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We estimate the small periodic and semiperiodic eigenvalues of Hill’s operator with sufficiently differentiable potential by two
different methods. Then using it we give the high precision approximations for the length of 𝑛th gap in the spectrum of Hill-
Sehrodinger operator and for the length of 𝑛th instability interval of Hill’s equation for small values of 𝑛. Finally we illustrate and
compare the results obtained by two different ways for some examples.

1. Introduction

Let 𝑃(𝑞) and 𝑆(𝑞) be the operators generated in 𝐿
2
[0, 𝜋] by

the differential expression

−𝑦
󸀠󸀠
(𝑥) + 𝑞 (𝑥) 𝑦 (𝑥) (1)

with the periodic

𝑦 (𝜋) = 𝑦 (0) , 𝑦
󸀠
(𝜋) = 𝑦

󸀠
(0) (2)

and semiperiodic

𝑦 (𝜋) = −𝑦 (0) , 𝑦
󸀠
(𝜋) = −𝑦

󸀠
(0) (3)

boundary conditions, respectively, where 𝑞 is a real periodic
function with period 𝜋. The eigenvalues of 𝑃(𝑞) and 𝑆(𝑞)

for 𝑞 = 0 are (2𝑛)2 and (2𝑛 + 1)
2 for 𝑛 ∈ Z, respectively.

All eigenvalues of 𝑃(0) and 𝑆(0), except 0, are doubled. The
eigenvalues of the operators 𝑃(𝑞) and 𝑆(𝑞), called periodic
and semiperiodic eigenvalues, are denoted by 𝜆

2𝑛
and 𝜆

2𝑛+1

for 𝑛 ∈ Z, respectively, where

𝜆
0
(𝑞) < 𝜆

−1
(𝑞) ≤ 𝜆

1
(𝑞) < 𝜆

−2
(𝑞) ≤ 𝜆

2
(𝑞)

< 𝜆
−3
(𝑞) ≤ 𝜆

3
(𝑞) < 𝜆

−4
(𝑞) ≤ 𝜆

4
(𝑞) ⋅ ⋅ ⋅

(4)

[1, see page 27]. The spectrum 𝜎(𝑇(𝑞)) of the operator 𝑇(𝑞)
generated in 𝐿

2
[0, 2𝜋] by (1) and the boundary conditions

𝑦 (2𝜋) = 𝑦 (0) , 𝑦
󸀠
(2𝜋) = 𝑦

󸀠
(0) (5)

is the union of the periodic and semiperiodic eigenvalues,
that is,

𝜎 (𝑃) = {𝜆
2𝑛
: 𝑛 ∈ Z} ,

𝜎 (𝑆) = {𝜆
2𝑛+1

: 𝑛 ∈ Z} , 𝜎 (𝑇) = {𝜆
𝑛
: 𝑛 ∈ Z} ,

(6)

since (5) holds if and only if either (2) or (3) holds [1, see page
33].

The spectrum of the operator 𝐿(𝑞) generated in
𝐿
2
(−∞,∞) by (1) consists of the intervals [𝜆

𝑛−1
(𝑞), 𝜆
−𝑛
(𝑞)]

for 𝑛 = 1, 2, . . .. Moreover, these intervals are the closure of
the stable intervals of equation

−𝑦
󸀠󸀠
(𝑥) + 𝑞 (𝑥) 𝑦 (𝑥) = 𝜆𝑦 (𝑥) . (7)

The intervals (𝜆
−𝑛
, 𝜆
𝑛
) for 𝑛 = 1, 2, . . . are the gaps in the

spectrum. These intervals with (−∞, 𝜆
0
) are the instable

intervals of (7) [1, see pages 32 and 82]. The length of 𝑛th gap
in the spectrum of 𝐿(𝑞) (the length of (𝑛 + 1)th instability
interval of (7)) is

𝛾
𝑛
(𝑞) =: 𝜆

𝑛
(𝑞) − 𝜆

−𝑛
(𝑞) . (8)

Therefore the estimations of the periodic and semiperiodic
eigenvalues are also the investigations of the spectrum of 𝐿(𝑞)
and of the stable intervals of (7).

In this paper we gave the estimations for the small
periodic and semiperiodic eigenvalues when the real periodic
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potential 𝑞 belongs to the Sobolev space𝑊𝑘
1
[0, 𝜋] with 𝑘 > 1.

These assumptions on the potential 𝑞 imply that

𝑞 (𝑥) = ∑

𝑛∈Z

𝑞
𝑛
𝑒
𝑖2𝑛𝑥

, 𝑞
−𝑛
= 𝑞
𝑛
,

󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨
≤

𝑟

(2𝑛)
𝑚
, (9)

where

𝑞
𝑛
= (𝑞, 𝑒

𝑖2𝑛𝑥
) = ∫

𝜋

0

𝑞 (𝑥) 𝑒
−𝑖2𝑛𝑥

𝑑𝑥,

𝑟 = ∫

[0,𝜋]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
(𝑘)
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥.

(10)

Without loss of generality, it is assumed that 𝑞
0
= 0.

It is wellknown that (see [2])
󵄨
󵄨
󵄨
󵄨
𝜆
𝑛
(𝑞) − 𝜆

𝑛
(0)

󵄨
󵄨
󵄨
󵄨
≤ sup 󵄨󵄨󵄨

󵄨
𝑞 (𝑥)

󵄨
󵄨
󵄨
󵄨
,

𝜆
𝑛
(0) = 𝑛

2
, ∀𝑛 ∈ Z.

(11)

To give a subtle estimate for the eigenvalues 𝜆
𝑛
(𝑞), we write

the potential 𝑞 in the form

𝑞 (𝑥) = 𝑝 (𝑥) + ∑

|𝑛|>𝑠

𝑞
𝑛
𝑒
𝑖2𝑛𝑥

, (12)

where

𝑝 (𝑥) = ∑

𝑛:|𝑛|≤𝑠

𝑞
𝑛
𝑒
𝑖2𝑛𝑥

. (13)

The inequality in (9) implies that

sup
𝑥∈[0,𝜋]

󵄨
󵄨
󵄨
󵄨
𝑞 (𝑥) − 𝑝 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤ ∑

|𝑛|>𝑠

󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨
≤

𝑟

(𝑘 − 1) (2𝑠)
𝑘−1

. (14)

Hence, by the perturbation theory (see [2]) we have

󵄨
󵄨
󵄨
󵄨
𝜆
𝑛
(𝑞) − 𝜆

𝑛
(𝑝)

󵄨
󵄨
󵄨
󵄨
≤

𝑟

(𝑘 − 1) (2𝑠)
𝑘−1

,

󵄨
󵄨
󵄨
󵄨
𝛾
𝑛
(𝑞) − 𝛾

𝑛
(𝑝)

󵄨
󵄨
󵄨
󵄨
≤

2𝑟

(𝑘 − 1) (2𝑠)
𝑘−1

.

(15)

Therefore to estimate 𝜆
𝑛
(𝑞) and 𝛾

𝑛
(𝑞) we can investigate the

eigenvalues 𝜆
𝑛
(𝑝) of the operator 𝑇(𝑝) and then use (8) and

(15).
In the literature, there are a lot of studies about numerical

estimation of the periodic and semiperiodic eigenvalues by
using the finite difference method, finite element method,
Prüfer transformations, and shooting method. Let us recall
some of them. Andrew considered the computations of the
eigenvalues by using finite element method [3] and finite
differencemethod [4].Then these results have been extended
by Condon [5] and by Vanden Berghe et al. [6]. Ji and Wong
used Prüfer transformation and shooting method in their
studies [7–9]. Malathi et al. [10] used shooting technique
and direct integration method for computing eigenvalues of
periodic Sturm-Liouville problems.

We consider the small periodic and semiperiodic eigen-
values by other methods. First, in Section 2, we obtain an

approximation of the eigenvalues 𝜆
±𝑛
(𝑝) for 𝑛 > 𝑚𝑠, where

𝑚 is the positive integer for determination of the error in
estimations, by using the method of the paper [11], where the
asymptotic formulas for the eigenvalues and eigenfunctions
of the 𝑡-periodic boundary value problems were obtained.
Then, in Section 3, using it and considering the matrix form
of 𝑇(𝑝) we give an approximation with very small errors
for all small periodic and semiperiodic eigenvalues. Finally,
we apply these investigations to get approximations order
10
−18

, 10
−15, and 10

−12 for the first 201 eigenvalues of the
operator 𝑇 with potentials 𝑝

1
(𝑥) = 2 cos 2𝑥, 𝑝

2
(𝑥) =

2 cos 2𝑥+2 cos 4𝑥, and 𝑝
3
(𝑥) = 2 cos 2𝑥+2 cos 4𝑥+2 cos 6𝑥,

respectively, and give a comparison between the approxi-
mated eigenvalues obtained by the different ways.

