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Optimal bounds for the weighted geometric mean of the first Seiffert and logarithmic means by weighted generalized Heronian
mean are proved. We answer the question: for 𝛼 ∈ (0, 1), what the greatest value 𝑝(𝛼) and the least value 𝑞(𝛼) such that the double
inequality, 𝐻𝑝(𝛼)(𝑎, 𝑏) < 𝑃

𝛼
(𝑎, 𝑏)𝐿

1−𝛼
(𝑎, 𝑏) < 𝐻𝑞(𝛼)(𝑎, 𝑏), holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 are. Here, 𝑃(𝑎, 𝑏), 𝐿(𝑎, 𝑏), and 𝐻𝜔(𝑎, 𝑏)

denote the first Seiffert, logarithmic, and weighted generalized Heronian means of two positive numbers 𝑎 and 𝑏, respectively.

1. Introduction

Recently, means has been the subject of intensive research. In
particular, many remarkable inequalities for the Seiffert, log-
arithmic, and Heronian mean can be found in the literature
[1–11]. In the paper [1], authors proved the following optimal
inequalities:

Let 𝑎 > 0, 𝑏 > 0, 𝑎 ̸= 𝑏 then

𝐻𝛿 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) < 𝐻𝛽 (𝑎, 𝑏) for 𝛿 ≥ 𝜋 − 2, 𝛽 ≤ 1,

𝛿 = 𝜋 − 2, 𝛽 = 1 are the best constants.

𝐻𝛾 (𝑎, 𝑏) < 𝐿 (𝑎, 𝑏) < 𝐻𝜏 (𝑎, 𝑏) for 𝛾 = +∞, 𝜏 ≤ 4,

𝛾 = +∞, 𝜏 = 4 are the best constants.

(1)

𝑃(𝑎, 𝑏) is the first Seiffert mean, which was introduced by
Seiffert in [9]

𝑃 (𝑎, 𝑏) =

𝑎 − 𝑏

4 arctan (√𝑎/𝑏) − 𝜋

=

𝑎 − 𝑏

2 arcsin ((𝑎 − 𝑏) / (𝑎 + 𝑏))

for 𝑎, 𝑏 > 0, 𝑎 ̸= 𝑏.

(2)

In [9], Seiffert proved that 𝐿(𝑎, 𝑏) < 𝑃(𝑎, 𝑏) < 𝐼(𝑎, 𝑏), where
𝐼(𝑎, 𝑏) is the identric mean

𝐼 (𝑎, 𝑏) =

1

𝑒

(

𝑎
𝑎

𝑏
𝑏
)

1/(𝑏−𝑎)

if 𝑎 ̸= 𝑏, 𝐼 (𝑎, 𝑎) = 𝑎. (3)

𝐿(𝑎, 𝑏) is the logarithmic mean

𝐿 (𝑎, 𝑏) =

𝑎 − 𝑏

log 𝑎 − log 𝑏
for 𝑎, 𝑏 > 0, 𝑎 ̸= 𝑏. (4)

𝐺𝛼(𝑎, 𝑏) is the weighted geometric mean

𝐺𝛼 (𝑎, 𝑏) = 𝑎
𝛼
𝑏
1−𝛼 for 𝑎, 𝑏 > 0, 0 ≤ 𝛼 ≤ 1. (5)

𝐻𝜔(𝑎, 𝑏) is the weighted generalized Heronian mean intro-
duced by Janous [7]

𝐻𝜔 (𝑎, 𝑏) =
𝑎 + 𝜔√𝑎𝑏 + 𝑏

𝜔 + 2

for 0 ≤ 𝜔 < +∞

= √𝑎𝑏 for 𝜔 = +∞.

(6)

It is well known, that 𝐻𝜔(𝑎, 𝑏) is a strictly decreasing contin-
uous function of the argument 𝜔. From this and from results
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of [1], it is natural to assume that there exist optimal functions
𝑝(𝛼), 𝑞(𝛼), 0 ≤ 𝛼 ≤ 1 such that

𝐻𝑝(𝛼) (𝑎, 𝑏) < 𝑃
𝛼
(𝑎, 𝑏) 𝐿

1−𝛼
(𝑎, 𝑏) < 𝐻𝑞(𝛼) (𝑎, 𝑏) . (7)

The purpose of this paper is to find the optimal functions.
For some other details about means, see [1–11] and the related
references cited there in.

2. Main Results

Themain result of this paper is the following theorem.

