
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 308616, 14 pages
http://dx.doi.org/10.1155/2013/308616

Research Article
Asymptotic Periodicity for Strongly Damped Wave Equations

Claudio Cuevas,1 Carlos Lizama,2 and Herme Soto3
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2 Departamento de Matemática, Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile
3 Departamento de Matemática y Estadı́stica, Universidad de La Frontera, Casilla 54-D, Temuco, Chile

Correspondence should be addressed to Carlos Lizama; carlos.lizama@usach.cl

Received 22 April 2013; Accepted 23 June 2013

Academic Editor: Nasser-Eddine Tatar

Copyright © 2013 Claudio Cuevas et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This work deals with the existence and uniqueness of asymptotically almost-periodic mild solutions for a class of strongly damped
semilinear wave equations.

1. Introduction

Let𝑋 be a reflexive Banach space and let𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑋

be a closed densely defined operator and 𝜂 > 0. Consider the
Cauchy problem

𝑢
𝑡𝑡
+ 2𝜂𝐴

1/2
𝑢
𝑡
+ 𝐴𝑢 = 𝑓 (𝑡, 𝑢, 𝑢

𝑡
) , 𝑡 > 0,

𝑢 (0) = 𝑢
0
∈ 𝑋

1/2
, 𝑢

𝑡
(0) = V

0
∈ 𝑋,

(1)

where 𝑋1/2 is the fractional power space associated with 𝐴

as in [1]. Equations like (1) appear in the literature under
the name of strongly damped wave equations. An example
of mathematical model represented in form (1) is the wave
equation with structural damping (see [2–5]). The strongly
damped wave equations has been investigated in several con-
texts by many authors in the last years, for example, existence
[6, 7], global classical solution [6, 8], long-time asymptotic
behavior [9–11], attractor [2, 12–16], well-posedness [17],
decay estimates [18], blowup [8, 19, 20], controllability [19],
bootstrapping, and regularity [21]. Another important aspect
of the qualitative study of the solutions of strongly damped
wave equations is their asymptotic periodicity. In recent
years, the study of periodicity and its various extensions for
evolution equations has attracted a great deal of attention of
many mathematicians (see [22–32] and references therein).

To the best of our knowledge, the study of the exis-
tence of asymptotically almost-periodic solutions for strongly
damped wave equations of type (1) is a topic not yet consid-
ered in the literature.

Problem (1) can be written as a first order in time Cauchy
problem in 𝑌0 := 𝑋

1/2
× 𝑋:

[
𝑢

V
]

𝑡

+A
(1/2)

[
𝑢

V
] = 𝐹(𝑡, [

𝑢

V
]) , 𝑡 > 0,

[
𝑢 (0)

V (0)
] = [

𝑢
0

V
0

] ,

(2)

where

A
(1/2)

= [
0 −𝐼

𝐴 2𝜂𝐴
1/2] : 𝐷 (A

(1/2)
) ⊆ 𝑋

1/2
× 𝑋 → 𝑋

1/2
× 𝑋

(3)

is defined by

A
(1/2)

[
𝜑

𝜓
] = [

−𝜓

𝐴𝜑 + 2𝜂𝐴
1/2
𝜓
]

for [
𝜑

𝜓
] ∈ 𝐷 (A

(1/2)
) = 𝑋

1
× 𝑋

1/2
,

𝐹 (𝑡, [
𝑢

V
]) = [

0

𝑓 (𝑡, 𝑢, V)
] .

(4)

Definition 1. The pair (𝜂, 𝐴) is said to be an admissible pair if
there exist 𝜓 ∈ (0, 𝜋/2) and𝑀 > 0 such that


(𝜆𝐼 − 𝐴)

−1L(𝑋)
≤

𝑀

1 + |𝜆|
, (5)
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for all 𝜆 in the sector Σ
𝜓
= {𝜆 ∈ C : 𝜓 ≤ | arg 𝜆| ≤ 𝜋} ∪ {0}

and 𝜋/2 > 𝜓/2 + arg(𝜂 + √𝜂2 − 1).
If (𝜂, 𝐴) is an admissible pair, by [21, Proposition 2.1]

A
(1/2)

is a closed operator with 0 ∈ 𝜌(A
(1/2)

). Indeed, A
(1/2)

has the inverse expressed in the matrix form as

A
−1

(1/2)
= [

2𝜂𝐴
−1/2

𝐴
−1

−𝐼 0
] ∈ L (𝑋

1/2
× 𝑋) . (6)

Moreover, the operator A
(1/2)

has compact resolvent when-
ever 𝐴 has compact resolvent. By [21, Theorem 2.3] the
operator A

(1/2)
is sectorial in 𝑋

1/2
× 𝑋. The semigroup

{𝑒
−A(1/2)𝑡 : 𝑡 ≥ 0} generated by −A

(1/2)
in 𝑋

1/2
× 𝑋 is

exponentially decaying analytic. That is, there are constants
𝐾 ≥ 1 and 𝐶 > 0 such that


𝑒
−A(1/2)𝑡

L(𝑋1/2×𝑋)
≤ 𝐾𝑒

−𝐶𝑡
, 𝑡 ≥ 0. (7)

Throughout this paper, we always assume that (𝜂, 𝐴) is an
admissible pair.

This paper has four sections. In the next section, we
consider some definitions, technical aspects, and basic prop-
erties related to asymptotically almost-periodic functions. In
the third section, we obtain general results on the existence
of asymptotically almost-periodic (mild) solutions to the
problem (1). The main abstract results are Theorems 12, 16,
17, and 19. Finally, in the fourth section we consider several
applications. In particular, we consider the following class of
partial differential equations:

𝑢
𝑡𝑡
+ ]𝑏 (𝑡) 𝑢

𝑡
+ Δ

2
𝑢 − 𝛿Δ𝑢

𝑡

= 𝜇𝑎 (𝑡) (ℎ (𝑢) ∇ ⋅ 𝑢 + 𝑔 (𝑢) Δ𝑢) , 𝑥 ∈ Ω, 𝑡 ≥ 0

𝑢 = Δ𝑢 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑢

𝑡
(0, 𝑥) = V

0
(𝑥) , 𝑥 ∈ Ω,

(8)

in a bounded smooth domain Ω ⊆ R𝑁 and where ℎ and
𝑔 satisfy certain growth conditions. We prove that if 𝑎 ∈

𝐴𝑃(R), 𝑏 ∈ 𝐶
0
(R+

,R), and |𝜇| + |]| is small enough, then
the previous problem has an asymptotically almost periodic
mild solution. The same type of conclusion is derived for the
wide class

𝑢
𝑡𝑡
+ Δ

2
𝑢 − 𝛿Δ𝑢

𝑡
= 𝑎 (𝑡)


∫
Ω

∇ ⋅ 𝑢 (𝑡, 𝑥) 𝑑𝑥



𝛽

Φ
0
,

𝑥 ∈ Ω, 𝑡 ≥ 0,

𝑢 = Δ𝑢 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑢

𝑡
(0, 𝑥) = V

0
(𝑥) , 𝑥 ∈ Ω,

(9)

where Φ
0
∈ 𝐿

𝑝
(Ω) and 𝑝 > 𝑁/2.

2. Preliminaries

In this section, we present some concepts and properties
needed to develop the following sections. Let𝑋 be a reflexive

Banach space. For an interval 𝐼 ⊆ R, 𝐶
𝑏
(𝐼, 𝑋) denotes the

space formed by the bounded continuous functions from 𝐼

into 𝑋, endowed with the norm of uniform convergence.
When 𝑋 = R, we denote 𝐶

𝑏
(𝐼) instead of 𝐶

𝑏
(𝐼,R). The

notation 𝐶
0
(R+

, 𝑋) stands for the subspace of 𝐶
𝑏
(R+

, 𝑋)

consisting of functions that vanish at infinity. We denote
by L(𝑋) the Banach algebra of bounded linear operators
defined on 𝑋. For 𝑟 > 0, the notation 𝐵

𝑟
(𝑋) stands for

the closed ball {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑟}. For a linear operator
𝐴 with domain 𝐷(𝐴) and range R(𝐴) in 𝑋, we represent
by 𝜎(𝐴) (resp., 𝜌(𝐴)) the spectrum (resp., the resolvent set)
of 𝐴. For 𝜆 ∈ 𝜌(𝐴), we denote by 𝑅(𝜆, 𝐴) = (𝜆𝐼 − 𝐴)

−1

the resolvent operator of 𝐴. When 𝐴 is closed, we denote
by [𝐷(𝐴)] the domain of 𝐴 endowed with the graph norm
‖𝑥‖

𝐴
= ‖𝑥‖ + ‖𝐴𝑥‖.

Next, we present a brief summary of the main properties
of asymptotically almost-periodic functions.

Definition 2 (see [33]). A continuous function 𝑓 : R → 𝑋 is
called almost-periodic if for each 𝜀 > 0 there exists 𝑙(𝜀) > 0

such that for every interval of length 𝑙(𝜀) it contains a number
𝜏 with the property that ‖𝑓(𝑡 + 𝜏) − 𝑓(𝑡)‖ ≤ 𝜀 for each 𝑡 ∈ R.

The previous number 𝜏 is called an 𝜀-translation number
for 𝑓. We denote by 𝐴𝑃(𝑋) the space formed by the almost
periodic functions 𝑓 : R+

→ 𝑋. We note that each almost-
periodic function is bounded and uniformly continuous. It
is well known that the range R(𝑓) = {𝑓(𝑡) : 𝑡 ∈ R} of an
almost periodic function 𝑓 is relatively compact. The space
𝐴𝑃(𝑋) is a Banach space endowed with the norm of uniform
convergence.

Let 𝑌 be a Banach space. We have the following concept
of parameter-dependent almost-periodic function.

Definition 3. A continuous function 𝑓 : R×𝑌 → 𝑋 is called
almost-periodic in 𝑡 uniformly for 𝑦 in compact subsets of 𝑌
if for every compact subset𝐾 of 𝑌 and each 𝜀 > 0 there exists
𝑙(𝜀) > 0 such that every interval 𝐼 of length 𝑙(𝜀) contains a
number 𝜏with the property that ‖𝑓(𝑡+𝜏, 𝑦)−𝑓(𝑡, 𝑦)‖ ≤ 𝜀 for
all 𝑡 ∈ R, 𝑦 ∈ 𝐾.

Henceforth, we abbreviate the terminology by calling
almost-periodic from R × 𝑌 into 𝑋 to those functions that
are almost-periodic in 𝑡 uniformly for 𝑦 in compact subsets
of 𝑌, and we denote by 𝐴𝑃(R × 𝑌,𝑋) the set formed by the
almost-periodic functions fromR × 𝑌 into𝑋.

The proof of the following result is similar to the proof of
[22, Lemma 2.12] and therefore omitted.

Lemma 4. If ℎ : R → 𝑋
1/2

× 𝑋 is an almost-periodic
function and

𝑢 (𝑡) = ∫

𝑡

−∞

𝑒
−A(1/2)(𝑡−𝑠)ℎ (𝑠) 𝑑𝑠, 𝑡 ∈ R, (10)

then 𝑢 is almost-periodic.

It is well known that the study of composition of two
functions with special properties is important and basic for
deep investigations.The following result has been established
in [34].