2. On Applications of the Asymptotic Methods

In this and next sections, for simplicity of the notation, 𝜆
𝑛
(𝑝)

is denoted by 𝜆
𝑛
. By (11)–(13)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑛
− 𝑛
2󵄨󵄨
󵄨
󵄨
󵄨
≤ sup 󵄨󵄨󵄨

󵄨
𝑝 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤

𝑠

∑

𝑛=−𝑠

󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨
. (16)

To get the subtle estimations for 𝜆
𝑛
, that is, to observe

the influence of the trigonometric polynomial 𝑝(𝑥) to the
eigenvalue 𝑛2 of 𝑇(0), we use the formula

(𝜆
𝑁
− 𝑛
2
) (Ψ
𝑁
, 𝑒
𝑖𝑛𝑥
) = (𝑝Ψ

𝑁
, 𝑒
𝑖𝑛𝑥
) (17)

obtained from the equation

−Ψ
󸀠󸀠

𝑁
(𝑥) + 𝑝 (𝑥)Ψ

𝑁
(𝑥) = 𝜆

𝑁
Ψ
𝑁
(𝑥) (18)

by multiplying 𝑒
𝑖𝑛𝑥, where Ψ

𝑁
is the eigenfunction corre-

sponding to the eigenvalue 𝜆
𝑛
; ‖Ψ
𝑛
‖ = 1/√𝜋, (⋅, ⋅) and ‖ ⋅ ‖

denote inner product and norm in 𝐿
2
[0, 𝜋].

Introduce the notation

𝑀 = sup
𝑥

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑥)

󵄨
󵄨
󵄨
󵄨
, 𝑐 =

𝑠

∑

𝑛=−𝑠

󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨
,

𝑄 = sup
𝑛

󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨
, 𝑋

𝑁,𝑛
= (Ψ
𝑁
, 𝑒
𝑖𝑛𝑥
) .

(19)

Using this notation and (13) in (17) we get

(𝜆
𝑁
− 𝑛
2
)𝑋
𝑁,𝑛

=

𝑠

∑

𝑘=−𝑠

𝑞
𝑘
𝑋
𝑁,𝑛−2𝑘

. (20)

In (20) replacing 𝑁 by 𝑛 and then iterating it 𝑚 times, as in
the paper [11], were done; we obtain

(𝜆
𝑛
− 𝑛
2
)𝑋
𝑛,𝑛

= 𝐴
𝑚
(𝜆
𝑛
, 𝑛)𝑋
𝑛,𝑛

+ 𝑅
𝑚+1

(𝜆
𝑛
, 𝑛) , (21)
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where

𝐴
𝑚
(𝜆
𝑛
, 𝑛) =

𝑚

∑

𝑘=1

𝑎
𝑘
(𝜆
𝑛
, 𝑛) , (22)

𝑎
𝑘
(𝜆
𝑛
, 𝑛)

=

𝑠

∑

𝑛
1
,𝑛
2
,...,𝑛
𝑘
=−𝑠

𝑞
𝑛
1

𝑞
𝑛
2

⋅ ⋅ ⋅ 𝑞
𝑛
𝑘

𝑞
−𝑛
1
−𝑛
2
−⋅⋅⋅−𝑛

𝑘

∏
𝑖=1,2,...,𝑘

[𝜆
𝑛
− (𝑛 − 2𝑛

1
− 2𝑛
2
⋅ ⋅ ⋅ − 2𝑛

𝑖
)
2

]

,

𝑅
𝑚+1

(𝜆
𝑛
, 𝑛)

=

𝑠

∑

𝑛
1
,𝑛
2
,...,𝑛
𝑚+1
=−𝑠

×

𝑞
𝑛
1

𝑞
𝑛
2

⋅ ⋅ ⋅ 𝑞
𝑛
𝑚

𝑞
𝑛
𝑚+1

𝑋
𝑛,𝑛−2𝑛

1
−2𝑛
2
−⋅⋅⋅−2𝑛

𝑚+1

∏
𝑖=1,2,...𝑚

[𝜆
𝑛
− (𝑛 − 2𝑛

1
− 2𝑛
2
⋅ ⋅ ⋅ − 2𝑛

𝑖
)
2

]

,

(23)

𝑛
𝑗
̸= 0, ∀𝑗,

𝑘

∑

𝑗=1

𝑛
𝑗
̸= 0, ∀𝑘 = 1, 2, . . . , 𝑚 (24)

under assumption that

𝜆
𝑛
− (𝑛 − 2𝑛

1
⋅ ⋅ ⋅ − 2𝑛

𝑖
)
2

̸= 0 (25)

for 𝑖 = 1, 2, . . . , 𝑚. Now using (21), estimating𝑋
𝑛,𝑛

and 𝑅
𝑚+1

,
we prove the following,

Theorem 1. Let𝑚 be a positive integer. If the conditions

|𝑛| > 𝑚𝑠, 4 (|𝑛| − 1) ≥ 3𝑀 (26)

hold, then the eigenvalue 𝜆
𝑛
of the operator 𝑇(𝑝) satisfies

𝜆
𝑛
= 𝑛
2

+

𝑚

∑

𝑘=1

𝑠

∑

𝑛1 ,𝑛2 ,...,𝑛𝑘=−𝑠

×

𝑞
𝑛1
𝑞
𝑛2
⋅ ⋅ ⋅ 𝑞
𝑛𝑘
𝑞
−𝑛1−𝑛2−⋅⋅⋅−𝑛𝑘

∏
𝑖=1,2,...𝑘

[𝜆
𝑛
− (𝑛 − 2𝑛

1
− 2𝑛
2
⋅ ⋅ ⋅ − 2𝑛

𝑖
)
2

]

+ 𝛼
𝑛,𝑚
,

(27)

where

󵄨
󵄨
󵄨
󵄨
𝛼
𝑛,𝑚

󵄨
󵄨
󵄨
󵄨
≤

2𝑐
𝑚+1

(4 (|𝑛| − 1) −𝑀)
𝑚
; (28)

𝑐,𝑀, and 𝑝(𝑥) are defined in (19) and (13).

Proof. Since 𝑞
0
= 0 we have 0 < |𝑛

𝑖
| ≤ 𝑠. This with (16), (19),

and (26) implies that
󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑛
− (𝑛 − 2𝑛

1
− 2𝑛
2
− ⋅ ⋅ ⋅ − 2𝑛

𝑖
)
2󵄨󵄨
󵄨
󵄨
󵄨

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑛
2
− (|𝑛| − 2)

2󵄨󵄨
󵄨
󵄨
󵄨
− 𝑀

= 4 (|𝑛| − 1) −𝑀 ≥ 2𝑀 > 0

(29)

for 𝑖 = 1, 2, . . . , 𝑚; that is, assumption (25) holds. Therefore
we can use (21).

Nowwe estimate𝑋
𝑛,𝑛

and𝑅
𝑚+1

. First let us estimate𝑅
𝑚+1

.
Since ‖Ψ

𝑛
‖ = 1/√𝜋 by Schwarz inequality we have

󵄨
󵄨
󵄨
󵄨
󵄨
(Ψ
𝑛
(𝑥) , 𝑒
𝑖(𝑛−2𝑛

1
−2𝑛
2
−⋅⋅⋅−2𝑛

𝑚+1
)𝑥
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 1. (30)

This with (23) and (29) implies that

󵄨
󵄨
󵄨
󵄨
𝑅
𝑚+1

󵄨
󵄨
󵄨
󵄨
≤

1

(4 (|𝑛| − 1) −𝑀)
𝑚

×

𝑠

∑

𝑛
1
,𝑛
2
,...,𝑛
𝑚+1
=−𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑛
1

𝑞
𝑛
2

⋅ ⋅ ⋅ 𝑞
𝑛
𝑚

𝑞
𝑛
𝑚+1

󵄨
󵄨
󵄨
󵄨
󵄨
.

(31)

Hence by definition of 𝑐 (see (19)) we have

󵄨
󵄨
󵄨
󵄨
𝑅
𝑚+1

󵄨
󵄨
󵄨
󵄨
≤

𝑐
𝑚+1

(4 (|𝑛| − 1) − 𝑀)
𝑚
. (32)

Now we estimate𝑋
𝑛,𝑛
. Arguing as in the proof of (29) we

get
󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑛
− (𝑛 − 2𝑘)

2󵄨󵄨
󵄨
󵄨
󵄨
≥ 2𝑀, ∀𝑘 ̸= 0, 𝑛. (33)

Therefore using (17) we get

∑

𝑘∈Z,𝑘 ̸= 0,𝑛

󵄨
󵄨
󵄨
󵄨
𝑋
𝑛,𝑛−2𝑘

󵄨
󵄨
󵄨
󵄨

2

= ∑

𝑘∈Z,𝑘 ̸= 0,𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
(Ψ
𝑛
, 𝑝𝑒
𝑖((𝑛−2𝑘))𝑥

)

󵄨
󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑛
− (𝑛 − 2𝑘)

2󵄨󵄨
󵄨
󵄨
󵄨

2

≤

𝑀
2

(2𝑀)
2
=

1

4

.

