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We estimate the small periodic and semiperiodic eigenvalues of Hill’s operator with sufficiently differentiable potential by two
different methods. Then using it we give the high precision approximations for the length of nth gap in the spectrum of Hill-
Sehrodinger operator and for the length of nth instability interval of Hill’s equation for small values of #. Finally we illustrate and
compare the results obtained by two different ways for some examples.

1. Introduction

Let P(gq) and S(q) be the operators generated in L,[0, ] by
the differential expression

" () +q(x) y () )

with the periodic
y(m=y0), ym=y(0) )

and semiperiodic
ym=-y©), Y m=-y0 (3)

boundary conditions, respectively, where g is a real periodic
function with period 7. The eigenvalues of P(gq) and S(q)
for ¢ = 0 are (2n)* and (2n + 1)* for n € Z, respectively.
All eigenvalues of P(0) and S(0), except 0, are doubled. The
eigenvalues of the operators P(q) and S(g), called periodic
and semiperiodic eigenvalues, are denoted by A,, and A, ;
for n € Z, respectively, where

Ao (9) <A (q) <A1 (q) <A,(q) <A, (q)
<A5(q) <A3(q) <Ay(q) <Ai(q)--

[1, see page 27]. The spectrum o(T(q)) of the operator T'(g)
generated in L, [0, 277] by (1) and the boundary conditions

y@mn) =y(0), ¥y @)=y (0) (5)

is the union of the periodic and semiperiodic eigenvalues,
that is,

o(P)={A,,:nez},
(6)
0 (8) ={Ayu :n €z}, o(T)={A,:nez},
since (5) holds if and only if either (2) or (3) holds [1, see page
33].

The spectrum of the operator L(q) generated in
L,(—00,00) by (1) consists of the intervals [A,_;(g),A_,(q)]
for n = 1,2,.... Moreover, these intervals are the closure of
the stable intervals of equation

" () +q(x) y(x) = by (x). )

The intervals (A_,,A,) for n = 1,2,... are the gaps in the
spectrum. These intervals with (-co,A,) are the instable
intervals of (7) [1, see pages 32 and 82]. The length of nth gap
in the spectrum of L(g) (the length of (n + 1)th instability
interval of (7)) is

Ya(@) =4, (@) - A, (q). (8)

Therefore the estimations of the periodic and semiperiodic
eigenvalues are also the investigations of the spectrum of L(g)
and of the stable intervals of (7).

In this paper we gave the estimations for the small
periodic and semiperiodic eigenvalues when the real periodic



potential g belongs to the Sobolev space Wlk [0, 7] with k > 1.
These assumptions on the potential g imply that

r

qx) =Y q.e™,  a,=T» las e O

nez

where

g, - (61, eian) _ Lﬂ q(x) e dx,

(10)
r= J |qk) (x)|dx
Without loss of generality, it is assumed that g, = 0.
It is wellknown that (see [2])
|/\n (q) - /\n (0)| < sup |q (X)| >
(11)

A, (0) = n’, VneZ.

To give a subtle estimate for the eigenvalues A,(q), we write
the potential g in the form

q(x) = p(x)+ ||Zq (12)
where
i2nx
p(x)= mgqqne . 13)

The inequality in (9) implies that

sup |q x)-p (x)| |qn < —.
<elo) sz 1) o1 (4
Hence, by the perturbation theory (see [2]) we have
r
A -A <—,
@) =P = G o
(15)
2r

|y (@) = v (P)] <

(k- 1) (2s) "

Therefore to estimate A,,(g) and y,(q) we can investigate the
eigenvalues A, (p) of the operator T(p) and then use (8) and
(15).

In the literature, there are a lot of studies about numerical
estimation of the periodic and semiperiodic eigenvalues by
using the finite difference method, finite element method,
Priifer transformations, and shooting method. Let us recall
some of them. Andrew considered the computations of the
eigenvalues by using finite element method [3] and finite
difference method [4]. Then these results have been extended
by Condon [5] and by Vanden Berghe et al. [6]. Ji and Wong
used Priifer transformation and shooting method in their
studies [7-9]. Malathi et al. [10] used shooting technique
and direct integration method for computing eigenvalues of
periodic Sturm-Liouville problems.