Abstract and Applied Analysis 3

Lemma 5. Let𝑓 : R×𝑌 → 𝑋 be an almost-periodic function
and let 𝑢 : R → 𝑌 be an almost-periodic function. Then the
function R → 𝑋, 𝑡 → 𝑓(𝑡, 𝑢(𝑡)) is almost-periodic.

We will need the following definition.

Definition 6. A continuous function 𝑓 : R+
→ 𝑋 is called

asymptotically almost-periodic if there exist two functions
𝑓
𝑎𝑝
∈ 𝐴𝑃(𝑋) and 𝜑

𝑓
∈ 𝐶

0
(R+

, 𝑋) such that

𝑓 (𝑡) = 𝑓
𝑎𝑝
(𝑡) + 𝜑

𝑓
(𝑡) , 𝑡 ∈ R

+
. (11)

The function 𝑓
𝑎𝑝

is called the almost-periodic part of 𝑓. We
denote by 𝐴𝐴𝑃(𝑋) the space formed by the asymptotically
almost-periodic functions 𝑓 : R+

→ 𝑋. The space 𝐴𝐴𝑃(𝑋)
is a Banach space endowed with the norm of uniform
convergence. Furthermore, 𝐴𝐴𝑃(𝑋) = 𝐴𝑃(𝑋) ⊕ 𝐶

0
(R+

, 𝑋).
Inwhat follows𝐶

0
(R+

×𝑌,𝑋)denotes the space consisting
of continuous functions 𝑓 : R+

× 𝑌 → 𝑋 such that
lim

𝑡→∞
𝑓(𝑡, 𝑦) = 0 uniformly for 𝑦 in compact subsets of

𝑌.

Definition 7. A continuous function 𝑓 : R+
× 𝑌 →

𝑋 is called asymptotically almost-periodic if there are two
functions 𝑔 ∈ 𝐴𝑃(R × 𝑌,𝑋) and 𝜑 ∈ 𝐶

0
(R+

× 𝑌,𝑋) such
that

𝑓 (𝑡, 𝑦) = 𝑔 (𝑡, 𝑦) + 𝜑 (𝑡, 𝑦) , 𝑦 ∈ 𝑌, 𝑡 ∈ R
+
. (12)

We denote by 𝐴𝐴𝑃(R+
× 𝑌,𝑋) the set consisting of all

asymptotically almost-periodic functions from R+
× 𝑌 into

𝑋.
Let 𝐼 ⊆ R be an interval. We have the following concept

of function uniformly continuous on compacts sets.

Definition 8. A continuous function 𝑓 : 𝐼 × 𝑌 → 𝑋 is called
uniformly continuous on compact sets if for all compact set
𝐾 ⊆ 𝑌 and all 𝜀 > 0 there is 𝛿

𝜀,𝐾
> 0 such that ‖𝑓(𝑡, 𝑦

1
) −

𝑓(𝑡, 𝑦
2
)‖ ≤ 𝜀 for all 𝑡 ∈ 𝐼 and 𝑦

1
, 𝑦
2
∈ 𝐾with ‖𝑦

1
−𝑦

2
‖ ≤ 𝛿

𝜀,𝐾
.

Lemma 9 (see [22]). Let 𝑓 : R+
× 𝑌 → 𝑋 be an

asymptotically almost-periodic and uniformly continuous on
compact sets function. Let 𝑢 : R+

→ 𝑌 be an asymptotically
almost-periodic function. Then the function R+

→ 𝑋, 𝑡 →

𝑓(𝑡, 𝑢(𝑡)) is asymptotically almost-periodic.

The proof of the following result is similar to the proof of
[22, Lemma 2.13]. Therefore, we will omit it.

Lemma 10. If ℎ : R+
→ 𝑋

1/2
× 𝑋 is an asymptotically

almost-periodic function and

𝑢 (𝑡) = ∫

𝑡

0

𝑒
−A(1/2)(𝑡−𝑠)ℎ (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (13)

Then, 𝑢 is asymptotically almost-periodic.

3. Asymptotically Almost-Periodic
Mild Solutions

We recall the following definition that will be essential for us.

Definition 11. Let [ 𝑢0V0 ] be in 𝑋
1/2

× 𝑋. We say that [ 𝑢(⋅)V(⋅) ] :

R+
→ 𝑋

1/2
× 𝑋 is a mild solution to (2) (or to (1)) if it

satisfies the Cauchy integral formula:

[
𝑢 (𝑡)

V (𝑡)
] = 𝑒

−A(1/2)𝑡 [
𝑢
0

V
0

] + ∫

𝑡

0

𝑒
−A(1/2)(𝑡−𝑠)𝐹(𝑠, [

𝑢 (𝑠)

V (𝑠)
]) 𝑑𝑠,

𝑡 ≥ 0.

(14)

Theorem 12. Let𝑓 : R+
×𝑋

1/2
×𝑋 → 𝑋 be an asymptotically

almost-periodic function and assume that there exists a locally
integrable function 𝐿

𝑓
: R → R satisfying

𝑓 (𝑡, 𝑢
1
, V
1
) − 𝑓 (𝑡, 𝑢

2
, V
2
)
𝑋

≤ 𝐿
𝑓
(𝑡) [

𝑢1 − 𝑢
2

𝑋1/2
+
V1 − V

2

𝑋
] ,

(15)

for all [ 𝑢𝑖V𝑖 ] ∈ 𝑋
1/2

× 𝑋, 𝑖 = 1, 2 and each 𝑡 ≥ 0. If

𝐾sup
𝑡≥0

∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

𝐿
𝑓
(𝑠) 𝑑𝑠 < 1, (16)

where 𝐾 and 𝐶 are given in (7). Then, (2) has a unique
asymptotically almost-periodic mild solution.

Proof. We define the map F on the space 𝐴𝐴𝑃(𝑋1/2
× 𝑋) by

the expression

F([
𝑢

V
]) (𝑡) = 𝑒

−A(1/2)𝑡 [
𝑢
0

V
0

]

+ ∫

𝑡

0

𝑒
−A(1/2)(𝑡−𝑠)𝐹(𝑠, [

𝑢 (𝑠)

V (𝑠)
]) 𝑑𝑠, 𝑡 ∈ R

+
,

(17)

where

[
𝑢 (⋅)

V (⋅)
] = [

𝑢
𝑎𝑝
(⋅)

V
𝑎𝑝
(⋅)
] + [

𝜑
𝑢
(⋅)

𝜑V (⋅)
] (18)

is an asymptotically almost-periodic function; that is,

[
𝑢
𝑎𝑝
(⋅)

V
𝑎𝑝
(⋅)
] ∈ 𝐴𝑃 (𝑋

1/2
× 𝑋) ,

[
𝜑
𝑢
(⋅)

𝜑V (⋅)
] ∈ 𝐶

0
(R

+
, 𝑋

1/2
× 𝑋) .

(19)

Since 𝑓 ∈ 𝐴𝐴𝑃(R+
× 𝑋

1/2
× 𝑋,𝑋); then there are two

functions Φ ∈ 𝐴𝑃(R+
× 𝑋

1/2
× 𝑋,𝑋) and Ψ ∈ 𝐶

0
(R+

×

𝑋
1/2

× 𝑋,𝑋) so that 𝑓 = Φ + Ψ.
We set for [ 𝑎

𝑏
] ∈ 𝑋

1/2
× 𝑋

Φ̃(𝑠, [
𝑎

𝑏
]) = [

0

Φ (𝑠, 𝑎, 𝑏)
] , Ψ̃ (𝑠, [

𝑎

𝑏
]) = [

0

Ψ (𝑠, 𝑎, 𝑏)
] .

(20)
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For 𝑡 ∈ R+, we have the following decomposition:

F([
𝑢

V
]) (𝑡)

= ∫

𝑡

0

𝑒
−A(1/2)(𝑡−𝑠) (Φ̃(𝑠, [

𝑢 (𝑠)

V (𝑠)
]) − Φ̃ (𝑠, [

𝑢
𝑎𝑝
(𝑠)

V
𝑎𝑝
(𝑠)

]))𝑑𝑠

+ ∫

𝑡

−∞

𝑒
−A(1/2)(𝑡−𝑠)Φ̃ (𝑠, [

𝑢
𝑎𝑝
(𝑠)

V
𝑎𝑝
(𝑠)

]) 𝑑𝑠

− ∫

0

−∞

𝑒
−A(1/2)(𝑡−𝑠)Φ̃ (𝑠, [

𝑢
𝑎𝑝
(𝑠)

V
𝑎𝑝
(𝑠)

]) 𝑑𝑠

+ 𝑒
−A(1/2)𝑡 [

𝑢
0

V
0

] + ∫

𝑡

0

𝑒
−A(1/2)(𝑡−𝑠)Ψ̃ (𝑠, [

𝑢 (𝑠)

V (𝑠)
]) 𝑑𝑠

:= G (𝑡) +H (𝑡) ,

(21)

where

G (𝑡) = ∫

𝑡

−∞

𝑒
−A(1/2)(𝑡−𝑠)Φ̃ (𝑠, [

𝑢
𝑎𝑝
(𝑠)

V
𝑎𝑝
(𝑠)

]) 𝑑𝑠 (22)

andH(𝑡) denotes the remained terms of the previous decom-
position.

Next, let us show that H ∈ 𝐶
0
(R+

, 𝑋
1/2

× 𝑋). By (7) we
have that

𝑡 → 𝑒
−A(1/2)𝑡 [

𝑢
0

V
0

] ∈ 𝐶
0
(R

+
, 𝑋

1/2
× 𝑋) . (23)

We observe that

B := {[
𝑢 (𝑡)

V (𝑡)
] : 𝑡 ≥ 0} , B

𝑎𝑝
:= {[

𝑢
𝑎𝑝
(𝑡)

V
𝑎𝑝
(𝑡)
] : 𝑡 ∈ R}

(24)

are relatively compact in𝑋1/2
×𝑋. SinceΨ ∈ 𝐶

0
(R+

×𝑋
1/2

×

𝑋,𝑋), for each 𝜀 > 0 there exists a constant 𝑇 > 0 such that

Ψ̃ (𝑠, 𝑧)

𝑋1/2×𝑋
≤ 𝜀 (25)

for all 𝑡 ≥ 2𝑇, 𝑧 ∈ B.
We deduce



∫

𝑡

0

𝑒
−A(1/2)(𝑡−𝑠)Ψ̃ (𝑠, [

𝑢 (𝑠)

V (𝑠)
]) 𝑑𝑠

𝑋1/2×𝑋

≤
𝐾

𝐶
𝑒
−𝐶𝑡/2 sup

𝑡∈R+, 𝑧∈B


Ψ̃ (𝑠, 𝑧)

𝑋1/2×𝑋
+
𝐾

𝐶
𝜀.

(26)

On the other hand, since Φ ∈ 𝐴𝑃(R+
× 𝑋

1/2
× 𝑋,𝑋) by [35,

Appendix] we get


∫

0

−∞

𝑒
−A(1/2)(𝑡−𝑠)Φ̃ (𝑠, [

𝑢
𝑎𝑝
(𝑠)

V
𝑎𝑝
(𝑠)

]) 𝑑𝑠

𝑋1/2×𝑋

≤
𝐾

𝐶
𝑒
−𝐶𝑡 sup

𝑡∈R,𝑧∈B𝑎𝑝

‖Φ (𝑠, 𝑧)‖
𝑋
, for 𝑡 ∈ R

+
.

