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Application of Optimal Homotopy Asymptotic Method (OHAM), a new analytic approximate technique for treatment of Falkner-
Skan equations with heat transfer, has been applied in this work. To see the efficiency of the method, we consider Falkner-Skan
equations with heat transfer. It provides us with a convenient way to control the convergence of approximate solutions when it is
compared with other methods of solution found in the literature as finite difference (N. S. Asaithambi, 1997) and shooting method
(Cebeci and Keller, 1971). The obtained solutions show that OHAM is effective, simpler, easier, and explicit.

1. Introduction

Most of the problems in engineering sciences are nonlinear,
particularly some of heat transfer problems. Limited analytic
methods are presented for the solution of such problems in
the literature. Therefore, the researcher’s profound attention
is to hunt some new analytic methods for the solution of the
problems.Most of themethods like AdomianDecomposition
Method (ADM) [1], Variational Iteration Method (VIM)
[2], Differential Transform Method (DTM) [3], Radial basis
function [4] andHomotopy PerturbationMethod (HPM) [5],
are used for the solution of weakly nonlinear problems, and
limited for strongly nonlinear problems. For the solution of
the strongly nonlinear problems the perturbation methods
were studied [6–8]. These methods comprise a small param-
eter which cannot be found easily. To overcome this issue,
some new analytic methods such as Artificial Parameters
Method [9], Homotopy Analysis Method (HAM) [10], and
HomotopyPerturbationMethod (HPM) [5]were introduced.
These methods pooled the homotopy with the perturbation
techniques. Recently, Marinca et al. introduced Optimal
Homotopy Asymptotic Method (OHAM) [11–15] for the
solution of nonlinear problems which made the perturbation
methods independent of the assumption of small parameters.

TheFalkner-Skan equation has been considered in the last
forty years due to its importance in the boundary layer theory.

The boundary layer theory plays a vital role in the diverse
area of engineering and scientific applications. The solution
of the Falkner-Skan equation has been studied numerically
first by Hartree [16]. Smith and Cebeci [17, 18] solved
this equation by shooting method. Maksyn [19] solved the
Falkner-Skan equation by analytic approximation. Asithambi
[20–22] found its solution by finite differences, Liao [23]
applied homotopy analysis to solve Falkner-Skan equation,
and recently Vera [24] found its solution by Fourier series.
An important case is the Blasius equation. This problem was
solved by Rosales and Valencia [25] using Fourier series.
Boyd [26] found the solution of Falkner-Skan equation by
numerical method. An enormous amount of research work
has been invested in the study of nonlinear boundary value
problems [27–38]. In this paper, wewill deal with the Falkner-
Skan equations with heat transfer, a nonlinear boundary
value problem [24] in different forms.

The motivation of this paper is to enhance OHAM for
the solution of Falkner-Skan equation with heat transfer. In
[11–15], OHAM has been proved to be useful for obtaining an
approximate solution of nonlinear boundary value problems.
In this work, we have proved that OHAM is also useful and
reliable for the solution of the Falkner-Skan equation with
heat transfer, hence showing its validity and great potential
for the solution of transient physical phenomenon in science
and engineering.
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In the succeeding section, the basic idea of OHAM [11–
15] is formulated for the solution of boundary value problems
arising in heat transfer. In Section 3, the effectiveness of the
enhanced formulation of OHAM for Falkner-Skan equation
with heat transfer has been studied. Two special cases [24] of
Falkner-Skan equationwith heat transfer problems have been
analyzed.

2. Basic Mathematical Theory of OHAM

Let us consider the following differential equation:

L (𝑢 (𝑡)) + ℎ (𝑡) +N (𝑢 (𝑡)) = 0, (1)

along with boundary conditions of the form

B(𝑢,
𝑑𝑢

𝑑𝑡
) = 0, (2)

whereL is the linear operator, 𝑢(𝑡) is an unknown function,
ℎ(𝑡) is a known function, N(𝑢(𝑡)) is a nonlinear differential
operator, andB is a boundary operator.

According to OHAM, one can construct an optimal
homotopy 𝜙(𝑡, 𝑞):Ω × [0, 1] → R which satisfies

(1 − 𝑞) [L (𝜙 (𝑡, 𝑞)) + ℎ (𝑡)]

= 𝐻 (𝑞) [L (𝜙 (𝑡, 𝑞)) + ℎ (𝑡) +N (𝜙 (𝑡, 𝑞))] ,
(3)

B(𝜙 (𝑡, 𝑞) ,
𝜕𝜙 (𝑡, 𝑞)

𝜕𝑡
) = 0, (4)

where 𝑞 ∈ [0, 1] is an embedding parameter, 𝜙(𝑡, 𝑞) is an
unknown function, and𝐻(𝑞) is a nonzero auxiliary function.
The auxiliary function𝐻(𝑞) is nonzero for 𝑞 ̸= 0 and𝐻(0) =
0. Equation (3) is the structure of OHAM homotopy.

It is defined that

𝑞 = 0 󳨐⇒ 𝜙 (𝑡, 0) = 𝑢0 (𝑡) ,

𝑞 = 1 󳨐⇒ 𝜙 (𝑡, 1) = 𝑢 (𝑡) ,
(5)

respectively. Thus, as 𝑞 varies from 0 to1, the solution 𝜙(𝑡, 𝑞)
varies from 𝑢

0
(𝑡) to 𝑢(𝑡), where 𝑢

0
(𝑡) is obtained from (1) and

(2) for 𝑝 = 0 as follows:

L (𝑢
0 (𝑡)) + ℎ (𝑡) = 0, B(𝑢

0
,
𝑑𝑢
0

𝑑𝑡
) = 0. (6)

Next, we choose auxiliary function𝐻(𝑞) in the form

𝐻(𝑞) = 𝑞𝐶
1
+ 𝑞
2
𝐶
2
+ 𝑞
3
𝐶
3
+ ⋅ ⋅ ⋅, (7)

where 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . are constants and can be found latter.

