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Using Mountain Pass lemma, under some appropriate assumptions, we establish the existence of one nontrivial solution for a class
of p-Kirchhoff-type elliptic equations in R𝑁.

1. Introduction and Main Result

In this paper, we consider the existence of solution for the
following elliptic problem:

− (𝑎 + 𝑏∫
R𝑁
𝑔 (𝑥) |∇𝑢|

𝑝
𝑑𝑥) div (𝑔 (𝑥) |∇𝑢|𝑝−2∇𝑢)

+ ℎ (𝑥) |𝑢|
𝑝−2
𝑢 = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ R

𝑁
,

𝑢 (𝑥) → 0 as |𝑥| → ∞,

(1)

where 𝑎 > 1, 𝑏 > 0, 𝑁 ≥ 3, 𝑔(𝑥), and ℎ(𝑥) are positive
functions, 𝑓(𝑥, 𝑡) : R𝑁 × 𝑅 → 𝑅 is continuous function,
and further assumptions will be listed later. Problems like
(1) originally came from the stationary problem of a model
introduced by Kirchhoff [1]. Due to the existence of the
integration over the whole space, problems like (1) are also
called nonlocal problems.

In recent years, the Kirchhoff-type equations with 𝑝-
Laplacian operator has been considered by many authors;
see [2–6]. When ℎ(𝑥) ≡ 0, the authors in [6] considered
the following similar Kirchhoff-type elliptic problem on the
bounded domainΩ ⊂ R𝑁

− [𝑀(∫
Ω

|∇𝑢|
𝑝
𝑑𝑥)]

𝑝−1

div (|∇𝑢|𝑝−2∇𝑢)

= 𝑓 (𝑥, 𝑢) , 𝑥 ∈ Ω,

𝑢 (𝑥) = 0 on 𝜕Ω.

(2)

The function𝑀(𝑡) in (2) is required tomeet the condition
of 𝑚
0
≤ 𝑀(𝑡) ≤ 𝑚

1
for some constants 𝑚

0
, 𝑚
1
> 0. The

authors proved that problem (2) has at least one positive
solution under some other additional conditions. Problem
(2) was also considered in [3], where the function 𝑓(𝑥, 𝑢) is
odd about 𝑢. For 𝑝 = 2, we refer to [7–9]. The authors in [8]
studied the following Kirchhoff type problem:

−(∫
Ω

𝑎 + 𝑏|∇𝑢|
2
𝑑𝑥)Δ𝑢 + 𝑢 = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ R

𝑁
,

𝑢 (𝑥) → 0 as |𝑥| → +∞.

(3)

By the Fountain theorem, the author proved the existence
of infinitelymany solutions. Note that one of the assumptions
made on the function 𝑓(𝑥, 𝑢) in (3) is that 𝑓(𝑥, 𝑢) =

−𝑓(𝑥, −𝑢) for any (𝑥, 𝑢) ∈ (R𝑁,R). In the present paper,
however, the function 𝑓(𝑥, 𝑢) is not required to be odd
about 𝑢 as that of [3, 8]. When 𝑎 = 𝑏 = 0 and 𝑔(𝑥) ≡
1, problem (1) becomes the 𝑝-Laplacian elliptic equations
without nonlocal term, and this kind of problem is also
studied by many authors. For these works, we refer to [10–14]
and the references therein. In [15], Liu discussed the following
elliptic problem:

− div (|∇𝑢|𝑝−2∇𝑢) + 𝑉 (𝑥) |𝑢|𝑝−2𝑢 = 𝑓 (𝑥, 𝑢) ,

𝑢 (𝑥) ∈ 𝑊
1,𝑝
(R
𝑁
) .

(4)
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The author proved that problem (4) has at least one
ground state. The weight function 𝑉(𝑥) is required to be
bounded; more precisely, there exist constants 𝛼, 𝛽 > 0 such
that

𝑉 (𝑥) ∈ 𝐶 (R
𝑁
) , 0 < 𝛼 ≤ 𝑉 (𝑥) ≤ 𝛽 < +∞. (5)

We point out that the weight function ℎ(𝑥) in problem (1)
is permitted to tends to infinity.