(27)

Next, we estimate the first term of (21). For 𝜀 > 0, we choose
𝑇 > 0 big enough so that

𝜑𝑢 (𝑠)
𝑋1/2

+
𝜑V (𝑠)

𝑋
≤ 𝜀, (28)

for all 𝑠 ≥ 𝑇, and ‖Ψ̃(𝑠, 𝑧)‖
𝑋
1/2
×𝑋

≤ 𝜀 for all 𝑠 ≥ 𝑇 and all
𝑧 ∈ B ∪B

𝑎𝑝
. We have the following estimates:



∫

𝑡

0

𝑒
−A(1/2)(𝑡−𝑠) (Φ̃ (𝑠, [

𝑢 (𝑠)

V (𝑠)
])

−Φ̃ (𝑠, [
𝑢
𝑎𝑝
(𝑠)

V
𝑎𝑝
(𝑠)

]))𝑑𝑠

𝑋1/2×𝑋

≤ 𝐾∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

𝐿
𝑓
(𝑠)

× (

𝑢 (𝑠) − 𝑢

𝑎𝑝
(𝑠)
𝑋1/2

+

V (𝑠) − V

𝑎𝑝
(𝑠)
𝑋
) 𝑑𝑠

+ 𝐾∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)



Ψ̃ (𝑠, [
𝑢 (𝑠)

V (𝑠)
])

−Ψ̃ (𝑠, [
𝑢
𝑎𝑝
(𝑠)

V
𝑎𝑝
(𝑠)

])

𝑋1/2×𝑋

𝑑𝑠

≤ 𝐾∫

𝑇

0

𝑒
−𝐶(𝑡−𝑠)

𝐿
𝑓
(𝑠) (

𝜑𝑢 (𝑠)
𝑋1/2

+
𝜑V (𝑠)

𝑋
) 𝑑𝑠

+ 𝐾∫

𝑡

𝑇

𝑒
−𝐶(𝑡−𝑠)

𝐿
𝑓
(𝑠) (

𝜑𝑢 (𝑠)
𝑋1/2

+
𝜑V (𝑠)

𝑋
) 𝑑𝑠

+ (𝐾∫

𝑇

0

𝑒
−𝐶(𝑡−𝑠)

𝑑𝑠)

× ( sup
𝜉∈R+, 𝑧∈B


Ψ̃ (𝜉, 𝑧)

𝑋1/2×𝑋

+ sup
𝜉∈R+ , 𝑧∈B𝑎𝑝


Ψ̃ (𝜉, 𝑧)

𝑋1/2×𝑋
)

+ 𝐾∫

𝑡

𝑇

𝑒
−𝐶(𝑡−𝑠)

× (



Ψ̃ (𝑠, [
𝑢 (𝑠)

V (𝑠)
])

𝑋1/2×𝑋

+



Ψ̃ (𝑠, [
𝑢
𝑎𝑝
(𝑠)

V
𝑎𝑝
(𝑠)

])

𝑋1/2×𝑋

)𝑑𝑠

≤ 𝐾𝑒
−𝐶𝑡

(∫

𝑇

0

𝑒
𝐶𝑠
𝐿
𝑓
(𝑠) 𝑑𝑠) sup

𝜉∈R+



[
𝜑
𝑢
(𝜉)

𝜑V (𝜉)
]

𝑋1/2×𝑋

+ 𝜀𝐾

+
𝐾

𝐶
𝑒
𝐶𝑇
𝑒
−𝐶𝑡
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× ( sup
𝜉∈R+, 𝑧∈B


Ψ̃ (𝜉, 𝑧)

𝑋1/2×𝑋

+ sup
𝜉∈R+, 𝑧∈B𝑎𝑝


Ψ̃ (𝜉, 𝑧)

𝑋1/2×𝑋
)

+ 2𝜀
𝐾

𝐶
.

(29)

From (23) to (29), we deduce that lim
𝑡→∞

H(𝑡) = 0; that is,
H ∈ 𝐶

0
(R+

, 𝑋
1/2

× 𝑋).
Since Φ̃ ∈ 𝐴𝑃(R+

× 𝑋
1/2

× 𝑋,𝑋
1/2

× 𝑋) and [
𝑢𝑎𝑝

V𝑎𝑝 ] ∈

𝐴𝑃(𝑋
1/2

× 𝑋), we get from Lemma 5 that

Φ̃ (⋅, [
𝑢
𝑎𝑝
(⋅)

V
𝑎𝑝
(⋅)
]) ∈ 𝐴𝑃 (𝑋

1/2
× 𝑋) . (30)

Now, by Lemma 4, we obtain that G ∈ 𝐴𝑃(𝑋
1/2

× 𝑋), and
hence F is well defined. It suffices to show that the operator
F has a unique fixed point in 𝐴𝐴𝑃(𝑋1/2

× 𝑋).
For this, we consider that [ 𝑢1V1 ] , [

𝑢2
V2 ] ∈ 𝐴𝐴𝑃(𝑋

1/2
× 𝑋).

We can deduce that


F [
𝑢
1

V
1

] −F [
𝑢
2

V
2

]

∞

= sup
𝑡≥0



F([
𝑢
1

V
1

]) (𝑡) −F([
𝑢
2

V
2

]) (𝑡)

𝑋1/2×𝑋

≤ 𝐾sup
𝑡≥0

∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

×
𝑓 (𝑠, 𝑢

1
(𝑠) , V

1
(𝑠)) − 𝑓 (𝑠, 𝑢

2
(𝑠) , V

2
(𝑠))

𝑋
𝑑𝑠

≤ 𝐾sup
𝑡≥0

∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

𝐿
𝑓
(𝑠)

× [
𝑢1 (𝑠) − 𝑢

2
(𝑠)
𝑋1/2

+
V1 (𝑠) − V

2
(𝑠)
𝑋
] 𝑑𝑠

≤ (𝐾sup
𝑡≥0

∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

𝐿
𝑓
(𝑠) 𝑑𝑠)



[
𝑢
1

V
1

] − [
𝑢
2

V
2

]

∞

,

(31)

by the contraction principle, F has a unique fixed point in
𝐴𝐴𝑃(𝑋

1/2
× 𝑋). This completes the proof.

Remark 13. We wish to emphasize that condition (15) is
optimal in the sense that the function 𝐿

𝑓
(⋅) is locally inte-

grable. This is the largest possible class of Lipschitz constant
𝐿
𝑓
(⋅) for which the conclusion of Theorem 12 holds true.

However, this condition in 𝐿
𝑓
(⋅) makes our analysis much

more harder, because to prove Theorem 12 we cannot use
the standard composition lemma for asymptotically almost-
periodic functions (see Lemma 9). To overcome this difficulty
we need to use a suitable decomposition for the natural
operator associated with the mild solution (see (14) and (21)).
In contrast, we note that in the more restrictive case of 𝐿

𝑓
(⋅)

to be an integrable bounded function we can use Lemma 9
directly.

Corollary 14. Let𝑓 : R+
×𝑋

1/2
×𝑋 → 𝑋 be an asymptotically

almost-periodic function that satisfies the Lipschitz condition
(15) with 𝐿

𝑓
(⋅) ≡ 𝐿. If

𝐾𝐿

𝐶
< 1, (32)

then problem (2) has a unique asymptotically almost-periodic
mild solution.

Remark 15. Let 𝑓 : R+
× 𝑋

1/2
× 𝑋 → 𝑋 be an

asymptotically almost-periodic function that satisfies the
Lipschitz condition (15). We can avoid the condition (32) by
using the fixed-point iteration method. Indeed, we consider
two cases.

Case 1. 𝐿
𝑓
(⋅) ≡ 𝐿. We consider the following space

𝐴𝐴𝑃
0
(𝑋

1/2
× 𝑋)

:= {[
𝑢

V
] ∈ 𝐴𝐴𝑃 (𝑋

1/2
× 𝑋) : 𝑢 (0) = 0, V (0) = 0}

(33)

endowed with the norm of the uniform convergence. We
define the map Γ on the space 𝐴𝐴𝑃0(𝑋1/2

× 𝑋) by

Γ([
𝑢

V
]) (𝑡) = ∫

𝑡

0

𝑒
−A(1/2)(𝑡−𝑠)

× 𝐹(𝑠, [
𝑢 (𝑠)

V (𝑠)
] + 𝑒

−A(1/2)𝑠 [
𝑢
0

V
0

])𝑑𝑠.

(34)

Combining Lemmas 9 and 10, we know that Γ is a continuous
function from 𝐴𝐴𝑃

0
(𝑋

1/2
× 𝑋) into 𝐴𝐴𝑃

0
(𝑋

1/2
× 𝑋).

Moreover, for [ 𝑢𝑖V𝑖 ] ∈ 𝐴𝐴𝑃
0
(𝑋

1/2
× 𝑋), 𝑖 = 1, 2 we have



Γ ([
𝑢
1

V
1

]) (𝑡) − Γ ([
𝑢
2

V
2

]) (𝑡)

𝑋1/2×𝑋

≤ 𝐾𝐿∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠) sup

0≤𝜉≤𝑠

[
𝑢1 (𝜉) − 𝑢

2
(𝜉)

𝑋1/2

+
V1 (𝜉) − V

2
(𝜉)

𝑋
] 𝑑𝑠.

(35)

With the notationΦ(𝑠) = 𝐾𝐿𝑒
−𝐶𝑠 and

𝛼 (𝑠) = sup
0≤𝜉≤𝑠

[
𝑢1 (𝜉) − 𝑢

2
(𝜉)

𝑋1/2
+
V1 (𝜉) − V

2
(𝜉)

𝑋
] ,

(36)

the previous estimate yields


Γ ([
𝑢
1

V
1

]) (𝑡) − Γ ([
𝑢
2

V
2

]) (𝑡)

𝑋1/2×𝑋

≤ (Φ ∗ 𝛼) (𝑡) , 𝑡 ≥ 0.

(37)

Since Φ ∗ 𝛼 is a nondecreasing function, proceeding induc-
tively, we can show that



Γ
𝑛
([

𝑢
1

V
1

]) (𝑡) − Γ
𝑛
([

𝑢
2

V
2

]) (𝑡)

𝑋1/2×𝑋

≤ (Φ
∗𝑛
∗ 𝛼) (𝑡) ,

𝑡 ≥ 0,

(38)

where Φ∗𝑛 denotes the 𝑛-fold convolution of Φ with itself.
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On the other hand, the map S : 𝐶
𝑏
(R+

) → 𝐶
𝑏
(R+

),
given by

(S𝛼) (𝑡) = ∫

𝑡

0

Φ (𝑡 − 𝑠) 𝛼 (𝑠) 𝑑𝑠, 𝑡 ≥ 0, (39)

is a bounded linear map. Moreover, it follows from [36,
Theorem 2.3.5] that 𝜎(S) = {0}, which implies that ‖S𝑛

‖ =

‖Φ
∗𝑛
‖
1
→ 0 as 𝑛 → ∞. This shows that Γ𝑛 is a contraction

for 𝑛 sufficiently large. As a consequence Γ has a fixed point
[
𝑢

V ] in 𝐴𝐴𝑃0(𝑋1/2
× 𝑋).