To obtain an approximate solution, we expand 𝜙(𝑡, 𝑞, 𝐶
𝑖
)

by Taylor’s series about 𝑞 in the following form:

𝜙 (𝑡, 𝑞, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑖
) = 𝑢
0 (𝑡) +

∞

∑
𝑘=1

𝑢
𝑘
(𝑡, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑖
) 𝑞
𝑘
,

𝑖 = 1, 2, . . . .

(8)

Now substituting (8) into (1) and (2) and equating the
coefficient of like powers of 𝑞, we obtain the zeroth-order
problem given by (6), the first- and second-order problems
given by (9)–(11), respectively, and the general governing
equations for 𝑢

𝑘
(𝑡) given by (11):

L (𝑢
1
(𝑡)) = 𝐶

1
N
0
(𝑢
0
(𝑡)) , B(𝑢

1
,
𝑑𝑢
1

𝑑𝑡
) = 0, (9)

L (𝑢
2
(𝑡)) −L (𝑢

1
(𝑡))

= 𝐶
1
N
0
(𝑢
0
(𝑡)) + 𝐶

1
[L (𝑢

1
(𝑡))

+N
1
(𝑢
0 (𝑡) , 𝑢1 (𝑡))] ,

B(𝑢
2
,
𝑑𝑢
2

𝑑𝑡
) = 0,

(10)

L (𝑢
𝑘
(𝑡)) −L (𝑢

𝑘−1
(𝑡))

= 𝐶
𝑘
N
0
(𝑢
0
(𝑡))

+

𝑘−1

∑
𝑖=1

𝐶
𝑖
[L (𝑢

𝑘−𝑖 (𝑡))

+N
𝑘−𝑖
(𝑢
0
(𝑡) , 𝑢
1
(𝑡) , . . . , 𝑢

𝑘−𝑖
(𝑡))] ,

B(𝑢
𝑘
,
𝑑𝑢
𝑘

𝑑𝑡
) = 0, 𝑘 = 2, 3, . . . ,

(11)

where N
𝑘−𝑖
(𝑢
0
(𝑡), 𝑢
1
(𝑡), . . . , 𝑢

𝑘−𝑖
(𝑡)) is the coefficient of 𝑞𝑘−𝑖

in the expansion series of N(𝜙(𝑡, 𝑞)) about the embedding
parameter 𝑝 as follows:

N (𝜙 (𝑡, 𝑞, 𝐶
𝑖
))

=N
0
(𝑢
0 (𝑡)) + ∑

𝑘≥1

N
𝑘
(𝑢
0
, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
) 𝑞
𝑘
,

𝑖 = 1, 2, 3, . . . .

(12)

It should be underscored that the 𝑢
𝑘
for 𝑘 ≥ 0

are governed by the linear equations with linear boundary
conditions that come from the original problem, which can
be easily solved.

It has been observed that the convergence of the series
(8) depends upon the auxiliary constants 𝐶

1
, 𝐶
2
, . . .. If it is

convergent at 𝑞 = 1, one has

𝑢̃ (𝑡, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑖
) = 𝑢
0
(𝑡) + ∑
𝑘≥1

𝑢
𝑘
(𝑡, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑖
) . (13)

Substituting (13) into (1), it results in the following ex-
pression for residual:

𝑅 (𝑡, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑖
) = L (𝑢̃ (𝑡, 𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑖
))

+ ℎ (𝑡) +N (𝑢̃ (𝑡, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑖
)) .

(14)

If 𝑅(𝑡, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑖
) = 0, then 𝑢̃(𝑡, 𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑖
) is the

exact solution of the problem. Generally it does not happen,
especially in nonlinear problems.
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For the determinations of auxiliary constants, 𝐶
𝑖
, 𝑖 =

1, 2, . . . , 𝑚, there are different methods like Galerkin’s
method, Ritz method, least squares method, and collocation
method. One can apply the method of least squares as
follows:

𝐽 (𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
) = ∫
𝑏

𝑎

𝑅
2
(𝑡, 𝐶
1
, 𝐶
2
, 𝐶
3
. . . , 𝐶

𝑚
) 𝑑𝑡, (15)

where 𝑎 and 𝑏 are two values, depending on the nature of the
given problem.

The auxiliary constants 𝐶
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 can be opti-

mally found from

𝜕𝐽

𝜕𝐶
1

=
𝜕𝐽

𝜕𝐶
2

= ⋅ ⋅ ⋅ =
𝜕𝐽

𝜕𝐶
𝑚

= 0. (16)

The 𝑚th order approximate solution can be obtained
bythese constants. The constants 𝐶

𝑖
can also be determined

by another method as follows:

𝑅 (𝑘
1
, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
)

= 𝑅 (𝑘
2
, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
)= ⋅ ⋅ ⋅ =𝑅 (𝑘

𝑚
, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
)=0,

𝑖 = 1, 2, . . . , 𝑚.