We consider the small periodic and semiperiodic eigen-
values by other methods. First, in Section 2, we obtain an
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approximation of the eigenvalues A, (p) for n > ms, where
m is the positive integer for determination of the error in
estimations, by using the method of the paper [11], where the
asymptotic formulas for the eigenvalues and eigenfunctions
of the t-periodic boundary value problems were obtained.
Then, in Section 3, using it and considering the matrix form
of T(p) we give an approximation with very small errors
for all small periodic and semiperiodic eigenvalues. Finally,
we apply these investigations to get approximations order
107'%,107", and 1072 for the first 201 eigenvalues of the
operator T with potentials p;(x) = 2cos2x, p,(x) =
2c0s2x+2 cos4x, and p;(x) = 2 cos2x +2 cos 4x + 2 cos 6x,
respectively, and give a comparison between the approxi-
mated eigenvalues obtained by the different ways.

2. On Applications of the Asymptotic Methods

In this and next sections, for simplicity of the notation, A,,(p)
is denoted by A,,. By (11)-(13)

2 gl (16)

n=-s

|)tn - n2| < sup|p(x)| <

To get the subtle estimations for A,, that is, to observe
the influence of the trigonometric polynomial p(x) to the
eigenvalue n* of T(0), we use the formula

(/\N - nz) (‘I’N, ei"x) = (p‘PN, ei"x) (17)
obtained from the equation

—Wy (x) + p (x) Py (%) = APy (%) (18)

by multiplying e, where ¥, is the eigenfunction corre-
sponding to the eigenvalue A; |¥,[| = 1/+/7, (-,-) and | - ||
denote inner product and norm in L, [0, rr].

Introduce the notation

€= Z |qn|’

n==s (19)
— (\IJN’ einx) )

M = sup|p (x)],
Q = S%p |qn| > XN,n

Using this notation and (13) in (17) we get

Z DX N2k (20)
k=-s

(AN - nz)XN)n =

In (20) replacing N by n and then iterating it 1 times, as in
the paper [11], were done; we obtain

(/\n - nZ) Xn,n = Am (An’ Yl) Xn,n + Rm+1 (An’ I’l) > (21)
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where
A (An’ T’l) = Zak (An’ T’l) > (22)
k=1

A (An’ I’l)

— i qﬂl qnz T anq—nl —Hy =1y
N1y 50, =—S Hi=1,2,..‘,k [An — (n — 2n1 _ 2n2 o zni)l]

Rm+1 (An’ I’l)

9n,Dn, ** " Gn,, qnmﬂ‘Xn,n—an—2112—-»-—2nm+l

Hi:l,z,...m [/\n - (” —2n; = 2ny 0 = 2”1‘)2] ,
(23)

n#:o)

k
g Vj,znjq&O, Vk=1,2,...,m (24)

=1
under assumption that
A, —(n=2n - =2n)" %0 (25)

fori=1,2,...,m. Now using (21), estimating X, , and R,,,,,,
we prove the following,
Theorem 1. Let m be a positive integer. If the conditions

|n| >ms, 4(n|-1)=3M (26)

hold, then the eigenvalue A,, of the operator T(p) satisfies

x Dy Dy " D D-ny —ny =y
2
[Ticio.x [/\n —(n-2n,-2n,---—2n,) ]

(27)
where

2Cm+1 .
(A(nl-1) - M)™

¢, M, and p(x) are defined in (19) and (13).

(28)

|oc,,,m| <

Proof. Since g, = 0 we have 0 < |n;| < s. This with (16), (19),
and (26) implies that

./\n -(n-2n, -2n,— - — 2n,-)2|
> |’ — (In| - 2)°| - M (29)

=4(n|-1)-M>2M >0

fori = 1,2,...,m; that is, assumption (25) holds. Therefore
we can use (21).

Now we estimate X, ,and R, ,,. Firstletus estimate R, , ;.
Since ||¥,|l = 1/+/7 by Schwarz inequality we have

|(\Pn (x), ei(n—2n1*2nf“-72nm+1)x)| <1 (30)

This with (23) and (29) implies that

1

R <

| m+1| (4(|n|—l)—M)m
5 (3D

X Z |qn1qn2 hn,49n,,, |
Hence by definition of ¢ (see (19)) we have
m+1
Rypia] < < (32)

(4 (Inl - 1) - M)™

Now we estimate X, ,. Arguing as in the proof of (29) we
get

|/\n - (n- 2k)2| >2M, Vk#0,n. (33)
Therefore using (17) we get

|(\Pn’ » ei((nfzk))x)|2

Z |Xn,n—2k|2 = Z

2
keZk#0n kezZk#on |A, —(n— 2k)2| (34)
M? 1
< —==-
eM)” 4

This with Parseval’s equality

Z |Xn,n—2k|2 = Z |(\P’l’ei((n72k))x)|2 =1 (35)

kez kez,

implies that
3
Xl + 10 2 7 (36)