Theorem 1. Let 𝑎, 𝑏 > 0, 𝑎 ̸= 𝑏, 𝛼 ∈ (0, 1). Then

𝐻𝑝 (𝑎, 𝑏) < 𝑃
𝛼
(𝑎, 𝑏) 𝐿

1−𝛼
(𝑎, 𝑏) < 𝐻𝑞 (𝑎, 𝑏) ,

𝑓𝑜𝑟 𝑝 = +∞, 𝑞 ≤ 𝑞 (𝛼) ,

(8)

where 𝑝 = 𝑝(𝛼) = +∞, 𝑞(𝛼) = 2(2 − 𝛼)/(1 + 𝛼) are the best
possible functions.

Proof. First, we prove the left inequality of (8). The inequali-
ties (1) imply that

𝐻+∞ (𝑎, 𝑏) < 𝑃
𝛼
(𝑎, 𝑏) 𝐿

1−𝛼
(𝑎, 𝑏) for 𝑎, 𝑏 > 0,

𝑎 ̸= 𝑏, 0 < 𝛼 < 1.

(9)

From lim𝑡→0+𝐺(𝑡, 𝛼) = +∞ for 𝛼 ∈ (0, 1) (see (14)) we obtain
that 𝑝(𝛼) = +∞ is the optimal function.

Without loss of generality, we assume that 0 < 𝑎 < 𝑏. Let
𝑡 = √𝑎/𝑏; then 0 < 𝑡 < 1. The right inequality of (8) can be
rewritten as

1

𝑏
𝛼
𝑃
𝛼
(𝑎, 𝑏)

1

𝑏
1−𝛼

𝐿
1−𝛼

(𝑎, 𝑏) <

1

𝑏

𝐻𝑞 (𝑎, 𝑏)

for 𝑎, 𝑏 > 0, 𝑎 ̸= 𝑏, 0 < 𝛼 < 1.

(10)

Simple computations lead to

1 − 𝑡
2

(𝜋 − 4 arctan 𝑡)
𝛼
(−2 ln 𝑡)

1−𝛼
−

𝑡
2
+ 𝑞𝑡 + 1

𝑞 + 2

< 0

for 0 < 𝑡 < 1, 0 < 𝛼 < 1.

(11)

Then the inequality (11) is equivalent to

𝑞 (1 − 𝑡
2
− 𝑡(𝜋 − 4 arctan 𝑡)

𝛼
(−2 ln 𝑡)

1−𝛼
)

< (1 + 𝑡
2
) (𝜋 − 4 arctan 𝑡)

𝛼
(−2 ln 𝑡)

1−𝛼
− 2 (1 − 𝑡

2
) .

(12)

Denote

𝑠 (𝑡, 𝛼) = 1 − 𝑡
2
− 𝑡(𝜋 − 4 arctan 𝑡)

𝛼
(−2 ln 𝑡)

1−𝛼
,

𝑟 (𝑡) = 𝜋 − 4 arctan 𝑡 + 2 ln 𝑡, V (𝑡) = 𝑡
2
− 2𝑡 ln 𝑡 − 1.

(13)

From 𝑟(1) = 0 and 𝑟

(𝑡) = (2 − 4𝑡 + 2𝑡

2
)/(𝑡 + 𝑡

3
) > 0 we have

𝑟(𝑡) < 0 for 𝑡 ∈ (0, 1). It implies ((𝜋 − 4 arctan 𝑡)/(−2 ln 𝑡))
𝛼
<

1.From V(1) = 0, V(1) = 0, V(𝑡) = 2 − 2/𝑡 < 0 we obtain

V(𝑡) > 0 and so V(𝑡) < 0. It implies that 𝑠(𝑡, 𝛼) > 0 for 𝑡,
𝛼 ∈ (0, 1). This leads to

𝑞 < 𝐺 (𝑡, 𝛼)

=

(1 + 𝑡
2
) (𝜋 − 4 arctan 𝑡)

𝛼
(−2 ln 𝑡)

1−𝛼
− 2 (1 − 𝑡

2
)

1 − 𝑡
2
− 𝑡(𝜋 − 4 arctan 𝑡)

𝛼
(−2 ln 𝑡)

1−𝛼
.