(17)

The convergence of OHAM is directly proportional to the
number of optimal constants 𝐶

1
, 𝐶
2
, . . . which is determined

by (16).
It is easy to observe [13] that the Homotopy Perturbation

Method (HPM) proposed by He [4] is a special case of (3)
when 𝐻(𝑞) = −𝑞, and on the other hand, the Homotopy
Analysis Method (HAM) proposed by Liao [11] is another
special case of (3) when 𝐻(𝑞) = 𝑞ℎ where ℎ is chosen from
“ℎ-curves” [12].

3. Application of OHAM to Falkner-Skan
Equations with Heat Transfer

To demonstrate the effectiveness of OHAM formulation, two
models are studied.

Model 1 (see [23]). When an incompressible fluid passes in
the vicinity of solid boundaries, the Navier-Stokes equations
may be reduced drastically into the boundary layer equations:

𝑢
𝜕𝑢

𝜕𝑥
+ V

𝜕V

𝜕𝑦
= 𝑈
𝑒

𝑑𝑈
𝑒

𝑑𝑥
+ V

𝜕
2𝑢

𝜕2𝑦
,

𝜕𝑢

𝜕𝑥
+
𝜕V

𝜕𝑦
= 0,

(18)

where 𝑈
𝑒
(𝑥) is the free stream velocity, 𝑢 and V are velocity

components in 𝑥- and 𝑦-directions, and 𝜐 is the kinematic
viscosity. In case of two-dimensional flow, the incompressible
boundary layer flow over a wedge, when the free stream

velocity is of the form 𝑈
𝑒
(𝑥) = 𝐾𝑥𝑚, is the following

similarity transformation:

𝑢 (𝑥, 𝑦) = 𝑈
𝑒
(𝑥) 𝑓
󸀠
(𝜂) , 𝜂 = 𝑦√

(𝑚 + 1)𝐾

2
𝑥
(𝑚−1)/2

,

𝜐 (𝜂) =
𝑇 − 𝑇
∞

𝑇
𝑤
− 𝑇
∞

.

(19)

Using (19) into (18), we obtained the Falkner-Skan equa-
tion

𝑑3𝑓

𝑑𝜂3
+ 𝑓

𝑑2𝑓

𝑑𝜂2
+ 𝛽(1 − (

𝑑𝑓

𝑑𝜂
)

2

) = 0, (20)

along with boundary conditions

𝑓 (0) = 0, 𝑓
󸀠
(0) = 0, 𝑓

󸀠
(5) = 1. (21)

According to (1), we have

L (𝑓 (𝜂)) = 𝑓
󸀠󸀠󸀠
(𝜂) + 𝛽, ℎ (𝜂) = 0,

N (𝑓 (𝜂)) = 𝑓 (𝜂) 𝑓
󸀠󸀠
(𝜂) − 𝛽(𝑓

󸀠
(𝜂))
2

.

(22)

The boundary conditions are

𝑓 (0) = 0, 𝑓
󸀠
(0) = 0, 𝑓

󸀠
(5) = 1. (23)

Applying themethod formulationmentioned in Section 2
leads to the following.

Zeroth-Order Problem. Consider

𝑓
󸀠󸀠󸀠

0
(𝜂) + 𝛽 = 0, (24)

𝑓
0
(0) = 0, 𝑓

󸀠

0
(0) = 0, 𝑓

󸀠

0
(5) = 1, (25)

from which we obtain

𝑓
0
(𝜂) =

1

60
(6 + 75𝛽) 𝜂

2
−
10

60
𝛽𝜂
3
. (26)

First-Order Problem. Consider

𝑓
󸀠󸀠󸀠

1
(𝜂) = 𝛽 + 𝐶

1
(𝛽 − 𝛽(𝑓

󸀠

0
)
2

+ 𝑓
0
𝑓
󸀠󸀠

0
+ 𝑓
󸀠󸀠󸀠

0
) + 𝑓
󸀠󸀠󸀠

0
, (27)

𝑓
1
(0) = 0, 𝑓

󸀠

1
(0) = 0, 𝑓

󸀠

1
(5) = 0. (28)

Its solution is

𝑓
1
(𝜂) = (−

5𝐶
1

48
−
5𝛽𝐶
1

16
+
1825𝛽2𝐶

1

576
+
625𝛽3𝐶

1

96
) 𝜂
2

+ (
𝐶
1

3000
+
23𝛽𝐶
1

3000
+
17𝛽2𝐶

1

480
−
5𝛽3𝐶
1

48
) 𝜂
5

+ (−
𝛽𝐶
1

900
−
11𝛽2𝐶

1

900
+
𝛽3𝐶
1

48
) 𝜂
6

+ (
𝛽2𝐶
1

1260
−
𝛽3𝐶
1

840
) 𝜂
7
.

(29)
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Second-Order Problem. Consider

𝑓
󸀠󸀠󸀠

2
(𝜂) = (1 + 𝐶

1
) 𝑓
󸀠󸀠󸀠

1
+ 𝐶
2
(𝛽 + 𝑓

0
𝑓
󸀠󸀠

0
− 𝛽𝑓
󸀠

0
+ 𝑓
󸀠󸀠󸀠

0
)

+ 𝐶
1
(𝑓
1
𝑓
󸀠󸀠

0
− 2𝛽𝑓

󸀠

0
𝑓
󸀠

1
+ 𝑓
0
𝑓
󸀠󸀠

1
) ,

(30)

with BC

𝑓
2
(0) = 0, 𝑓

󸀠

2
(0) = 0, 𝑓

󸀠

2
(5) = 0, (31)

whose solution is

𝑓
2
(𝜂)