Hence at least one of the inequalities

1
| X = = |X,,,_,,|25 (37)

N | —

nn |

holds. If the first inequality holds, then dividing both sides of
(21) by X,,,, and using (23), (32) we obtain the proof of (27)
and (28). If the second inequality holds, then instead of (21)
using

(An - (_n)z) Xn,—n = Am (/\n’ —1’1) Xn,—n + Rm+1 (An’ —i’l) >
(38)
taking into accountthat A,,(A,,, —n) = A, (A,, n) and arguing

as in the first case we get the proof in the second case.
Theorem is proved. O



Now using (27) let us show that A, is close to the root of
the equation

x=n"+ f(x), (39)
where

S dnds
1= n;—sx - (n-2n)
: 9n,9n,9-n,-n,
' nl,g:—s (x -(n- 2n1)2) (x —(n-2n, - 2n2)2)

S

+...+ Z

1,1y 50 My =—$

o (U SESEY A
([ (=20 [~ - 2n, - 20
e [x=(n-2n, - 2my -~ 2n,)’] )-1>‘
(40)
Theorem 2. Let n be a positive integer satisfying
n> ms,

4(n-1)> M+ 2c. (41)

Then for all x and y from [n* — M, n* + M) the inequality

|f ) = f )] < Ky lx =y, (42)
where
_ Qc 1
K= Go-D-man-n-mMm-o 22 @

holds, and (39) has a unique solution r,, on [n* - M, n* + M].
Moreover

26m+1

“U-K)@m-n-my

|/\tn - rn|

and the length y, of nth gap in the spectrum of L(p) (the length
Y, of (n + 1)th instability interval of (7)) satisfies

_A . 4Cm+1
T (1-K) @ (n-1) - M)

Vo= A (45)

Proof. Let f1(x), f,(x), ..., f,.(x) be the first, second, and mth
summations in the right-hand side of (40). Then

2
! s |qk|
fx=-) ————. (46)
' k;s (x -(n- 2k)2)2
For x € [n* — M,n* + M], using (29) and (41), we get
|x = (n-2k)| 2 4(n-1)- M > 2c. (47)

Abstract and Applied Analysis

On the other hand
S
Y |ai] < Qe (48)
k=—s

This inequality with (47) and the inequality Q < c (see (19))
imply that

] Qc 1
X)L ——— < - 49
£ ()] Gy MR < (49)
In the same way we obtain
k
! Qc
x)| < < — (50)
'fk( )' (4(n_l)_M)k+1 2k+1
fork = 2,3,.... Thus by the geometric series formula we have
f <K <5 vee[r-matem], 6D

where K, is defined in (43), and by mean-value theorem (42)
holds. Therefore by contraction mapping theorem (39) has a
unique solution r, on [n* — M,n* + M].

Now let us prove (44). Let F(x) = x— n— f(x). Using the
definition of 7, and F(x) and then (40) we obtain F(r,,) = 0
and

|F (A,) = F (r,)| < |tm| - (52)

On the other hand by (51) we have |F'(x)] = 1~ K, for all
x € [n=M, n*+M]. Therefore using the mean-value formula

[F(X,) = F(r)| = [F' @] A, =7l (53)
{ € [n* = M,n* + M], and (52) we obtain

N, —r| < 1""_1”2' . (54)

n

This with (28) implies (44) for A,.. In the same way we prove
(44) for A_,,. Therefore (45) follows from (44). The theorem
is proved. O

Now let us approximate r,, by fixed-point iteration

xn,O = nz’ xn,l = n2 + f (xn,O) Yt xn,i = 1’12 + f (xn,i—l) .
(55)

Note that repeating the proof of (51) one can readily see that

c ) Qc
|f ()l < An-D-M-c |f ()] < dn-1-c
(56)
for all n satisfying (41).

Theorem 3. For the sequence {x,;} defined by (55) the
estimations

i~ < KB 57)
fori = 1,2,3,... hold, where n satisfies (41), K,, is defined in

Theorem 2, and

2
G Q NE
1-K, ~ (1-K,)@d(mn-1)-¢
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Proof. It is clear and well known that if f satisfies (42) then
|2, = 7] < K; %00 = 7l - (59)
Therefore to prove (57) it is enough to show that
|%,0 = 7| < B, (60)

where Bis defined in (58). By definition of ,, and x,, , we have

T = Xno = f (rn) = f (rn) - f (xn,O) + f (”2) > (61)

and by the mean-value theorem there exists x € [n* — M, n* +
M] such that

f (rn) - f (xn,O) = f, (%) (rn - xn,()) : (62)

These two equalities imply that

(ru = x0) (1= 1" ) = £ (n?). (63)
This formula with (56) and (51) implies (60). O

Thus by (44) and (57) we have the approximation x,,; for
A, with the error

2Cm+1

. “U-K)@n-1n-M"

ni = A = X +K'B.