We note that the function

[
𝑥 (𝑡)

𝑦 (𝑡)
] = [

𝑢 (𝑡)

V (𝑡)
] + 𝑒

−A(1/2)𝑡 [
𝑢
0

V
0

] (40)

is an asymptotically almost-periodic mild solution to prob-
lem (2).

Case 2. 𝐿
𝑓
(⋅) in (15) is an integrable bounded function. By

Lemmas 9 and 10 the space 𝐴𝐴𝑃(𝑋
1/2

× 𝑋) is invariant
under F (see (17)). The fixed point iteration method and the
following estimate



F
𝑛
[
𝑢
1

V
1

] −F
𝑛
[
𝑢
2

V
2

]

∞

≤

(𝐾 ‖ 𝐿
𝑓
‖
1
)
𝑛

𝑛!



[
𝑢
1

V
1

] − [
𝑢
2

V
2

]

∞

(41)

are responsible for the fact thatF has a unique fixed point in
𝐴𝐴𝑃(𝑋

1/2
×𝑋). This concludes the discussion of Remark 15.

Wehave the following results of the existence of local type.

Theorem 16. Let𝑓 : R+
×𝑋

1/2
×𝑋 → 𝑋 be an asymptotically

almost-periodic function that satisfies the Lipschitz condition
𝑓 (𝑡, 𝑢

1
, V
1
) − 𝑓 (𝑡, 𝑢

2
, V
2
)
𝑋

≤ 𝐿
𝑓
(𝑟) [

𝑢1 − 𝑢
2

𝑋1/2
+
V1 − V

2

𝑋
] ,

(42)

for each 𝑡 ≥ 0 and [ 𝑢𝑖V𝑖 ] ∈ 𝑋
1/2

×𝑋 such that ‖𝑢
𝑖
‖
𝑋
1/2 + ‖V𝑖‖𝑋 ≤

𝑟, 𝑖 = 1, 2 where 𝐿
𝑓
: R+

→ R+ is nondecreasing continuous
function such that 𝐿

𝑓
(0) = 0 and 𝑓(𝑡, 0, 0) = 0 for all 𝑡 ≥ 0.

Then, there exists 𝜀 > 0 such that, for each [
𝑢0
V0 ] ∈ 𝑋

1/2
× 𝑋

satisfying ‖𝑢
0
‖
𝑋
1/2 +‖V0‖𝑋 ≤ 𝜀, there is a unique asymptotically

almost-periodic mild solution of problem (2).

Proof. We choose 𝜆, 𝑟 > 0 small enough such that 𝜆 < 1 and
𝐾(𝜆 + (1/𝐶)𝐿

𝑓
(𝑟)) < 1. Assume that ‖𝑢

0
‖
𝑋
1/2 + ‖V

0
‖
𝑋
≤ 𝜆𝑟.

We consider the space

𝐴𝐴𝑃
𝑟
:= {[

𝑢

V
] ∈ 𝐴𝐴𝑃 (𝑋

1/2
× 𝑋) : 𝑢 (0) = 𝑢

0
, V (0) = V

0
,

‖𝑢 (𝑡)‖
𝑋
1/2 +‖V (𝑡)‖

𝑋
≤ 𝑟, 𝑡 ≥ 0} ,

(43)

endowed with the norm of the uniform convergence. We
consider the mapF given by (17) on 𝐴𝐴𝑃

𝑟
. By Lemma 9

F (𝐴𝐴𝑃
𝑟
) ⊆ 𝐴𝐴𝑃 (𝑋

1/2
× 𝑋) . (44)

We next prove thatF(𝐴𝐴𝑃
𝑟
) ⊆ 𝐴𝐴𝑃

𝑟
.

In fact, if [ 𝑢V ] ∈ 𝐴𝐴𝑃𝑟, we have



F([
𝑢

V
]) (𝑡)

𝑋1/2×𝑋

≤ 𝐾𝑒
−𝐶𝑡

[
𝑢0

𝑋1/2
+
V0

𝑋
]

+ 𝐾∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

𝐿
𝑓
(𝑟)

× [‖𝑢 (𝑠)‖
𝑋
1/2 + ‖V (𝑠)‖

𝑋
] 𝑑𝑠

≤ 𝐾(𝜆 +
1

𝐶
𝐿
𝑓
(𝑟)) 𝑟

≤ 𝑟,

(45)

which permit us to infer thatF(𝐴𝐴𝑃
𝑟
) ⊆ 𝐴𝐴𝑃

𝑟
.

On the other hand, for [ 𝑢𝑖V𝑖 ] ∈ 𝑋
1/2

× 𝑋, 𝑖 = 1, 2, we have
that



F([
𝑢
1

V
1

]) (𝑡) −F([
𝑢
2

V
2

]) (𝑡)

𝑋1/2×𝑋

≤ 𝐾𝐿
𝑓
(𝑟) ∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

× [
𝑢1 (𝑠) − 𝑢

2
(𝑠)
𝑋1/2

+
V1 (𝑠) − V

2
(𝑠)
𝑋
] 𝑑𝑠

≤
𝐾

𝐶
𝐿
𝑓
(𝑟)



[
𝑢
1

V
1

] − [
𝑢
2

V
2

]

∞

,

(46)

which shows that F is a contraction from 𝐴𝐴𝑃
𝑟
into itself.

Therefore, the assertion holds for 𝜀 = 𝜆𝑟.

Theorem 17. Let 𝑓 ∈ 𝐴𝐴𝑃(R+
× 𝑋

1/2
× 𝑋,𝑋) be a function

that satisfies the local Lipschitz condition (42) with 𝐿
𝑓
(⋅) a

nondecreasing function. Assume that there is a constant 𝑟 > 0

such that

𝐾

𝐶
(𝐿

𝑓
(𝑟 + 𝐶#) +

1

𝑟
(𝐿

𝑓
(𝐶#) 𝐶# + sup

𝑡≥0

𝑓 (𝑡, 0, 0)
))

< 1,

(47)

where 𝐶# = 𝐾[‖𝑢
0
‖
𝑋
1/2 + ‖V

0
‖
𝑋
], 𝐾, and 𝐶 are the constant

given in (7). Then, there is an asymptotically almost-periodic
mild solution of problem (2).

Proof. We define the map Γ on the closed ball

B
𝑟
= {[

𝑢

V
] ∈ 𝐴𝐴𝑃

0
(𝑋

1/2
× 𝑋) : ‖𝑢 (𝑡)‖

𝑋
1/2 + ‖V (𝑡)‖

𝑋
≤ 𝑟,

𝑡 ≥ 0}

(48)

by means of the expression (34).
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If [ 𝑢V ] ∈ B
𝑟
, we have the estimate



Γ ([
𝑢

V
]) (𝑡)

𝑋1/2×𝑋

≤



Γ ([
𝑢

V
]) (𝑡) − Γ ([

0

0
]) (𝑡)

𝑋1/2×𝑋

+



Γ ([
0

0
]) (𝑡)

𝑋1/2×𝑋

≤ 𝐾𝐿
𝑓
(𝑟 + 𝐶#) ∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

× [‖𝑢 (𝑠)‖
𝑋
1/2 + ‖V (𝑠)‖

𝑋
] 𝑑𝑠

+ 𝐾∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

×



𝐹(𝑠, 𝑒
−A(1/2)𝑠 [

𝑢
0

V
0

])

𝑋1/2×𝑋

𝑑𝑠

≤
𝐾

𝐶
𝐿
𝑓
(𝑟 + 𝐶#) 𝑟

+
𝐾

𝐶
(𝐿

𝑓
(𝐶#) 𝐶# + sup

𝑡≥0

𝑓 (𝑡, 0, 0)
)

≤
𝐾

𝐶
(𝐿

𝑓
(𝑟 + 𝐶#)

+
1

𝑟
(𝐿

𝑓
(𝐶#) 𝐶# + sup

𝑡≥0

𝑓 (𝑡, 0, 0)
)) 𝑟

≤ 𝑟.

(49)

Moreover, for [ 𝑢𝑖V𝑖 ] ∈ B
𝑟
, 𝑖 = 1, 2, we have



Γ ([
𝑢
1

V
1

]) (𝑡) − Γ ([
𝑢
2

V
2

]) (𝑡)

𝑋1/2×𝑋

≤ 𝐾𝐿
𝑓
(𝑟 + 𝐶#) ∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

× [
𝑢1 (𝑠) − 𝑢

2
(𝑠)
𝑋1/2

+
V1 (𝑠) − V

2
(𝑠)
𝑋
] 𝑑𝑠

≤ 𝐾𝐿
𝑓
(𝑟 + 𝐶#)



[
𝑢
1

V
1

] − [
𝑢
2

V
2

]

∞

.

(50)

Using (50), we get that Γ is a contraction onB
𝑟
.

In many concrete situations, the operator 𝐴 has compact
resolvent, which in turn implies that the semigroup 𝑒

−A(1/2)𝑡

generated by the operator −A
(1/2)

is compact for 𝑡 > 0. To
exploit this property of compactness, we need to introduce
some preliminaries.

Let 𝑌 be an arbitrary Banach space and let ℎ : [0,∞) →

[1,∞) be a nondecreasing continuous function such that

ℎ(𝑡) → ∞ when 𝑡 → ∞. In next, we denote by 𝐶
ℎ
(𝑌) the

space

𝐶
ℎ
(𝑌) = {𝑢 ∈ 𝐶 (R

+
, 𝑌) : lim

𝑡→0

𝑢 (𝑡)

ℎ (𝑡)
= 0} (51)

endowed with the norm

‖𝑢‖
ℎ
= sup

𝑡≥0

‖𝑢 (𝑡)‖
𝑌

ℎ (𝑡)
. (52)

For reference purposes, we state the following property.

Lemma 18 (see [26]). A set K ⊆ 𝐶
ℎ
(𝑌) is relatively compact

in 𝐶
ℎ
(𝑌) if the following conditions are fulfilled:

(C1) For all 𝑏 > 0, the setK
𝑏
= {𝑢|

[0,𝑏]
: 𝑢 ∈ K} is relatively

compact in 𝐶([0, 𝑏], 𝑌).
(C2) lim

𝑡→∞
(‖𝑢(𝑡)‖

𝑌
/ℎ(𝑡)) = 0 uniformly for 𝑢 ∈ K.

To establish our next result we introduce the following
condition.

(𝑊) There is a continuous nondecreasing function 𝑊
𝑓
:

R+
→ R+ such that

𝑓 (𝑡, 𝑢, V)
𝑋

≤ 𝑊
𝑓
(‖𝑢‖

𝑋
1/2 + ‖V‖

𝑋
) , (53)

for all 𝑡 ≥ 0 and all [ 𝑢V ] ∈ 𝑋1/2
× 𝑋.

We next denote

𝛽 (𝐿) = sup
𝑡≥0

𝐾

ℎ (𝑡)
∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

𝑊
𝑓
(𝐿ℎ (𝑠)) 𝑑𝑠. (54)

We have the following result.