(34)

This with Parseval’s equality

∑

𝑘∈Z

󵄨
󵄨
󵄨
󵄨
𝑋
𝑛,𝑛−2𝑘

󵄨
󵄨
󵄨
󵄨

2

= ∑

𝑘∈Z,

󵄨
󵄨
󵄨
󵄨
󵄨
(Ψ
𝑛
, 𝑒
𝑖((𝑛−2𝑘))𝑥

)

󵄨
󵄨
󵄨
󵄨
󵄨

2

= 1 (35)

implies that

󵄨
󵄨
󵄨
󵄨
𝑋
𝑛,𝑛

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑋
𝑛,−𝑛

󵄨
󵄨
󵄨
󵄨

2

≥

3

4

. (36)

Hence at least one of the inequalities

󵄨
󵄨
󵄨
󵄨
𝑋
𝑛,𝑛

󵄨
󵄨
󵄨
󵄨
≥

1

2

,
󵄨
󵄨
󵄨
󵄨
𝑋
𝑛,−𝑛

󵄨
󵄨
󵄨
󵄨
≥

1

2

(37)

holds. If the first inequality holds, then dividing both sides of
(21) by 𝑋

𝑛,𝑛
and using (23), (32) we obtain the proof of (27)

and (28). If the second inequality holds, then instead of (21)
using

(𝜆
𝑛
− (−𝑛)

2
)𝑋
𝑛,−𝑛

= 𝐴
𝑚
(𝜆
𝑛
, −𝑛)𝑋

𝑛,−𝑛
+ 𝑅
𝑚+1

(𝜆
𝑛
, −𝑛) ,

(38)

taking into account that𝐴
𝑚
(𝜆
𝑛
, −𝑛) = 𝐴

𝑚
(𝜆
𝑛
, 𝑛) and arguing

as in the first case we get the proof in the second case.
Theorem is proved.
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Now using (27) let us show that 𝜆
±𝑛

is close to the root of
the equation

𝑥 = 𝑛
2
+ 𝑓 (𝑥) , (39)

where

𝑓 (𝑥) =

𝑠

∑

𝑛
1
=−𝑠

𝑞
𝑛
1

𝑞
−𝑛
1

𝑥 − (𝑛 − 2𝑛
1
)
2

+

𝑠

∑

𝑛
1
,𝑛
2
=−𝑠

𝑞
𝑛
1

𝑞
𝑛
2

𝑞
−𝑛
1
−𝑛
2

(𝑥 − (𝑛 − 2𝑛
1
)
2

) (𝑥 − (𝑛 − 2𝑛
1
− 2𝑛
2
)
2

)

+ . . . +

𝑠

∑

𝑛
1
,𝑛
2
,...𝑛
𝑚
=−𝑠

× ((𝑞
𝑛
1

𝑞
𝑛
2

⋅ ⋅ ⋅ 𝑞
𝑛
𝑚

𝑞
−𝑛
1
−𝑛
2
−⋅⋅⋅−𝑛

𝑚

)

× ([𝑥 − (𝑛 − 2𝑛
1
)
2

] [𝑥 − (𝑛 − 2𝑛
1
− 2𝑛
2
)
2

]

⋅ ⋅ ⋅ [𝑥 − (𝑛 − 2𝑛
1
− 2𝑛
2
− ⋅ ⋅ ⋅ − 2𝑛

𝑚
)
2

] )

−1

) .

(40)

Theorem 2. Let 𝑛 be a positive integer satisfying

𝑛 > 𝑚𝑠, 4 (𝑛 − 1) > 𝑀 + 2𝑐. (41)

Then for all 𝑥 and 𝑦 from [𝑛
2
−𝑀, 𝑛

2
+𝑀] the inequality

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑓 (𝑦)

󵄨
󵄨
󵄨
󵄨
< 𝐾
𝑛

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
, (42)

where

𝐾
𝑛
=

𝑄𝑐

(4 (𝑛 − 1) −𝑀) (4 (𝑛 − 1) −𝑀 − 𝑐)

<

1

2

, (43)

holds, and (39) has a unique solution 𝑟
𝑛
on [𝑛2 −𝑀, 𝑛

2
+𝑀].

Moreover

󵄨
󵄨
󵄨
󵄨
𝜆
±𝑛
− 𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
<

2𝑐
𝑚+1

(1 − 𝐾
𝑛
) (4 (𝑛 − 1) −𝑀)

𝑚
(44)

and the length 𝛾
𝑛
of 𝑛th gap in the spectrum of 𝐿(𝑝) (the length

𝛾
𝑛
of (𝑛 + 1)th instability interval of (7)) satisfies

𝛾
𝑛
= 𝜆
𝑛
− 𝜆
−𝑛
<

4𝑐
𝑚+1

(1 − 𝐾
𝑛
) (4 (𝑛 − 1) −𝑀)

𝑚
. (45)

Proof. Let 𝑓
1
(𝑥),𝑓
2
(𝑥), . . .,𝑓

𝑚
(𝑥) be the first, second, and𝑚th

summations in the right-hand side of (40). Then

𝑓
󸀠

1
(𝑥) = −

𝑠

∑

𝑘=−𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
2

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

(𝑥 − (𝑛 − 2𝑘)
2
)

2
. (46)

For 𝑥 ∈ [𝑛2 −𝑀, 𝑛
2
+𝑀], using (29) and (41), we get

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥 − (𝑛 − 2𝑘)

2󵄨󵄨
󵄨
󵄨
󵄨
≥ 4 (𝑛 − 1) −𝑀 > 2𝑐. (47)

On the other hand
𝑠

∑

𝑘=−𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
2

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑄𝑐. (48)

This inequality with (47) and the inequality 𝑄 ≤ 𝑐 (see (19))
imply that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠

1
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝑄𝑐

(4 (𝑛 − 1) −𝑀)
2
<

1

4

. (49)

In the same way we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠

𝑘
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝑄𝑐
𝑘

(4 (𝑛 − 1) −𝑀)
𝑘+1

<

1

2
𝑘+1

(50)

for 𝑘 = 2, 3, . . . .Thus by the geometric series formula we have
󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐾
𝑛
<

1

2

, ∀𝑥 ∈ [𝑛
2
−𝑀, 𝑛

2
+𝑀] , (51)

where𝐾
𝑛
is defined in (43), and by mean-value theorem (42)

holds. Therefore by contraction mapping theorem (39) has a
unique solution 𝑟

𝑛
on [𝑛2 −𝑀, 𝑛

2
+𝑀].

Now let us prove (44). Let 𝐹(𝑥) = 𝑥−𝑛
2
−𝑓(𝑥). Using the

definition of 𝑟
𝑛
and 𝐹(𝑥) and then (40) we obtain 𝐹(𝑟

𝑛
) = 0

and
󵄨
󵄨
󵄨
󵄨
𝐹 (𝜆
𝑛
) − 𝐹 (𝑟

𝑛
)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝛼
𝑛,𝑚

󵄨
󵄨
󵄨
󵄨
. (52)

On the other hand by (51) we have |𝐹󸀠(𝑥)| ≥ 1 − 𝐾
𝑛
for all

𝑥 ∈ [𝑛
2
−𝑀, 𝑛

2
+𝑀].Therefore using themean-value formula

󵄨
󵄨
󵄨
󵄨
𝐹 (𝜆
𝑛
) − 𝐹 (𝑟

𝑛
)
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
󸀠
(𝜁)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝜆
𝑛
− 𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
, (53)

𝜁 ∈ [𝑛
2
−𝑀, 𝑛

2
+𝑀], and (52) we obtain

󵄨
󵄨
󵄨
󵄨
𝜆
𝑛
− 𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
𝛼
𝑛,𝑚

󵄨
󵄨
󵄨
󵄨

1 − 𝐾
𝑛

. (54)

This with (28) implies (44) for 𝜆
𝑛
. In the same way we prove

(44) for 𝜆
−𝑛
. Therefore (45) follows from (44). The theorem

is proved.

Now let us approximate 𝑟
𝑛
by fixed-point iteration

𝑥
𝑛,0

= 𝑛
2
, 𝑥
𝑛,1

= 𝑛
2
+ 𝑓 (𝑥

𝑛,0
) , . . . , 𝑥

𝑛,𝑖
= 𝑛
2
+ 𝑓 (𝑥

𝑛,𝑖−1
) .