In this paper, inspired by [4, 8, 15], we consider the
existence of solution of problem (1). By the variational
method, we will prove that problem (1) has at least one
nontrivial weak solution. Since problem (1) is considered in
the whole space R𝑁, the loss of compactness of the Sobolev
embedding renders the variational technique more delicate.

In this paper, we make the following hypothesis:

(𝐴
1
) 𝑔(𝑥) ≥ 1, ℎ(𝑥) ≥ ℎ

0
> 0 and ℎ(𝑥) → +∞ as

|𝑥| → ∞,

(𝐴
2
) there exists 𝜇 ≥ 2𝑝 such that 0 ≤ 𝜇𝐹(𝑥, 𝑡) ≤

𝑡𝑓(𝑥, 𝑡), where 𝐹(𝑥, 𝑡) = ∫𝑡
0
𝑓(𝑥, 𝑠)𝑑𝑠,

(𝐴
3
) there exist constants 𝑐 > 0 and 𝑝 < 𝑞 < 𝑝∗ such

that |𝑓(𝑥, 𝑡)| ≤ 𝑐|𝑡|𝑞−1.

Remark 1. Throughout this paper, we denote by 𝑐 the constant
which may vary from line to line but remains independent of
the relevant quantities. Note that there exist many functions
𝑔(𝑥), ℎ(𝑥), and 𝑓(𝑥, 𝑡) such that satisfy the assumptions of
Theorem 3, for example, 𝑔(𝑥) = 1 + 𝑥4, ℎ(𝑥) = 𝑒𝑥

2

, 𝑓(𝑥, 𝑡) =
𝑡
5𝑝−1

/(1 + 𝑥
4
).

Let𝑊1,𝑝
0
(R𝑁) be the usual Sobolev space with the norm

of

‖𝑢‖ = (∫
R𝑁
|∇𝑢|
𝑝
+ |𝑢|
𝑝
𝑑𝑥)

1/𝑝

. (6)

Denote

𝐸 = {𝑢 ∈ 𝑊
1,𝑝

0
(R
𝑁
) : ∫

R𝑁
(|∇𝑢|
𝑝
+ ℎ (𝑥) |𝑢|

𝑝
) 𝑑𝑥 < ∞} .

(7)

Then, 𝐸 is a Sobolev space with the norm of

‖𝑢‖𝐸 = (∫
R𝑁
(|∇𝑢|
𝑝
+ ℎ (𝑥) |𝑢|

𝑝
)𝑑𝑥)

1/𝑝

. (8)

We give another space

𝑋 = {𝑢 ∈ 𝐸 : ∫
R𝑁
(𝑔 (𝑥) |∇𝑢|

𝑝
+ ℎ (𝑥) |𝑢|

𝑝
) 𝑑𝑥 < ∞}

(9)

endowed with the norm

‖𝑢‖𝑋 = (∫
R𝑁
(𝑔 (𝑥) |∇𝑢|

𝑝
+ ℎ (𝑥) |𝑢|

𝑝
) 𝑑𝑥)

1/𝑝

. (10)

It is not difficult to check that 𝑋 is a Banach space. The
Euler functional of problem (1) is

𝐽 (𝑢) =
𝑎

𝑝
∫
R𝑁
𝑔 (𝑥) |∇𝑢|

𝑝
𝑑𝑥 +

𝑏

2𝑝
(∫

R𝑁
𝑔 (𝑥) |∇𝑢|

𝑝
𝑑𝑥)

2

+
1

𝑝
∫
R𝑁
ℎ (𝑥) |𝑢|

𝑝
𝑑𝑥 − ∫

R𝑁
𝐹 (𝑥) 𝑑𝑥,

(11)

where 𝐹(𝑢) = ∫𝑢
0
𝑓(𝑥, 𝑡)𝑑𝑡. Then, the assumptions (𝐴

1
)–(𝐴
3
)

imply that 𝐽(𝑢) ∈ 𝐶1(𝑋,R1), and for any 𝜑 ∈ 𝑋, there holds

⟨𝐽

(𝑢) , 𝜑⟩ = 𝑎∫

R𝑁
𝑔 (𝑥) |∇𝑢|

𝑝−2
∇𝑢∇𝜑𝑑𝑥

+𝑏∫
R𝑁
𝑔 (𝑥)|∇𝑢|

𝑝
𝑑𝑥∫

R𝑁
𝑔 (𝑥)|∇𝑢|

𝑝−2
∇𝑢∇𝜑𝑑𝑥

+ ∫
R𝑁
ℎ (𝑥) |𝑢|

𝑝−2
𝑢𝜑𝑑𝑥 − ∫

R𝑁
𝑓 (𝑥, 𝑢) 𝜑𝑑𝑥.