Theorem 19. Assume that the operator 𝐴 in (1) has compact
resolvent. Suppose, in addition, that the following conditions
are fulfilled:

(a) The function 𝑓 ∈ 𝐴𝐴𝑃(R+
×𝑋

1/2
×𝑋,𝑋) is uniformly

continuous on compact sets and satisfies the condition
(𝑊).

(b) For each 𝑎 ≥ 0, 𝑟 > 0, and 0 ≤ 𝜉 ≤ 𝑎,

(𝑒
−A(1/2)(𝑎+𝑠−𝜉) − 𝑒

−A(1/2)(𝑎−𝜉)) 𝐹(𝜉, [
𝑢

V
]) → 0 (55)

as 𝑠 → ∞ uniformly for all [ 𝑢V ] so that ‖𝑢‖𝑋1/2 +‖V‖𝑋 ≤ 𝑟.

(c) For each 𝐿 > 0,

lim
𝑡→∞

1

ℎ (𝑡)
∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

𝑊
𝑓
(𝐿ℎ (𝑠)) 𝑑𝑠 = 0. (56)

(d) For each 𝜀 > 0, there is 𝛿 > 0 such that for every [ 𝑢𝑖V𝑖 ] ∈
𝐶
ℎ
(𝑋

1/2
× 𝑋), 𝑖 = 1, 2 with

1

ℎ (𝑡)
[
𝑢1 (𝑡) − 𝑢

2
(𝑡)
𝑋1/2

+
V1 (𝑡) − V

2
(𝑡)
𝑋
] ≤ 𝛿,

𝑡 ≥ 0

(57)
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implies that

∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)𝑓 (𝑠, 𝑢

1
(𝑠) , V

1
(𝑠)) − 𝑓 (𝑠, 𝑢

2
(𝑠) , V

2
(𝑠))

𝑋
𝑑𝑠 ≤ 𝜀,

(58)

for each 𝑡 ≥ 0.

(e) lim inf
𝜉→∞

𝛽(𝜉)/𝜉 < 1.

Then, problem (2) has an asymptotically almost-periodic
mild solution.

Proof. Let 𝐶
0

ℎ
(𝑋

1/2
× 𝑋) be the space consisting of the

functions [ 𝑢(⋅)V(⋅) ] in 𝐶ℎ(𝑋
1/2

×𝑋) such that 𝑢(0) = 0, V(0) = 0.
It is clear that 𝐶0

ℎ
(𝑋

1/2
×𝑋) is a closed subspace of 𝐶

ℎ
(𝑋

1/2
×

𝑋). We define the operator Γ on 𝐶
0

ℎ
(𝑋

1/2
× 𝑋) by (34). It

follows from conditions (a) and (c) that

1

ℎ (𝑡)



Γ ([
𝑢

V
]) (𝑡)

𝑋1/2×𝑋

≤
𝐾

ℎ (𝑡)
∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

𝑊
𝑓
(𝐿ℎ (𝑠)) 𝑑𝑠 → 0,

𝑡 → ∞,

(59)

where

𝐿 =



[
𝑢

V
]

ℎ

+ 𝐾 (
𝑢0

𝑋1/2
+
V0

𝑋
) . (60)

Thus, we have that Γ : 𝐶0
ℎ
(𝑋

1/2
× 𝑋) → 𝐶

0

ℎ
(𝑋

1/2
× 𝑋).

We divide the rest of the proof into several steps.

(i) Themap Γ is continuous. For each 𝜀 > 0 there is 𝛿 > 0

such that for [ 𝑢𝑖V𝑖 ] ∈ 𝐶
0

ℎ
(𝑋

1/2
× 𝑋), 𝑖 = 1, 2

with


[
𝑢
1
− 𝑢

2

V
1
− V

2

]

ℎ

≤ 𝛿 (61)

implies that

1

ℎ (𝑡)



Γ ([
𝑢
1

V
1

]) (𝑡) − Γ ([
𝑢
2

V
2

]) (𝑡)

𝑋1/2×𝑋

≤
1

ℎ (𝑡)
𝜀 ≤ 𝜀,

(62)

which shows the assertion.
(ii) The map Γ is completely continuous. We take 𝑟 > 0

and we set 𝑉 = Γ(𝐵
𝑟
(𝐶

0

ℎ
(𝑋

1/2
× 𝑋))).

For 𝑡 ≥ 0, we set

𝑉 (𝑡) := {[
𝑢 (𝑡)

V (𝑡)
] : [

𝑢

V
] ∈ 𝑉} . (63)

We first show that 𝑉(𝑡) is a relatively compact set in
𝑋
1/2

×𝑋 for each 𝑡 ≥ 0. It follows from themean value

theorem that𝑉(𝑡) ∈ 𝑡𝑐(K
0
), where 𝑐(K

0
) denotes the

convex hull of

K
0
= {𝑒

−A(1/2)(𝑡−𝑠)𝐹(𝑠, [
𝑢

V
]) : 0 ≤ 𝑠 ≤ 𝑡,

‖𝑢‖
𝑋
1/2 + ‖V‖

𝑋
≤ 𝜌} ,

(64)

where 𝜌 = ℎ(𝑡)(𝑟 + 𝐾(‖𝑢
0
‖
𝑋
1/2 + ‖V

0
‖
𝑋
)), and 𝐾 is a

constant given in (7).
Since

sup{


𝐹(𝑠, [
𝑢

V
])

𝑋1/2×𝑋

: 0 ≤ 𝑠 ≤ 𝑡,

‖𝑢‖
𝑋
1/2 + ‖V‖

𝑋
≤ 𝜌} ≤ 𝑊

𝑓
(𝜌) ,

(65)

and taking into account that 𝑒−A(1/2)𝑡 is compact for
𝑡 > 0, we infer that K

0
is a relatively compact set

in 𝑋
1/2

× 𝑋 and consequently 𝑉(𝑡) is also relatively
compact. Let now 𝑏 > 0 fixed and𝑉

𝑏
the set formed by

the functions [ 𝑢V ] ∈ 𝑉 restricted to the interval [0, 𝑏].
We affirm that the set 𝑉

𝑏
is equicontinuous.

In fact, if

[
𝑢

V
] = Γ([

�̃�

Ṽ
]) , with [

�̃�

Ṽ
] ∈ 𝐵

𝑟
(𝐶

0

ℎ
(𝑋

1/2
× 𝑋)) .

(66)

For 𝑠 ≥ 0, we obtain the following estimate:


[
𝑢 (𝑡 + 𝑠) − 𝑢 (𝑡)

V (𝑡 + 𝑠) − V (𝑡)
]

𝑋1/2×𝑋

≤ 𝐾∫

𝑡+𝑠

𝑡

𝑒
−𝐶(𝑡+𝑠−𝜉)

𝑊
𝑓
(𝐿ℎ (𝜉)) 𝑑𝜉

+ ∫

𝑡

0



(𝑒
−A(1/2)(𝑡+𝑠−𝜉) − 𝑒

−A(1/2)(𝑡−𝜉))

× 𝐹(𝜉, [
�̃� (𝜉)

Ṽ (𝜉)
] + 𝑒

−A(1/2)𝜉 [
𝑢
0

V
0

])

𝑋1/2×𝑋

𝑑𝜉,

(67)

where 𝐿 = 𝑟+𝐾(‖𝑢
0
‖
𝑋
1/2 +‖V0‖𝑋). It is immediate that

the first term on the right hand side converges to zero
when 𝑠 → 0 and, using condition (𝑏) we obtain the
second term on the right-hand side also converges to
zerowhen 𝑠 → 0 and the convergence is independent
of the function [ �̃�(⋅)Ṽ(⋅) ].
We now show that

lim
𝑡→∞

1

ℎ (𝑡)
[
𝑢 (𝑡)

V (𝑡)
] = 0, (68)

independent of [ �̃�Ṽ ] ∈ 𝐵
𝑟
(𝐶

0

ℎ
(𝑋

1/2
× 𝑋)). This

assertion is a direct consequence of the following
estimate and the condition (c) :

1

ℎ (𝑡)



[
𝑢 (𝑡)

V (𝑡)
]

𝑋1/2×𝑋

≤
𝐾

ℎ (𝑡)
∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

𝑊
𝑓
(𝐿ℎ (𝑠)) 𝑑𝑠. (69)
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Combining these assertions with Lemma 18, we get
that 𝑉 is a relatively compact set in 𝐶

0

ℎ
(𝑋

1/2
× 𝑋).

Since 𝑟 was chosen arbitrary, this proves that Γ is
completely continuous.

(iii) There is 𝑟
0
> 0 such that Γ(𝐵

𝑟0
(𝐶

0

ℎ
(𝑋

1/2
× 𝑋))) ⊆

𝐵
𝑟0
(𝐶

0

ℎ
(𝑋

1/2
× 𝑋)). In fact, if we assume that the

assertion is false; then for all 𝑟 > 0 we can choose
[
𝑢
𝑟

V𝑟 ] ∈ 𝐵𝑟0
(𝐶

0

ℎ
(𝑋

1/2
× 𝑋)) such that

1

ℎ (𝑡)



Γ ([
𝑢
𝑟

V𝑟
]) (𝑡)

𝑋1/2×𝑋

> 𝑟 (70)

for all 𝑡 ∈ R+. Then

1 ≤ (1 +
𝐾 (

𝑢0
𝑋1/2

+
V0

𝑋
)

𝑟
)

×
𝛽 (𝑟 + 𝐾 (

𝑢0
𝑋1/2

+
V0

𝑋
))

𝑟 + 𝐾 (
𝑢0

𝑋1/2
+
V0

𝑋
)

,

(71)

1 ≤ lim inf
𝜉→∞

𝛽 (𝜉)

𝜉
, (72)

which contradicts condition (e) and establishes the
assertion.

(iv) If [ 𝑢V ] ∈ 𝐴𝐴𝑃
0
(𝑋

1/2
× 𝑋), then the function R+

→

𝑋
1/2

× 𝑋 given by

𝑡 → [
𝑢 (𝑡)

V (𝑡)
] + 𝑒

−A(1/2)𝑡 [
𝑢
0

V
0

] (73)

is in𝐴𝐴𝑃(𝑋1/2
× 𝑋). Since 𝑓 ∈ 𝐴𝐴𝑃(R+

× 𝑋
1/2

×

𝑋,𝑋) is uniformly continuous on compact sets, we
have from Lemma 9 that

𝑡 → 𝐹(𝑡, [
𝑢 (𝑡)

V (𝑡)
] + 𝑒

−A(1/2)𝑡 [
𝑢
0

V
0

]) ∈ 𝐴𝐴𝑃 (𝑋
1/2

× 𝑋) .