= (−
5𝐶
1

48
−
5𝛽𝐶
1

16
+
1825𝛽2𝐶

1

576
+
625𝛽3𝐶

1

96
−
95𝐶2
1

4032

−
395𝛽𝐶

2

1

504
−
538225𝛽

2
𝐶
2

1

145152
+
2093125𝛽

3
𝐶
2

1

145152

+
3971875𝛽4𝐶2

1

41472
+
4296875𝛽5𝐶2

1

48384
−
5𝐶
2

48

−
5𝛽𝐶
2

16
+
1825𝛽2𝐶

2

576
+
625𝛽3𝐶

2

96
) 𝜂
2

+ (
𝐶
1

3000
+
23𝛽𝐶
1

3000
+
17𝛽2𝐶

1

480
−
5𝛽3𝐶
1

48
−
13𝐶2
1

36000

−
41𝛽𝐶2
1

24000
+
899𝛽2𝐶2

1

17280
+
491𝛽3𝐶2

1

2304

−
125𝛽4𝐶2

1

1728
−
625

576
𝛽
5
𝐶
2

1
+

𝐶
2

3000

+
23𝛽𝐶
2

3000
+
17𝛽2𝐶

2

480
−
5𝛽3𝐶
2

48
) 𝜂
5

+ (−
𝛽𝐶
1

900
−
11𝛽2𝐶

1

900
+
𝛽3𝐶
1

48
+

𝛽𝐶2
1

21600

−
151𝛽2𝐶2

1

14400
−
203𝛽3𝐶2

1

10368
−

5

256
𝛽
4
𝐶
2

1

+
125𝛽5𝐶2

1

1152
−
𝛽𝐶
2

900
−
11𝛽2𝐶

2

900
+
𝛽3𝐶
2

48
) 𝜂
6

+ (
𝛽2𝐶
1

1260
−
𝛽3𝐶
1

840
+
𝛽2𝐶2
1

1260
−

1

840
𝛽
3
𝐶
2

1

+
𝛽2𝐶
2

1260
−
𝛽3𝐶
2

840
) 𝜂
7

+ (
11𝐶2
1

5040000
+

761𝛽𝐶2
1

10080000
+
3181𝛽2𝐶2

1

4032000

+
463𝛽3𝐶2

1

322560
−
85𝛽4𝐶2

1

8064
+
125𝛽5𝐶2

1

16128
) 𝜂
8

+ (−
𝛽𝐶2
1

100800
−
253𝛽2𝐶2

1

1134000
−
17089𝛽3𝐶2

1

18144000

+
2561𝛽4𝐶2

1

725760
−
55𝛽5𝐶2

1

24192
) 𝜂
9

+ (
𝛽2𝐶2
1

70875
+
𝛽3𝐶2
1

7000
−
227𝛽4𝐶2

1

567000
+
𝛽5𝐶2
1

4320
) 𝜂
10

+ (−
𝛽3𝐶2
1

155925
+
19𝛽4𝐶2

1

1247400
−

𝛽5𝐶2
1

118800
) 𝜂
11
.

(32)

Adding (25), (27), and (29), we obtain

𝑓 (𝜂) = 𝐴
2
𝜂
2
+ 𝐴
3
𝜂
3
+ 𝐴
5
𝜂
5
+ 𝐴
6
𝜂
6
+ 𝐴
7
𝜂
7

+ 𝐴
8
𝜂
8
+ 𝐴
9
𝜂
9
+ 𝐴
10
𝜂
10
+ 𝐴
11
𝜂
11
,

(33)

