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The dynamics of a diffusive ratio-dependent Holling-Tanner predator-prey system subject to Neumann boundary conditions are
considered. By choosing the ratio of intrinsic growth rates of predators to preys as a bifurcation parameter, the existence and
stability of spatially homogeneous and nonhomogeneous Hopf bifurcations and steady state bifurcation are investigated in detail.
Meanwhile, we show that Turing instability takes place at a certain critical value; that is, the stationary solution becomes unstable
induced by diffusion. Particularly, the sufficient conditions of the global stability of the positive constant coexistence are given by
the upper-lower solutions method.

1. Introduction

Predator-prey systems describing the interaction between
two species with positive-negative feedbacks continue to
arouse the interest of applied mathematicians and ecologists.
The functional response is the important component depict-
ing the predator-prey relationship [1]. In order to better char-
acterize the ecological interaction such as lynx and hare and
sparrow and sparrow hawk especially by Tanner [2] andWol-
lkind et al. [3], May developed the so-called Holling-Tanner
predator-prey model [4] which takes the following form:

𝑑𝑈

𝑑𝑇
= 𝑟𝑈 (𝑇) (1 −

𝑈 (𝑇)

𝐾
) −

𝑚𝑈 (𝑇)𝑉 (𝑇)

𝑢 (𝑇) + 𝑞
,

𝑑𝑉

𝑑𝑇
= 𝑠𝑉 (𝑇) (1 − ℎ

𝑉 (𝑇)

𝑈 (𝑇)
) ,

(1)

where 𝑈(𝑇), 𝑉(𝑇) stand for the prey and the predator
densities, respectively. And in ecological senses, 𝑟, 𝐾, 𝑚,
𝑞, 𝑠, ℎ are positive constants which denote prey intrinsic
growth rate, carrying capacity, capturing rate, half capturing
saturation constant, predator intrinsic growth rate, and
conversion rate of prey into predator, respectively. The
functional response𝑚𝑈/(𝑈+ 𝑞) is of Michaelis-Menten type
in enzyme-substrate kinetics, proposed by Holling [5].

Hsu and Huang [6] proved the global stability of the
positive equilibrium of System (1) by applying the Dulac’s

criterion and constructing Lyapunov function. Gasull et al.
[7] showed that the stable positive equilibrium is surrounded
by two limit cycles.Thus, the local stability does not imply the
global stability.

Spatial diffusion is ubiquitous. Assuming the preys and
the predators are in an isolate patch, I neglect the impact
of migration, including immigration and emigration, and
only consider the diffusion of the spatial domain. It has
been shown that the diffusion can generate the more rich
spatiotemporal complex [8–10]. A diffusive Holling-Tanner
predator-prey system is as follows:

𝜕𝑈

𝜕𝑇
= 𝐷
1
𝑈
𝑥𝑥
+ 𝑟𝑈 (𝑥, 𝑇) (1 −

𝑈 (𝑥, 𝑇)

𝐾
)

−
𝑚𝑈 (𝑥, 𝑇)𝑉 (𝑥, 𝑇)

𝑈 (𝑥, 𝑇) + 𝑞
, 𝑥 ∈ (0, 𝑙𝜋) , 𝑇 > 0,

𝜕𝑉

𝜕𝑇
= 𝐷
2
𝑉
𝑥𝑥
+ 𝑠𝑉 (𝑥, 𝑇) (1 − ℎ

𝑉 (𝑥, 𝑇)

𝑈 (𝑥, 𝑇)
) ,

𝑥 ∈ (0, 𝑙𝜋) , 𝑇 > 0,

𝑈
𝑥
(0, 𝑇) = 𝑈

𝑥
(𝑙𝜋, 𝑇) = 𝑉

𝑥
(0, 𝑇) = 𝑉

𝑥
(𝑙𝜋, 𝑇) = 0, 𝑇 ≥ 0,

𝑈 (𝑥, 0) = 𝑈
0
(𝑥) ≥ 0, 𝑉 (𝑥, 0) = 𝑉

0
(𝑥) ≥ 0, 𝑥 ∈ [0, 𝑙𝜋] .

(2)
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Ma and Li [11] investigated the existence of Hopf bifurcation
and the steady state bifurcations of simple and double eigen-
values of System (2). Peng and Wang [12] proved the global
stability of the unique positive equilibrium of System (2)
under certain hypothesis by constructing Lyapunov function.
Chen and Shi [13] improved the results given in [12].

Some biologists have questioned the functional response
solely depending on the prey density [14–16], especially when
predators have to search for food, (and therefore have to
share or compete for food). Numerous fields and laboratory
experiments have revealed that a more reasonable functional
response should be the so-called ratio-dependent predator-
prey theory [14, 15], which can be strongly stated as that
the per capita predator growth rate should be the function
of the ratio of predator abundance. A predator-prey system
with the ratio-dependent functional response can exhibit rich
dynamics [17, 18].

In this paper, we consider the following diffusive ratio-
dependent Holling-Tanner predator-prey system:

𝜕𝑈

𝜕𝑇
= 𝐷
1
𝑈
𝑥𝑥
+ 𝑟𝑈 (𝑥, 𝑇) (1 −

𝑈 (𝑥, 𝑇)

𝐾
)

−
𝑚𝑈 (𝑥, 𝑇)𝑉 (𝑥, 𝑇)

𝑈 (𝑥, 𝑇) + 𝑞𝑉 (𝑥, 𝑇)
, 𝑥 ∈ (0, 𝑙𝜋) , 𝑇 > 0,

𝜕𝑉

𝜕𝑇
= 𝐷
2
𝑉
𝑥𝑥
+ 𝑠𝑉 (𝑥, 𝑇) (1 − ℎ

𝑉 (𝑥, 𝑇)

𝑈 (𝑥, 𝑇)
) ,

𝑥 ∈ (0, 𝑙𝜋) , 𝑇 > 0,

𝑈
𝑥
(0, 𝑇) = 𝑈

𝑥
(𝑙𝜋, 𝑇) = 𝑉

𝑥
(0, 𝑇) = 𝑉

𝑥
(𝑙𝜋, 𝑇) = 0, 𝑇 ≥ 0,

𝑈 (𝑥, 0) = 𝑈
0
(𝑥) ≥ 0, 𝑉 (𝑥, 0) = 𝑉

0
(𝑥) ≥ 0, 𝑥 ∈ [0, 𝑙𝜋] .

(3)

M. Banerjee and S. Banerjee [19] examined the existence of
Turing and non-Turing patterns of System (3) by numerical
simulations and revealed the fact that Hopf bifurcation is
essential for spatiotemporal chaos. Liang and Pan [20] estab-
lished the global stability of positive equilibrium of System
(3) without diffusion by constructing Lyapunov function and
obtained the uniqueness of the limit cycle.

My work is the extension of [11, 19]. In addition, what is
more important in ecosystem is whether the species would
coexist in the long run; that is, whether the positive equilib-
rium is globally asymptotically stable. In this paper, we aim to
studyHopf bifurcations and steady state bifurcations induced
by intrinsic growth rate and Turing instability induced by
diffusion. Particularly, the global stability of the unique
positive equilibrium is obtained by the upper-lower solutions
method under certain conditions. Simulations are carried out
to strongly support the theoretical results.

The rest of the paper is organized as follows. In Section 2,
the instability of the semitrivial equilibrium and the local
stability of the positive coexistence of system (3) are studied
by the distribution of eigenvalues. And the existence, stability,
and direction ofHopf bifurcations are investigated in detail as
the intrinsic growth rate 𝜆 crosses the critical value. Turing
bifurcation induced by diffusion takes place at the certain
critical values. In Section 3, the steady state bifurcations

are considered with 𝜆 as the bifurcation parameter and the
interaction of Hopf bifurcation and steady state bifurcation
are discussed. In Section 4, the global stability of the unique
positive coexistence is proved by the upper-lower solutions
method.