(74)

Applying Lemma 10, we obtain that Γ(𝐴𝐴𝑃0(𝑋1/2
×

𝑋)) ⊆ 𝐴𝐴𝑃
0
(𝑋

1/2
× 𝑋). Consequently, combining

with (iii) we infer that

Γ (𝐵
𝑟0
(𝐶

0

ℎ
(𝑋1/2 × 𝑋)) ∩ 𝐴𝐴𝑃0 (𝑋1/2 × 𝑋)

ℎ

)

⊆ 𝐵
𝑟0
(𝐶

0

ℎ
(𝑋1/2 × 𝑋)) ∩ 𝐴𝐴𝑃0 (𝑋1/2 × 𝑋)

ℎ

,

(75)

where S
ℎ

denotes the closure of S in
𝐶
ℎ
(𝑋

1/2
× 𝑋). Using Schauder fixed point

theorem, we deduce that Γ has a fixed point
[
𝑢

V ] ∈ 𝐵𝑟0
(𝐶

0

ℎ
(𝑋1/2 × 𝑋)) ∩ 𝐴𝐴𝑃0(𝑋1/2 × 𝑋)

ℎ

.

(v) Finally, we show that [
𝑢

V ] ∈ 𝐴𝐴𝑃
0
(𝑋

1/2
× 𝑋).

Let ([ 𝑢𝑛V𝑛 ] )𝑛 be a sequence in 𝐵
𝑟0
(𝐶

0

ℎ
(𝑋

1/2
× 𝑋)) ∩

𝐴𝐴𝑃
0
(𝑋

1/2
×𝑋) that converges to [ 𝑢V ] for the topology

in 𝐶
ℎ
(𝑋

1/2
× 𝑋). For 𝜀 > 0, let 𝛿 > 0 be the constant

in condition (𝑑); there is 𝑛
0
∈ N so that

1

ℎ (𝑡)



[
𝑢
𝑛
(𝑡) − 𝑢 (𝑡)

V𝑛 (𝑡) − V (𝑡)
]

𝑋1/2×𝑋

≤ 𝛿, (76)

for all 𝑡 ≥ 0 and all 𝑛 ≥ 𝑛
0
. Therefore, for 𝑛 ≥ 𝑛

0

sup
𝑡≥0



Γ ([
𝑢
𝑛

V𝑛
]) (𝑡) − Γ ([

𝑢

V
]) (𝑡)

𝑋1/2×𝑋

≤ 𝜀. (77)

Hence

lim
𝑛→∞



Γ [
𝑢
𝑛

V𝑛
] − [

𝑢

V
]

∞

= 0. (78)

Since Γ [ 𝑢𝑛V𝑛 ] ∈ 𝐴𝐴𝑃
0
(𝑋

1/2
× 𝑋) we get that [ 𝑢V ] ∈

𝐴𝐴𝑃
0
(𝑋

1/2
× 𝑋) and completes the proof.

Remark 20. Note that in Theorem 19 we do not need to
assume that the operator𝐴 in (1) has compact resolvent if the
following condition holds.

(f) For all 𝑎 ≥ 0 and 𝑟 > 0 the set {𝑓(𝑡, 𝜑
1
, 𝜑
2
) : 0 ≤ 𝑡 ≤

𝑎, ||𝜑
1
||
𝑋
1/2 + ||𝜑

2
||
𝑋
≤ 𝑟} is relatively compact in𝑋.

4. Applications

Suppose that ℎ, 𝑔 ∈ 𝐶(R,R), 𝑎 : R → R (𝑏 : R+
→ R) is

a bounded continuous function, ], 𝜇 ∈ R, 𝛿 > 0 and 𝜌
1
, 𝜌
2
∈

(1, +∞). In a bounded smooth domainΩ ⊆ R𝑁, we consider
the following partial differential equation:

𝑢
𝑡𝑡
+ ]𝑏 (𝑡) 𝑢

𝑡
+ Δ

2
𝑢 − 𝛿Δ𝑢

𝑡
= 𝜇𝑎 (𝑡) (ℎ (𝑢) ∇ ⋅ 𝑢 + 𝑔 (𝑢) Δ𝑢)

𝑥 ∈ Ω, 𝑡 ≥ 0,

𝑢 = Δ𝑢 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑢

𝑡
(0, 𝑥) = V

0
(𝑥) , 𝑥 ∈ Ω,

(79)

where ℎ and 𝑔 satisfy the following growth conditions:
ℎ (𝑠1) − ℎ (𝑠

2
)
 ≤ 𝐶

ℎ

𝑠1 − 𝑠
2

 (1 +
𝑠1


𝜌1−1

+
𝑠2


𝜌1−1

) ,

𝑠
1
, 𝑠
2
∈ R,

𝑔 (𝑠1) − 𝑔 (𝑠
2
)
 ≤ 𝐶

𝑔

𝑠1 − 𝑠
2

 (1 +
𝑠2


𝜌2−1

+
𝑠1


𝜌2−1

) ,

𝑠
1
, 𝑠
2
∈ R,

(80)

where 𝐶
ℎ
and 𝐶

𝑔
are positive constants. Here, we describe

the asymptotically almost-periodic behavior of solutions of
problem (79) in the 𝐿𝑝-setting. To model this problem in the
abstract form (1) we set that 𝜂 = 𝛿/2, 𝑝 > 𝑁/2, the operator
𝐴 is defined in 𝐿

𝑝
(Ω) by 𝐴𝑢 = Δ

2

𝐷
𝑢 (Δ

𝐷
is the Dirichlet

Laplacian inΩ) on the domain

𝐷(Δ
2

𝐷
) = {𝜙 ∈ 𝐻

4

𝑝
(Ω) : 𝜙 = Δ𝜙 = 0 on 𝜕Ω} , (81)
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where 𝐻4

𝑝
(Ω) = 𝑊

4,𝑝
(Ω) is the standard Sobolev space (see

[37]). With this specification, problem (79) will fall into the
abstract formulation (1). Since 𝐴1/2 = −Δ

𝐷
, we can choose

the angle 𝜓 for the sector

Σ
𝜓/2

= {𝜆 ∈ C :
𝜓

2
≤
arg 𝜆

 ≤ 𝜋 with 𝜓 ∈ (0,
𝜋

2
)} (82)

as small as needed and therefor (see [21, Example 4.3]) (𝜂, 𝐴)
will be an admissible pair for any 𝜂 > 0. From [21, Section 3]
we get that

[𝐿
𝑝
(Ω)]

1/2

= {𝜙 ∈ 𝐻
2

𝑝
(Ω) : 𝜙 = Δ𝜙 = 0 on 𝜕Ω} . (83)

We define 𝑓 : R+
× [𝐿

𝑝
(Ω)]

1/2
× 𝐿

𝑝
(Ω) → 𝐿

𝑝
(Ω) by

𝑓 (𝑡, 𝜑
1
, 𝜑
2
)

= 𝜇𝑎 (𝑡) (ℎ
𝑒
(𝜑
1
) ∇ ⋅ 𝜑

1
+ 𝑔

𝑒
(𝜑
1
) Δ𝜑

1
) − ]𝑏 (𝑡) 𝜑

2
,

𝑡 ∈ R
+
, 𝜑

1
∈ [𝐿

𝑝
(Ω)]

1/2

, 𝜑
2
∈ 𝐿

𝑝
(Ω) ,

(84)

where 𝜃𝑒 is the Nemytski ̆i operator associated with 𝜃, and
∇𝜑 represents the divergence of 𝜑. For 𝜑

1
∈ [𝐿

𝑝
(Ω)]

1/2

and 𝜑
2
∈ 𝐿

𝑝
(Ω). Using Minkowski’s inequality and Sobolev

embedding, we have the estimate

𝑓 (𝑡, 𝜑
1
, 𝜑
2
)
𝐿𝑝(Ω)

≤
𝜇
 |𝑎 (𝑡)| (

ℎ
𝑒
(𝜑
1
)
𝐿∞(Ω)

+
𝑔

𝑒
(𝜑
1
)
𝐿∞(Ω)

)

×
𝜑1

𝐻2𝑝(Ω)
+ |]| |𝑏 (𝑡)| 𝜑2

𝐿𝑝(Ω)
.

(85)

Whence 𝑓 is well defined. We claim that 𝑓 satisfies (42) with

𝐿
𝑓
(𝑟) = 𝐶 (

𝜇
 + |]|) (‖𝑎‖

∞
+ ‖𝑏‖

∞
)

× (1 + 2𝑟 + 3 (𝑟
𝜌1 + 𝑟

𝜌2)) .

(86)

Indeed, it is an easy consequence of the following estimates
(here 𝐶 will stand for some positive constant independent of
𝜑
1
and 𝜑

2
with 𝜑

1
, 𝜑
2
∈ [𝐿

𝑝
(Ω)]

1/2).

(ℎ
𝑒
(𝜑
1
) − ℎ

𝑒
(𝜑
2
)) ∇ ⋅ 𝜑

1

𝐿𝑝(Ω)

≤ 𝐶
𝜑1 − 𝜑

2

𝐻2𝑝(Ω)

× (1 +
𝜑1



𝜌1−1

𝐻
2
𝑝(Ω)

+
𝜑2



𝜌1−1

𝐻
2
𝑝(Ω)

)
𝜑1

𝐻2𝑝(Ω)
,

ℎ
𝑒
(𝜑
2
) ∇ ⋅ (𝜑

1
− 𝜑

2
)
𝐿𝑝(Ω)

≤ 𝐶(1 +
𝜑2

𝐻2𝑝(Ω)
+
𝜑2



𝜌1

𝐻
2
𝑝(Ω)

)
𝜑1 − 𝜑

2

𝐻2𝑝(Ω)
,

𝑔
𝑒
(𝜑
1
) Δ (𝜑

1
− 𝜑

2
)
𝐿𝑝(Ω)

≤ 𝐶(1 +
𝜑1

𝐻2𝑝(Ω)
+
𝜑1



𝜌2

𝐻
2
𝑝(Ω)

)
𝜑2

𝐻2𝑝(Ω)
,

(𝑔
𝑒
(𝜑
1
) − 𝑔

𝑒
(𝜑
2
)) Δ𝜑

2

𝐿𝑝(Ω)

≤ 𝐶
𝜑1 − 𝜑

2

𝐻2𝑝(Ω)

× (1 +
𝜑1



𝜌2−1

𝐻
2
𝑝(Ω)

+
𝜑2



𝜌2−1

𝐻
2
𝑝(Ω)

)
𝜑2

𝐻2𝑝(Ω)
.

(87)

Let 𝐾 be a compact subset of [𝐿𝑝(Ω)]1/2 × 𝐿
𝑝
(Ω). For 𝜑

1
∈

[𝐿
𝑝
(Ω)]

1/2 and 𝜑
2
∈ 𝐿

𝑝
(Ω), we set that

𝑓
𝑎𝑝
(𝑡, 𝜑

1
, 𝜑
2
) = 𝜇𝑎 (𝑡) (ℎ

𝑒
(𝜑
1
) ∇ ⋅ 𝜑

1
+ 𝑔

𝑒
(𝜑
1
) Δ𝜑

1
) ,

Φ
𝑓
(𝑡, 𝜑

1
, 𝜑
2
) = ]𝑏 (𝑡) 𝜑

2
,

𝑀
𝐾
= sup{



[
𝜑
1

𝜑
2

]

[𝐿𝑝(Ω)]1/2×𝐿𝑝(Ω)

: [
𝜑
1

𝜑
2

] ∈ 𝐾} .