(12)

Particularly,

⟨𝐽

(𝑢) , 𝑢⟩ = 𝑎∫

R𝑁
𝑔 (𝑥) |∇𝑢|

𝑝
𝑑𝑥

+ 𝑏(∫
R𝑁
𝑔 (𝑥) |∇𝑢|

𝑝
𝑑𝑥)

2

+ ∫
R𝑁
ℎ (𝑥) |𝑢|

𝑝
𝑑𝑥 − ∫

R𝑁
𝑓 (𝑥, 𝑢) 𝑢 𝑑𝑥.

(13)

Definition 2. A function 𝑢 ∈ 𝑋 is said to be a weak solution
of (1) if and only if (12) holds for any 𝜑 ∈ 𝑋.

Our main result is listed later.

Theorem3. Assume (𝐴
1
)–(𝐴
3
).Then, problem (1) has at least

one nontrivial weak solution in𝑋.

This paper is organized as follows. In Section 2, we
introduce some definitions and prove several lemmas which
will be used later. In Section 3, we give the proof ofTheorem 3
by making use of the Mountain Pass lemma.

2. Preliminary Results

In this section, we give some important lemmas, which will
be needed in the proof of our main result. Particularly, one
result of compact embedding on unbounded domain will be
proved.

Lemma 4. Assume (𝐴
1
) and 𝑝 ≤ 𝑞 < 𝑝

∗. Then, the
embedding𝑋 → 𝐿

𝑞
(R𝑁) is compact.

Proof. We split the proof into two cases.
𝐶𝑎𝑠𝑒 1 (𝑞 = 𝑝). Let

𝐵
𝑅
= {𝑢 ∈ 𝑋 : ‖𝑢‖𝑋 < 𝑅} , 𝐵

𝑐

𝑅
= R
𝑁
\ 𝐵
𝑅

(14)
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and 𝜂 = inf
𝐵
𝑐

𝑅

ℎ(𝑥); then (𝐴
1
) shows that 𝜂 → +∞ as 𝑅 →

∞. Furthermore, one gets that

∫
𝐵
𝑐

𝑅

|𝑢|
𝑝
𝑑𝑥 ≤ 𝜂

−1
∫
𝐵
𝑐

𝑅

ℎ (𝑥) |𝑢|
𝑝
𝑑𝑥, (15)

which implies that

(∫
𝐵
𝑐

𝑅

|𝑢|
𝑝
𝑑𝑥)

1/𝑝

≤ 𝜂
−1/𝑝
(∫
𝐵
𝑐

𝑅

ℎ (𝑥) |𝑢|
𝑝
𝑑𝑥)

1/𝑝

≤ 𝜂
−1/𝑝
(∫

R𝑁
ℎ (𝑥) |𝑢|

𝑝
𝑑𝑥)

1/𝑝

≤ 𝜂
−1/𝑝
‖𝑢‖𝑥.

(16)

It follows from (16) that

lim
𝑅→∞

sup
𝑢∈𝑋\{0}

‖𝑢‖𝐿𝑝(𝐵𝑐
𝑅
)

‖𝑢‖𝑋

= 0. (17)

Let {𝑢
𝑛
} be a bounded sequence of𝑋 such that ‖𝑢

𝑛
‖
𝑋
≤ 𝑐.