where

𝐴
2
= (

1

10
+
5𝛽

4
−
5𝐶
1

24
−
5𝛽𝐶
1

8

+
1825𝛽2𝐶

1

288
+
625𝛽3𝐶

1

48
−
95𝐶2
1

4032

−
395𝛽𝐶2

1

504
−
538225𝛽2𝐶2

1

145152
+
2093125𝛽3𝐶2

1

145152

+
3971875𝛽4𝐶2

1

41472
+
4296875𝛽5𝐶2

1

48384
−
5𝐶
2

48

−
5𝛽𝐶
2

16
+
1825𝛽2𝐶

2

576
+
625𝛽3𝐶

2

96
) ,

𝐴
3
= (−

𝛽

6
) ,

𝐴
5
= (

𝐶
1

1500
+
23𝛽𝐶
1

1500
+
17𝛽2𝐶

1

240
−
5𝛽3𝐶
1

24

−
13𝐶2
1

36000
−
41𝛽𝐶2
1

24000
+
899𝛽2𝐶2

1

17280

+
491𝛽
3
𝐶
2

1

2304
−
125𝛽
4
𝐶
2

1

1728
−
625

576
𝛽
5
𝐶
2

1

+
𝐶
2

3000
+
23𝛽𝐶
2

3000
+
17𝛽2𝐶

2

480
−
5𝛽3𝐶
2

48
) ,

𝐴
6
= (−

𝛽𝐶
1

450
−
11𝛽2𝐶

1

450
+
𝛽3𝐶
1

24
+

𝛽𝐶2
1

21600

−
151𝛽2𝐶2

1

14400
−
203𝛽3𝐶2

1

10368
−

5

256
𝛽
4
𝐶
2

1

+
125𝛽5𝐶2

1

1152
−
𝛽𝐶
2

900
−
11𝛽2𝐶

2

900
+
𝛽3𝐶
2

48
) ,
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𝐴
7
= (

𝛽2𝐶
1

630
−
𝛽3𝐶
1

420
+
𝛽2𝐶2
1

1260

−
1

840
𝛽
3
𝐶
2

1
+
𝛽2𝐶
2

1260
−
𝛽3𝐶
2

840
) ,

𝐴
8
= (

11𝐶2
1

5040000
+

761𝛽𝐶2
1

10080000
+
3181𝛽2𝐶2

1

4032000

+
463𝛽3𝐶2

1

322560
−
85𝛽4𝐶2

1

8064
+
125𝛽5𝐶2

1

16128
) ,

𝐴
9
= (−

𝛽𝐶2
1

100800
−
253𝛽2𝐶2

1

1134000
−
17089𝛽3𝐶2

1

18144000

+
2561𝛽4𝐶2

1

725760
−
55𝛽5𝐶2

1

24192
) ,

𝐴
10
= (

𝛽2𝐶2
1

70875
+
𝛽3𝐶2
1

7000
−
227𝛽4𝐶2

1

567000
+
𝛽5𝐶2
1

4320
) ,

𝐴
11
= (−

𝛽3𝐶2
1

155925
+
19𝛽4𝐶2

1

1247400
−

𝛽5𝐶2
1

118800
) .

(34)

For the computation of the constants 𝐶
1
and 𝐶

2
applying

the method of least square mentioned in (14)–(16), we get

𝐶
1
= −0.08144083042145557,

𝐶
2
= −0.05004674822211045, for 𝛽 = 1.

(35)

Putting these values in (30), we obtained the approximate
solution of the form

𝑓 (𝜂) = 6.67768 × 10
−1
𝜂
2
− 1.677 × 10

−1
𝜂
3

+ 7.00357 × 10
−3
𝜂
5
− 1.20593 × 10

−4
𝜂
6

+ 8.18634 × 10
−5
𝜂
7
− 3.23784 × 10

−6
𝜂
8

+ 5.32977 × 10
−7
𝜂
9
− 7.89596 × 10

−8
𝜂
10

+ 2.65857 × 10
−9
𝜂
11
.

(36)

Now consider the energy equation of an incompressible
fluid which passes through the vicinity of the solid bound-
aries:

𝑢
𝜕𝑇

𝜕𝑥
+ V

𝜕𝑇

𝜕𝑦
= 𝑎

𝜕
2𝑇

𝜕𝑦2
. (37)

Upon using the transformation in (19) into (37), we
obtained

𝑑2𝜐

𝑑𝜂2
+ 𝑃𝑟𝑓

𝑑𝜐

𝑑𝜂
= 0, (38)

with boundary conditions

𝜐 (0) = 1, 𝜐 (5) = 0, (39)

where “𝑎” is the thermal diffusivity and 𝑃𝑟 is the prandtl
number.

Applying the method formulated in Section 2 leads to the
following.

Zeroth-Order Problem. Consider

𝜐
󸀠󸀠

0
(𝜂) = 0, 𝜐 (0) = 1, 𝜐 (5) = 0. (40)

Its solution is

𝜐
0
(𝜂) =

5 − 𝜂

5
. (41)

First-Order Problem. Consider

𝜐
󸀠󸀠

1
(𝜂) = 𝑃𝑟𝐶

1
𝑓
0
(𝜂) 𝜐
󸀠

0
(𝜂) + (1 + 𝐶

1
) 𝜐
󸀠󸀠

0
(𝜂) ,

𝜐 (0) = 0, 𝜐 (5) = 0,
(42)

whose solution is

𝜐
1
(𝜂) = (

5𝑃𝑟𝐶
1

24
+
25

16
𝑃𝑟𝛽𝐶

1
) 𝜂

− (
𝑃𝑟𝐶
1

600
−
1

48
𝑃𝑟𝛽𝐶

1
) 𝜂
4
+

1

600
𝑃𝑟𝛽𝐶

1
𝜂
5
.

(43)

Second-Order Problem. Consider

𝜐
󸀠󸀠

2
(𝜂) = 𝑃𝑟 (𝐶

2
𝑓
0
(𝜂) + 𝐶

1
𝑓
1
(𝜂)) 𝜐

0
(𝜂) + (1 + 𝐶

1
) 𝜐
󸀠󸀠

1
(𝜂)

+ 𝑃𝑟𝐶
1
𝑓
0
(𝜂) 𝜐
󸀠

1
(𝜂) + 𝐶

2
𝜐
󸀠󸀠

0
(𝜂) ,

𝜐
2 (0) = 0, 𝜐

2 (5) = 0.

(44)

We obtain the following solution:

𝜐
2
(𝜂)