2. Hopf Bifurcations and Turing Bifurcations

For simplicity of later discussion, we suppose that 𝐷
1
= 𝑟.

Introducing the following dimensionless variables:

𝑢 =
𝑈

𝐾
, V =

𝑚𝑉

𝑟𝐾
, 𝑡 = 𝑟𝑇, (4)

System (3) can be transformed into

𝜕𝑢

𝜕𝑡
= 𝑢
𝑥𝑥
+ 𝑢 (𝑥, 𝑡) (1 − 𝑢 (𝑥, 𝑡))

−
𝑢 (𝑥, 𝑡) V (𝑥, 𝑡)

𝑢 (𝑥, 𝑡) + 𝛼V (𝑥, 𝑡)
, 𝑥 ∈ (0, 𝑙𝜋) , 𝑡 > 0,

𝜕V

𝜕𝑡
= 𝑑V
𝑥𝑥
+ 𝜆V (𝑥, 𝑡) (𝛽 −

V (𝑥, 𝑡)

𝑢 (𝑥, 𝑡)
) ,

𝑥 ∈ (0, 𝑙𝜋) , 𝑡 > 0,

𝑢
𝑥
(0, 𝑡) = 𝑢

𝑥
(𝑙𝜋, 𝑡) = V

𝑥
(0, 𝑡) = V

𝑥
(𝑙𝜋, 𝑡) = 0, 𝑡 ≥ 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ≥ 0, V (𝑥, 0) = V

0
(𝑥) ≥ 0, 𝑥 ∈ [0, 𝑙𝜋] ,

(5)

where 𝑑 = 𝐷
2
/𝐷
1
, 𝛼 = 𝑞𝑟/𝑚, 𝜆 = 𝑠ℎ/𝑚, 𝛽 = 𝑚/ℎ𝑟.

It is easy to check that System (5) has always a boundary
equilibrium 𝐸

0
(1, 0) and has a positive constant coexistence

𝐸(𝑢
∗
, V∗) if and only if 𝛼𝛽 + 1 > 𝛽, where

𝑢
∗
= 1 −

𝛽

𝛼𝛽 + 1
> 0, V∗ = 𝛽𝑢∗. (6)

The characteristic equations of the linearization of (5) at
𝐸
0
(1, 0) are given by

(𝜇 +
𝑛
2

𝑙2
+ 1)(𝜇 + 𝑑

𝑛
2

𝑙2
− 𝜆𝛽) = 0, 𝑛 = 0, 1, 2, . . . . (7)

Thus,

𝜇
1
= −

𝑛
2

𝑙2
− 1, 𝜇

2
= 𝜆𝛽 − 𝑑

𝑛
2

𝑙2
, 𝑛 = 0, 1, . . . . (8)

Hence, 𝐸
0
(1, 0) is always unstable since (7) has at least a

positive root 𝜇 = 𝜆𝛽. Next we study the local stability
of the positive steady state 𝐸(𝑢∗, V∗) and the existence of
bifurcations.
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2.1. Stability of the Positive Coexistence and Hopf Bifurcations.
The linearized operator of System (5) at𝐸(𝑢∗, V∗) is as follows:

𝐿 (𝜆) = (

𝜕
2

𝜕𝑥2
+
𝛼𝛽
2
+ 2𝛽

(𝛼𝛽 + 1)
2
− 1 −

1

(𝛼𝛽 + 1)
2

𝜆𝛽
2

𝑑
𝜕
2

𝜕𝑥2
− 𝜆𝛽

) ,

𝐿
𝑛
(𝜆) = (

−
𝑛
2

𝑙2
+
𝛼𝛽
2
+ 2𝛽

(𝛼𝛽 + 1)
2
− 1 −

1

(𝛼𝛽 + 1)
2

𝜆𝛽
2

−𝑑
𝑛
2

𝑙2
− 𝜆𝛽

) .

(9)

The characteristic equations corresponding to 𝐿
𝑛
(𝜆) are

𝜇
2
− 𝑇
𝑛
(𝜆) 𝜇 + 𝐷

𝑛
(𝜆) = 0, 𝑛 = 0, 1, 2, . . . , (10)

where

𝑇
𝑛
(𝜆) = −

(1 + 𝑑) 𝑛
2

𝑙2
− 𝜆𝛽 +

𝛼𝛽
2
+ 2𝛽

(𝛼𝛽 + 1)
2
− 1

= −
(1 + 𝑑) 𝑛

2

𝑙2
− (𝜆 − 𝜆

𝐻

0
) 𝛽,

𝐷
𝑛
(𝜆) =

𝑑𝑛
4

𝑙4
+
𝑛
2

𝑙2
(𝑑(1 −

𝛼𝛽
2
+ 2𝛽

(𝛼𝛽 + 1)
2
) + 𝜆𝛽)

+ 𝜆𝛽(1 −
𝛽

1 + 𝛼𝛽
)

=
𝑑𝑛
4

𝑙4
+
𝑛
2

𝑙2
(𝜆 − 𝑑𝜆

𝐻

0
) 𝛽 + 𝜆𝛽𝑢

∗
,

(11)

where 𝜆𝐻
0
= (1/𝛽)((𝛼𝛽

2
+ 2𝛽)/(𝛼𝛽 + 1)

2
− 1).

Obviously, if𝛼𝛽2+2𝛽 ≤ (𝛼𝛽+1)2, then𝑇
𝑛
(𝜆) < 0,𝐷

𝑛
(𝜆) >

0, which implies that all the roots of (10) are negative real-
part.Thus the unique positive constant equilibrium𝐸(𝑢

∗
, V∗)

is locally asymptotically stable.
Indeed, in Section 4, we can prove the global stability

of the unique positive coexistence under the stronger con-
ditions. Next, we will seek all the possible Hopf bifurcation
values 𝜆

0
, so we assume 𝛼𝛽2 + 2𝛽 > (1 + 𝛼𝛽)2 holds.

We will identify Hopf bifurcation value 𝜆
0
which satisfies

𝑇
𝑛
(𝜆
0
) = 0, 𝐷

𝑛
(𝜆
0
) > 0,

𝑇
𝑗
(𝜆
0
) ̸= 0, 𝐷

𝑗
(𝜆
0
) ̸= 0, ∀𝑗 ̸= 𝑛.

(12)

From (11), 𝑇
𝑛
(𝜆) < 0, for all 𝜆 ∈ (𝜆𝐻

0
, +∞), which means that

the possible Hopf bifurcation points belong to the interval
(0, 𝜆
𝐻

0
]. For any Hopf bifurcation point 𝜆∗ ∈ (0, 𝜆𝐻

0
], 𝛼(𝜆) ±

𝑖𝜔(𝜆) are a pair of conjugate eigenvalues of 𝐿
𝑛
(𝜆) near 𝜆 = 𝜆∗,

where

𝛼 (𝜆) =
𝑇
𝑛
(𝜆)

2
, 𝜔 (𝜆) =

1

2
√4𝐷
𝑛
(𝜆) − 𝑇2

𝑛
(𝜆), (13)

and 𝛼(𝜆∗) = −𝛽/2 < 0.

Hence, all Hopf bifurcation points reduce to the following
set:

Λ
1
= {𝜆 ∈ (0, 𝜆

𝐻

0
] , for some 𝑛 ∈ 𝑁,

the condition (12) is satisfied} .
(14)

Obviously, 𝑇
𝑛
(𝜆) = 0 is equivalent to

𝜆
𝑛
= 𝜆
𝐻

0
−
(1 + 𝑑) 𝑛

2

𝛽𝑙2
, (15)

𝐷
𝑛
(𝜆
𝑛
) = −

𝑛
4

𝑙4
−
𝑛
2

𝑙2
𝐵
0
+ 𝜆
𝐻

0
𝛽𝑢
∗
, (16)

where 𝐵
0
= 2 − (2𝛼𝛽

2
+ 3𝛽 − 𝑑𝛽)/(1 + 𝛼𝛽)

2. Since 𝐷
0
(𝜆
0
) =

𝜆
𝐻

0
𝛽𝑢
∗
> 0, there exists 𝑁

0
∈ 𝑁
+ such that 𝐷

𝑛
(𝜆
𝑛
) > 0,

𝑛 = 0, 1, 2, . . . , 𝑁
0
, and𝐷

𝑛
(𝜆
𝑛
) ≤ 0, 𝑛 = 𝑁

0
+ 1,𝑁

0
+ 2, . . ..