Then, there exists 𝑢 ∈ 𝑋 such that 𝑢
𝑛
⇀ 𝑢. For any 𝜀 > 0, it

follows from (17) that there exists 𝑅
𝜀
large enough such that

𝑢𝑛
𝐿𝑝(𝐵𝑐

𝑅𝜀
)
≤ 𝜀𝑐
−1𝑢𝑛

𝑋
≤ 𝜀 (𝑛 = 1, 2, . . .) . (18)

Note that the embedding 𝑋 → 𝐿
𝑝
(𝐵
𝑅𝜀
) is compact.

Therefore, for these 𝜀 and𝑅
𝜀
, there exists𝑁

𝜀
> 0 large enough

such that

𝑢𝑛 − 𝑢
𝐿𝑝(𝐵𝑅𝜀 )

≤ 𝜀 (19)

for all 𝑛 > 𝑁
𝜀
. Thus, one can get from (18) and (19) that

𝑢𝑛 − 𝑢
𝐿𝑝(R𝑁)

≤
𝑢𝑛 − 𝑢

𝐿𝑝(𝐵𝑅𝜀 )

+
𝑢𝑛
𝐿𝑝(𝐵𝑐

𝑅𝜀
)
+ ‖𝑢‖𝐿𝑝(𝐵𝑐

𝑅𝜀
)
< 3𝜀,

(20)

which implies that 𝑢
𝑛
→ 𝑢 strongly in 𝐿𝑞(R𝑁).

𝐶𝑎𝑠𝑒 2 (𝑝 < 𝑞 < 𝑝∗). By the Hölder and Young inequalities,
one can get from (𝐴

1
) that

∫
𝐵
𝑐

𝑅

|𝑢|
𝑞
𝑑𝑥 ≤ (∫

𝐵
𝑐

𝑅

|𝑢|
𝑝
𝑑𝑥)

(𝑝
∗
−𝑞)/(𝑝

∗
−𝑝)

× (∫
𝐵
𝑐

𝑅

|𝑢|
𝑝
∗

𝑑𝑥)

(𝑞−𝑝)/(𝑝
∗
−𝑝)

≤ 𝜂
−(𝑝
∗
−𝑞)/(𝑝

∗
−𝑝)
(∫
𝐵
𝑐

𝑅

ℎ (𝑥) |𝑢|
𝑝
𝑑𝑥)

(𝑝
∗
−𝑞)/(𝑝

∗
−𝑝)

× (∫
𝐵
𝑐

𝑅

|𝑢|
𝑝
∗

𝑑𝑥)

(𝑞−𝑝)/(𝑝
∗
−𝑝)

≤ 𝑐𝜂
−(𝑝
∗
−𝑞)/(𝑝

∗
−𝑝)
[(∫
𝐵
𝑐

𝑅

ℎ (𝑥) |𝑢|
𝑝
𝑑𝑥)

𝑞/𝑝

+ (∫
𝐵
𝑐

𝑅

|𝑢|
𝑝
∗

𝑑𝑥)

𝑞/𝑝
∗

]

]

≤ 𝑐𝜂
−(𝑝
∗
−𝑞)/(𝑝

∗
−𝑝)
[(∫
𝐵
𝑐

𝑅

ℎ (𝑥) |𝑢|
𝑝
𝑑𝑥)

𝑞/𝑝

+ (∫
𝐵
𝑐

𝑅

𝑔 (𝑥) |∇𝑢|
𝑝
𝑑𝑥)

𝑞/𝑝

]

≤ 𝑐𝜂
−(𝑝
∗
−𝑞)/(𝑝

∗
−𝑝)
‖𝑢‖
𝑞

𝑋
.

(21)

Since 𝑝 < 𝑞 < 𝑝∗ and 𝜂 → +∞ as 𝑅 → ∞, then

lim
𝑅→∞

sup
𝑢∈𝑋\{0}

‖𝑢‖𝐿𝑞(𝐵𝑐
𝑅
)

‖𝑢‖𝑋

= 0. (22)

Therefore, similar to the proof of Case 1, the embedding
𝐸 → 𝐿

𝑞
(R𝑁) is compact.

Now, we give the definitions of Palais-Smale (simply
(PS)
𝑐
) sequence and (PS)

𝑐
condition.