(64)

3. Estimation of the Small Eigenvalues

In this section we estimate the eigenvalues A ; of the operator
T(p), for IN| < I, by investigating the system of 25 + 1
equations

2
(AN —h )XN,n - A X N2k
k:|k|<s,|n—2k|<S
(65)
= Z DX N -2k
kilk|<s,In—2k|>S

forn=-§,-S+1,-S+2,...,S, where S = [ + 2rs and r is the
positive integer for determination of the error in estimation,

4(l—1)—M—c>max{c,2c2}; (66)

the numbers M and c are defined in (19). The first, second,
and jth equations of (65) are obtained from (20) by taking
n=-Sn=-S+1,andn = =S - 1 + j, respectively, and by
writing the terms with multiplicand Xy, » for [n — 2k| < S
on the left-hand side and the terms with multiplicand Xy,
for [n — 2k| > S on the right-hand side.

To write (65) in the matrix form let us introduce the
notations. Let A be (2§ + 1) by (2S + 1) matrix (a; i) defined

by
a;=(-S-1+ i), iak = Gik (67)

fori = 1,2,...,2S +1and k = 1,2,...sif |[i F 2k| <
S and all other entries of A are zero. Since q_, = ¢,

(see (9)), A is a Hermitian (self-adjoint) matrix and its
eigenvalues are real numbers. Denote the eigenvalues of A by

Ho» U1 > Bgs s - - > s> s> Where
HoSpa S SpySph<--Spg<ps.  (68)
It is clear that

'.uin - n2| <6 (69)

since the diagonal elements of A are n*forn = =S, -S+1,-S+
2,...,Sand the sum of the absolute values of the nondiagonal
elements of each row is not greater than ¢ (see (19)). Let Xy =

(XN,_S, XN,—S+1’ cees XN,S) and R(AN) = (R_g, Rgsooos RS)
be vectors of C**!, where R, =0for |n| <§—2sand
R,(Ay) = Y XN (70)

k:k|<s, |[n—2k|>S

for S—2s < |n| < S. In this notation the system of (65) can be
written in the matrix form

(AT - A) XL =R" (Ay). (71)

First we prove that X, forn = +(S+1), +(S+2),..., £(S+
2s), that is, the right-hand side RT(A ~) of (71), is small (see
Lemma 4). Then using it we prove that the nth eigenvalue A,,
of the operator T(p) is close to the nth eigenvalue g, of the
matrix A (see Theorem 6).

Lemma 4. If[N| <landl+2rs < |n| <1+ 2(r + 1)s, then

r+1

|XN,n| < (zcl)ﬁ =g (72)
4552 (21)2 4562r+2
Xyl < = =: 0.
D (e Ry e R

Proof. First we prove (72) for positive n. The proof for
negative » is similar. One can readily see from the estimations
(27), (28) for m = 2, (56), and (66) that if k > [, then

M= K| < |f Q)] + [z

< Qe + 2 <1
4k-1)-M-c  (4(k-1)-M)>

(74)

Using (74) and taking into account the condition on N and n
we obtain

'AN -(n-2n, - - 2n,-)2'
> Ay - (+1)7] (75)

>[N =+ > [P -+ —122



for |n;| < s,i =0,1,...
times we get

,. On the other hand iterating (20) r

Xnn =

§
11,1505ty =—S

x <(qn1 Qn, """ 4n,,, (\I/N, ei(nfznlf'"’znzm)x))
x ([/\N - 712] [AN -(n- 2n1)2]

. [AN— (n-2n, —~~—2n,)2])_1>.