Clearly, 𝑇
𝑖
(𝜆
𝑛
) = ((1+𝑑)/𝑙

2
)(𝑛
2
− 𝑖
2
) ̸= 0, for all 𝑖 ̸= 𝑛. And

for 𝑖 ̸= 𝑛,

𝐷
𝑖
(𝜆
𝑛
) =

𝑑𝑖
4

𝑙4
+
𝑖
2

𝑙2
(𝜆
𝑛
− 𝑑𝜆
𝐻

0
) 𝛽 + 𝜆

𝑛
𝛽𝑢
∗
. (17)

We discuss𝐷
𝑖
(𝜆
𝑛
) > 0, for all 𝑖 ̸= 𝑛 in two cases.

Case 1. We can choose small enough 𝑑 > 0 such that 𝜆
𝑛
−

𝑑𝜆
𝐻

0
> 0, that is, for 𝑛 = 0, 1, . . . , 𝑁

0
, 𝑑 < 𝑑

0
, where

𝑑
0
:=
𝛽𝑙
2
𝜆
𝐻

0
− 𝑁
2

0

𝛽𝑙2𝜆𝐻
0
+ 𝑁2
0

> 0. (18)

Case 2. When 𝑑 > 𝑑
0
,

𝑑𝜆
𝐻

0
− 𝜆
𝑛
= (𝑑 − 1) 𝜆

𝐻

0
+
(1 + 𝑑) 𝑛

2

𝑙2𝛽

≤ (𝑑 − 1) 𝜆
𝐻

0
+
(1 + 𝑑)𝑁

2

0

𝑙2𝛽
≜ 𝑀
∗
,

𝜆
𝑛
𝑢
∗
≥ (𝜆
𝐻

0
−
(1 + 𝑑)𝑁

2

0

𝑙2𝛽
)𝑢
∗
= (𝑑𝜆

𝐻

0
−𝑀
∗
) 𝑢
∗
.

(19)

Therefore,

𝐷
𝑖
(𝜆
𝑛
) ≥

𝑑𝑖
4

𝑙4
−
𝑖
2

𝑙2
𝑀
∗
𝛽 + (𝑑𝜆

𝐻

0
−𝑀
∗
) 𝑢
∗
𝛽 = 𝑔(

𝑖
2

𝑙2
) .

(20)

In order that 𝑔(𝑦) = 𝑑𝑦2 −𝑀∗𝛽𝑦 + (𝑑𝜆𝐻
0
−𝑀
∗
)𝑢
∗
𝛽 > 0 for

all 𝑦 ∈ 𝑅, we only need (𝑀∗)2𝛽 < 4𝑑(𝑑𝜆𝐻
0
− 𝑀
∗
)𝑢
∗. Thus,

𝐷
𝑖
(𝜆
𝑛
) > 0.

Clearly, 𝜆𝐻
0
= max

𝑛∈{0,1,...,𝑁0}
𝜆
𝑛
.

Summarizing the above analysis results, we draw our
main conclusion in this subsection.

Theorem 1. Suppose 𝛼, 𝛽, 𝑑 > 0 and 𝛼𝛽 + 1 > 𝛽, 𝛼𝛽2 + 2𝛽 >
(1 + 𝛼𝛽)

2 hold. If there exists 𝑑
0
> 0 such that 0 < 𝑑 < 𝑑

0
,

or (𝑀∗)2𝛽 < 4𝑑(𝑑𝜆𝐻
0
−𝑀
∗
)𝑢
∗, where 𝑑

0
and𝑀∗ are defined
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by (18) and (19), respectively.Then for System (5), the following
results are true:

(1) The positive constant steady state 𝐸(𝑢∗, V∗) is locally
asymptotically stable for 𝜆 ∈ (𝜆𝐻

0
, +∞) and unstable

for 𝜆 ∈ (0, 𝜆𝐻
0
);

(2) System (5) undergoes a Hopf bifurcation at 𝜆 = 𝜆
𝑛
, 𝑛 =

0, 1, . . . , 𝑁
0
(defined by (15)) and the bifurcating peri-

odic solutions can be parameterized into the following
forms:

𝑢 (𝑠) (𝑥, 𝑡) = 𝑠 (𝑎
𝑛
𝑒
2𝜋𝑖𝑡/𝑇(𝑠)

+ 𝑎
𝑛
𝑒
−2𝜋𝑖𝑡/𝑇(𝑠)

) cos 𝑛𝑥
𝑙
+ 𝑜 (𝑠) ,

V (𝑠) (𝑥, 𝑡) = 𝑠 (𝑏
𝑛
𝑒
2𝜋𝑖𝑡/𝑇(𝑠)

+ 𝑏
𝑛
𝑒
−2𝜋𝑖𝑡/𝑇(𝑠)

) cos 𝑛𝑥
𝑙
+ 𝑜 (𝑠) .

(21)

Furthermore, the periodic solutions bifurcating from 𝐸(𝑢
∗
, V∗)

at 𝜆 = 𝜆𝐻
0
are spatially homogeneous. And bifurcating periodic

solutions from 𝜆 = 𝜆
𝑛
, (𝑛 = 1, . . . , 𝑁

0
) are spatially

inhomogeneous.

Next we only consider the direction and stability of Hopf
bifurcation at 𝜆 = 𝜆𝐻

0
.

Theorem 2. For the System (5), the Hopf bifurcations at 𝜆 =
𝜆
𝐻

0
are backward, and the bifurcating periodic solutions are

locally asymptotically stable.

Proof. Here we apply the notations and calculations in [9, 21],
we put

𝑞 := (
𝑎
0

𝑏
0

) = (

𝜆
𝐻

0
𝛽 + 𝑖𝜔

0

𝜆𝐻
0
𝛽2

1

) ,

𝑞
∗
:= (

𝑎
∗

0

𝑏
∗

0

) =(

𝜆
𝐻

0
𝛽
2

2𝑙𝜋𝜔
0

𝑖

𝜔
0
− 𝑖𝜆
𝐻

0
𝛽

2𝑙𝜋𝜔
0

),

(22)

such that ⟨𝑞∗, 𝑞⟩ = 1 and ⟨𝑞∗, 𝑞⟩ = 0, where 𝜔
0
= √𝜆𝐻

0
𝛽𝑢∗.

Recall that in our context,

𝑓 (𝜆, 𝑢, V) = 𝑢 (1 − 𝑢) −
𝑢V

𝑢 + 𝛼V
,

𝑔 (𝜆, 𝑢, V) = 𝜆V (𝛽 −
V

𝑢
) .