Definition 5. Let 𝑐 ∈ 𝑅1, 𝐽(𝑢) ∈ 𝐶1(𝑋, 𝑅), and𝑋 be a Banach
space.The sequence {𝑢

𝑛
} ⊂ 𝑋 is said to be a (𝑃𝑆)

𝑐
sequence if

there holds

𝐽 (𝑢
𝑛
) → 𝑐, 𝐽


(𝑢
𝑛
) → 0 in 𝑋∗ as 𝑛 → ∞. (23)

A functional 𝐽(𝑢) is said to satisfy the (PS)
𝑐
condition if

any (PS)
𝑐
sequence in𝑋 contains a convergent subsequence.

Next, we will prove that the functional 𝐽(𝑢) satisfies the
(PS)
𝑐
condition.

Lemma 6. Assume (𝐴
1
)–(𝐴
3
). Then, 𝐽(𝑢) satisfies the (PS)

𝑐

condition on𝑋 for any 𝑐 ∈ R1.

Proof. Let {𝑢
𝑛
} be an any (PS)

𝑐
sequence in 𝑋. We divide the

proof into two steps.
𝑆𝑡𝑒𝑝 1 ({𝑢

𝑛
} is bounded in𝑋). Note that 𝑎 > 1; then, it follows

from (23) and (𝐴
2
) that

𝑐 +
𝑢𝑛
𝑋
≥ 𝐽 (𝑢

𝑛
) −

1

2𝑝
⟨𝐽

(𝑢
𝑛
) , 𝑢
𝑛
⟩

= (
1

𝑝
−
1

2𝑝
) 𝑎∫

R𝑁
𝑔 (𝑥)

∇𝑢𝑛


𝑝
𝑑𝑥

+ (
1

𝑝
−
1

2𝑝
)∫

R𝑁
ℎ (𝑥)

𝑢𝑛


𝑝
𝑑𝑥

+ ∫
R𝑁
(
1

2𝑝
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
𝑛
− 𝐹)𝑑𝑥
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≥
1

2𝑝
∫
R𝑁
𝑔 (𝑥)

∇𝑢𝑛


𝑝
𝑑𝑥

+
1

2𝑝
∫
R𝑁
ℎ (𝑥)

𝑢𝑛


𝑝
𝑑𝑥 =

1

2𝑝

𝑢𝑛


𝑝

𝑋
,

(24)

which implies that {𝑢
𝑛
} is bounded in𝑋.

𝑆𝑡𝑒𝑝 2 ({𝑢
𝑛
} converges strongly in 𝑋). Since {𝑢

𝑛
} is bounded

in the separable 𝑋, there exist 𝑢
0
∈ 𝑋 and a subsequence of

{𝑢
𝑛
}, still denoted by {𝑢

𝑛
}, such that 𝑢

𝑛
⇀ 𝑢
0
in 𝑋. Now, we

want to prove that

∫
R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
𝑛
𝑑𝑥

− ∫
R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
0
𝑑𝑥 → 0, as 𝑛 → ∞.

(25)

In fact, it follows from (𝐴
3
) that


∫
R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
𝑛
𝑑𝑥 − ∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
0
𝑑𝑥



≤ ∫
R𝑁

𝑢𝑛


𝑞−1 𝑢𝑛 − 𝑢0
 𝑑𝑥.

(26)

Thus, in order to prove (25), we need only to prove that

∫
R𝑁

𝑢𝑛


𝑞−1 𝑢𝑛 − 𝑢0
 𝑑𝑥 → 0, as 𝑛 → ∞. (27)

Here, we divide the proof (27) into two cases:
(i)

𝑝 ≤ 𝑞 <
(𝑁 − 1) 𝑝

𝑁 − 𝑝
. (28)

By the Hölder inequality, we obtain that

∫
R𝑁

𝑢𝑛


𝑞−1 𝑢𝑛 − 𝑢0
 𝑑𝑥

≤ (∫
R𝑁

𝑢𝑛


𝑝(𝑞−1)/(𝑝−1)
𝑑𝑥)

(𝑝−1)/𝑝

× (∫
R𝑁

𝑢𝑛 − 𝑢0


𝑝
𝑑𝑥)

1/𝑝

.