(76)
Therefore arguing as in the proof of (32) we get
e
| X nnl < T (77)

for [+ 2rs < |n| <1+ 2(r + 1)s; that is, (72) is proved.
Now we prove (73). By definition of S the left-hand side
of (73) can be written in the form

(o)
2
Z | Xl = ZHN,k’ (78)
n:|n|>S k=r
where
2
Hyy = | Xl (79)
1+2ks<|n|<l+2(k+1)s,
In (72) replacing r by k one can readily see that
4SC2k+2
HN,k < (zl)m (80)
Using this in (78) we obtain
00 2k+2
2 4sc
Y Xnal <Y 53 (81)
renl>S S =1 ()

which implies (73), since the series in the right-hand side
of (81) is a geometric series with first term 4se? and factor
/@l O

Note that (72) and (73) imply the following inequalities.
By (70) and (72)

|R,(An)| <ce, Vn:S-2s<|n<S, VIN|<I (82)
and by the definition of R(A ;) we have
[R(AN)|| < 2cevs, VIN| <L (83)

Besides using (73) and Parseval’s equality (35) we obtain

S
1-8< Y |Xy,' <1,
S

n=—

(84)
Vi-8<|Xy|<1, VINI<L
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Let (V! :n = 0,+1,%2,...,
of eigenvectors of the matrix A:

1S} be orthonormal system

AV = VT, (85)

where (V,, Vi) = 8,0V, = (V6 Vi _si1-- > Vyg) € T,
and (-,-) denotes the inner product in C**" as well as in L,.
Denote by D the (25 + 1) x (28 + 1) diagonal matrix with
diagonal elements

d;=a;=(-S-1+i) (86)

fori = 1,2,...,28 + 1. The eigenfunctions of D corre-
sponding to the eigenvalues n” are e_, and e,, where e, =
(€ _sr€n si15--- ,en)s)T, e,, = LLande,; = 0forall k#n.
Multiplying both sides of (85) for n = N by e,, we get

N
(//‘N - ”2) Vi = Z AkV'N -2k (87)
k=—s

where Vi, 5, = 0if |n— 2k| > S. Instead of (20) using (87)
and repeating the proof of (72) we obtain that if [N| < [ and
|n] > S — 2s, then

Cr
Vil € —=- 88
| N,n | (21)7' ( )
To prove the main result of the paper we use the following.

Lemma5. Letc,; = (X:,V].T) andn = 0,%1,%2,...,+l Then

6oy (1= Aa)| < 8sle? (89)
for j=0,%1,%2,...,tl and

Jen (11 = An)| < 2065 (90)
for j=+(+1),+(+2),...,%S.

Proof. Since {V; @ j = 0,£1,%2,...,
basis in C**! we have

+S} is an orthonormal

S
X = Y lel o

s
T T
Xy = eV
j=-S j==S

Using this in (71) we get

RT(A,) = (AI-A)X,

s
- Ae vioa(e VT
j:Z—S( nn,jV (Cn,J j )) 92)
d T
= j:Z_SCn’j (An — M]) V] .

Multiplying both sides by VjT we obtain

Gy (= 15) = (R"(A,). V) ). (93)
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On the other hand using the definition RT(/\,,), (82), and (88)
we get

Cr _ 2
Q- 8sle (94)

foralln, j = 0,+1,42,..., £I. This with (93) implies (89).
By Schwarz inequality and (83) we have

|<RT (/\n),VjT>| < 4sce

[(RT(A,), V)| < 2ces (95)
for all n = 0,+1,42,...,4l and j = 0,%1,%2,...,4S.
Therefore (90) follows from (93). O

Introduce the notation

Y, = ( X1 X s Xn,—S+1""’Xn,S’Xn,S+1"")’
(96)
Uj=(-0,0V, ¢V g1r-.0»V;50,0,...) .

Here Y, and U; are elements of /,, and

0 S
(v,,U;) = Z X,V = an,i@ - <XZ, VJT) =G,
i=—00 i=—S8
(97)

Using equality (35) and the definition of Y,, and U, one can
easily verify that {Y,, : n = 0,£1,£2,...,+S}and {U, : n =
0,+1,+£2,..., S} are the orthonormal systems in [,.

Now we are ready to prove the following main result.

Theorem 6. If] > max{c?, 2c, 3s} then the inequality

88562r+2
Mn - Mnl < (21)2,+1 (98)
holds for all n = 0,+1,%2,...,+l, where S,r,l and c,s are

defined in (65) and (19).