(55)

Note that repeating the proof of (51) one can readily see that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝜆
𝑛
)
󵄨
󵄨
󵄨
󵄨
≤

𝑄𝑐

4 (𝑛 − 1) −𝑀 − 𝑐

,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑛
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝑄𝑐

4 (𝑛 − 1) − 𝑐

(56)

for all 𝑛 satisfying (41).

Theorem 3. For the sequence {𝑥
𝑛,𝑖
} defined by (55) the

estimations
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛,𝑖
− 𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
≤ 𝐾
𝑖

𝑛
𝐵 (57)

for 𝑖 = 1, 2, 3, . . . hold, where 𝑛 satisfies (41), 𝐾
𝑛
is defined in

Theorem 2, and

𝐵 =

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑛
2
)

󵄨
󵄨
󵄨
󵄨
󵄨

1 − 𝐾
𝑛

≤

𝑄𝑐

(1 − 𝐾
𝑛
) (4 (𝑛 − 1) − c)

. (58)
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Proof. It is clear and well known that if 𝑓 satisfies (42) then

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛,𝑖
− 𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
≤ 𝐾
𝑖

𝑛

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛,0
− 𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
. (59)

Therefore to prove (57) it is enough to show that
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛,0
− 𝑟
𝑛

󵄨
󵄨
󵄨
󵄨
≤ 𝐵, (60)

where𝐵 is defined in (58). By definition of 𝑟
𝑛
and 𝑥
𝑛,0

we have

𝑟
𝑛
− 𝑥
𝑛,0

= 𝑓 (𝑟
𝑛
) = 𝑓 (𝑟

𝑛
) − 𝑓 (𝑥

𝑛,0
) + 𝑓 (𝑛

2
) , (61)

and by the mean-value theorem there exists 𝑥 ∈ [𝑛2 −𝑀, 𝑛
2
+

𝑀] such that

𝑓 (𝑟
𝑛
) − 𝑓 (𝑥

𝑛,0
) = 𝑓
󸀠
(𝑥) (𝑟
𝑛
− 𝑥
𝑛,0
) . (62)

These two equalities imply that

(𝑟
𝑛
− 𝑥
𝑛,0
) (1 − 𝑓

󸀠
(𝑥)) = 𝑓 (𝑛

2
) . (63)

This formula with (56) and (51) implies (60).

Thus by (44) and (57) we have the approximation 𝑥
𝑛,𝑖
for

𝜆
±𝑛

with the error

𝐸
𝑛,𝑖
=:
󵄨
󵄨
󵄨
󵄨
𝜆
±𝑛
− 𝑥
𝑛,𝑖

󵄨
󵄨
󵄨
󵄨
<

2𝑐
𝑚+1

(1 − 𝐾
𝑛
) (4 (𝑛 − 1) −𝑀)

𝑚
+ 𝐾
𝑖

𝑛
𝐵.

(64)

3. Estimation of the Small Eigenvalues

In this section we estimate the eigenvalues 𝜆
𝑁
of the operator

𝑇(𝑝), for |𝑁| ≤ 𝑙, by investigating the system of 2𝑆 + 1

equations

(𝜆
𝑁
− 𝑛
2
)𝑋
𝑁,𝑛

− ∑

𝑘:|𝑘|≤𝑠,|𝑛−2𝑘|≤𝑆

𝑞
𝑘
𝑋
𝑁,𝑛−2𝑘

= ∑

𝑘:|𝑘|≤𝑠,|𝑛−2𝑘|>𝑆

𝑞
𝑘
𝑋
𝑁,𝑛−2𝑘

(65)

for 𝑛 = −𝑆, −𝑆 + 1, −𝑆 + 2, . . . , 𝑆, where 𝑆 = 𝑙 + 2𝑟𝑠 and 𝑟 is the
positive integer for determination of the error in estimation,

4 (𝑙 − 1) − 𝑀 − 𝑐 > max {𝑐, 2𝑐2} ; (66)

the numbers 𝑀 and 𝑐 are defined in (19). The first, second,
and 𝑗th equations of (65) are obtained from (20) by taking
𝑛 = −𝑆, 𝑛 = −𝑆 + 1, and 𝑛 = −𝑆 − 1 + 𝑗, respectively, and by
writing the terms with multiplicand 𝑋

𝑁,𝑛−2𝑘
for |𝑛 − 2𝑘| ≤ 𝑆

on the left-hand side and the termswithmultiplicand𝑋
𝑁,𝑛−2𝑘

for |𝑛 − 2𝑘| > 𝑆 on the right-hand side.
To write (65) in the matrix form let us introduce the

notations. Let 𝐴 be (2𝑆 + 1) by (2𝑆 + 1) matrix (𝑎
𝑖,𝑗
) defined

by

𝑎
𝑖,𝑖
= (−𝑆 − 1 + 𝑖)

2
, 𝑎
𝑖,𝑖∓2𝑘

= 𝑞
±𝑘

(67)

for 𝑖 = 1, 2, . . . , 2𝑆 + 1 and 𝑘 = 1, 2, . . . 𝑠 if |𝑖 ∓ 2𝑘| ≤

𝑆 and all other entries of 𝐴 are zero. Since 𝑞
−𝑛

= 𝑞
𝑛

(see (9)), 𝐴 is a Hermitian (self-adjoint) matrix and its
eigenvalues are real numbers. Denote the eigenvalues of𝐴 by
𝜇
0
, 𝜇
−1
, 𝜇
1
, 𝜇
−2
, 𝜇
2
, . . . , 𝜇

−𝑆
, 𝜇
𝑆
, where

𝜇
0
≤ 𝜇
−1
≤ 𝜇
1
≤ 𝜇
−2
≤ 𝜇
2
≤ ⋅ ⋅ ⋅ ≤ 𝜇

−𝑆
≤ 𝜇
𝑆
. (68)

It is clear that

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇
±𝑛
− 𝑛
2󵄨󵄨
󵄨
󵄨
󵄨
≤ 𝑐, (69)

since the diagonal elements of𝐴 are 𝑛2 for 𝑛 = −𝑆, −𝑆+1, −𝑆+

2, . . . , 𝑆 and the sum of the absolute values of the nondiagonal
elements of each row is not greater than 𝑐 (see (19)). Let𝑋

𝑁
=

(𝑋
𝑁,−𝑆

, 𝑋
𝑁,−𝑆+1

, . . . , 𝑋
𝑁,𝑆

) and 𝑅(𝜆N) = (𝑅
−𝑆
, 𝑅
−𝑆+1

, . . . , 𝑅
𝑆
)

be vectors of C2𝑆+1, where 𝑅
𝑛
= 0 for |𝑛| ≤ 𝑆 − 2𝑠 and

𝑅
𝑛
(𝜆
𝑁
) = ∑

𝑘:|𝑘|≤𝑠, |𝑛−2𝑘|>𝑆

𝑞
𝑘
𝑋
𝑁,𝑛−2𝑘 (70)

for 𝑆 − 2𝑠 < |𝑛| ≤ 𝑆. In this notation the system of (65) can be
written in the matrix form

(𝜆
𝑁
𝐼 − 𝐴)𝑋

𝑇

𝑁
= 𝑅
𝑇
(𝜆
𝑁
) . (71)

First we prove that𝑋
𝑁,𝑛

for 𝑛 = ±(𝑆+1), ±(𝑆+2), . . . , ±(𝑆+

2𝑠), that is, the right-hand side 𝑅𝑇(𝜆
𝑁
) of (71), is small (see

Lemma 4). Then using it we prove that the 𝑛th eigenvalue 𝜆
𝑛

of the operator 𝑇(𝑝) is close to the 𝑛th eigenvalue 𝜇
𝑛
of the

matrix 𝐴 (see Theorem 6).

Lemma 4. If |𝑁| ≤ 𝑙 and 𝑙 + 2𝑟𝑠 < |𝑛| ≤ 𝑙 + 2(𝑟 + 1)𝑠, then

󵄨
󵄨
󵄨
󵄨
𝑋
𝑁,𝑛

󵄨
󵄨
󵄨
󵄨
≤

𝑐
𝑟+1

(2𝑙)
𝑟+1

=: 𝜀, (72)

∑

𝑛:|𝑛|>𝑆

󵄨
󵄨
󵄨
󵄨
𝑋
𝑁,𝑛

󵄨
󵄨
󵄨
󵄨

2

≤

4𝑠𝜀
2
(2𝑙)
2

((2𝑙)
2
− 𝑐
2
)

=

4𝑠𝑐
2𝑟+2

(2𝑙)
2𝑟
((2𝑙)
2
− 𝑐
2
)

=: 𝛿. (73)

Proof. First we prove (72) for positive 𝑛. The proof for
negative 𝑛 is similar. One can readily see from the estimations
(27), (28) for𝑚 = 2, (56), and (66) that if 𝑘 ≥ 𝑙, then

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑘
− 𝑘
2󵄨󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑓 (𝜆
𝑘
)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝛼
𝑘,2

󵄨
󵄨
󵄨
󵄨

≤

𝑄𝑐

4 (𝑘 − 1) −𝑀 − 𝑐

+

2𝑐
3

(4 (𝑘 − 1) −𝑀)
2
< 1.