(29)

It is easy to check that 𝑝 ≤ 𝑝(𝑞 − 1)/(𝑝 − 1) < 𝑝∗. Then,
the compact embedding in Lemma 4 shows that

(∫
R𝑁

𝑢𝑛


𝑝(𝑞−1)/(𝑝−1)
𝑑𝑥)

(𝑝−1)/𝑝

< ∞,

(∫
R𝑁

𝑢𝑛 − 𝑢0


𝑝
𝑑𝑥)

1/𝑝

→ 0 as 𝑛 → ∞,

(30)

which gives (27).
(ii)

(𝑁 − 2) 𝑝

𝑁 − 𝑝
≤ 𝑞 < 𝑝

∗
. (31)

Let 𝜆
1
= 𝑝
∗
/(𝑞 − 2). Since 1 < 𝑝 < 𝑁 and 𝑝(𝑁 − 2)/(𝑁 −

𝑝) ≤ 𝑞 < 𝑝
∗, there exist 𝑝 ≤ 𝜆

2
= 𝜆
3
< 𝑝
∗ such that

1

𝜆
1

+
1

𝜆
2

+
1

𝜆
3

= 1. (32)

The Hölder inequality shows that

∫
R𝑁

𝑢𝑛


𝑞−1 𝑢𝑛 − 𝑢0
 𝑑𝑥 ≤ (∫

R𝑁

𝑢𝑛


(𝑞−2)𝜆1
𝑑𝑥)

1/𝜆1

× (∫
R𝑁

𝑢𝑛


𝜆2
)

1/𝜆2

× (∫
R𝑁

𝑢𝑛 − 𝑢0


𝜆3
𝑑𝑥)

1/𝜆3

.

(33)

Therefore, the embedding in Lemma 4 implies that

(∫
R𝑁

𝑢𝑛


(𝑞−2)𝜆1
𝑑𝑥)

1/𝜆1

< ∞,

(∫
R𝑁

𝑢𝑛


𝜆2
)

1/𝜆2

< ∞,

(∫
R𝑁

𝑢𝑛 − 𝑢0


𝜆3
𝑑𝑥)

1/𝜆3

→ 0,

(34)

which also gives (27).
Note that (𝑁 − 1)𝑝/(𝑁 − 𝑝) < 𝑝∗ and

(𝑁 − 2) 𝑝

𝑁 − 𝑝
≥ 𝑝, 𝑝 ≥ 2,

(𝑁 − 2) 𝑝

𝑁 − 𝑝
< 𝑝, 1 < 𝑝 < 2.

(35)

Therefore, the previous cases (i) and (ii) imply that (25)
holds for all 𝑝 ≤ 𝑞 < 𝑝∗.

Denote

𝐷
𝑛
= ⟨𝐽

(𝑢
𝑛
) , 𝑢
𝑛
⟩ − ⟨𝐽


(𝑢
𝑛
) , 𝑢
0
⟩

+ ∫
R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
𝑛
𝑑𝑥 − ∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
0
𝑑𝑥.

(36)

Then, it follows from (23) and (25) that𝐷
𝑛
= 𝑜(1) and

𝑜 (1) = 𝐷𝑛 = 𝑎∫
R𝑁
𝑔 (𝑥)

∇𝑢𝑛


𝑝−2
∇𝑢
𝑛
∇ (𝑢
𝑛
− 𝑢
0
) 𝑑𝑥

+ 𝑏 (∫
R𝑁
𝑔 (𝑥)

∇𝑢𝑛


𝑝
𝑑𝑥)

× ∫
R𝑁
𝑔 (𝑥)

∇𝑢𝑛


𝑝−2
∇𝑢∇ (𝑢

𝑛
− 𝑢
0
) 𝑑𝑥

+ ∫
R𝑁
ℎ (𝑥)

𝑢𝑛


𝑝−2
𝑢
𝑛
(𝑢
𝑛
− 𝑢
0
) 𝑑𝑥

+ ∫
R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
𝑛
𝑑𝑥 − ∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
0
𝑑𝑥.