Proof. Suppose to the contrary and without loss of generality
that (98) does not hold for some 0 < n < [. Then either A,, <

u, — (88sc™/2)* ™y or A, > w, + (88sc® 2 /(21)*). Let
us consider the case A, < y,, — (88sc¥*2/(21)**1). Then

242
8Ssc*™*

T %

Ak<!/lj

and hence by (89) Ick)jl < 1/2S for all k = 0,+1,+2,...,
i, j=n+(m+1),x(n+2)..., £l It implies that

2 2 2l+1-2n
e+ 2 ol < =g (100)
jn<|jl<t
for k = 0,+1,+2,...,+n. On the other hand from Parseval’s

equality (91) we have

n n S
Y=Y Y el (101)
k=-n

k=-n j==§

Now we are going to get a contradiction by proving that
the left-hand side of (101) is greater than the right-hand side
of (101). Using (84), the definition of §, and the conditions on
I one can easily verify that

n 2 3
DX 22n+1—(2n+1)8>2n+1. (102)
k=-n
To estimate the right-hand side of (101) we writeitas S, +S, +
S;, where

Si=) <|C"’"|2+ 2 Ick,j|2>’

k=-—n jn<|jl<l
(103)
n n-1 2 n 2
s-5 St s-5(ski)
k=-n j=—n k=—n \ j:ljlI>I

Using (100) and taking into account that (2I+1-2n)+(2n+1) <
2S and hence (21 + 1 — 21)(2n + 1) < §* we obtain

Ql+1-2n)2n+1) 1
S < 1S < 1

Now let us estimate S;. Using (99), (69), and then the
inequality [ > 2¢ we obtain

(104)

|Ak - Hj| > 'Hl _["j| > | (105)
fork = 0,+1,42,...,+nand |j| > I. Therefore this, (90), and
the definition € imply that

S; = i ( ) 'Ck,j|2>

k=—n \_j:lj|>1
2
2
<@n+1) Y (L*/E> (106)
Jiljl>l
4sc’e® 1
<(2n+1) €€ 7

Now let us estimate S,. Using (97) and the Bessel inequal-
ity for the elements U, fori = —n, —n+1,...,n—1 with respect

to the orthonormal systems {Y,, : n = 0,+1,+2,...,+n} of ,
we obtain

n n-1 n

Yled <Ul =1, 8= Y lal <20 (107)

k=-n i=—nk=-n
The inequalities (104)-(107) show that the right side of (101)
is less than 2n + (1/2), which contradicts (102). In the same

way we investigate the case A, > p,, + (SSSCZHZ / (21)2”1). The
theorem is proved. O

4. Examples and Conclusion

In this section we illustrate the results of Sections 2 and 3 for
the following examples. Let the potential p (x) fors = 1,2,3
of the operator T(p;) have the form

P, (x) = Zs: (eiZ"x + e_iznx) = iz cos 2nx;

n=1 n=1

(108)
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TaBLE 1: Estimations for T'(p,).
Xn3 E.s Y
n=7 49.0119073043627 0.00401827341683563 0.00803652968036530
n=8 64.0090356900908 0.00232226049016466 0.00464451589853519
n=9 81.0070967373201 0.00146120590904089 0.00292241001412498
n=10 100.005724155838 0.00097836132370372 0.00195672191528545
n=20 400.001412301984 8.57660779334148 x 107° 0.00017153215300668
n =30 900.000626190365 2.27805363772165 x 107° 4.55610726195539 x 107
n =40 1600.00035193858 9.11289409047171 x 1076 1.82257881647412 x 107
n=>50 2500.00022515394 4.5213654576927 x 107° 9.04273091219341 x 10~°
n =60 3600.00015632421 2.56272510680566 x 10~ 5.12545021275656 x 10~
n=70 4900.00011483597 1.59021161389524 x 10~ 3.18042322750835 x 107°
n =80 6400.0000879141 1.05364682405463 x 107° 2.10729364800086 x 10~
n =90 8100.0000694591 7.33717636691826 x 10~ 1.46743527333693 x 10°°
n =100 10000.0000562596 5.31248113844258 x 1077 1.06249622766647 x 107
TABLE 2: Estimations for T(p,).
xn,S En,3 Yn
n=13 169.006553875546 0.00801822430426367 0.01603644646924830
n=14 196.005629484083 0.00602192413268590 0.01204384713096120
n=15 225.004888933687 0.00463706113393842 0.00927412163367219
n=16 256.004286247051 0.00364633797625785 0.00729267558174552
n=17 289.003789043447 0.00291892692052321 0.00583785361582058
n=18 324.003373962035 0.00237284215158748 0.00474568416174256
n=19 361.003023794203 0.00195492184884340 0.00390984360625575
n=20 400.002725629827 0.00162966444959707 0.00325932883855288
n =30 900.001203843083 0.00040657655861401 0.00081315311464415
n =40 1600.00067569654 0.00015796542624476 0.00031593085219360
n=>50 2500.00043201403 7.70627570578593 x 10~ 0.00015412551405901
n =60 3600.00029984729 4.32014439412344 x 10~ 8.64028878675565 x 107
n=70 4900.00022022411 2.66004761436181 x 10~ 5.32009522823765 x 107°
n =380 6400.00016857341 1.75241067230997 x 10~ 3.50482134443501 x 10~
n =90 8100.00013317449 1.21491644560633 x 10~ 2.42983289113352 x 10~°
n =100 10000.0001078601 8.76569198293195 x 107° 1.75313839654927 x 10~
TABLE 3: Estimations for T(p;).
xn,3 En,3 Yn
n=19 361.004488989457 0.012018209724884 0.024036418816389
n=20 400.004042369632 0.00990095572697077 0.0198019110415735
n =30 900.001776635742 0.00230548774143664 0.00461097546712649
n =40 1600.00099552468 0.00086829674995455 0.00173659349819394
n=>50 2500.00063601104 0.00041615591363515 0.00083231182695096
n =60 3600.00044125198 0.00023064366100756 0.00046128732193269
n=70 4900.00032399850 0.00014088338405301 0.00028176676807951
n =380 6400.00024796876 9.22660434495073 x 10~ 0.00018453208688902
n =90 8100.00019587583 6.36768120642807 x 107 0.00012735362412432
n =100 10000.0001586304 4.57782012510395 x 10~ 9.15564025001002 x 10~
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TABLE 4: Approximation of eigenvalues.
P )2 b3