(74)

Using (74) and taking into account the condition on𝑁 and 𝑛
we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑁
− (𝑛 − 2𝑛

1
− ⋅ ⋅ ⋅ − 2𝑛

𝑖
)
2󵄨󵄨
󵄨
󵄨
󵄨

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑁
− (𝑙 + 1)

2󵄨󵄨
󵄨
󵄨
󵄨

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑙
− (𝑙 + 1)

2󵄨󵄨
󵄨
󵄨
󵄨
>

󵄨
󵄨
󵄨
󵄨
󵄨
𝑙
2
− (𝑙 + 1)

2󵄨󵄨
󵄨
󵄨
󵄨
− 1 ≥ 2𝑙

(75)



6 Abstract and Applied Analysis

for |𝑛
𝑖
| ≤ 𝑠, 𝑖 = 0, 1, . . . , 𝑟. On the other hand iterating (20) 𝑟

times we get

𝑋
𝑁,𝑛

=

𝑠

∑

𝑛
1
,𝑛
2
,...,𝑛
𝑟
=−𝑠

× ((𝑞
𝑛
1

𝑞
𝑛
2

⋅ ⋅ ⋅ 𝑞
𝑛
𝑟+1

(Ψ
𝑁
, 𝑒
𝑖(𝑛−2𝑛

1
−⋅⋅⋅−2𝑛

2𝑟+1
)𝑥
))

× ([𝜆
𝑁
− 𝑛
2
] [𝜆
𝑁
− (𝑛 − 2𝑛

1
)
2

]

⋅ ⋅ ⋅ [𝜆
𝑁
− (𝑛 − 2𝑛

1
− ⋅ ⋅ ⋅ − 2𝑛

𝑟
)
2

])

−1

) .

(76)

Therefore arguing as in the proof of (32) we get

󵄨
󵄨
󵄨
󵄨
𝑋
𝑁,𝑛

󵄨
󵄨
󵄨
󵄨
≤

𝑐
𝑟+1

(2𝑙)
𝑟+1

(77)

for 𝑙 + 2𝑟𝑠 < |𝑛| ≤ 𝑙 + 2(𝑟 + 1)𝑠; that is, (72) is proved.
Now we prove (73). By definition of 𝑆 the left-hand side

of (73) can be written in the form

∑

𝑛:|𝑛|>𝑆

󵄨
󵄨
󵄨
󵄨
𝑋
𝑁,𝑛

󵄨
󵄨
󵄨
󵄨

2

=

∞

∑

𝑘=𝑟

𝐻
𝑁,𝑘

, (78)

where

𝐻
𝑁,𝑘

= ∑

𝑙+2𝑘𝑠<|𝑛|≤𝑙+2(𝑘+1)𝑠,

󵄨
󵄨
󵄨
󵄨
𝑋
𝑁,𝑛

󵄨
󵄨
󵄨
󵄨

2

. (79)

In (72) replacing 𝑟 by 𝑘 one can readily see that

𝐻
𝑁,𝑘

≤

4𝑠𝑐
2𝑘+2

(2𝑙)
2𝑘+2

. (80)

Using this in (78) we obtain

∑

𝑛:|𝑛|>𝑆

󵄨
󵄨
󵄨
󵄨
𝑋
𝑁,𝑛

󵄨
󵄨
󵄨
󵄨

2

≤

∞

∑

𝑘=𝑟

4𝑠𝑐
2𝑘+2

(2𝑙)
2𝑘+2

(81)

which implies (73), since the series in the right-hand side
of (81) is a geometric series with first term 4𝑠𝜀

2 and factor
𝑐
2
/(2𝑙)
2.

Note that (72) and (73) imply the following inequalities.
By (70) and (72)
󵄨
󵄨
󵄨
󵄨
𝑅
𝑛
(𝜆
𝑁
)
󵄨
󵄨
󵄨
󵄨
< 𝑐𝜀, ∀𝑛 : 𝑆 − 2𝑠 < |𝑛| ≤ 𝑆, ∀ |𝑁| ≤ 𝑙, (82)

and by the definition of 𝑅(𝜆
𝑁
) we have

󵄩
󵄩
󵄩
󵄩
𝑅 (𝜆
𝑁
)
󵄩
󵄩
󵄩
󵄩
≤ 2𝑐𝜀√𝑠, ∀ |𝑁| ≤ 𝑙. (83)

Besides using (73) and Parseval’s equality (35) we obtain

1 − 𝛿 ≤

𝑆

∑

𝑛=−𝑆

󵄨
󵄨
󵄨
󵄨
𝑋
𝑁,𝑛

󵄨
󵄨
󵄨
󵄨

2

≤ 1,

√1 − 𝛿 ≤
󵄩
󵄩
󵄩
󵄩
𝑋
𝑁

󵄩
󵄩
󵄩
󵄩
≤ 1, ∀ |𝑁| ≤ 𝑙.

(84)

Let {𝑉𝑇
𝑛
: 𝑛 = 0, ±1, ±2, . . . , ±𝑆} be orthonormal system

of eigenvectors of the matrix 𝐴:

𝐴𝑉
𝑇

𝑛
= 𝜇
𝑛
𝑉
𝑇

𝑛
, (85)

where ⟨𝑉
𝑛
, 𝑉
𝑘
⟩ = 𝛿
𝑛,𝑘
, 𝑉
𝑛
= (𝑉
𝑛,−𝑆

, 𝑉
𝑛,−𝑆+1

, . . . , 𝑉
𝑛,𝑆
) ∈ C2𝑆+1,

and ⟨⋅, ⋅⟩ denotes the inner product in C2𝑆+1 as well as in 𝑙
2
.

Denote by 𝐷 the (2𝑆 + 1) × (2𝑆 + 1) diagonal matrix with
diagonal elements

𝑑
𝑖
= 𝑎
𝑖,𝑖
= (−𝑆 − 1 + 𝑖)

2 (86)

for 𝑖 = 1, 2, . . . , 2𝑆 + 1. The eigenfunctions of 𝐷 corre-
sponding to the eigenvalues 𝑛2 are 𝑒

−𝑛
and 𝑒

𝑛
, where 𝑒

𝑛
=

(𝑒
𝑛,−𝑆

, 𝑒
𝑛,−𝑆+1

, . . . , 𝑒
𝑛,𝑆
)
𝑇
, 𝑒
𝑛,𝑛

= 1, and 𝑒
𝑛,𝑘

= 0 for all 𝑘 ̸= 𝑛.
Multiplying both sides of (85) for 𝑛 = 𝑁 by 𝑒

𝑛
we get

(𝜇
𝑁
− 𝑛
2
)𝑉
𝑁,𝑛

=

𝑠

∑

𝑘=−𝑠

𝑞
𝑘
𝑉
𝑁,𝑛−2𝑘

, (87)

where 𝑉
𝑁,𝑛−2𝑘

= 0 if |𝑛 − 2𝑘| > 𝑆. Instead of (20) using (87)
and repeating the proof of (72) we obtain that if |𝑁| ≤ 𝑙 and
|𝑛| > 𝑆 − 2𝑠, then

󵄨
󵄨
󵄨
󵄨
𝑉
𝑁,𝑛

󵄨
󵄨
󵄨
󵄨
≤

𝑐
𝑟

(2𝑙)
𝑟
. (88)

To prove themain result of the paperwe use the following.

Lemma 5. Let 𝑐
𝑛,𝑗

= ⟨𝑋
𝑇

𝑛
, 𝑉
𝑇

𝑗
⟩ and 𝑛 = 0, ±1, ±2, . . . , ±𝑙.Then

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑛,𝑗
(𝜇
𝑗
− 𝜆
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 8𝑠𝑙𝜀

2 (89)

for 𝑗 = 0, ±1, ±2, . . . , ±𝑙 and
󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑛,𝑗
(𝜇
𝑗
− 𝜆
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 2𝑐𝜀√𝑠 (90)

for 𝑗 = ±(𝑙 + 1), ±(𝑙 + 2), . . . , ±𝑆.