(88)

We have the following estimates:

Φ
𝑓
(𝑡, 𝜑

1
, 𝜑
2
)
𝐿𝑝(Ω)

≤ |]| |𝑏 (𝑡)|𝑀
𝐾
, (89)


𝑓
𝑎𝑝
(𝑡 + 𝜏, 𝜑

1
, 𝜑
2
) − 𝑓

𝑎𝑝
(𝑡, 𝜑

1
, 𝜑
2
)
𝐿𝑝(Ω)

≤
𝜇
 |𝑎 (𝑡 + 𝜏) − 𝑎 (𝑡)|

× (
ℎ
𝑒
(𝜑
1
)
𝐿∞(Ω)

+
𝑔

𝑒
(𝜑
1
)
𝐿∞(Ω)

)
𝜑1

𝐻2𝑝(Ω)

≤ 𝐶
𝜇
 |𝑎 (𝑡 + 𝜏) − 𝑎 (𝑡)|

× (1 +
𝜑1

𝐻2𝑝(Ω)
+
𝜑1



𝜌1

𝐻
2
𝑝(Ω)

+
𝜑1



𝜌2

𝐻
2
𝑝(Ω)

)
𝜑1

𝐻2𝑝(Ω)

≤ 𝐶 (𝐾) |𝑎 (𝑡 + 𝜏) − 𝑎 (𝑡)| ,

(90)

where 𝐶(𝐾) is a constant depending on 𝐾.
If 𝑏 ∈ 𝐶

0
(R+

,R) from (89), we get

Φ
𝑓
∈ 𝐶

0
(R

+
× [𝐿

𝑝
(Ω)]

1/2

× 𝐿
𝑝
(Ω) , 𝐿

𝑝
(Ω)) , (91)

and (90) implies that

𝑓
𝑎𝑝
∈ 𝐴𝑃 (R × [𝐿

𝑝
(Ω)]

1/2

× 𝐿
𝑝
(Ω) , 𝐿

𝑝
(Ω)) . (92)
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Hence,

𝑓 ∈ 𝐴𝐴𝑃(R
+
× [𝐿

𝑝
(Ω)]

1/2

× 𝐿
𝑝
(Ω) , 𝐿

𝑝
(Ω)) . (93)

ApplyingTheorem 17, we have the following result.

Proposition 21. Under the previous conditions, if 𝑎 ∈

𝐴𝑃(R), 𝑏 ∈ 𝐶
0
(R+

,R), and |𝜇| + |]| is small enough,
then problem (79) has an asymptotically almost-periodic mild
solution.

Example 22. We consider the following partial differential
equation

𝑢
𝑡𝑡
+

]

𝑡 + 1
𝑢
𝑡
+ Δ𝑢

2
− 𝛿Δ𝑢

𝑡

= 𝜇 (cos 𝑡 + cos√2𝑡) |𝑢|𝜌−1 (𝑢∇ ⋅ 𝑢 + 𝑢Δ𝑢) ,

𝑥 ∈ Ω, 𝑡 ≥ 0,

𝑢 = Δ𝑢 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑢

𝑡
(0, 𝑥) = V

0
(𝑥) , 𝑥 ∈ Ω.

(94)

If |𝜇| + |]| is small enough by Proposition 21, problem (94)
has an asymptotically almost-periodic mild solution. In fact,
take ℎ(𝑢) = 𝑔(𝑢) = 𝑢|𝑢|

𝜌−1
, 𝑎(𝑡) = cos 𝑡 + cos√2𝑡, and 𝑏(𝑡) =

1/(𝑡 + 1).
The next application is a modification of problem (79).

Let 𝑘 be a fixed nonnegative integer and let 𝑐 : R → R+ and
𝑏 : R+

→ R be two bounded continuous functions. Suppose
that 𝑓 ∈ 𝐴𝐴𝑃(R+

× R𝑁
× R × R,R) satisfies the following

growth condition:
𝑓 (𝑡, 𝑥, 𝑢, 𝑤) − 𝑓 (𝑡, 𝑥, �̃�, 𝑤)



≤ 𝑐 (𝑡) [|𝑤 − 𝑤| + |𝑢 − �̃�| (1 + |𝑢|
𝑘
+ |�̃�|

𝑘
)] ,

(95)

for each 𝑡 ≥ 0, 𝑥 ∈ R𝑁, 𝑢, �̃�, 𝑤, 𝑤 ∈ R. We consider the
following partial differential equation

𝑢
𝑡𝑡
+ 𝑏 (𝑡) 𝑢

𝑡
+ Δ

2
𝑢 − 𝛿Δ𝑢

𝑡
= 𝑓 (𝑡, 𝑥, 𝑢, ∇ ⋅ 𝑢) ,

𝑥 ∈ Ω, 𝑡 ≥ 0,

𝑢 = Δ𝑢 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑢

𝑡
(0, 𝑥) = V

0
(𝑥) , 𝑥 ∈ Ω.

(96)

We model (96) in the abstract form (1) in a similar way
to problem (79). That is we set 𝜂 = 𝛿/2, 𝑝 > 𝑁 (hence
𝐻
2

𝑝
(Ω) → 𝐶

1
(Ω) which will be useful to get some a priori

estimates) and we consider the operator 𝐴 as defined in (81)
and (82). Suppose that

sup
𝑡≥0

(∫
Ω

𝑓 (𝑡, 𝑥, 0, 0)


𝑝

𝑑𝑥)

1/𝑝

< ∞. (97)

We define 𝐹 : R+
× [𝐿

𝑝
(Ω)]

1/2
× 𝐿

𝑝
(Ω) → 𝐿

𝑝
(Ω) by

𝐹 (𝑡, 𝜑
1
, 𝜑
2
) (𝑥) = 𝑓 (𝑡, 𝑥, 𝜑

1
(𝑥) , ∇ ⋅ 𝜑

1
(𝑥)) − 𝑏 (𝑡) 𝜑

2
(𝑥) .

(98)

We observe that𝐹 is well defined. In fact, we get the following
estimates:

(∫
Ω

𝑓 (𝑡, 𝑥, 𝜑1 (𝑥) , ∇ ⋅ 𝜑
1
(𝑥))



𝑝

𝑑𝑥)

1/𝑝

≤ 𝑐 (𝑡) ((∫
Ω

∇ ⋅ 𝜑
1
(𝑥)



𝑝

𝑑𝑥)

1/𝑝

+(∫
Ω

𝜑1 (𝑥)


𝑝

(1 +
𝜑1 (𝑥)



𝑘

)

𝑝

𝑑𝑥)

1/𝑝

+(∫
Ω

𝑓 (𝑡, 𝑥, 0, 0)


𝑝

𝑑𝑥)

1/𝑝

)

≤ ‖𝑐‖
∞
(
∇ ⋅ 𝜑

1

𝐿𝑝(Ω)
+ (1 +

𝜑1


𝑘

𝐿
∞
(Ω)

)
𝜑1

𝐿𝑝(Ω)

+(∫
Ω

𝑓 (𝑡, 𝑥, 0, 0)


𝑝

𝑑𝑥)

1/𝑝

) .

(99)

On the other hand, for𝜑
1
, 𝜑
1
∈ [𝐿

𝑝
(Ω)]

1/2 and𝜑
2
, 𝜑
2
∈ 𝐿

𝑝
(Ω)

we have the following estimate:

𝐹 (𝑡, 𝜑

1
, 𝜑
2
) − 𝐹 (𝑡, 𝜑

1
, 𝜑
2
)
𝐿𝑝(Ω)

≤ 4max {‖𝑐‖
∞
, ‖𝑏‖

∞
} (1 +

𝜑1


𝑘

𝐻
2
𝑝(Ω)

+
𝜑1



𝑘

𝐻
2
𝑝(Ω)

)

× (
𝜑1 − 𝜑

1

𝐻2𝑝(Ω)
+
𝜑2 − 𝜑

2

𝐿𝑝(Ω)
) ,

(100)

which means that 𝐹 satisfies (42) with 𝐿
𝐹
(𝑟) =

4max{‖𝑐‖
∞
, ‖𝑏‖

∞
}(1 + 2𝑟

𝑘
).

Since 𝑓 ∈ 𝐴𝐴𝑃(R+
× R𝑁

× R × R,R), there are two
functions

𝑓
𝑎𝑝
∈ 𝐴𝑃 (R ×R

𝑁
×R ×R,R) ,

𝜑
𝑓
∈ 𝐶

0
(R

+
×R

𝑁
×R ×R,R) ,

(101)

so that𝑓 = 𝑓
𝑎𝑝
+𝜑

𝑓
. Let𝐾 be a compact subset of [𝐿𝑝(Ω)]1/2×

𝐿
𝑝
(Ω). For 𝜑

1
∈ [𝐿

𝑝
(Ω)]

1/2 and 𝜑
2
∈ 𝐿

𝑝
(Ω), we set

𝐹
𝑎𝑝
(𝑡, 𝜑

1
, 𝜑
2
) (𝑥) = 𝑓

𝑎𝑝
(𝑡, 𝑥, 𝜑

1
(𝑥) , ∇ ⋅ 𝜑

1
(𝑥)) ,

Φ̃
𝐹
(𝑡, 𝜑

1
, 𝜑
2
) (𝑥) = 𝜑

𝑓
(𝑡, 𝑥, 𝜑

1
(𝑥) , ∇ ⋅ 𝜑

1
(𝑥)) − 𝑏 (𝑡) 𝜑

2
(𝑥) .

(102)
If (𝜑

1
, 𝜑
2
) ∈ 𝐾, then


Φ̃
𝐹
(𝑡, 𝜑

1
, 𝜑
2
)
𝐿𝑝(Ω)

≤ (∫
Ω


𝜑
𝑓
(𝑡, 𝑥, 𝜑

1
(𝑥) , ∇ ⋅ 𝜑

1
(𝑥))



𝑝

𝑑𝑥)

1/𝑝

+ |𝑏 (𝑡)|𝑀
𝐾
,

(103)

where 𝑀
𝐾

is given by (88). We note that using Sobolev
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embedding we have that there is a positive constant 𝑐 > 0

depending only on𝐾 so that

sup
𝑥∈Ω

𝜑1 (𝑥)
 ≤ 𝑐, sup

𝑥∈Ω

∇ ⋅ 𝜑
1
(𝑥)

 ≤ 𝑐. (104)

Taking into account the fact that 𝑌 = Ω × 𝐵
𝑐
(R2

) is a
compact subset of R𝑁+2, (4.29) and (103). It follows that
lim

𝑡→∞
Φ̃
𝐹
(𝑡, 𝜑

1
, 𝜑
2
) = 0 uniformly for (𝜑

1
, 𝜑
2
) ∈ 𝐾. Hence,

Φ̃
𝐹
∈ 𝐶

0
(R

+
× [𝐿

𝑝
(Ω)]

1/2

× 𝐿
𝑝
(Ω) , 𝐿

𝑝
(Ω)) . (105)

As an immediate consequence of Definition 3 and using the
fact thatΩ is bounded we have that

𝐹
𝑎𝑝
∈ 𝐴𝑃(R × [𝐿

𝑝
(Ω)]

1/2

× 𝐿
𝑝
(Ω) , 𝐿

𝑝
(Ω)) . (106)

Since 𝐹 = 𝐹
𝑎𝑝
+ Φ̃

𝐹
, we conclude that

𝐹 ∈ 𝐴𝐴𝑃(R
+
× [𝐿

𝑝
(Ω)]

1/2

× 𝐿
𝑝
(Ω) , 𝐿

𝑝
(Ω)) . (107)

Proposition 23. Under the previous conditions, if
max{‖𝑐‖

∞
, ‖𝑏‖

∞
} is small enough, then problem (96)

has an asymptotically almost-periodic mild solution.