Ao —0.455138604105 —0.451676027152 —0.4539320948685
A —0.110248816992 —-0.040158274572 —-0.0204737818081
A 1.859108072514 1.4456177812459 1.3907354889190
A, 3.917024772994 2.8976658743702 2.9541319115098
A, 4.371300982731 5.1886431499537 4.8580498527548
A 9.047739259808 8.9161585304864 7.9082824512658
Ay 9.078368847202 9.4153327308285 10.2941738497520
Ay 16.032970081406 16.0004107071615 15.9213717462580
Ay 16.033832340360 16.1585649096071 16.3957158213096
As 25.020840823290 25.0389311983095 24.9848629686203
As 25.020854345449 25.0538295076160 25.1789211080558
Ag 36.014289910633 36.0293767228453 36.0144251509371
Ag 36.014290046045 36.0319035321757 36.0877507661928
A, 49.010418249424 49.0218195042565 49.0311600838136
A, 49.010418250365 49.0219701639618 49.0394601884444
Ag 64.007937189247 64.0164674336750 64.0248999242659
Ag 64.007937189258 64.0164851040169 64.0271961781896
Ay 81.006250326633 81.0128685694864 81.0198291868669
Ay 81.006250326634 81.0128693419217 81.0203601164022
A 100.005050675157 100.010339593273 100.015987594137
Ao 100.005050675158 100.010339662550 100.016034084442
Ay 400.001253135321 400.002520531313 400.003809046181
Ay 400.001253135326 400.002520531318 400.003809046182
As 900.000556173742 900.001115142518 900.001678193187
Aso 900.000556173751 900.001115142519 900.001678193192
A 1600.00031269547 1600.00062627292 1600.00094113218
Ay 1600.00031269548 1600.00062627292 1600.00094113219
Aso 2500.00020008004 2500.00040052089 2500.00060148494
Aso 2500.00020008004 2500.00040052089 2500.00060148495
Aeo 3600.00013892748 3600.00027802883 3600.00041738205
Aeo 3600.00013892749 3600.00027802885 3600.00041738205
Az 4900.00010206165 4900.00020421710 4900.00030650836
Ao 4900.00010206165 4900.00020421711 4900.00030650836
A g 6400.00007813720 6400.00015632939 6400.00023460110
Ago 6400.00007813721 6400.00015632940 6400.00023460110
A g 8100.00006173602 8100.00012350634 8100.00018532630
Ago 8100.00006173602 8100.00012350635 8100.00018532634
A 100 10000.00005000500 10000.00010003250 10000.00015009260
Ao 10000.00005000500 10000.00010003260 10000.00015009260

thatis,q, =g, =1forl <m<sandgq,=4q_,=0forn > s,
where g, is defined in (9). Note that the operator T(p,) is a
famous Mathieu operator. By (19) and (108), Q = 1 and M =
c. For s = 1,2,3 the constant M or ¢ has the values of 2, 4,6,
respectively. The fixed point approximations x,, ; determined
in (55), where f(x) is defined by (40) with m = 3, of the
eigenvalues A, of the operators T(p,) for s = 1,2, 3 are given
in Tables 1, 2, and 3, respectively. Moreover, the estimations
of the error E, 5 = |A,,, — x,,3| (see (64)) and the length y,, of
the nth gap (see (45)) are also given in Tables 1, 2, and 3.