Proof. Since {𝑉
𝑗
: 𝑗 = 0, ±1, ±2, . . . , ±𝑆} is an orthonormal

basis in C2𝑆+1 we have

𝑋
𝑇

𝑛
=

𝑆

∑

𝑗=−𝑆

𝑐
𝑛,𝑗
𝑉
𝑇

𝑗
,

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

=

𝑆

∑

𝑗=−𝑆

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑘,𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

. (91)

Using this in (71) we get

𝑅
𝑇
(𝜆
𝑛
) = (𝜆

𝑛
𝐼 − 𝐴)𝑋

𝑇

𝑛

=

𝑆

∑

𝑗=−𝑆

(𝜆
𝑛
𝑐
𝑛,𝑗
𝑉
𝑇

𝑗
− 𝐴 (𝑐

𝑛,𝑗
𝑉
𝑇

𝑗
))

=

𝑆

∑

𝑗=−𝑆

𝑐
𝑛,𝑗
(𝜆
𝑛
− 𝜇
𝑗
)𝑉
𝑇

𝑗
.

(92)

Multiplying both sides by 𝑉𝑇
𝑗
we obtain

𝑐
𝑛,𝑗
(𝜆
𝑛
− 𝜇
𝑗
) = ⟨𝑅

𝑇
(𝜆
𝑛
) , 𝑉
𝑇

𝑗
⟩ . (93)
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On the other hand using the definition 𝑅𝑇(𝜆
𝑛
), (82), and (88)

we get

󵄨
󵄨
󵄨
󵄨
󵄨
⟨𝑅
𝑇
(𝜆
𝑛
) , 𝑉
𝑇

𝑗
⟩

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 4𝑠𝑐𝜀

𝑐
𝑟

(2𝑙)
𝑟
= 8𝑠𝑙𝜀

2 (94)

for all 𝑛, 𝑗 = 0, ±1, ±2, . . . , ±𝑙. This with (93) implies (89).
By Schwarz inequality and (83) we have

󵄨
󵄨
󵄨
󵄨
󵄨
⟨𝑅
𝑇
(𝜆
𝑛
) , 𝑉
𝑇

𝑗
⟩

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 2𝑐𝜀√𝑠 (95)

for all 𝑛 = 0, ±1, ±2, . . . , ±𝑙 and 𝑗 = 0, ±1, ±2, . . . , ±𝑆.
Therefore (90) follows from (93).

Introduce the notation

𝑌
𝑛
= (⋅ ⋅ ⋅ 𝑋

𝑛,−𝑆−1
, 𝑋
𝑛,−𝑆

, 𝑋
𝑛,−𝑆+1

, . . . , 𝑋
𝑛,𝑆
, 𝑋
𝑛,𝑆+1

, . . .) ,

𝑈
𝑗
= (⋅ ⋅ ⋅ 0, 0, 𝑉

𝑗,−𝑆
, 𝑉
𝑗,−𝑆+1

, . . . , 𝑉
𝑗,𝑆
, 0, 0, . . .) .

(96)

Here 𝑌
𝑛
and 𝑈

𝑗
are elements of 𝑙

2
, and

⟨𝑌
𝑛
, 𝑈
𝑗
⟩ =

∞

∑

𝑖=−∞

𝑋
𝑛,𝑖
𝑉
𝑗,𝑖
=

𝑆

∑

𝑖=−𝑆

𝑋
𝑛,𝑖
𝑉
𝑗,𝑖
= ⟨𝑋
𝑇

𝑛
, 𝑉
𝑇

𝑗
⟩ = 𝑐
𝑛,𝑗
.

(97)

Using equality (35) and the definition of 𝑌
𝑛
and 𝑈

𝑗
one can

easily verify that {𝑌
𝑛
: 𝑛 = 0, ±1, ±2, . . . , ±𝑆} and {𝑈

𝑛
: 𝑛 =

0, ±1, ±2, . . . , ±𝑆} are the orthonormal systems in 𝑙
2
.

Now we are ready to prove the following main result.

Theorem 6. If 𝑙 > max{𝑐2, 2𝑐, 3𝑠} then the inequality

󵄨
󵄨
󵄨
󵄨
𝜆
𝑛
− 𝜇
𝑛

󵄨
󵄨
󵄨
󵄨
≤

8𝑆𝑠𝑐
2𝑟+2

(2𝑙)
2𝑟+1

(98)

holds for all 𝑛 = 0, ±1, ±2, . . . , ±𝑙, where 𝑆, 𝑟, 𝑙 and 𝑐, 𝑠 are
defined in (65) and (19).

Proof. Suppose to the contrary and without loss of generality
that (98) does not hold for some 0 ≤ 𝑛 ≤ 𝑙. Then either 𝜆

𝑛
<

𝜇
𝑛
− (8𝑆𝑠𝑐

2𝑟+2
/(2𝑙)
2𝑟+1

) or 𝜆
𝑛
> 𝜇
𝑛
+ (8𝑆𝑠𝑐

2𝑟+2
/(2𝑙)
2𝑟+1

). Let
us consider the case 𝜆

𝑛
< 𝜇
𝑛
− (8𝑆𝑠𝑐

2𝑟+2
/(2𝑙)
2𝑟+1

). Then

𝜆
𝑘
< 𝜇
𝑗
−

8𝑆𝑠𝑐
2𝑟+2

(2𝑙)
2𝑟+1

, (99)

and hence by (89) |𝑐
𝑘,𝑗
| < 1/2𝑆 for all 𝑘 = 0, ±1, ±2, . . . ,

±𝑛, 𝑗 = 𝑛, ±(𝑛 + 1), ±(𝑛 + 2) . . . , ±𝑙. It implies that

󵄨
󵄨
󵄨
󵄨
𝑐
𝑘,𝑛

󵄨
󵄨
󵄨
󵄨

2

+ ∑

𝑗:𝑛<|𝑗|≤𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑘,𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

≤

2𝑙 + 1 − 2𝑛

4𝑆
2 (100)

for 𝑘 = 0, ±1, ±2, . . . , ±𝑛. On the other hand from Parseval’s
equality (91) we have

𝑛

∑

𝑘=−𝑛

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

=

𝑛

∑

𝑘=−𝑛

𝑆

∑

𝑗=−𝑆

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑘,𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

. (101)

Now we are going to get a contradiction by proving that
the left-hand side of (101) is greater than the right-hand side
of (101). Using (84), the definition of 𝛿, and the conditions on
𝑙 one can easily verify that

𝑛

∑

𝑘=−𝑛

󵄨
󵄨
󵄨
󵄨
𝑋
𝑘

󵄨
󵄨
󵄨
󵄨

2

≥ 2𝑛 + 1 − (2𝑛 + 1) 𝛿 > 2𝑛 +

3

4

. (102)

To estimate the right-hand side of (101) we write it as 𝑆
1
+𝑆
2
+

𝑆
3
, where

𝑆
1
=

𝑛

∑

𝑘=−𝑛

(
󵄨
󵄨
󵄨
󵄨
𝑐
𝑘,𝑛

󵄨
󵄨
󵄨
󵄨

2

+ ∑

𝑗:𝑛<|𝑗|≤𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑘,𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

) ,

𝑆
2
=

𝑛

∑

𝑘=−𝑛

𝑛−1

∑

𝑗=−𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑘,𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

, 𝑆
3
=

𝑛

∑

𝑘=−𝑛

( ∑

𝑗:|𝑗|>𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑘,𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

) .

(103)

Using (100) and taking into account that (2𝑙+1−2𝑛)+(2𝑛+1) ≤
2𝑆 and hence (2𝑙 + 1 − 2𝑛)(2𝑛 + 1) ≤ 𝑆

2 we obtain

𝑆
1
≤

(2𝑙 + 1 − 2𝑛) (2𝑛 + 1)

4𝑆
2

<

1

4

. (104)

Now let us estimate 𝑆
3
. Using (99), (69), and then the

inequality 𝑙 > 2𝑐 we obtain
󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑘
− 𝜇
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
>

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇
𝑙
− 𝜇
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
>
󵄨
󵄨
󵄨
󵄨
𝑗
󵄨
󵄨
󵄨
󵄨

(105)

for 𝑘 = 0, ±1, ±2, . . . , ±𝑛 and |𝑗| > 𝑙. Therefore this, (90), and
the definition 𝜀 imply that

𝑆
3
=

𝑛

∑

𝑘=−𝑛

( ∑

𝑗:|𝑗|>𝑙

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑘,𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

)

≤ (2𝑛 + 1) ∑

𝑗:|𝑗|>𝑙

(

2𝑐𝜀√𝑠

𝑗

)

2

< (2𝑛 + 1)

4𝑠𝑐
2
𝜀
2

𝑙

<

1

4

.