(37)
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Since 𝑢
𝑛
⇀ 𝑢

0
in 𝑋, one obtains from the Hölder

inequality that

𝑜 (1) = − 𝑎∫
R𝑁
𝑔 (𝑥)

∇𝑢0


𝑝−2
∇𝑢
0
∇ (𝑢
𝑛
− 𝑢
0
) 𝑑𝑥

− 𝑏 (∫
R𝑁
𝑔 (𝑥)

∇𝑢𝑛


𝑝
𝑑𝑥)

× ∫
R𝑁
𝑔 (𝑥)

∇𝑢0


𝑝−2
∇𝑢
0
∇ (𝑢
𝑛
− 𝑢
0
) 𝑑𝑥

− ∫
R𝑁
ℎ (𝑥)

𝑢0


𝑝−2
𝑢
0
(𝑢
𝑛
− 𝑢
0
) 𝑑𝑥.

(38)

Thus, it follows from (37) and (38) that

𝑜 (1) = 𝑎∫
R𝑁
𝑔 (𝑥) (

∇𝑢𝑛


𝑝−2
∇𝑢
𝑛

−
∇𝑢0



𝑝−2
∇𝑢
0
) ∇ (𝑢

𝑛
− 𝑢
0
) 𝑑𝑥

+ 𝑏 (∫
R𝑁
𝑔 (𝑥)

∇𝑢𝑛


𝑝
𝑑𝑥)

× ∫
R𝑁
𝑔 (𝑥) (

∇𝑢𝑛


𝑝−2
∇𝑢
𝑛

−
∇𝑢0



𝑝−2
∇𝑢
0
) ∇ (𝑢

𝑛
− 𝑢
0
) 𝑑𝑥

+ ∫
R𝑁
ℎ (𝑥) (

𝑢𝑛


𝑝−2
𝑢
𝑛
−
𝑢0


𝑝−2
𝑢
0
) (𝑢
𝑛
− 𝑢
0
) 𝑑𝑥

+ ∫
R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
𝑛
𝑑𝑥 − ∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢
0
𝑑𝑥.

(39)

Since 𝑎 ≥ 1, 𝑏 > 0, and 𝑔(𝑥), ℎ(𝑥) are positive functions,
we get from (25) and (39) that

∫
R𝑁
𝑔 (𝑥) (

∇𝑢𝑛


𝑝−2
∇𝑢
𝑛

−
∇𝑢0



𝑝−2
∇𝑢
0
) ∇ (𝑢

𝑛
− 𝑢
0
) 𝑑𝑥 → 0,

∫
R𝑁
ℎ (𝑥) (

𝑢𝑛


𝑝−2
𝑢
𝑛
−
𝑢0


𝑝−2
𝑢
0
) (𝑢
𝑛
− 𝑢
0
) 𝑑𝑥 → 0.

(40)

Therefore, we can deduce from (40) and the following
standard inequalities in [16]:

𝜉 − 𝜁


𝑝
≤

{{{

{{{

{

𝑐⟨
𝜉


𝑝−2
𝜉 −
𝜁


𝑝−2
𝜁, 𝜉 − 𝜁⟩ for 𝑝 ≥ 2,

𝑐⟨
𝜉


𝑝−2
𝜉 −
𝜁


𝑝−2
𝜁, 𝜉 − 𝜁⟩

𝑝/2

×(
𝜉


𝑝
+
𝜁


𝑝
)
(2−𝑝)/2

for 1 < 𝑝 < 2
(41)

that
𝑢𝑛 − 𝑢0

𝑋
→ 0 as 𝑛 → ∞. (42)

Then, we complete the proof.

3. Existence of Solution

In this section, the proof ofTheorem 3 is mainly based on the
following Mountain Pass lemma [17] (also see [18]).

Lemma 7 (Mountain Pass lemma). Let 𝑋 be a Banach space
and 𝐽 ∈ 𝐶1(𝑋,R) satisfies (PS)

𝑐
condition. Suppose that 𝐽(0) =

0 and

(𝐼
1
) there are constant 𝜌, 𝛼 > 0 such that 𝐽

𝜕𝐵𝜌
≥ 𝛼,

(𝐼
2
) there is an 𝑒 ∈ 𝑋 \ 𝐵

𝜌
such that 𝐽(𝑒) ≤ 0.