(23)

By direct computation, it follows that

𝑐
0
= −

2

𝛽2
+

2𝜔
2

0

(𝜆𝐻
0
)
2

𝛽4
−

2𝛼

(𝛼𝛽 + 1)
3

𝜆𝐻
0
𝛽

−
4𝜔
0

𝜆𝐻
0
𝛽3
𝑖,

𝑑
0
=
2

𝛽
,

𝑒
0
= −

2

𝛽2
−
2𝑢
∗

𝜆𝐻
0
𝛽3
+

2𝛼

(𝛼𝛽 + 1)
3

𝜆𝐻
0
𝛽

, 𝑓
0
= −

2

𝛽
,

𝑔
0
=

𝛼

𝜆𝐻
0
𝛽2𝑢∗(𝛼𝛽 + 1)

4
(−2𝛼𝛽 − 2 −

3𝜔
0

𝜆𝐻
0
𝛽
𝑖) ,

ℎ
0
=
2

𝑢∗
(
1

𝛽2
+
3𝜔
0

𝜆𝐻
0
𝛽3
𝑖) ,

(24)

and

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ = −

1

𝛽
+ 𝑖(

2𝜆
𝐻

0

𝜔
0

−
𝜔
0

𝜆𝐻
0
𝛽2
+

𝛼𝛽

(𝛼𝛽 + 1)
3

𝜔
0

) ,

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ = ⟨𝑞∗, 𝑄

𝑞𝑞
⟩ = −

1

𝛽
+
𝑖

𝜔
0

(
𝑢
∗

𝛽
−

𝛼𝛽

(𝛼𝛽 + 1)
3
) ,

⟨𝑞∗, 𝑄
𝑞𝑞
⟩ =

3

𝛽
− 𝑖(

2𝜆
𝐻

0

𝜔
0

−
𝜔
0

𝜆𝐻
0
𝛽2
+

𝛼𝛽

(𝛼𝛽 + 1)
3

𝜔
0

) ,

⟨𝑞
∗
, 𝐶
𝑞𝑞𝑞
⟩ = − (

3𝛼

2𝑢∗𝜆𝐻
0
𝛽(𝛼𝛽 + 1)

4
+

2

𝛽2𝑢∗
)

+ 𝑖(
𝛼

𝜔
0
𝑢∗(𝛼𝛽 + 1)

3
+

𝜆
𝐻

0

𝜔
0
𝑢∗𝛽

+
3𝜔
0

𝜆𝐻
0
𝛽3𝑢∗

) .

(25)

Hence, it is direct to calculate, by (24) and (25),

𝐻
20
= (

𝑐
0

𝑑
0

) − ⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩(
𝑎
0

𝑏
0

)

− ⟨𝑞∗, 𝑄
𝑞𝑞
⟩ (
𝑎
0

𝑏
0

) = (
0

0
) ,

𝐻
11
= (

𝑒
0

𝑓
0

) − ⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩(
𝑎
0

𝑏
0

)

− ⟨𝑞∗, 𝑄
𝑞𝑞
⟩ (
𝑎
0

𝑏
0

) = (
0

0
) ,

(26)

which implies that 𝑊
20

= 𝑊
11

= 0. Thus, ⟨𝑞∗, 𝑄
𝑊11𝑞

⟩ =

⟨𝑞
∗
, 𝑄
𝑊20𝑞

⟩ = 0. Therefore, by (25) and 𝜔2
0
= 𝜆
𝐻

0
𝛽𝑢
∗, we can

obtain that

Re (𝐶
1
(𝜆
𝐻

0
))

= Re( 𝑖

2𝜔
0

(𝑔
20
𝑔
11
− 2
𝑔11


2

−
1

3

𝑔02

2

) +
𝑔
21

2
)

= Re( 𝑖

2𝜔
0

(⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ ⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩) +

1

2
⟨𝑞
∗
, 𝐶
𝑞𝑞𝑞
⟩)
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= (
𝑢
∗

2𝛽2𝜔2
0

−
1

2𝜆𝐻
0
𝛽3
) + (

𝜆
𝐻

0

𝛽𝜔2
0

−
1

𝛽2𝑢∗
)

−
3𝛼

4𝑢∗𝜆𝐻
0
𝛽(1 + 𝛼𝛽)

4

= −
3𝛼

4𝑢∗𝜆𝐻
0
𝛽(1 + 𝛼𝛽)

4
< 0.

(27)

Since 𝛼(𝜆𝐻
0
) = −𝛽/2, then the bifurcating periodic solutions

are backward and exist for 𝜏 < 𝜏𝐻
0
. And combining 𝑇

𝑛
(𝜆
𝐻

0
) =

−((1 + 𝑑)/𝑙
2
)𝑛
2
< 0, 𝐷

𝑛
(𝜆
𝐻

0
) > 0, for all 𝑛 = 1, 2, . . . , 𝑁

0
,

we can obtain that the bifurcating periodic solutions are
asymptotically stable since Re(𝐶

1
(𝜆
𝐻

0
)) < 0.

Next, we give an example to illustrate the theoretical
results above.

Example 3. Taking 𝑑 = 0.2, 𝛼 = 0.4, 𝛽 = 1.2, 𝑙 = 2, System (5)
has a unique positive constant steady state 𝐸(0.1892, 0.227).
Obviously, 𝛼𝛽 + 1 > 𝛽, 𝛼𝛽2 + 2𝛽 > (1 + 𝛼𝛽)2. By the formula
above, we obtain 𝜆𝐻

0
= 0.2989. And𝐷

0
(𝜆
𝐻

0
) < 0, 𝐷

1
(𝜆
1
) > 0.

Thus, 0 < 𝑑 < 𝑑
0
= 1. By Theorems 1 and 2, 𝐸(0.1892, 0.227)

is asymptotically stable for 𝜆 ∈ (0.2989, +∞) as illustrated
in Figures 1(a) and 1(b). When 𝜆 crosses through the critical
value, 𝐸(0.1892, 0.227) losses its stability and a family of
periodic solutions appear and are asymptotically stable since
Re(𝐶
1
(𝜆
𝐻

0
)) = −0.9215 < 0 as illustrated in Figures 2(a) and

2(b).

We can compute the direction and stability of bifurcating
periodic solutions by the same way as Theorem 2 and omit it
here. Combining the stability theory, we have the following
results.

Theorem 4. For System (5), the bifurcating periodic solutions
from 𝜆 = 𝜆

𝑛
, 𝑛 = 1, 2, . . . , 𝑁

0
(defined by (15)) are

backward (forward) if Re(𝐶
1
(𝜆
𝑛
)) < (>)0 and the spatially

inhomogeneous Hopf bifurcations are unstable.

2.2. Turing Instability Induced by Diffusion. In this subsec-
tion, we consider Turing instability with diffusion effect. As
mentioned earlier, when 𝛼𝛽2 + 2𝛽 ≤ (𝛼𝛽 + 1)

2, 𝑇
𝑛
(𝜆) <

0,𝐷
𝑛
(𝜆) > 0, for all 𝑛 ∈ {0, 1, 2, . . .}. Hence, no Turing

instability occurs. Next we always confine 𝛼𝛽2 + 2𝛽 > (𝛼𝛽 +
1)
2.
When System (5) has no diffusion, the characteristic

equation (10) at 𝐸(𝑢∗, V∗) can be transformed into

𝜇
2
− (𝜆
𝐻

0
− 𝜆) 𝛽𝜇 + 𝜆𝛽𝑢

∗
= 0. (28)

Then all the roots of (28) are negative real part if 𝜆 > 𝜆
𝐻

0
.

Combining the stability theory [22], we easily know that the
unique positive equilibrium 𝐸(𝑢

∗
, V∗) of System (5) without

diffusion is asymptotically stable for 𝜆 ∈ (𝜆
𝐻

0
, +∞) and

unstable for 𝜆 ∈ [0, 𝜆𝐻
0
). In the following, wemainly consider

the occurrence of Turing instability induced by diffusion.

Hence we confine 𝜆 ∈ (𝜆𝐻
0
, +∞). That is, 𝐸(𝑢∗, V∗) is locally

asymptotically stable without diffusion effect.
It is well-known that𝐸(𝑢∗, V∗) is unstable if the character-

istic equation (10) has at least a positive real-part root. Notice
when 𝜆 > 𝜆𝐻

0
, 𝑇
𝑛
(𝜆) < 0, for all 𝑛 = 0, 1, 2, . . .. The necessary

condition of the instability of the equlibirium 𝐸(𝑢
∗
, V∗) of

System (5) is𝐷
𝑛
(𝜆) < 0 for some 𝑛 ∈ 𝑁+ = {1, 2, . . .}.