(106)

Now let us estimate 𝑆
2
. Using (97) and the Bessel inequal-

ity for the elements𝑈
𝑖
for 𝑖 = −𝑛, −𝑛+1, . . . , 𝑛−1with respect

to the orthonormal systems {𝑌
𝑛
: 𝑛 = 0, ±1, ±2, . . . , ±𝑛} of 𝑙

2

we obtain
𝑛

∑

𝑘=−𝑛

󵄨
󵄨
󵄨
󵄨
𝑐
𝑘,𝑖

󵄨
󵄨
󵄨
󵄨

2

≤
󵄨
󵄨
󵄨
󵄨
𝑈
𝑖

󵄨
󵄨
󵄨
󵄨

2

= 1, 𝑆
2
=

𝑛−1

∑

𝑖=−𝑛

𝑛

∑

𝑘=−𝑛

󵄨
󵄨
󵄨
󵄨
𝑐
𝑘,𝑖

󵄨
󵄨
󵄨
󵄨

2

≤ 2𝑛. (107)

The inequalities (104)–(107) show that the right side of (101)
is less than 2𝑛 + (1/2), which contradicts (102). In the same
way we investigate the case 𝜆

𝑛
> 𝜇
𝑛
+ (8𝑆𝑠𝑐

2𝑟+2
/(2𝑙)
2𝑟+1

). The
theorem is proved.

4. Examples and Conclusion

In this section we illustrate the results of Sections 2 and 3 for
the following examples. Let the potential 𝑝

𝑠
(𝑥) for 𝑠 = 1, 2, 3

of the operator 𝑇(𝑝
𝑠
) have the form

𝑝
𝑠
(𝑥) =

𝑠

∑

𝑛=1

(𝑒
𝑖2𝑛𝑥

+ 𝑒
−𝑖2𝑛𝑥

) =

𝑠

∑

𝑛=1

2 cos 2𝑛𝑥; (108)



8 Abstract and Applied Analysis

Table 1: Estimations for 𝑇(𝑝
1
).

𝑥
𝑛,3

𝐸
𝑛,3

𝛾
𝑛

𝑛 = 7 49.0119073043627 0.00401827341683563 0.00803652968036530
𝑛 = 8 64.0090356900908 0.00232226049016466 0.00464451589853519
𝑛 = 9 81.0070967373201 0.00146120590904089 0.00292241001412498
𝑛 = 10 100.005724155838 0.00097836132370372 0.00195672191528545
𝑛 = 20 400.001412301984 8.57660779334148 × 10−5 0.00017153215300668
𝑛 = 30 900.000626190365 2.27805363772165 × 10−5 4.55610726195539 × 10−5

𝑛 = 40 1600.00035193858 9.11289409047171 × 10−6 1.82257881647412 × 10−5

𝑛 = 50 2500.00022515394 4.5213654576927 × 10−6 9.04273091219341 × 10−6

𝑛 = 60 3600.00015632421 2.56272510680566 × 10−6 5.12545021275656 × 10−6

𝑛 = 70 4900.00011483597 1.59021161389524 × 10−6 3.18042322750835 × 10−6

𝑛 = 80 6400.0000879141 1.05364682405463 × 10−6 2.10729364800086 × 10−6

𝑛 = 90 8100.0000694591 7.33717636691826 × 10−7 1.46743527333693 × 10−6

𝑛 = 100 10000.0000562596 5.31248113844258 × 10−7 1.06249622766647 × 10−6

Table 2: Estimations for 𝑇(𝑝
2
).

𝑥
𝑛,3

𝐸
𝑛,3

𝛾
𝑛

𝑛 = 13 169.006553875546 0.00801822430426367 0.01603644646924830
𝑛 = 14 196.005629484083 0.00602192413268590 0.01204384713096120
𝑛 = 15 225.004888933687 0.00463706113393842 0.00927412163367219
𝑛 = 16 256.004286247051 0.00364633797625785 0.00729267558174552
𝑛 = 17 289.003789043447 0.00291892692052321 0.00583785361582058
𝑛 = 18 324.003373962035 0.00237284215158748 0.00474568416174256
𝑛 = 19 361.003023794203 0.00195492184884340 0.00390984360625575
𝑛 = 20 400.002725629827 0.00162966444959707 0.00325932883855288
𝑛 = 30 900.001203843083 0.00040657655861401 0.00081315311464415
𝑛 = 40 1600.00067569654 0.00015796542624476 0.00031593085219360
𝑛 = 50 2500.00043201403 7.70627570578593 × 10−5 0.00015412551405901
𝑛 = 60 3600.00029984729 4.32014439412344 × 10−5 8.64028878675565 × 10−5

𝑛 = 70 4900.00022022411 2.66004761436181 × 10−5 5.32009522823765 × 10−5

𝑛 = 80 6400.00016857341 1.75241067230997 × 10−5 3.50482134443501 × 10−5

𝑛 = 90 8100.00013317449 1.21491644560633 × 10−5 2.42983289113352 × 10−5

𝑛 = 100 10000.0001078601 8.76569198293195 × 10−6 1.75313839654927 × 10−5

Table 3: Estimations for 𝑇(𝑝
3
).

𝑥
𝑛,3

𝐸
𝑛,3

𝛾
𝑛

𝑛 = 19 361.004488989457 0.012018209724884 0.024036418816389
𝑛 = 20 400.004042369632 0.00990095572697077 0.0198019110415735
𝑛 = 30 900.001776635742 0.00230548774143664 0.00461097546712649
𝑛 = 40 1600.00099552468 0.00086829674995455 0.00173659349819394
𝑛 = 50 2500.00063601104 0.00041615591363515 0.00083231182695096
𝑛 = 60 3600.00044125198 0.00023064366100756 0.00046128732193269
𝑛 = 70 4900.00032399850 0.00014088338405301 0.00028176676807951
𝑛 = 80 6400.00024796876 9.22660434495073 × 10−5 0.00018453208688902
𝑛 = 90 8100.00019587583 6.36768120642807 × 10−5 0.00012735362412432
𝑛 = 100 10000.0001586304 4.57782012510395 × 10−5 9.15564025001002 × 10−5
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Table 4: Approximation of eigenvalues.

𝑝
1

𝑝
2

𝑝
3

𝜆
0

−0.455138604105 −0.451676027152 −0.4539320948685
𝜆
−1

−0.110248816992 −0.040158274572 −0.0204737818081
𝜆
1

1.859108072514 1.4456177812459 1.3907354889190
𝜆
−2

3.917024772994 2.8976658743702 2.9541319115098
𝜆
2

4.371300982731 5.1886431499537 4.8580498527548
𝜆
−3

9.047739259808 8.9161585304864 7.9082824512658
𝜆
3

9.078368847202 9.4153327308285 10.2941738497520
𝜆
−4

16.032970081406 16.0004107071615 15.9213717462580
𝜆
4

16.033832340360 16.1585649096071 16.3957158213096
𝜆
−5

25.020840823290 25.0389311983095 24.9848629686203
𝜆
5

25.020854345449 25.0538295076160 25.1789211080558
𝜆
−6

36.014289910633 36.0293767228453 36.0144251509371
𝜆
6

36.014290046045 36.0319035321757 36.0877507661928
𝜆
−7

49.010418249424 49.0218195042565 49.0311600838136
𝜆
7

49.010418250365 49.0219701639618 49.0394601884444
𝜆
−8

64.007937189247 64.0164674336750 64.0248999242659
𝜆
8

64.007937189258 64.0164851040169 64.0271961781896
𝜆
−9

81.006250326633 81.0128685694864 81.0198291868669
𝜆
9

81.006250326634 81.0128693419217 81.0203601164022
𝜆
−10

100.005050675157 100.010339593273 100.015987594137
𝜆
10

100.005050675158 100.010339662550 100.016034084442
𝜆
−20

400.001253135321 400.002520531313 400.003809046181
𝜆
20

400.001253135326 400.002520531318 400.003809046182
𝜆
−30

900.000556173742 900.001115142518 900.001678193187
𝜆
30

900.000556173751 900.001115142519 900.001678193192
𝜆
−40

1600.00031269547 1600.00062627292 1600.00094113218
𝜆
40

1600.00031269548 1600.00062627292 1600.00094113219
𝜆
−50

2500.00020008004 2500.00040052089 2500.00060148494
𝜆
50

2500.00020008004 2500.00040052089 2500.00060148495
𝜆
−60

3600.00013892748 3600.00027802883 3600.00041738205
𝜆
60

3600.00013892749 3600.00027802885 3600.00041738205
𝜆
−70

4900.00010206165 4900.00020421710 4900.00030650836
𝜆
70

4900.00010206165 4900.00020421711 4900.00030650836
𝜆
−80

6400.00007813720 6400.00015632939 6400.00023460110
𝜆
80

6400.00007813721 6400.00015632940 6400.00023460110
𝜆
−90

8100.00006173602 8100.00012350634 8100.00018532630
𝜆
90

8100.00006173602 8100.00012350635 8100.00018532634
𝜆
−100

10000.00005000500 10000.00010003250 10000.00015009260
𝜆
100

10000.00005000500 10000.00010003260 10000.00015009260

that is, 𝑞
𝑛
= 𝑞
−𝑛
= 1 for 1 ≤ 𝑛 ≤ 𝑠 and 𝑞

𝑛
= 𝑞
−𝑛
= 0 for 𝑛 > 𝑠,

where 𝑞
𝑛
is defined in (9). Note that the operator 𝑇(𝑝

1
) is a

famous Mathieu operator. By (19) and (108), 𝑄 = 1 and𝑀 =

𝑐. For 𝑠 = 1, 2,3 the constant𝑀 or 𝑐 has the values of 2, 4, 6,
respectively. The fixed point approximations 𝑥