(14)

If we show 𝐺


𝑡
(𝑡, 𝛼) < 0 for 𝑡, 𝛼 ∈ (0, 1), then 𝑞(𝛼) =

lim𝑡→1−𝐺(𝑡, 𝛼) will be the best function in (8). Simple
computations lead to 𝐺



𝑡
(𝑡, 𝛼) < 0 which is equivalent to

𝐻(𝑡, 𝛼) = 2 (1 − 𝑡) ln 𝑡 +

4𝛼 (1 + 𝑡) (1 − 𝑡)
2 ln 𝑡

𝜋 − 4 arctan 𝑡

−

(1 − 𝛼) (1 + 𝑡) (1 − 𝑡)
2

𝑡

+ 2 (1 + 𝑡) ln2𝑡(𝜋 − 4 arctan 𝑡

−2 ln 𝑡

)

𝛼

< 0.

(15)

Using the inequality 𝑡𝛼 < 1−𝛼(1−𝑡) for 𝑡, 𝛼 ∈ (0, 1) it suffices
to show that

𝑅 (𝑡, 𝛼) = 2 (1 − 𝑡) ln 𝑡 +

4𝛼 (1 + 𝑡) (1 − 𝑡)
2 ln 𝑡

𝜋 − 4 arctan 𝑡

−

(1 − 𝛼) (1 + 𝑡) (1 − 𝑡)
2

𝑡

+ (2 ln 𝑡 + 𝛼 (−2 ln 𝑡 − 𝜋 + 4 arctan 𝑡)) (1 + 𝑡) ln 𝑡

< 0.

(16)

It will be done, if we show 𝑅(𝑡, 0) < 0 and 𝑅(𝑡, 1) < 0. It
follows from𝑅(𝑡, 𝛼) being a linear continuous function in the
argument 𝛼

𝑅 (𝑡, 0) = 2 (1 − 𝑡) ln 𝑡 −

(1 + 𝑡) (1 − 𝑡)
2

𝑡

+ 2 (1 + 𝑡) ln2𝑡 < 0

(17)

is equivalent to

𝑠 (𝑡) =

2 (1 − 𝑡) ln 𝑡

1 + 𝑡

−

(1 − 𝑡)
2

𝑡

+ 2ln2𝑡 < 0. (18)

From 𝑠(1) = 0 it suffices to show that 𝑠

(𝑡) > 0 which is

equivalent to

V (𝑡) = ln 𝑡 +

(1 + 3𝑡 − 3𝑡
2
− 𝑡
3
) (1 + 𝑡)

4𝑡 (1 + 𝑡 + 𝑡
2
)

> 0. (19)

It follows from V(1) = 0 and

V (𝑡) =
𝑤 (𝑡)

4𝑡
2
(1 + 𝑡 + 𝑡

2
)
2
< 0, (20)

where 𝑤(𝑡) = −(1 − 𝑡)
2
(1 − 𝑡
2
)
2.
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Next, we show that

𝑅 (𝑡, 1) = 4 (1 − 𝑡) ln 𝑡 +

8 (1 + 𝑡) (1 − 𝑡)
2 ln 𝑡

𝜋 − 4 arctan 𝑡

− 2 (𝜋 − 4 arctan 𝑡) (1 + 𝑡) ln 𝑡 < 0.

(21)

The inequality (21) is equivalent to

(𝜋 − 4 arctan 𝑡 −

1 − 𝑡

1 + 𝑡

)

2

< (

1 − 𝑡

1 + 𝑡

)

2

− 4(1 − 𝑡)
2
. (22)

So, it suffices to show that

𝑔 (𝑡) = −𝜋 + 4 arctan 𝑡 +

1 − 𝑡

1 + 𝑡

(1 + √1 + 4(1 + 𝑡)
2
) > 0.

(23)

It is easy to see that

1 + √1 + 4(1 + 𝑡)
2
> 1 + 2 (1 + 𝑡) +

1

5 (1 + 𝑡)

=

16 + 25𝑡 + 10𝑡
2

5 (1 + 𝑡)

for 0 ≤ 𝑡 ≤ 1.