Proof. We argue as follows. Let us choose 𝑟 > 0 such
that 𝐾/𝑟𝐶 sup

𝑡≥0
(∫
Ω
|𝑓(𝑡, 𝑥, 0, 0)|

𝑝
𝑑𝑥)

1/𝑝 is small enough,
where 𝐾 and 𝐶 are constants given in (7). Then, condition
(47) is fulfilled. Now applying Theorem 17 we conclude the
proof.

Let 𝑎 : R+
→ R be a bounded continuous function and

let 𝛽 be in (0, 1) and 𝛿 > 0. In a bounded smooth domainΩ ⊆

R𝑁, we consider the following partial differential equation:

𝑢
𝑡𝑡
+ Δ

2
𝑢 − 𝛿Δ𝑢

𝑡
= 𝑎 (𝑡)


∫
Ω

∇ ⋅ 𝑢 (𝑡, 𝑥) 𝑑𝑥



𝛽

Φ
0
,

𝑥 ∈ Ω, 𝑡 ≥ 0,

𝑢 = Δ𝑢 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑢

𝑡
(0, 𝑥) = V

0
(𝑥) , 𝑥 ∈ Ω,

(108)

where Φ
0
∈ 𝐿

𝑝
(Ω), 𝑝 > 𝑁/2. We model (108) in the abstract

form (1); that is, we set 𝜂 = 𝛿/2 and we consider the operator
𝐴 as in (81) and (82).We define𝑓 : R+

×[𝐿
𝑝
(Ω)]

1/2
×𝐿

𝑝
(Ω) →

𝐿
𝑝
(Ω) by

𝑓 (𝑡, 𝜑
1
, 𝜑
2
) (𝑥) = 𝑎 (𝑡)


∫
Ω

∇ ⋅ 𝜑
1
(𝜉) 𝑑𝜉



𝛽

Φ
0
(𝑥) . (109)

To establish our next result, we assume the following condi-
tions.

(H1) Let 𝑎(⋅) = 𝑎
𝑎𝑝
(⋅) + 𝜑

𝑎
(⋅) be in 𝐴𝐴𝑃(R+

), with 𝑎
𝑎𝑝
(⋅) ∈

𝐴𝑃(R) and 𝜑
𝑎
(⋅) ∈ 𝐶

0
(R+

).

(H2) There is a continuous nondecreasing function ℎ :

[0,∞) → [1,∞) such that ℎ(𝑡) → ∞ as 𝑡 → ∞

and

lim
𝑡→∞

1

ℎ (𝑡)
∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

ℎ(𝑠)
𝛽
𝑑𝑠 = 0,

sup
𝑡≥0

∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

|𝑎 (𝑡)| ℎ(𝑠)
𝛽
𝑑𝑠 < ∞.

(110)

Proposition 24. Under the previous conditions, problem (108)
has an asymptotically almost-periodic mild solution.

Proof. Let 𝑞 > 0 be given so that (1/𝑞) + (1/𝑝) = 1. We can
infer the following estimate:

𝑓 (𝑡, 𝜑
1
, 𝜑
2
)
𝐿𝑝(Ω)

≤ ‖𝑎‖
∞

Φ0

𝐿𝑝(Ω)|
Ω|

𝛽/𝑞𝜑1


𝛽

𝐻
2
𝑝(Ω)

. (111)

Hence, we can define 𝑊
𝑓

in (𝑊) by 𝑊
𝑓
(𝜉) =

||𝑎||
∞
||Φ

0
||
𝐿
𝑝
(Ω)

|Ω|
𝛽/𝑞

𝜉
𝛽. Let 𝐾 be a compact subset of

[𝐿
𝑝
(Ω)]

1/2
× 𝐿

𝑝
(Ω) and let𝑀

𝐾
be as in (88). We set

𝑓
𝑎𝑝
(𝑡, 𝜑

1
, 𝜑
2
) (𝑥) = 𝑎

𝑎𝑝
(𝑡)


∫
Ω

∇ ⋅ 𝜑
1
(𝜉) 𝑑𝜉



𝛽

Φ
0
(𝑥) ,

Φ
#
𝑓
(𝑡, 𝜑

1
, 𝜑
2
) (𝑥) = 𝜑

𝑎
(𝑡)


∫
Ω

∇ ⋅ 𝜑
1
(𝜉) 𝑑𝜉



𝛽

Φ
0
(𝑥) ,

[
𝜑
1

𝜑
2

] , [
𝜓
1

𝜓
2

] ∈ 𝐾.

(112)

We have the following estimates:


𝑓
𝑎𝑝
(𝑡 + 𝜏, 𝜑

1
, 𝜑
2
) − 𝑓

𝑎𝑝
(𝑡, 𝜑

1
, 𝜑
2
)
𝐿𝑝(Ω)

≤ |Ω|
𝛽/𝑞

𝑀
𝛽

𝐾

Φ0

𝐿𝑝(Ω)


𝑎
𝑎𝑝
(𝑡 + 𝜏) − 𝑎

𝑎𝑝
(𝑡)

,

(113)


Φ

#
𝑓
(𝑡, 𝜑

1
, 𝜑
2
)
𝐿𝑝(Ω)

≤ |Ω|
𝛽/𝑞

𝑀
𝛽

𝐾

Φ0

𝐿𝑝(Ω)

𝜑𝑎 (𝑡)
 , (114)

𝑓 (𝑡, 𝜑1, 𝜑2) − 𝑓 (𝑡, 𝜓
1
, 𝜓

2
)
𝐿𝑝(Ω)

≤ |Ω|
𝛽/𝑞

‖𝑎‖
∞

Φ0

𝐿𝑝(Ω)

𝜑1 − 𝜓
1



𝛽

𝐻
2
𝑝(Ω)

.

(115)

It follows from (113) and (114) that𝑓 ∈ 𝐴𝐴𝑃(R+
×[𝐿

𝑝
(Ω)]

1/2
×

𝐿
𝑝
(Ω), 𝐿

𝑝
(Ω)). In addition, from the estimate (115), we obtain

that 𝑓 is uniformly continuous on compact sets.
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From (H
2
), for [ 𝑢𝑖V𝑖 ] ∈ 𝐶

ℎ
([𝐿

𝑝
(Ω)]

1/2
× 𝐿

𝑝
(Ω)), 𝑖 = 1, 2,

we can infer that

1

ℎ (𝑡)
∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

𝑊
𝑓
(𝐿ℎ (𝑠)) 𝑑𝑠

= ‖𝑎‖
∞

Φ0

𝐿𝑝(Ω)|
Ω|

𝛽/𝑞
𝐿
𝛽
(

1

ℎ (𝑡)
∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

ℎ(𝑠)
𝛽
𝑑𝑠) → 0,

𝑡 → ∞,

(116)

∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)𝑓 (𝑠, 𝑢

1
(𝑠) , V

1
(𝑠)) − 𝑓 (𝑠, 𝑢

2
(𝑠) , V

2
(𝑠))

𝐿𝑝(Ω)
𝑑𝑠

≤ |Ω|
𝛽/𝑞Φ0

𝐿𝑝(Ω)
∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

|𝑎 (𝑠)|
𝑢1 (𝑠) − 𝑢

2
(𝑠)


𝛽

𝐻
2
𝑝(Ω)

𝑑𝑠

= |Ω|
𝛽/𝑞Φ0

𝐿𝑝(Ω)
∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

|𝑎 (𝑠)| ℎ(𝑠)
𝛽

×(

𝑢1 (𝑠) − 𝑢
2
(𝑠)
𝐻2𝑝(Ω)

ℎ (𝑠)
)

𝛽

𝑑𝑠

≤ |Ω|
𝛽/𝑞Φ0

𝐿𝑝(Ω)
sup
𝑡≥0

(∫

𝑡

0

𝑒
−𝐶(𝑡−𝑠)

|𝑎 (𝑡)| ℎ(𝑠)
𝛽
𝑑𝑠)

× [sup
𝑡≥0

(
1

ℎ (𝑡)
[
𝑢1 (𝑡) − 𝑢

2
(𝑡)
𝐻2𝑝(Ω)

+
V1 (𝑡) − V

2
(𝑡)
𝐿𝑝(Ω)

] )]

𝛽

.

(117)

Therefore, conditions (c) and (d) of Theorem 19 are satisfied.
A straightforward computation shows that (e) holds. We can
prove that the set {𝑓(𝑡, 𝜑

1
, 𝜑
2
) : 0 ≤ 𝑡 ≤ 𝑎, ||𝜑

1
||
𝐻
2
𝑝(Ω)

+

||𝜑
2
||
𝐿
𝑝
(Ω)

≤ 𝑟} is relatively compact in 𝐿
𝑝
(Ω). In fact, first,

we denote by �̃� the zero extension of 𝑢 outsideΩ; that is,

�̃� (𝑥) = {
𝑢 (𝑥) if 𝑥 ∈ Ω,

0 if 𝑥 ∈ R𝑁
\ Ω.

(118)

For every number 𝜀 > 0, there exists a number 𝛿 > 0 and a
subset 𝐺 ⊂⊂ Ω such that for every  ∈ R𝑁 with || < 𝛿

∫
Ω


Φ̃
0
(𝑥 + ) − Φ̃

0
(𝑥)



𝑝

𝑑𝑥 < (
𝜀

𝑟𝛽‖𝑎‖
∞
|Ω|

𝛽/𝑞
)

𝑝

,

∫
Ω\𝐺

Φ0
(𝑥)



𝑝

𝑑𝑥 < (
𝜀

𝑟𝛽‖𝑎‖
∞
|Ω|

𝛽/𝑞
)

𝑝

.

(119)

Hence,

∫
Ω


𝑓 (𝑡, 𝜑

1
, 𝜑
2
) (𝑥 + ) − 𝑓 (𝑡, 𝜑

1
, 𝜑
2
) (𝑥)



𝑝

𝑑𝑥

≤ [𝑟
𝛽
‖𝑎‖

∞
|Ω|

𝛽/𝑞
]
𝑝

× ∫
Ω


Φ̃
0
(𝑥 + 𝜌) − Φ̃

0
(𝑥)



𝑝

𝑑𝑥 ≤ 𝜀,

∫
Ω\𝐺

𝑓 (𝑡, 𝜑1, 𝜑2) (𝑥)


𝑝

𝑑𝑥 ≤ [𝑟
𝛽
‖𝑎‖

∞
|Ω|

𝛽/𝑞
]
𝑝

× ∫
Ω\𝐺

Φ0
(𝑥)



𝑝

𝑑𝑥 ≤ 𝜀.

(120)

From [38, Theorem 2.21] the desired assertion follows. Note
finally that using Remark 20 we have that (108) has an
asymptotically almost periodic mild solution. This ends the
proof.
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