Then, 𝐽 possesses a critical value 𝑐 ≥ 𝛼. Moreover, 𝑐 can be
characterized as

𝑐 = inf
𝑔∈Γ

max
𝑢∈𝑔[0,1]

𝐽 (𝑢) ≥ 𝛼 > 0, (43)

where

Γ = {𝑔 ∈ 𝐶 ([0, 1] , 𝑋) : 𝑔 (0) = 0, 𝑔 (1) = 𝑒} . (44)

In view of Lemma 6, the functional 𝐽(𝑢) satisfies the (PS)
𝑐

condition. It is obvious that 𝐽(0) = 0; then, in order to
apply Lemma 7, we need only to prove that 𝐽(𝑢) satisfies the
geometric conditions of the Mountain Pass lemma.

Lemma 8. Assume (𝐴
1
)–(𝐴
2
). Then,

(𝐼
1
) there exist 𝜌, 𝛼 > 0 such that 𝐽(𝑢) ≥ 𝛼 > 0with ‖𝑢‖

𝑋
=

𝜌,
(𝐼
2
) there is an 𝑒 ∈ 𝑋 such that ‖𝑒‖

𝑋
> 𝜌 and 𝐽(𝑒) ≤ 0.

Proof. It follows from (𝐴
2
), (𝐴
3
), and the embedding in

Lemma 4 that

𝐽 (𝑢) ≥
𝑎

𝑝
∫
R𝑁
𝑔 (𝑥) |∇𝑢|

𝑝
𝑑𝑥 +

𝑏

2𝑝
(∫

R𝑁
𝑔 (𝑥) |∇𝑢|

𝑝
𝑑𝑥)

2

+
1

𝑝
∫
R𝑁
ℎ (𝑥) |𝑢|

𝑝
𝑑𝑥 −

1

𝜇
∫
R𝑁
|𝑢|
𝑞
𝑑𝑥

≥
1

𝑝
∫
R𝑁
(𝑔 (𝑥) |∇𝑢|

𝑝
+ ℎ (𝑥) |𝑢|

𝑝
) 𝑑𝑥 − 𝑐‖𝑢‖

𝑞

𝑋

=
1

𝑝
‖𝑢‖
𝑝

𝑋
− 𝑐‖𝑢‖

𝑞

𝑋
.

(45)

Since 𝑝 < 𝑞, there exists a sufficient small 𝜌 > 0 and 𝛼 > 0
such that 𝐽(𝑢) ≥ 𝛼 > 0 with ‖𝑢‖

𝑋
= 𝜌. On the other hand, for

fixed 𝑢
0
∈ 𝑋 and 𝑡 > 0, it follows from (𝐴

2
) that

𝐽 (𝑡𝑢
0
) ≤

𝑎𝑡
𝑝

𝑝
∫
R𝑁
𝑔 (𝑥) |∇𝑢|

𝑝
𝑑𝑥

+
𝑏𝑡
2𝑝

2𝑝
(∫

R𝑁
𝑔 (𝑥) |∇𝑢|

𝑝
𝑑𝑥)

2

+
𝑡
𝑝

𝑝
∫
R𝑁
ℎ (𝑥) |𝑢|

𝑝
𝑑𝑥

− 𝑡
𝜇
∫
R𝑁

𝑢0


𝜇
𝑑𝑥 → −∞ as 𝑡 → +∞.

(46)
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Then, there is a large 𝑡
0
> 0 such that ‖𝑡

0
𝑢
0
‖
𝑋
> 𝜌 and

𝐽(𝑡
0
𝑢
0
) < 0. One may choose 𝑒 = 𝑡

0
𝑢
0
; then, ‖𝑒‖

𝑋
> 𝜌 and

𝐽(𝑒) < 0. Thus, the proof of Lemma 8 is complete.

Proof of Theorem 3. It follows from Lemmas 7 and 8 that the
functional 𝐽(𝑢) has a critical point 𝑢 such that 𝐽(𝑢) = 𝑐 > 0;
that is, problem (1) has at least one weak solution. On the
other hand, 𝐽(0) = 0; then, problem (1) has at least one
nontrivial weak solution.
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