(24)

Because of

𝑔 (𝑡) > 𝑔1 (𝑡) = − 𝜋 + 4 arctan 𝑡

+

1 − 𝑡

1 + 𝑡

(

16 + 25𝑡 + 10𝑡
2

5 (1 + 𝑡)

) > 0,

(25)

it suffices to prove 𝑔1(𝑡) > 0 for 0 < 𝑡 < 1. From

𝑔1 (𝑡) =
1

5

𝑔2 (𝑡)

=

1

5

(−5𝜋 + 20 arctan 𝑡 +

(1 − 𝑡) (16 + 25𝑡 + 10𝑡
2
)

(1 + 𝑡)
2

) ,

(26)

arctan(𝑡) > 𝑡 − 𝑡
3
/3, for 𝑡 ∈ (0, 1), 𝑔2(1) = 0 we have done it,

if we show

𝑔3 (𝑡) = −5𝜋 + 20(𝑡 −

𝑡
3

3

) +

(1 − 𝑡) (16 + 25𝑡 + 10𝑡
2
)

(1 + 𝑡)
2

> 0,

(27)

on (0, 0.67⟩ and 𝑔


2
(𝑡) < 0 on ⟨0.67, 1).

Simple computation gives

𝑔


2
(𝑡) =

20

1 + 𝑡
2
− (

23 + 39𝑡 + 30𝑡
2
+ 10𝑡
3

(1 + 𝑡)
3

) . (28)

The inequality 𝑔


2
(𝑡) < 0 is equivalent to

𝑐ℎ (𝑡) = −3 + 21𝑡 + 7𝑡
2
− 29𝑡
3
− 30𝑡
4
− 10𝑡
5
< 0. (29)

From 𝑐ℎ

(𝑡) < 0 we get 𝑐ℎ


(𝑡) is a decreasing function.

𝑐ℎ

(0.67) = −324.3366 implies 𝑐ℎ


(𝑡) < 0 on ⟨0.67, 1). So,

we obtain 𝑐ℎ

(𝑡) is a decreasing function. From 𝑐ℎ


(0.67) =

−54.8414 we have 𝑐ℎ(𝑡) < 0 on ⟨0.67, 1). It implies that 𝑐ℎ(𝑡)
is a decreasing function. From 𝑐ℎ(0.67) = −1.9053 we get
𝑐ℎ(𝑡) < 0 on ⟨0.67, 1). So 𝑔



2
(𝑡) < 0 on ⟨0.67, 1).

Next, we show 𝑔3(𝑡) > 0 on (0, 0.67⟩.
Simple computation gives

𝑔3 (𝑡) = (16 − 5𝜋 + 𝑡 (29 − 10𝜋) + 𝑡
2
(25 − 5𝜋)

+𝑡
3 10

3

− 𝑡
4 40

3

− 𝑡
5 20

3

) ((1 + 𝑡)
2
)

−1

.

(30)

The inequality 𝑔3(𝑡) > 0 is equivalent to

ℎ (𝑡) = 16 − 5𝜋 + 𝑡 (29 − 10𝜋) + 𝑡
2
(25 − 5𝜋)

+ 𝑡
3 10

3

− 𝑡
4 40

3

− 𝑡
5 20

3

> 0,

(31)

on (0, 0.67⟩. From ℎ(0) = 16 − 5𝜋 > 0, ℎ(0.1) = 0.1453,
ℎ(0.15) = 0.1427, ℎ(0.67) = 0.2602, ℎ(0.15) = 0.3998 it
suffices to show that ℎ


(𝑡) < 0 on (0, 0.1⟩; ℎ(𝑡) > 0 on

⟨0.1, 0.15⟩ and ℎ

(𝑡) has only one root in (0.15, 0.67).

First, we show ℎ(𝑡) > 0 on ⟨0.1, 0.15⟩. From 𝑡
3
> 0.1𝑡

2,
𝑡
4
< 0.15

2
𝑡
2, 𝑡5 < 0.15

3
𝑡
2 we have

ℎ (𝑡) > 16 − 5𝜋 + 𝑡 (29 − 10𝜋)

+ 𝑡
2
(25 − 5𝜋 + 0.1

10

3

− 0.15
2 40

3

− 0.15
3 20

3

) > 𝑙 (𝑡) ,

(32)

where

𝑙 (𝑡) = 16 − 5𝜋 + 𝑡 (29 − 10𝜋) + 𝑡
2
9.3. (33)

It is easy to see that 𝑙(𝑡) = 0 for 𝑡 = (10𝜋−29)/18.6 = 0.1299.
From 𝑙


(𝑡) > 0 on ⟨0.1, 0.15⟩ and 𝑙(0.1299) = 0.1351 we have

𝑙(𝑡) > 0. It implies ℎ(𝑡) > 0 on ⟨0.1, 0.15⟩.
Next, we show ℎ


(𝑡) < 0 on (0, 0.1⟩. Simple computation

gives

ℎ

(𝑡) = (29 − 10𝜋) + (50 − 10𝜋) 𝑡

+ 10𝑡
2
−

160

3

𝑡
3
−

100

3

𝑡
4
< 𝑗 (𝑡) ,

(34)

where

𝑗 (𝑡) = (29 − 10𝜋) + (50 − 10𝜋) 𝑡 + 10𝑡
2
, (35)

