= − 𝑠𝑧

2

(38)

and applying the control law in (37) to (35) yield the resulting
error dynamics as follows:

̇𝑒

1
= (𝑎

1
− 𝑎

1
) (𝑦

1
− 𝑥

1
) + (𝑎

2
− 𝑎

2
) (𝑦

2
− 𝑥

2
)

−

𝑠

|𝑠| + 0.01

,

̇𝑒

2
= (𝑏

1
−

̂

𝑏

1
) 𝑦

1
+ [(𝑏

2
− 𝑎

2
) − (

̂

𝑏

2
− 𝑎

2
)] 𝑥

2

+ (𝑏

2
−

̂

𝑏

2
) 𝑦

2
−

𝑠

|𝑠| + 0.01

,

̇𝑒

3
= − (𝑐

1
− 𝑐

1
) 𝑧

1
− (𝑐

2
− 𝑐

2
) 𝑧

2

(39)

which is stable by Theorem 1. To show that, we consider the
following Lyapunov candidate function:

𝑉 =

1

2

𝑠

2

+

1

2

‖𝛼 − 𝛼̂‖

2

. (40)
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Figure 6: State trajectories of drive system (33) and response system (34): (a) signals 𝑥
1
and 𝑥

2
; (b) signals 𝑦

1
and 𝑦

2
; (c) signals 𝑧

1
and 𝑧

2
;

(d) the error signals 𝑒
1
, 𝑒
2
, 𝑒
3
of the hyperchaotic Lü and Chen systems under the controller (37) and the parameters update law (38); (e)-(f)

changing parameters 𝑎
1
, 𝑏
1
, 𝑟
1
and 𝑎

2
, 𝑏
2
, 𝑐
2
of the hyperchaotic Lü and Chen systems with time 𝑡.
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The time derivative of (40) is

̇

𝑉 = ̇𝑠𝑠 − (𝛼 − 𝛼̂)

𝑇
̇

𝛼̂

= 𝑠 [ ̇𝑒

1
+ ̇𝑒

2
+ ̇𝑒

3
]

− [(𝑎 − 𝑎)

̇

𝑎̂ + (𝑏 −

̂

𝑏)

̇

̂

𝑏 + (𝑐 − 𝑐)

̇

𝑐̂]

= 𝑠 [ (𝑎

1
− 𝑎

1
) (𝑦

1
− 𝑥

1
) + (𝑎

2
− 𝑎

2
) (𝑦

2
− 𝑥

2
)

−

𝑠

|𝑠| + 0.01

]

+ 𝑠 [ (𝑏

1
−

̂

𝑏

1
) 𝑦

1
+ [(𝑏

2
− 𝑎

2
) − (

̂

𝑏

2
− 𝑎

2
)] 𝑥

2

+ (𝑏

2
−

̂

𝑏

2
) 𝑦

2
−

𝑠

|𝑠| + 0.01

]

− 𝑠 [(𝑐

1
− 𝑐

1
) 𝑧

1
− (𝑐

2
− 𝑐

2
) 𝑧

2
]

− 𝑠 (𝑎

1
− 𝑎

1
) (𝑦

1
− 𝑥

1
) − 𝑠 (𝑏

1
−

̂

𝑏

1
) 𝑦

1
+ 𝑠 (𝑐

1
− 𝑐

1
) 𝑧

1

− 𝑠 (𝑎

2
− 𝑎

2
) (𝑦

2
− 𝑥

2
)

− 𝑠 (𝑏

2
−

̂

𝑏

2
) (𝑥

2
+ 𝑦

2
) + 𝑠 (𝑐

2
− 𝑐

2
) 𝑧

2
.

(41)

Then (41) reduces to

̇

𝑉 = −

2𝑠

2

|𝑠| + 0.01

.
(42)

Since both 𝑠2 > 0 and |𝑠| > 0, then we get

̇

𝑉 < 0. (43)

Since𝑉 is positive definite and ̇

𝑉 is negative definite, then
according to Lyapunov Stability Theorem response system
(34) can antisynchronize drive system (33) asymptotically. In
what follows, we discuss the simulation result for the adaptive
slidingmode reduced-order antisynchronization between the
hyperchaotic Lorenz system and three-dimensional Lorenz
system. In the numerical simulations, the fourth-order
Runge-Kutta method is used to solve the systems with time
step size 0.0001. For this numerical simulation, we assumed
that the initial conditions (𝑥

1
(0), 𝑦

1
(0), 𝑧

1
(0), 𝑤

1
(0)) =

(−6, −3, 7, 2) and (𝑥
2
(0), 𝑦

2
(0), 𝑧

2
(0)) = (2, 7, 4). Hence the

error system has the initial values 𝑒
1
(0) = −4, 𝑒

2
(0) = 4,

and 𝑒
3
(0) = 6. The system parameters are chosen as 𝑎

1
= 35,

𝑏

1
= 20, 𝑐

1
= 3, 𝑟
1
= −0.4, 𝑎

2
= 35, 𝑏

2
= 28, and 𝑐

2
= 3 in the

simulations such that the first system exhibit’s hyperchaotic
behavior and the second one exhibits chaotic behavior. The
initial values for the estimated parameters are chosen as
𝑎

1
(0) = 1, ̂𝑏

1
(0) = 1, 𝑐

1
(0) = 1, 𝑟

1
(0) = 1, 𝑎

2
(0) = 1, ̂𝑏

2
(0) = 1,

𝑐

2
(0) = 1, and 𝑟

2
(0) = 1. Reduced-order antisynchronization

of the systems (33) and (34) via adaptive slidingmode control
law in (37) is shown in Figure 6. Figures 6(a)–6(c) display
the state trajectories of drive system (33) and response system

(34). Figure 6(d) displays the error signals 𝑒
1
, 𝑒
2
, and 𝑒

3
of the

systems (33) and (34) under the controller (37). And, Figures
6(e) and 6(f) show the parameter estimates of the systems (33)
and (34), respectively.

6. Concluding Remark

The novelty of our technique in solving reduced-order anti-
synchronization problem is demonstrated and proved using
rigorous analytical and numerical procedures to antisynchro-
nize two uncertain chaotic systems. The antisynchronization
of the dynamical evolution of a 3rd-order chaotic system was
realized with the canonical projection of a 4th-order chaotic
system even though their parameters were unknown. This
was based upon the parameters modulation and the adaptive
slidingmode control techniques.The proven techniques were
applied to the two examples: Lorenz (4th-order) with Lorenz
(3rd-order) and hyperchaotic Lü (4th-order) with Chen (3rd-
order). The theoretical analyses and numerical simulations
have verified and supported our assumptions. The scope
for the applications of antisynchronization of two chaotic
systems with different orders is much wide ranging.
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