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Using Hu Keés inequality, which is a sharped Holder’s inequality, we present some new refinements of Hardy-type inequalities

proposed by Imoru.

1. Introduction

Let f(x) = 0, f(x) € LP(0,00), p > 1. Then the famous
Hardy’s inequality [1, Theorem 319] reads as

ro “000 K(x,y) f (x) dxrdy

:[

where K(x, y) is nonnegative and homogeneous of degree —1.
The sign of the inequality in (1) is reversed if 0 < p < 1. The
special cases of inequality (1) are the subject of the following
theorem, which is also due to Hardy et al. [1, Theorem 330].
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Theorem A. Let p > 1, f(x) be nonnegative and Lebesgue
integrable on [0, a] or [a, 00) for everya > 0, accordingtor > 1
orr < 1. Then
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J fx)dx (r<1).
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The signs of the inequalities are reversed if 0 < p < 1.

As is well known, inequalities (2) play a very important
role in both theory and applications. Ever since Hardy
discovered inequalities (2), they have been studied by many
authors, who either reproved them using various techniques
or improved, generalized, and applied them in many different
ways (see e.g. [2-22] and references therein). For further
remarks concerning the improvements and properties of
inequalities (2) and their generalizations, see for example,
[23] or [24].

In the year 1977, Imoru [6] obtained the following integral
inequalities which are related to Hardy’s (see Theorem A).

Theorem B. Let g be continuous and nondecreasing on [0, 0o]
with g(0) = 0, g(x) > 0 for x > 0 and g(c0) = co. Let f(x)
be nonnegative and Lebesgue integrable with respect to g(x) on
[0,b] or on [a, 00) accordingtor > 1 orr < 1, wherea, b > 0.
Suppose
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If p>1, then
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with both signs of inequalities reversed if 0 < p < 1.

Later, in 1981, Chan in [2] derived several exponential
generalizations of the Imoru’s inequalities (5). In 1985, Imoru
in [7] presented further extensions of (5). Moreover, in
1988, Yang et al. [22] gave some new generalizations of
(5). Recently, Oguntuase and Imoru in [10] obtained other
generalizations of the Yang et al’s results.

The main purpose of this work is to give some improve-
ments of inequalities (5) by using Hu Ke’s inequality which is
a sharp Holder’s inequality.

2. A Set of Lemmas

In this section, we will prove lemmas, which play crucial roles
in proving our main results.

Lemma 1 (see [25] Hu Kes inequality). Let f(x), g(x),
and e(x) be integrable functions defined on [0,+00) and
f(x),9(x) = 0,1 -e(x)+e(y) =0 forall x,y € [0,+00),
andlet p>1,1/p + 1/q = 1. Then

.[0 f(x)g(x)dx

< (Loo P (x) dx)l/P<LOO g% (x) dx)l/q

x[1_<fooofp(x)6(x)dx> (6)
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< [57 9% (x) e (x) dx )2 "
f;o g1(x)dx

where T = min{1/p, 1/q}.

Lemma 2 (see [26]). Let f(x), g(x), and e(x) be integrable
functions defined on [0,+00) and f(x) > 0,g(x) > 0,1 —
e(x)+e(y) >0 forallx,y € [0,+00),letq < 0,1/p+1/qg =1,
and let f(x), g(x) € LU(0,00). Then

L f(x)g(x)dx

> <LOO P (x) dx)l/P(Loo gl (x) dx)l/q
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where p = max{-1,1/q}.

Lemma 3. Let g be continuous and nondecreasing on [a, b].
Let ¢(x,t) and e(x) be integrable functions and ¢(x,t) > 0,
1 —e(x)+e(y) = 0 forall x,y,t € [0,+00), and let ¢ be
nondecreasing. If p > 1, then
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where 3 = max{-1,1 - p}. If0 < p < 1, then
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where y = min{p, 1 — p}.

Proof. From Lemmas 1and 2, the conclusion is easy to obtain.
O

Lemma 4. Let g be continuous and nondecreasing on [0, 00]
with g(0) = 0, g(x) > 0 for x > 0 and g(co) = co. Let § =
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(1 =r)/p, r#1, and f(x), e(x) be nonnegative and Lebesgue
integrable with respect to g(x) on [0, b] or on [a, co) according
tor >1orr <1, wherea, b > 0, and let 1 — e(x) +e(y) >0
forall x, y € [0,+00). Suppose
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where F(x) is as in Theorem B, f = max{-1,1-p}. If0 < p <
1, then
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where F(x) isasin Theorem B, y = min{p, 1 — p}.

Proof. We only prove inequality (12); the proofs of (13) and
(14) are similar. Let o(x, 1) = g°(x)[g(t)]""*® f2(r), dg(t) =
[g(t)]f(Ha)dg(t) in inequality (8). Then, if 7, p > 1, we have
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This proves inequality (12). Lemma 4 is proved. O

Lemma 5. With notation as in Lemma 4, one has the results
as follows. If p > 1, then
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Proof. We only prove inequality (16); the proofs of (17) and
(18) are similar. If r, p > 1, by using inequality (8), we have
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5
where p(b,1) = g°(b)(g())™" "V f2(1), dp(t) = (g(t)) "
dg(t). This proves inequality (16). Lemma 5 is proved. O

Lemma 6 (see [23]). Ifx > -1, > 1, or a < 0, then
1+x)*>1+ax. (20)
The inequality is reversed for 0 < & < 1.

3. Refinements of Hardy-Type Inequalities

Theorem 7. Let g be continuous and nondecreasing on [0, 00]
with g(0) = 0, g(x) > 0 for x > 0 and g(co) = co. Let f(x),
and e(x) be nonnegative and Lebesgue integrable with respect
to g(x) on [0, b] or on [a, 00) accordingtor > 1 orr < 1, where
a,b>0,andlet1-e(x)+e(y) =0 forall x, y € [0,+00).
Suppose F(x) is as in Theorem B. If p > 1, then
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where y = min{p,1 - p}, § = (1 - r)/p,
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Proof. We only prove the case p > 1; the proof of case 0 <
p < lissimilar.

(i) When r > 1, by using the nondecreasing property of
g, we have

0<A(x)= Lx 5P () (P (1) dg (o)
) "W (g () fF ()] dg(t)  (26)

< gV () j GO FP (1) dg (1),

0

and hence

Jim, P ()M (x) =0, (27)
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from which and from inequality (12) we have, on using
integration by parts, O
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That is,
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Combining inequalities (16), (20), and (29) yields inequality
(21).

(ii) When r < 1, by the same method as in case (i), we

obtain
0<A(x) = j g (g £ 4y dg (1)
(30)
< g" VP (x) j g O PO dg®),
and hence
lim g° (x) A (x) =0, (31)

X — 00
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from which and from inequality (13) we have, on using
integration by parts,
[T wrmds

=(-8)"g’ (@ A(a)+87 J 77 (%) [g (%) f (0)]7dg (x)

> 6Pt
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That is,
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Combining inequalities (17), (20), and (33) yields inequality
(22). The proof of Theorem 7 is complete.
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