Recall

𝐷
𝑛
(𝜆) =

𝑑𝑛
4

𝑙4
+
𝑛
2

𝑙2
(𝜆 − 𝑑𝜆

𝐻

0
) 𝛽 + 𝜆𝛽𝑢

∗
≜ 𝑔(

𝑛
2

𝑙2
) , (29)

where 𝑔(𝑥) = 𝑑𝑥2 − (𝑑𝜆𝐻
0
− 𝜆)𝛽𝑥 + 𝜆𝛽𝑢

∗.
Hence we need 𝜆 ∈ (𝜆𝐻

0
, 𝑑𝜆
𝐻

0
), 𝑑 > 1 and Δ ≜ (𝑑𝜆

𝐻

0
−

𝜆)
2
𝛽
2
− 4𝑑𝜆𝛽𝑢

∗
> 0. That is, (𝑑𝜆𝐻

0
− 𝜆)𝛽 > 2√𝑑𝜆𝛽𝑢∗.

Otherwise,𝐷
𝑖
(𝜆) ≥ 0 for all 𝑖 ∈ 𝑁.

Obviously, 𝑔(𝑥) = 0 has two positive roots 𝑥
1
, 𝑥
2
since

𝑥
1
+ 𝑥
2
= (𝑑𝜆

𝐻

0
− 𝜆) 𝛽 > 0, 𝑥

1
𝑥
2
> 0, (30)

where

𝑥
1
=
1

2𝑑
((𝑑𝜆
𝐻

0
− 𝜆) 𝛽 − √(𝑑𝜆𝐻

0
− 𝜆)
2

𝛽2 − 4𝑑𝜆𝛽𝑢∗) ,

𝑥
2
=
1

2𝑑
((𝑑𝜆
𝐻

0
− 𝜆) 𝛽 + √(𝑑𝜆𝐻

0
− 𝜆)
2

𝛽2 − 4𝑑𝜆𝛽𝑢∗) .

(31)

If we can find some 𝑗 ∈ 𝑁
+ such that 𝑥

1
< 𝑗
2
/𝑙
2
< 𝑥
2
.

Then 𝐷
𝑗
(𝜆) < 0. That is, √𝑥1𝑙 < 𝑗 < √𝑥2𝑙. The constant

positive coexistence𝐸(𝑢∗, V∗) is unstable. Hence, we draw the
following conclusions.

Theorem 5. Assume that 𝛼, 𝛽 > 0, 𝑑 > 1, and 𝛼𝛽 + 1 > 𝛽,
𝛼𝛽
2
+ 2𝛽 > (𝛼𝛽 + 1)

2 hold. Then 𝐸(𝑢∗, V∗) is unstable for 𝜆 ∈
(𝜆
𝐻

0
, 𝑑𝜆
𝐻

0
). That is, Turing instability occurs if

𝑑𝜆
𝐻

0
𝛽 − 𝜆𝛽 > 2√𝑑𝜆𝛽𝑢∗,

√𝑥1𝑙 < 𝑗 < √𝑥2𝑙 for some 𝑗 ∈ 𝑁+.
(32)

3. Steady State Bifurcations

In this section, we still choose 𝜆 as the main bifurcation
parameter with 𝛼, 𝛽, 𝑑 positive constants and study the
existence of the steady state bifurcation points. The steady
state solutions of System (5) satisfy the following elliptic
system:

𝑢
𝑥𝑥
+ 𝑢 (1 − 𝑢) −

𝑢V

𝑢 + 𝛼V
= 0, 𝑥 ∈ [0, 𝑙𝜋] ,

𝑑V
𝑥𝑥
+ 𝜆V (𝛽 −

V

𝑢
) = 0, 𝑥 ∈ [0, 𝑙𝜋] ,

𝑢
𝑥
(0, 𝑡) = 𝑢

𝑥
(𝑙𝜋, 𝑡) = V

𝑥
(0, 𝑡)

= V
𝑥
(𝑙𝜋, 𝑡) = 0, 𝑡 ≥ 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ≥ 0,

V (𝑥, 0) = V
0
(𝑥) ≥ 0.

(33)
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Figure 1: 𝐸(0.1892, 0.227) is asymptotically stable when 𝜆 = 0.32 > 𝜆𝐻
0
and the initial function 𝑢

0
(𝑥) = 0.5+0.2 cos𝑥, V

0
(𝑥) = 0.5+0.2 cos 𝑥.
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Figure 2: Spatially homogenous periodic solutions are asymptotically stable when 𝜆 = 0.24 < 𝜆
𝐻

0
and the initial function 𝑢

0
(𝑥) = 0.5 +

0.2 cos𝑥, V
0
(𝑥) = 0.5 + 0.2 cos 𝑥.

System (33) has a unique positive constant coexistence
𝐸(𝑢
∗
, V∗) if and only if 𝛼𝛽 + 1 > 𝛽. By the same way as

Section 2.1, the characteristic equation of the linearization of
(33) at 𝐸(𝑢∗, V∗) is

𝜇
2
− 𝑇
𝑛
(𝜆) 𝜇 + 𝐷

𝑛
(𝜆) = 0, 𝑛 = 0, 1, 2, . . . , (34)

where 𝑇
𝑛
(𝜆), 𝐷

𝑛
(𝜆) are defined by (11).

Next we identify all the possible steady state bifurcation
points by [9] which satisfy the following conditions:

𝐷
𝑛
(𝜆
0
) = 0, 𝑇

𝑛
(𝜆
0
) ̸= 0,

𝐷
𝑚
(𝜆
0
) ̸= 0, 𝑇

𝑚
(𝜆
0
) ̸= 0, ∀𝑚 ̸= 𝑛,

𝑑𝐷
𝑛
(𝜆
0
)

𝑑𝜆
̸= 0.

(35)

For convenience, we rewrite

𝐷
𝑛
(𝜆) = 𝑑𝑝

2
+ 𝑝 (𝜆 − 𝑑𝜆

𝐻

0
) 𝛽 + 𝜆𝛽𝑢

∗
≜ 𝑔 (𝑝) , (36)

where 𝑝 = 𝑛2/𝑙2.

Obviously, 𝐷
𝑛
(𝜆) > 0, for all 𝑛 = 0, 1, 2, . . . for

𝜆 ∈ [𝑑𝜆
𝐻

0
, +∞). Hence the potential steady state bifurcation

points set is as follows:

∧
1
= {𝜆 ∈ (0, 𝑑𝜆

𝐻

0
) | (35) are satisfied} (37)

with 𝛼, 𝛽, 𝑙, 𝑑 fixed.
Thus𝐷

𝑛
(𝜆) = 0 has two roots as

𝑝
±
(𝜆) =

1

2𝑑
((𝑑𝜆
𝐻

0
− 𝜆) 𝛽 ± √(𝑑𝜆𝐻

0
− 𝜆)
2

𝛽2 − 4𝑑𝜆𝛽𝑢∗) .

(38)

Let

ℎ (𝜆) = (𝑑𝜆
𝐻

0
− 𝜆)
2

𝛽
2
− 4𝑑𝜆𝛽𝑢

∗

= 𝜆
2
𝛽
2
− 2𝑑𝜆𝛽 (𝜆

𝐻

0
𝛽 + 2𝑢

∗
)

+ 𝑑
2
𝛽
2
(𝜆
𝐻

0
)
2

.

(39)
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Since Δ ≜ 4𝑑
2
𝛽
2
(𝜆
𝐻

0
𝛽 + 2𝑢

∗
)
2
− 4𝛽

4
𝑑
2
(𝜆
𝐻

0
)
2

=

16𝑑
2
𝛽
2
𝑢
∗
(𝜆
𝐻

0
𝛽 + 𝑢

∗
) > 0, ℎ(𝜆) = 0 has two positive roots

as

𝜆 =
𝑑

𝛽
(𝜆
𝐻

0
𝛽 + 2𝑢

∗
− 2√𝑢∗ (𝜆𝐻

0
𝛽 + 𝑢∗)) ,

𝜆 =
𝑑

𝛽
(𝜆
𝐻

0
𝛽 + 2𝑢

∗
+ 2√𝑢∗ (𝜆𝐻

0
𝛽 + 𝑢∗)) .