𝑗(0) = 29 − 10𝜋 < 0, 𝑗(𝑡) > 0, 𝑗(0.1) = −0.45750 imply
𝑗(𝑡) < 0 so ℎ


(𝑡) < 0 on (0, 0.1⟩.

Finally, we show that ℎ

(𝑡) has only one root on

(0.15, 0.67). From ℎ


(𝑡) < 0 we obtain ℎ

(𝑡) is a decreasing

function. Because of ℎ(0.15) = −37 we have ℎ

(𝑡) < 0 on

(0.15, 0.67) so ℎ

(𝑡) is a concave function. From ℎ


(0.15) =

0.3998 and ℎ

(0.67) = −8.2333 we have that ℎ(𝑡) has only

one root on (0.15, 0.67). It implies ℎ(𝑡) > 0 on ⟨0.15, 0.67⟩.
So, the proof of decreasing of 𝐺(𝑡, 𝛼) is complete.

Inwhat follows, we find the representation of the function
𝑞(𝛼).
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It is easy to see that

𝑞 (𝛼) = lim
𝑡→1−

( ((1 + 𝑡
2
) (𝜋 − 4 arctan 𝑡)

𝛼

×(−2 ln 𝑡)
1−𝛼

− 2 (1 − 𝑡
2
))

× (1 − 𝑡
2
− 𝑡(𝜋 − 4 arctan 𝑡)

𝛼

×(−2 ln 𝑡)
1−𝛼

)

−1

) .

(36)

Equation (36) can be rewritten as

𝑞 (𝛼) = lim
𝑡→1−

(1 + 𝑡
2
) 𝑌 (𝑡, 𝛼)𝑈 (𝑡, 𝛼) − 2 (1 + 𝑡)

1 + 𝑡 − 𝑡𝑌 (𝑡, 𝛼)𝑈 (𝑡, 𝛼)

, (37)

where

𝑌 (𝑡, 𝛼) = (

𝜋 − 4 arctan 𝑡

1 − 𝑡

)

𝛼

, 𝑈 (𝑡, 𝛼) = (

−2 ln 𝑡

1 − 𝑡

)

1−𝛼

.

(38)

Simple computations give

𝑌 (𝑡, 𝛼) = 2
𝛼
(1 +

1 − 𝑡

2

+

(1 − 𝑡)
2

6

+ 𝑦 (𝑡) (1 − 𝑡)
3
) , (39)

where 𝑦(𝑡) is a suitable function. Similarly we have

𝑈 (𝑡, 𝛼) = 2
1−𝛼

(1 +

1 − 𝑡

2

+

(1 − 𝑡)
2

3

+ 𝑢 (𝑡) (1 − 𝑡)
3
) ,

(40)

where 𝑢(𝑡) is a suitable function. Denote 𝑆(𝑡, 𝛼) =

𝑌(𝑡, 𝛼)𝑈(𝑡, 𝛼). Then

𝑆 (𝑡, 𝛼) = 2(1 +

1 − 𝑡

2

+

(2 − 𝛼) (1 − 𝑡)
2

6

+ 𝑠 (𝑡) (1 − 𝑡)
3
) ,

(41)

where 𝑠(𝑡) is a suitable function. Using the L’Hospital’s rule
we obtain

𝑞 (𝛼) = lim
𝑡→1−

(1 + 𝑡
2
) 𝑆 (𝑡, 𝛼) − 2 (1 + 𝑡)

1 + 𝑡 − 𝑡𝑆 (𝑡, 𝛼)

= lim
𝑡→1−

2𝑆 (𝑡, 𝛼) + 4𝑡𝑆


𝑡
(𝑡, 𝛼) + (1 + 𝑡

2
) 𝑆


𝑡𝑡
(𝑡, 𝛼)

−2𝑆

𝑡 (𝑡, 𝛼) − 𝑡𝑆


𝑡𝑡 (𝑡, 𝛼)

=

2 (2 − 𝛼)

1 + 𝛼

.

(42)

The proof is complete.
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