𝑛,3
determined

in (55), where 𝑓(𝑥) is defined by (40) with 𝑚 = 3, of the
eigenvalues 𝜆

±𝑛
of the operators 𝑇(𝑝

𝑠
) for 𝑠 = 1, 2, 3 are given

in Tables 1, 2, and 3, respectively. Moreover, the estimations
of the error 𝐸

𝑛,3
= |𝜆
±𝑛
− 𝑥
𝑛,3
| (see (64)) and the length 𝛾

𝑛
of

the 𝑛th gap (see (45)) are also given in Tables 1, 2, and 3.
The method of Section 3 gives high precision results

for the calculation of the small eigenvalues. Let us illus-
trate it by using formula (98) for the first 201 eigenvalues
𝜆
0
,𝜆
−1
,𝜆
1
,𝜆
−2
,𝜆
2
, . . . , 𝜆

−100
,𝜆
100

of the operators 𝑇(𝑝
𝑠
) for

𝑠 = 1, 2, 3. It means that the number 𝑙 in (98) is 100 (see
the first sentence of Section 3). To find an approximation
with error of order 10−18 for the eigenvalues of 𝑇(𝑝

1
) we

take 𝑟 = 5. Therefore for the potential 𝑝
𝑠
(𝑥), where 𝑠 =

1, 2, 3, the number 𝑆 is 𝑙 + 2𝑟𝑠 = 100 + 10𝑠 and the
number of equations in (65) is 2𝑆 + 1 = 200 + 20𝑠 +

1. The matrices of (65) corresponding to the potentials
𝑝
1
(𝑥), 𝑝
2
(𝑥), 𝑝
3
(𝑥) and denoted by 𝐴

1
, 𝐴
2
, 𝐴
3
are of order

221, 241, and 261, respectively. The approximate eigenvalues
𝜇
0
, 𝜇
−1
, 𝜇
1
, 𝜇
−2
, 𝜇
2
, . . . , 𝜇

−100
, 𝜇
100

of the matrices 𝐴
1
, 𝐴
2
, 𝐴
3

are given in Table 4. By (98) the eigenvalues 𝜇
𝑛
are very close

to the eigenvalues 𝜆
𝑛
of the operator 𝑇(𝑝

𝑠
). One can readily

see from (98) that the approximation |𝜆
𝑛
− 𝜇
𝑛
| of 𝜆
𝑛
by the

eigenvalues 𝜇
𝑛
is arbitrary small if 𝑟 is a large number and 𝑐 is
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Table 5: Approximation of the lengths of the gaps.

𝑝
1

𝑝
2

𝑝
3

𝛾
1

1.96935688950626 1.48577605581811 1.41120927072708
𝛾
2

0.45427620973738 2.29097727558352 1.90391794124493
𝛾
3

0.03062958739405 0.49917420034206 2.38589139848613
𝛾
4

0.00086225895372 0.15815420244566 0.47434407505152
𝛾
5

1.35221586674561 × 10−5 0.01489830930653 0.19405813943552
𝛾
6

1.35412271617952 × 10−7 0.00252680933036 0.07332561525572
𝛾
7

9.41085431804822 × 10−10 0.00015065970523 0.00830010463081
𝛾
8

1.09992015495664 × 10−11 1.76703419043633 × 10−5 0.00229625392370
𝛾
9

5.82645043323282 × 10−13 7.72435271301219 × 10−7 0.00053092953526
𝛾
10

1.22213350550737 × 10−12 6.92769646093439 × 10−8 4.64903052659338 × 10−5

𝛾
20

5.11590769747272 × 10−12 4.88853402202949 × 10−12 9.09494701772928 × 10−13

𝛾
30

8.64019966684282 × 10−12 4.54747350886464 × 10−13 4.43378667114303 × 10−12

𝛾
40

3.41060513164848 × 10−12 3.63797880709171 × 10−12 1.02318153949454 × 10−11

𝛾
50

3.18323145620525 × 10−12 6.82121026329696 × 10−12 5.45696821063757 × 10−12

𝛾
60

7.27595761418343 × 10−12 1.90993887372315 × 10−11 4.09272615797818 × 10−12

𝛾
70

3.63797880709171 × 10−12 5.45696821063757 × 10−12 2.72848410531878 × 10−12

𝛾
80

6.3664629124105 × 10−12 5.45696821063757 × 10−12 1.81898940354586 × 10−12

𝛾
90

1.81898940354586 × 10−12 6.3664629124105 × 10−12 4.09272615797818 × 10−11

𝛾
100

1.09139364212751 × 10−11 2.91038304567337 × 10−11 0

a small number. If the potential 𝑞 is smooth function, then the
number 𝑐 is a small number (see (13) and (19)), and hence (98)
gives better approximations for smooth potentials. Moreover
if 𝑠 is a small number, that is, the number of summand of 𝑝

𝑠

(see (108)) is small, then we can choose 𝑟 so that the order of
the matrix 𝐴

𝑠
is not a large number while the approximation

(98) is a very small number. By formula (98) |𝜆
𝑛
− 𝜇
𝑛
|, where

𝑛 = 0, ±1, ±2, . . . , ±100, for the potentials 𝑝
1
(𝑥), 𝑝
2
(𝑥), and

𝑝
3
(𝑥) is not greater than

8 × 110 × 2
12

(200)
11

=

11

625

10
−17

,

8 × 120 × 2 × 4
12

(200)
11

=

3

1907 348 632 812 500

,

8 × 130 × 3 × 6
12

(200)
11

=

20 726 199

62 500 000 000 000 000 000

,

(109)

respectively. Thus in Section 3 there are the following obser-
vations to be considered. Instead of the matrices of order
201 investigating a little big matrices, namely, matrices
of order 221, 241, and 261, we find an approximation of
order 10−18, 10−15, and 10−12 for the first 201 eigenvalues of
𝑇(𝑝
1
), 𝑇(𝑝

2
), and𝑇(𝑝

3
), respectively.Moreover this approach

is applicable for the trigonometric polynomial potentials and
for the sufficiently differentiable periodic potentials.

The estimations of the lengths 𝛾
1
, 𝛾
2
, . . . , 𝛾

100
of the gaps

are given in Table 5. It is known that [12] for large 𝑛 the
behavior of 𝛾

𝑛
is sensitive to smoothness properties of the

potential 𝑞. If 𝑞 is 𝑚 times differentiable, then 𝛾
𝑛
= 𝑂(𝑛

−𝑚
).

If 𝑞 is analytic function, then 𝛾
𝑛
= 𝑂(𝑒

−𝑎𝑛
) for some positive

𝑎. For the Mathieu operator 𝑇(𝑝
1
) the following asymptotic

formula holds: 𝛾
𝑛

= 𝑂(4
𝑛
/((𝑛 − 1)!)

2
). Thus for large 𝑛

the length 𝛾
𝑛
of the 𝑛th gap is a very small number. Table 5

confirms this result for large 𝑛 (see 𝛾
𝑛
for 𝑛 ≥ 10). Moreover

Table 5 shows that these results continue to hold for 𝑛 >

5. Since for the small values of 𝑛 (𝑛 ≤ 5) the asymptotic
formulas do not give any information, we cannot compare
the theoretical results with the results in Table 5. Note that in
Tables 4 and 5 the eigenvalues and the lengths of the gaps are
computed using Matlab. In Table 4 this program transects to
14 figures, because this accuracy is acceptable for estimations
of the eigenvalues. However, we compute the lengths of the
gaps without transaction, since (as it is noted above) for large
𝑛 the theoretical results give the estimations of 𝛾

𝑛
with very

high accuracy.
It is natural and well known that for large eigenvalues

the asymptotic method gives us approximations with smaller
errors. Since the method of Section 3 gives high precision
results for the small eigenvalues and gaps (see Tables 4 and
5), the comparison of the Tables 1–5, where we estimate the
eigenvalues and gaps by the methods of Sections 2 and 3,
respectively, for the potential (108), shows that the results of
the asymptotic method given in Tables 1–3 are not precise for
the small eigenvalues.
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