(40)

By ℎ(𝑑𝜆𝐻
0
) = −4𝑑𝜆𝛽𝑢

∗
< 0, hence 𝜆 < 𝑑𝜆

𝐻

0
< 𝜆. That is,

when 𝜆 ∈ (𝜆, 𝑑𝜆𝐻
0
), 𝐷
𝑛
(𝜆) > 0, for all 𝑛 ∈ 𝑁. No steady state

bifurcation occurs.Then the potential steady state bifurcation
points reduce to the following set:

∧
2
= {𝜆 ∈ (0, 𝜆] | (35) are satisfied} , (41)

with 𝛼, 𝛽, 𝑙, 𝑑 fixed.
Next, the properties of 𝑃

±
(𝜆), 𝜆 ∈ (0, 𝜆] are discussed

and direct computation can obtain the following results.

Lemma 6. Suppose that 𝛼𝛽 > 1 + 𝛽, 𝛼𝛽2 + 2𝛽 > (𝛼𝛽 + 1)2
hold. When 𝜆 ∈ (0, 𝜆], 𝑃

+
(𝜆) is decreasing on 𝜆 and 𝑃

−
(𝜆) is

increasing on 𝜆. Furthermore,

lim
𝜆→0

+

𝑃
+
(𝜆) = 𝜆

𝐻

0
𝛽,

𝑃
+
(𝜆
−
) = 𝑃
−
(𝜆
−
) =

(𝑑𝜆
𝐻

0
− 𝜆) 𝛽

2𝑑
,

lim
𝜆→0

+

𝑃
−
(𝜆) = 0, lim

𝜆→𝜆
−

𝑃


+
(𝜆) = −∞,

lim
𝜆→𝜆

−

𝑃


−
(𝜆) = +∞.

(42)

From the properties of 𝑃
±
(𝜆), if 0 < 𝑝 = 𝑛

2
/𝑙
2
< 𝜆
𝐻

0
𝛽,

then there exists a unique

𝜆
𝑆

𝑛
=
𝑝𝛽𝑑𝜆

𝐻

0
− 𝑑𝑝
2

𝑝𝛽 + 𝛽𝑢∗
∈ (0, 𝜆] , (43)

such that

𝑃
+
(𝜆
𝑆

𝑛
) =

𝑛
2

𝑙2
or 𝑃

−
(𝜆
𝑆

𝑛
) =

𝑛
2

𝑙2
. (44)

Thus,𝐷
𝑛
(𝜆
𝑆

𝑛
) = 0.

Define �̃�
𝑛
= 𝑛/√𝜆𝐻

0
𝛽. Then for any 𝑙 > �̃�

𝑛
, there exists a

unique 𝜆𝑆
𝑖
∈ (0, 𝜆] such that 𝑖2/𝑙2 = 𝑃

+
(𝜆
𝑆

𝑖
) or 𝑖2/𝑙2 = 𝑃

−
(𝜆
𝑆

𝑖
).

𝜆
𝑆

𝑛
∈ (0, 𝜆] are potential steady state bifurcation values.

But it is possible that for some 𝑖, 𝑗 ∈ 𝑁 and 𝑖 ̸= 𝑗 such that
𝑃
+
(𝜆
𝑆

𝑖
) = 𝑃
−
(𝜆
𝑆

𝑗
). In this case, 0 is a double eigenvalue of 𝐿(𝜆)

for 𝜆 = 𝜆𝑆
𝑖
= 𝜆
𝑆

𝑗
. In addition, it is also possible that 𝜆𝑆

𝑖
= 𝜆
𝐻

𝑗
.

Hence, the dimension of center manifold at 𝐸(𝑢∗, V∗) can be
as high as 3.

Next we will prove that there are only countable many
𝑙 > 0, in fact only finitely many 𝑙 ∈ (0,𝑀) for any given
𝑀 > 0, such that 𝜆𝑆

𝑖
= 𝜆
𝑆

𝑗
, 𝜆𝑆
𝑖
= 𝜆
𝐻

𝑗
for some 𝑖, 𝑗 ∈ 𝑁.

Let 𝐸
𝑛
(𝜆, 𝑙) = 𝑙

2
𝑇
𝑛
(𝜆), 𝐹
𝑛
(𝜆, 𝑙) = 𝑙

4
𝐷
𝑛
(𝜆) be polynomials of 𝜆

and 𝑙. Hence, on (𝜆, 𝑙)-plane, 𝑞
𝑛
= {(𝜆, 𝑙) : 𝐸

𝑛
(𝜆, 𝑙) = 0}, 𝑝

𝑛
=

{(𝜆, 𝑙) : 𝐹
𝑛
(𝜆, 𝑙) = 0} are finitely many analytic curves. We fix

𝜆 ∈ (0, 𝜆], so for any𝑀 > 0, there are only finitely many 𝑖, 𝑗 ∈
𝑁 such that 𝑞

𝑖
⋂((0, 𝜆]×[0,𝑀]) ̸= 0, 𝑝

𝑗
⋂((0, 𝜆]×[0,𝑀]) ̸= 0.

So 𝑝
𝑗
, 𝑞
𝑖
have at most only finitely many intersection points.

Thus the intersection points of different 𝑞
𝑖
, 𝑝
𝑗
in (0, 𝜆] ×

[0, +∞] are at most countable. Define

𝐿
𝐸
= {𝑙 > 0 | 𝐹

𝑖
(𝜆, 𝑙) = 𝐹

𝑗
(𝜆, 𝑙)

or 𝐸
𝑖
(𝜆, 𝑙) = 𝐹

𝑗
(𝜆, 𝑙)

for some 𝜆 ∈ (0, 𝜆] , and 𝑖, 𝑗 ∈ 𝑁} .

(45)

We assume that 𝑙 ∈ 𝑅/𝐿
𝐸, and thus 0 is a simple

eigenvalue. And

𝑑𝐷 (𝜆
𝑆

𝑛
)

𝑑𝜆
= 𝑝𝛽 + 𝛽𝑢

∗
> 0. (46)

Obviously, 𝑇
𝑚
(𝜆
𝑆

𝑛
) ̸= 0, 𝐷

𝑚
(𝜆
𝑆

𝑛
) ̸= 0, for all𝑚 ̸= 𝑛.

Summarizing the above, we can obtain themain results in
this section.

Theorem 7. Suppose that 𝛼, 𝛽, 𝑑 are positive constants and
𝛼𝛽 > 1 + 𝛽, 𝛼𝛽2 + 2𝛽 > (𝛼𝛽 + 1)

2 hold. 𝑃
±
(𝜆) are defined

as (38) and �̃�
𝑛
= 𝑛/√𝜆𝐻

0
𝛽.

If for some 𝑛 ∈ 𝑁, 𝑙 ∈ (̃𝑙
𝑛
, +∞) \ 𝐿

𝐸, there exactly exists
one point 𝜆𝑆

𝑛
= (𝛽𝑑𝜆

𝐻

0
𝑝 − 𝑑𝑝

2
)/(𝛽𝑝 + 𝛽𝑢

∗
) ∈ (0, 𝜆), such

that 𝑝
+
(𝜆
𝑆

𝑛
) = 𝑛

2
/𝑙
2 or 𝑃

−
(𝜆
𝑆

𝑛
) = 𝑛

2
/𝑙
2, where 𝑝 = 𝑛

2
/𝑙
2.