= (
5𝑃𝑟𝐶
1

24
+
25

16
𝑃𝑟𝛽𝐶

1
+
65𝑃𝑟𝐶2

1

4032
+
125𝑃2𝑟𝐶2

1

4032

+
75

64
𝑃𝑟𝛽𝐶

2

1
+
625𝑃2𝑟𝛽𝐶2

1

2688
+
970625𝑃𝑟𝛽2𝐶2

1

145152

+
3125𝑃2𝑟𝛽2𝐶2

1

18144
+
15625𝑃𝑟𝛽3𝐶2

1

1512
+
5𝑃𝑟𝐶
2

24

+
25

16
𝑃𝑟𝛽𝐶

2
) 𝜂

+ (−
𝑃𝑟𝐶
1

600
−
1

48
𝑃𝑟𝛽𝐶

1
+
𝑃𝑟𝐶2
1

14400
+

1

576
𝑃
2
𝑟𝐶
2

1

−
1

64
𝑃𝑟𝛽𝐶

2

1
+

5

144
𝑃
2
𝑟𝛽𝐶
2

1
−
365𝑃𝑟𝛽2𝐶2

1

6912
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+
125

768
𝑃
2
𝑟𝛽
2
𝐶
2

1
−
125𝑃𝑟𝛽3𝐶2

1

1152

−
𝑃𝑟𝐶
2

600
−
1

48
𝑃𝑟𝛽𝐶

2
) 𝜂
4

+ (
1

600
𝑃𝑟𝛽𝐶

1
+

1

600
𝑃𝑟𝛽𝐶

2

1
−

1

576
𝑃
2
𝑟𝛽𝐶
2

1

−
5

384
𝑃
2
𝑟𝛽
2
𝐶
2

1
+

1

600
𝑃𝑟𝛽𝐶

2
) 𝜂
5

+ (−
𝑃𝑟𝐶2
1

630000
−
𝑃2𝑟𝐶2
1

63000
−
23𝑃𝑟𝛽𝐶2

1

630000
−
𝑃2𝑟𝛽𝐶2

1

2520

−
17𝑃𝑟𝛽2𝐶2

1

100800
−
5𝑃2𝑟𝛽2𝐶2

1

2016
+
𝑃𝑟𝛽3𝐶2

1

2016
) 𝜂
7

+ (
𝑃𝑟𝛽𝐶2

1

252000
+
𝑃2𝑟𝛽𝐶2

1

28800
+
11𝑃𝑟𝛽2𝐶2

1

252000

+
𝑃2𝑟𝛽2𝐶2

1

2304
−
𝑃𝑟𝛽3𝐶2

1

13440
) 𝜂
8

+ (−
𝑃𝑟𝛽2𝐶2

1

453600
−
𝑃2𝑟𝛽2𝐶2

1

51840
+
𝑃𝑟𝛽3𝐶2

1

302400
) 𝜂
9
.

(45)

Adding (41), (43), and (45), we obtain

𝜐 (𝜂) = 1 + 𝐵
1
𝜂 + 𝐵
4
𝜂
4
+ 𝐵
5
𝜂
5
+ 𝐵
7
𝜂
7
+ 𝐵
8
𝜂
8
+ 𝐵
9
𝜂
9
, (46)

where

𝐵
1
= (−

1

5
+
5𝑃𝑟𝐶
1

12
+
25

8
𝑃𝑟𝛽𝐶

1
+
65𝑃𝑟𝐶2

1

4032

+
125𝑃2𝑟𝐶2

1

4032
+
75

64
𝑃𝑟𝛽𝐶

2

1
+
625𝑃2𝑟𝛽𝐶2

1

2688

+
970625𝑃𝑟𝛽2𝐶2

1

145152
+
3125𝑃2𝑟𝛽2𝐶2

1

18144

+
15625𝑃𝑟𝛽3𝐶2

1

1512
+
5𝑃𝑟𝐶
2

24
+
25

16
𝑃𝑟𝛽𝐶

2
) ,

𝐵
4
= (−

𝑃𝑟𝐶
1

300
−
1

24
𝑃𝑟𝛽𝐶

1
+
𝑃𝑟𝐶
2

1

14400

+
1

576
𝑃
2
𝑟𝐶
2

1
−
1

64
𝑃𝑟𝛽𝐶

2

1
+

5

144
𝑃
2
𝑟𝛽𝐶
2

1

−
365𝑃𝑟𝛽2𝐶2

1

6912
+
125

768
𝑃
2
𝑟𝛽
2
𝐶
2

1

−
125𝑃𝑟𝛽

3
𝐶
2

1

1152
−
𝑃𝑟𝐶
2

600
−
1

48
𝑃𝑟𝛽𝐶

2
) ,

𝐵
5
= (

1

300
𝑃𝑟𝛽𝐶

1
+

1

600
𝑃𝑟𝛽𝐶

2

1
−

1

576
𝑃
2
𝑟𝛽𝐶
2

1

−
5

384
𝑃
2
𝑟𝛽
2
𝐶
2

1
+

1

600
𝑃𝑟𝛽𝐶

2
) ,

𝐵
7
= (−

𝑃𝑟𝐶2
1

630000
−
𝑃2𝑟𝐶2
1

63000
−
23𝑃𝑟𝛽𝐶2

1

630000
−
𝑃2𝑟𝛽𝐶2

1

2520

−
17𝑃𝑟𝛽2𝐶2

1

100800
−
5𝑃2𝑟𝛽2𝐶2

1

2016
+
𝑃𝑟𝛽3𝐶2

1

2016
) ,

𝐵
8
= (

𝑃𝑟𝛽𝐶2
1

252000
+
𝑃2𝑟𝛽𝐶2

1

28800
+
11𝑃𝑟𝛽2𝐶2

1

252000

+
𝑃2𝑟𝛽2𝐶2

1

2304
−
𝑃𝑟𝛽3𝐶2

1

13440
) ,

𝐵
9
= (−

𝑃𝑟𝛽2𝐶2
1

453600
−
𝑃2𝑟𝛽2𝐶2

1

51840
+
𝑃𝑟𝛽3𝐶2

1

302400
) .

(47)

Using (46) in (38) and applying the method of least
square, we obtain

𝐶
1
= −0.027238050474420454,

𝐶
2
= −0.016903606167477613.

(48)

Substituting these values in (46) for 𝛽 = 1 and 𝑃𝑟 = 10,
we obtain

𝜐 (𝜂) = 1 − 1.29659𝜂 + 2.95285 × 10
−2
𝜂
4

− 2.27213 × 10
−3
𝜂
5
− 2.12478 × 10

−4
𝜂
5

+ 3.45784 × 10
−6
𝜂
8
− 1.42298 × 10

−6
𝜂
9
.

(49)

Model 2 (see [23]). In case of 𝛽 = 0 in (52), we obtain
the Blasius equation which is the famous equation of fluid
dynamics and represent the problem of an incompressible
fluid that passes through on a semi-infinite flat plate.

One has

𝑑3𝑓

𝑑𝜂3
+ 𝑓

𝑑2𝑓

𝑑𝜂2
= 0, (50)

𝑓 (0) = 0, 𝑓
󸀠
(0) = 0, 𝑓

󸀠
(5) = 1. (51)

According to (1), we define the operators

L (𝑓 (𝜂)) = 𝑓
󸀠󸀠󸀠
(𝜂) , 𝑔 (𝜂) = 0,

N (𝑓 (𝜂)) = 𝑓 (𝜂) 𝑓
󸀠󸀠
(𝜂) ,

(52)

where 𝑓󸀠󸀠(𝜂) and 𝑓󸀠󸀠󸀠(𝜂) represent the second and third
derivatives of 𝑓(𝜂) with respect to 𝜂.

Applying the method formulated in Section 2 leads to the
following.
Zeroth-Order Problem. Consider

𝑓
󸀠󸀠󸀠

0
(𝜂) = 0, (53)

𝑓
0
(0) = 0, 𝑓

󸀠

0
(0) = 0, 𝑓

󸀠

0
(5) = 1. (54)
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Table 1: Initial slope 𝑓󸀠󸀠(0) obtained by OHAM for different values of 𝛽.

𝛽 Hartree [16] Asaithambi [22] Asaithambi [21] Salama [39] Zhang [40] Vera [24] OHAM
2 1.687 1.687222 1.687218 1.687218 1.687218 1.687218 1.67054
1 1.233 1.23589 1.232588 1.232588 1.232587 1.232587 1.23567
0.5 0.927 0.927682 0.927680 0.927680 0.927680 0.927680 0.92697
−0.1 0.319 0.319270 0.319270 0.319270 0.319270 0.319270 0.31927

Table 2: Solution of the Blasius equation by OHAM.

𝜂 𝑓(𝜂) 𝑓󸀠(𝜂) 𝑓󸀠󸀠(𝜂)

0.0 0.000000000 0.000000000 3.90295 × 10−1

0.5 4.87655 × 10
−2

1.94934 × 10
−1

3.88588 × 10
−1

1.0 1.94467 × 10−1 3.86900 × 10−1 3.76782 × 10−1

1.5 4.33963 × 10−1 5.68522 × 10−1 3.45926 × 10−1

2.0 7.59425 × 10
−1

7.28781 × 10
−1

2.90680 × 10
−1

2.5 1.15707 × 100 8.55368 × 10−1 2.12781 × 10−1

3.0 1.60768 × 100 9.39646 × 10−1 1.24115 × 10−1

3.5 2.08955 × 10
0

9.81346 × 10
−1

4.67757 × 10
−2

4.0 2.58389 × 100 9.92571 × 10−1 5.82245 × 10−3

4.5 3.08065 × 100 9.94745 × 10−1 8.42702 × 10−3

5.0 3.57943 × 100 1.0000000000 6.18202 × 10−4

Its solution is

𝑓
0
(𝜂) =

𝜂2

10
. (55)

First-Order Problem. Consider

𝑓
󸀠󸀠󸀠

1
(𝜂) = −𝐶

1
𝑓
0
(𝜂) 𝑓
󸀠󸀠

0
(𝜂) − 𝑓

󸀠󸀠󸀠

0
(𝜂) − 𝐶

1
𝑓
󸀠󸀠󸀠

0
(𝜂) ,

𝑓
1
(0) = 0, 𝑓

󸀠

1
(0) = 0, 𝑓

󸀠

1
(5) = 0,

(56)

whose solution is

𝑓
1
(𝜂) = −

5𝐶
1

48
𝜂
2
+

𝐶
1

3000
𝜂
5
. (57)

Second-Order Problem. Consider

𝑓
󸀠󸀠󸀠

2
(𝜂) = −𝐶

2
𝑓
0
(𝑓
0
)
󸀠󸀠
− 𝐶
1
𝑓
1
(𝜂) 𝑓
󸀠󸀠

0
(𝜂) − 𝐶

1
𝑓
0
(𝜂) 𝑓
󸀠󸀠

1
(𝜂)

− 𝐶
2
𝑓
󸀠󸀠󸀠

0
(𝜂) − (1 + 𝐶

1
) 𝑓
󸀠󸀠󸀠

1
(𝜂) ,

𝑓
2
(0) = 0, 𝑓

󸀠

2
(0) = 0, 𝑓

󸀠

2
(5) = 0.

(58)

We obtain the following solution:

𝑓
2
(𝜂) = (−

5𝐶
1

48
−
95𝐶2
1

4032
−
5𝐶
2

48
) 𝜂
2

+ (
𝐶
1

3000
−
13𝐶2
1

36000
+

𝐶
2

3000
) 𝜂
5
+

11𝐶2
1

5040000
𝜂
8
.