Then there is a smooth curve Γ
𝑛
of positive solutions of (33)

bifurcating from (𝜆
𝑆

𝑛
, 𝑢
∗
, V∗). Moreover, near (𝜆𝑆

𝑛
, 𝑢
∗
, V∗), Γ

𝑛
=

{𝜆(𝑠), 𝑢(𝑠), V(𝑠) : 𝑠 ∈ (−𝜖, +𝜖)}, where

𝑢 (𝑠) = 𝑢
∗
+ 𝑠𝑎
𝑛
cos 𝑛𝑥

𝑙
+ 𝑠𝜓
1
(𝑠) ,

V (𝑠) = V∗ + 𝑠𝑏
𝑛
cos 𝑛𝑥

𝑙
+ 𝑠𝜓
2
(𝑠) ,

(47)

for 𝑠 ∈ (−𝜖, +𝜖) for some 𝐶∞ smooth function 𝜆, 𝜓
1
, 𝜓
2
such

that 𝜆(0) = 𝜆
𝑆

𝑛
and 𝜓

1
(0) = 𝜓

2
(0) = 0. Here 𝑎

𝑛
, 𝑏
𝑛
satisfy

𝐿
𝑛
(𝜆
𝑆

𝑛
)(𝑎
𝑛
, 𝑏
𝑛
)
𝑇
= (0, 0)

𝑇.

In the following, we will discuss the interaction between
the Hopf and steady state bifurcation points. All possible
Hopf bifurcation points𝜆𝐻

𝑖
are identified in Section 2.1 and all

possible steady state bifurcation points 𝜆𝑆
𝑗
can be identified in

Section 3. And it has previously shown that at most countable
𝑙 ∈ 𝐿

𝐸 such that 𝜆𝐻
𝑗
= 𝜆
𝑆

𝑖
or 𝜆𝑆
𝑖
= 𝜆
𝑆

𝑗
for some 𝑖, 𝑗 ∈ 𝑁.

Hence high-dimensional center manifold from (𝜆, 𝑢
∗
, V∗) is

still possible. We do not consider it here. We assume 𝑙 ∉ 𝐿𝐸,
Hopf bifurcations, and steady state bifurcation points may
occur at this points in the following four cases.
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Figure 3: Graph of 𝐸
𝑛
(𝜆, 𝑝)𝐹

𝑛
(𝜆, 𝑝) = 0. Here 𝑑 = 0.5, 𝛼 = 0.4,

𝛽 = 1.2, 𝑙 = 30, 𝑢∗ = 0.1892, V∗ = 0.227, and 𝜆𝐻
0
= 0.2989. The

horizontal lines are 𝑝 = 𝑛2/𝑙2, where 𝑛 = 0, 1, 2, . . ..

Case 1. Neither 𝜆𝐻
𝑖

nor 𝜆𝑆
𝑗
exists, and then there is no

bifurcation points;

Case 2. 𝜆𝑆
𝑗
exists but not 𝜆𝐻

𝑖
, and then there is one steady state

bifurcation point and no Hopf bifurcation point.

Case 3. Both 𝜆𝑆
𝑗
and 𝜆𝐻

𝑖
exist, and then

(a) 𝜆𝐻
𝑖
< 𝜆
𝑆

𝑗
; then there is one steady state bifurcation

point and no Hopf bifurcation since𝐷
𝑖
(𝜆
𝐻

𝑖
) < 0;

(b) 𝜆𝑆
𝑗
< 𝜆
𝐻

𝑖
; then there is one steady state bifurcation

point and one Hopf bifurcation.

Case 4. 𝜆𝐻
𝑖
exists but no 𝜆𝑆

𝑗
, then there is no steady state

bifurcation point and one Hopf bifurcation.

Example 8. In Figure 3, for 𝑛 ≥ 18 and 𝑛 ∈ 𝑁, Case 1 occurs,
and there are no bifurcation points. For 15 ≤ 𝑛 ≤ 17, Case 2
occurs, and there exists 3 steady state bifurcation points and
no Hopf bifurcation points. For 𝑛 = 14, Case 3 (a) occurs,
and there is one steady state bifurcation point 𝜆𝑆

14
= 0.0314

and no Hopf bifurcation points since 𝐷
14
(𝜆
𝐻

14
) < 0. For 1 ≤

𝑛 ≤ 13, Case 3 (b) occurs, and there exists 13 Hopf bifurcation
points and 13 steady state bifurcation points. For 𝑛 = 0, Case
4 occurs, and there exists one Hopf bifurcation point and no
steady state bifurcation points.

4. Global Stability of the Positive Coexistence

In this section, we will prove the global stability of the pos-
itive constant coexistence by the upper and lower solutions
method in Pao [23, 24] and Chen and Shi [13].

Theorem 9. Assume that 𝑑, 𝛽, 𝜆 are positive constants and
𝛼 > 1. Then for system (5), the positive constant equilibrium

𝐸(𝑢
∗
, V∗) is globally asymptotically stable if 𝛼𝛽 < 1 or 𝛼𝛽 >

1 + 𝛽. That is, for any initial values 𝑢
0
(𝑥) > 0, V

0
(𝑥) ≥ 0,

lim
𝑡→∞

𝑢 (𝑥, 𝑡) = 𝑢
∗
, lim
𝑡→∞

V (𝑥, 𝑡) = V∗,

uniformly in 𝑥 ∈ [0, 𝑙𝜋]
(48)

if

𝛼𝛽 < 1 or 𝛼𝛽 > 1 + 𝛽. (49)

Proof. It is well known that if 𝑐 > 0 and 𝑤(𝑥, 𝑡) > 0 satisfies

𝜕𝑤

𝜕𝑡
= 𝐷Δ𝑤 + 𝑤 (𝑐 − 𝑤) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑤

𝜕]
= 0, 𝑥 ∈ 𝜕Ω,

𝑤 (𝑥, 0) ≥ ( ̸≡ ) 0, 𝑥 ∈ Ω,

(50)

then lim
𝑡→∞

𝑤(𝑥, 𝑡) = 𝑐 uniformly in 𝑥 ∈ Ω.
We can choose 𝜖

0
satisfying

0 < 𝜖
0
<
𝛽 (1 − 1/𝛼)

1 + 𝛽
, since 𝛼 > 1. (51)

By the first equation of (5), we have

𝜕𝑢

𝜕𝑡
≤ 𝑢
𝑥𝑥
+ 𝑢 (𝑥, 𝑡) (1 − 𝑢 (𝑥, 𝑡)) . (52)

By the comparison principle of the parabolic equation, we
obtain

lim sup
𝑡→+∞

max
𝑥∈[0,𝑙𝜋]

𝑢 (𝑥, 𝑡) ≤ 1. (53)

Then there exists 𝑡
0
> 0 such that 𝑢(𝑥, 𝑡) < 1 + 𝜖

0
≜ 𝑢, for all

𝑡 > 𝑡
0
, 𝑥 ∈ [0, 𝑙𝜋]. Thus, by the second equation of (5),

𝜕V

𝜕𝑡
≤ 𝑑V
𝑥𝑥
+ 𝜆V(𝛽 −

V

1 + 𝜖
0

) , ∀𝑡 > 𝑡
0
. (54)

By the comparison principle again,
lim sup

𝑡→+∞
max
𝑥∈[0,𝑙𝜋]

V(𝑥, 𝑡) ≤ 𝛽(1 + 𝜖
0
). There exists

𝑡
1
> 𝑡
0
such that V(𝑥, 𝑡) < 𝛽(1 + 𝜖

0
) + 𝜖
0
≜ V, for all

𝑡 > 𝑡
1
, 𝑥 ∈ [0, 𝑙𝜋].

On the other hand,

𝜕𝑢

𝜕𝑡
= 𝑢
𝑥𝑥
+ 𝑢(1 − 𝑢 −

V

𝑢 + 𝛼V
) ≥ 𝑢
𝑥𝑥
+ 𝑢(1 −

1

𝛼
− 𝑢) .