(59)

Third-Order Problem. Consider

𝑓
󸀠󸀠󸀠

3
(𝜂) = −𝐶

3
𝑓
0
(𝜂) 𝑓
󸀠󸀠

0
(𝜂) − 𝐶

2
𝑓
1
(𝜂) 𝑓
󸀠󸀠

0
(𝜂)

− 𝐶
1
𝑓
2
(𝜂) 𝑓
󸀠󸀠

0
(𝜂) − 𝐶

2
𝑓
0
(𝜂) 𝑓
󸀠󸀠

1
(𝜂)

− 𝐶
1
𝑓
1
(𝜂) 𝑓
󸀠󸀠

1
(𝜂) − 𝐶

1
𝑓
0
(𝜂) 𝑓
󸀠󸀠

2
(𝜂)

− 𝐶
3
𝑓
󸀠󸀠󸀠

0
(𝜂) −𝐶

2
𝑓
󸀠󸀠󸀠

1
(𝜂) −(1 + 𝐶

1
) 𝑓
󸀠󸀠󸀠

2
(𝜂) ,

𝑓
3
(0) = 0, 𝑓

󸀠

3
(0) = 0, 𝑓

󸀠

3
(5) = 0.

(60)

Its solution is

𝑓
3
(𝜂)

=(−
5𝐶
1

48
−
95𝐶2
1

2016
+
7915𝐶3

1

193536
−
5𝐶
2

48
−
95𝐶
1
𝐶
2

2016
−
5𝐶
3

48
)𝜂
2

+ (
𝐶
1

3000
−
13𝐶2
1

18000
−

631𝐶3
1

4032000
+

𝐶
2

3000
−
13𝐶
1
𝐶
2

18000

+
𝐶
3

3000
) 𝜂
5
+(

11𝐶2
1

2520000
−

11𝐶3
1

4480000
+
11𝐶
1
𝐶
2

2520000
) 𝜂
8

+
𝐶3
1

66528000
𝜂
9
.

(61)

From (53), (57), (59), and (61), we obtain

𝑓 (𝜂) = 𝐷
2
𝜂
2
+ 𝐷
5
𝜂
5
+ 𝐷
9
𝜂
9
+ 𝐷
11
𝜂
11
, (62)
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)

Figure 1: 𝑓󸀠(𝜂) for different values of 𝛽.

where

𝐷
2
=
1

10
−
5𝐶
1

16
−
95𝐶2
1

1344
+
7915𝐶3

1

193536
−
5𝐶
2

24
−
95𝐶
1
𝐶
2

2016
−
5𝐶
3

48
,

𝐷
5
=

𝐶
1

1000
−
13𝐶2
1

12000
−

631𝐶3
1

4032000
+

𝐶
2

1500
−
13𝐶
1
𝐶
2

18000
+

𝐶
3

3000
,

𝐷
9
=

11𝐶2
1

1680000
−

11𝐶3
1

4480000
+
11𝐶
1
𝐶
2

2520000
,

𝐷
11
=

𝐶3
1

66528000
.

(63)

Using (62) in (50) and applying the technique as discussed in
(14)–(16), we obtain

𝐶
1
= −0.7047085843229471,

𝐶
2
= 0.4265066662188469,

𝐶
3
= 0.0092786353498473.

(64)

Substituting these values in (62), we have

𝑓 (𝜂) = 1.95147 × 10
−1
𝜂
2
− 6.83434 × 10

−4
𝜂
5

+ 2.79896 × 10
−6
𝜂
8
− 5.26047 × 10

−9
𝜂
11
.

(65)

4. Results and Discussions

The formulation presented in Section 2 provides highly accu-
rate solutions for the problems demonstrated in Section 3.
We have used Mathematica 7 for most of our computational
work. In Table 1, we have presented the initial slope 𝑓󸀠󸀠(0)
for different values of 𝛽 obtained by OHAM. Table 1 shows
that the results obtained byOHAMare in excellent agreement
with the results found in the literature. Table 1 shows a
benchmark for the initial slope 𝑓󸀠󸀠(0) found by different
authors. It is found that the method present in this work

0 5 10 15 20

0

−15000

−10000

−5000

𝛽 = 1

𝛽 = 2

𝛽 = 3

𝜂

𝜐
󳰀 (
𝜂
)

Figure 2: 𝜐󸀠(𝜂) for different values of 𝛽.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

f
󳰀 (
𝜂
)

𝜂

Figure 3: Plot of 𝑓󸀠(𝜂) with respect to 𝜂.

is very good and provides the same values that optimized
numericalmethods withwhich it is compared. Figure 1 shows
the variation of the function 𝑓

󸀠(𝜂) against 𝜂 for different
values of 𝛽 with OHAM, while Figure 2 shows the variation
of the function 𝜐󸀠(𝜂) with respect to 𝜂 for different values of
𝛽. Table 2 shows the solution of the Blasius equation obtained
by the present method. In order to verify the accuracy of the
present method, we have compared the results obtained by
OHAM to the results available in the literature and found
an excellent agreement. Figures 2 and 3 show the variation
of 𝑓󸀠(𝜂) with respect to 𝜂 for the Blasius equation which is
identical to results in the literature [41].

5. Conclusion

In this work, we have seen the effectiveness of OHAM [11–15]
to Falkner-Skan, Energy and Blasius equations. By applying
the basic idea of OHAM to Falken-Skan, Energy and Blasius
equations, we found that it is simpler in applicability and,
more convenient to control convergence and involved less
computational overhead.Therefore,OHAMshows its validity
and great potential for the solution Falken-Skan, Energy
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and Blasius equations, with heat transfer problems arising in
science and engineering.
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