(55)

By the comparison principle, lim inf
𝑡→+∞

min
𝑥∈[0,𝑙𝜋]

𝑢(𝑥, 𝑡) ≥

1 − 1/𝛼 > 0, since 𝛼 > 1. Thus, there exists 𝑡
2
> 𝑡
1
such that

𝑢(𝑥, 𝑡) > 1−1/𝛼− 𝜖
0
≜ 𝑢 > 0, for all 𝑡 > 𝑡

2
. Again in turn this

implies

𝜕V

𝜕𝑡
≥ 𝑑V
𝑥𝑥
+ 𝜆V(𝛽 −

V

𝑢
) , 𝑡 > 𝑡

2
. (56)



Abstract and Applied Analysis 9

Hence, lim inf
𝑡→+∞

min
𝑥∈[0,𝑙𝜋]

V(𝑥, 𝑡) ≥ 𝛽(1−1/𝛼−𝜖
0
).There

exists 𝑡
3
> 𝑡
2
such that

V (𝑥, 𝑡) > 𝛽 (1 −
1

𝛼
− 𝜖
0
) − 𝜖
0
≜ V > 0, ∀𝑡 > 𝑡

3
, (57)

since (51) holds. Therefore, for 𝑡 > 𝑡
3
, 𝑢 ≤ 𝑢(𝑥, 𝑡) ≤ 𝑢, V ≤

V(𝑥, 𝑡) ≤ V, for all 𝑥 ∈ [0, 𝑙𝜋] and 𝑢, 𝑢, V, V satisfy

1 − 𝑢 −
V

𝑢 + 𝛼V
< 0, 𝛽 −

V

𝑢
< 0,

1 − 𝑢 −
V

𝑢 + 𝛼V
> 0, 𝛽 −

V

𝑢
> 0.

(58)

Equation (58) implies that (𝑢, V) and (𝑢, V) are a pair of upper
and lower solutions of system (5), respectively (see [23, 24]).
It is obvious that there exists𝑀 > 0 such that for any (𝑢, V) ≤
(𝑢
1
, V
1
), (𝑢
2
, V
2
) ≤ (𝑢, V),


𝑢
1
(1 − 𝑢

1
) −

𝑢
1
V
1

𝑢
1
+ 𝛼V
1

− 𝑢
2
(1 − 𝑢

2
) +

𝑢
2
V
2

𝑢
2
+ 𝛼V
2



≤ 𝑀 (
𝑢1 − 𝑢2

 +
V1 − V

2

) ,


𝜆V
1
(𝛽 −

V
1

𝑢
1

) − 𝜆V
2
(𝛽 −

V
2

𝑢
2

)


≤ 𝑀 (

𝑢1 − 𝑢2
 +
V1 − V

2

) .

(59)

We construct the iteration sequences (𝑢
(𝑚)
, V(𝑚)) and

(𝑢
(𝑚)
, V(𝑚)), 𝑚 ≥ 1 satisfy

𝑢
(𝑚)

= 𝑢
(𝑚−1)

+
1

𝑀
𝑢
(𝑚−1)

× (1 − 𝑢
(𝑚−1)

−
V(𝑚−1)

𝑢
(𝑚−1)

+ 𝛼V(𝑚−1)
) ,

V(𝑚) = V(𝑚−1) +
1

𝑀
𝜆V(𝑚−1) (𝛽 −

V(𝑚−1)

𝑢
(𝑚−1)

) ,

𝑢
(𝑚)

= 𝑢
(𝑚−1)

+
1

𝑀
𝑢
(𝑚−1)

× (1 − 𝑢
(𝑚−1)

−
V(𝑚−1)

𝑢(𝑚−1) + 𝛼V(𝑚−1)
) ,

V(𝑚) = V(𝑚−1) +
1

𝑀
𝜆V(𝑚−1) (𝛽 −

V(𝑚−1)

𝑢(𝑚−1)
) ,

(60)

where (𝑢(0), V(0)) = (𝑢, V), (𝑢(0), V(0)) = (𝑢, V). Then by (58) we
can obtain

(𝑢, V) ≤ (𝑢(𝑚), V(𝑚)) ≤ (𝑢(𝑚+1), V(𝑚+1))

≤ ⋅ ⋅ ⋅ ≤ (𝑢
(𝑚+1)

, V(𝑚+1))

≤ (𝑢
(𝑚)
, V(𝑚)) ≤ (𝑢, V) .

(61)

Then there exist (�̃�, Ṽ) and (𝑢
̃
, V
̃
) such that

lim
𝑚→∞

𝑢
(𝑚)

= �̃�, lim
𝑚→∞

V(𝑚) = Ṽ,

lim
𝑚→∞

𝑢
̃

(𝑚)
= 𝑢
̃
, lim

𝑚→∞
V
̃

(𝑚)
= V
̃
,

(62)

and (𝑢, V) ≤ (𝑢
̃
, V
̃
) ≤ (�̃�, Ṽ) ≤ (𝑢, V). And

1 − �̃� −
V
̃

�̃� + 𝛼V
̃

= 0, 𝛽 −
Ṽ

�̃�
= 0,

1 − 𝑢
̃
−

Ṽ

𝑢
̃
+ 𝛼Ṽ

= 0, 𝛽 −
V
̃
𝑢
̃

= 0.

(63)

According to (63), we have

(1 − �̃�) (�̃� + 𝛼𝛽𝑢
̃
) = 𝛽𝑢

̃
,

(1 − 𝑢
̃
) (𝑢
̃
+ 𝛼𝛽�̃�) = 𝛽�̃�.

(64)

By (64), we can obtain

(�̃� − 𝑢
̃
) (1 − 𝛼𝛽 + 𝛽 − �̃� − 𝑢

̃
) = 0. (65)

If we assume that �̃� ̸= 𝑢
̃
, then

1 − 𝛼𝛽 + 𝛽 − �̃� − 𝑢
̃
= 0. (66)

Substituting (66) into (64) and simplifying, we can obtain

(𝛼𝛽 − 1) �̃�
2
+ �̃� (1 − 2𝛼𝛽 + 𝛼

2
𝛽
2
− 𝛼𝛽
2
+ 𝛽)

+ 𝛽 (𝛼 − 1) (1 − 𝛼𝛽 + 𝛽) = 0,

(𝛼𝛽 − 1) 𝑢
̃

2
+ 𝑢
̃
(1 − 2𝛼𝛽 + 𝛼

2
𝛽
2
− 𝛼𝛽
2
+ 𝛽)

+ 𝛽 (𝛼 − 1) (1 − 𝛼𝛽 + 𝛽) = 0.

(67)

Thus the quadratic equation

(𝛼𝛽 − 1) 𝑥
2
+ 𝑥 (1 − 2𝛼𝛽 + 𝛼

2
𝛽
2
− 𝛼𝛽
2
+ 𝛽)

+ 𝛽 (𝛼 − 1) (1 − 𝛼𝛽 + 𝛽) = 0

(68)

has two different positive roots �̃� and 𝑢
̃
.

On the other hand, when 𝛼𝛽 < 1 or 𝛼𝛽 > 1 + 𝛽,

𝑥
1
𝑥
2
= 𝛽 (𝛼 − 1)

1 − 𝛼𝛽 + 𝛽

𝛼𝛽 − 1
< 0, (69)

where 𝑥
1
, 𝑥
2
are two roots of (68).Thus (68) cannot have two

positive roots.
When 𝛼𝛽 = 1, (68) becomes a linear equation and has at

most one real root. This contradicts the above. Hence, �̃� = 𝑢
̃
.

Similarly, Ṽ = V
̃
.Then from the results in [23, 24], the solution

(𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) of System (5) satisfies

lim
𝑡→+∞

𝑢 (𝑥, 𝑡) = 𝑢
∗
, lim
𝑡→+∞

V (𝑥, 𝑡) = V∗,

uniformly in 𝑥 ∈ [0, 𝑙𝜋] .
(70)
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