The method of Section 3 gives high precision results
for the calculation of the small eigenvalues. Let us illus-
trate it by using formula (98) for the first 201 eigenvalues
ApA_pA A A, o A g0 100 Of the operators T'(p,) for

= 1,2,3. It means that the number [ in (98) is 100 (see

the first sentence of Section 3). To find an approximation
with error of order 107'® for the eigenvalues of T(p,) we
take r = 5. Therefore for the potential p,(x), where s =
1,2,3, the number S is [ + 2rs = 100 + 10s and the
number of equations in (65) is 25 + 1 = 200 + 20s +
1. The matrices of (65) corresponding to the potentials
P1(x), py(x), p3(x) and denoted by A, A,, A; are of order
221, 241, and 261, respectively. The approximate eigenvalues
Hos 1> 1> fhps Has - - > M_100 1o Of the matrices A}, A, A;
are given in Table 4. By (98) the eigenvalues y,, are very close
to the eigenvalues A,, of the operator T'(p,). One can readily
see from (98) that the approximation |A, — u,| of A, by the
eigenvalues y, is arbitrary small if 7 is a large number and ¢ is
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TABLE 5: Approximation of the lengths of the gaps.

Py )23 Ps
% 1.96935688950626 1.48577605581811 1.41120927072708
s 0.45427620973738 2.29097727558352 1.90391794124493
Vs 0.03062958739405 0.49917420034206 2.38589139848613
Vs 0.00086225895372 0.15815420244566 0.47434407505152
Vs 1.35221586674561 x 10~ 0.01489830930653 0.19405813943552
Ve 1.35412271617952 x 10~ 0.00252680933036 0.07332561525572
v, 9.41085431804822 x 107 0.00015065970523 0.00830010463081
Ve 1.09992015495664 x 10™" 1.76703419043633 x 10~ 0.00229625392370
Yo 5.82645043323282 x 107" 7.72435271301219 x 107 0.00053092953526
Y10 1.22213350550737 x 1072 6.92769646093439 x 107 4.64903052659338 x 107°
Yoo 5.11590769747272 x 1072 4.88853402202949 x 107 9.09494701772928 x 107"
Y30 8.64019966684282 x 107 4.54747350886464 x 107" 4.43378667114303 x 10”2
Yao 3.41060513164848 x 1072 3.63797880709171 x 10~ 1.02318153949454 x 10"
Yso 3.18323145620525 x 107 6.82121026329696 x 1072 5.45696821063757 x 1072
Yeo 7.27595761418343 x 10 1.90993887372315 x 10" 4.09272615797818 x 10
Y20 3.63797880709171 x 107" 5.45696821063757 x 1072 2.72848410531878 x 107"
Yo 6.3664629124105 x 107 5.45696821063757 x 107 1.81898940354586 x 107"
Yoo 1.81898940354586 x 107 6.3664629124105 x 107 4.09272615797818 x 107"
Y100 1.09139364212751 x 10" 2.91038304567337 x 107" 0

asmall number. If the potential g is smooth function, then the
number c is a small number (see (13) and (19)), and hence (98)
gives better approximations for smooth potentials. Moreover
if s is a small number, that is, the number of summand of p
(see (108)) is small, then we can choose r so that the order of
the matrix A is not a large number while the approximation
(98) is a very small number. By formula (98) |, — u,,|, where
n = 0,+1,42,...,+100, for the potentials p, (x), p,(x), and
P (x) is not greater than

8x110x22% 11,
D —— I )
(200)" 625

>

8 x 120 x 2 x 412 3

= , 109
(200)*" 1907 348 632 812 500 (109)

8x130x3x 6% 20 726 199
(200)'' 62500 000 000 000 000 000’

respectively. Thus in Section 3 there are the following obser-
vations to be considered. Instead of the matrices of order
201 investigating a little big matrices, namely, matrices
of order 221,241, and 261, we find an approximation of
order 107*%,107", and 107'* for the first 201 eigenvalues of
T(p,), T(p,),and T'(p;), respectively. Moreover this approach
is applicable for the trigonometric polynomial potentials and
for the sufficiently differentiable periodic potentials.

The estimations of the lengths y,,v,, ..., ¥19 of the gaps
are given in Table 5. It is known that [12] for large » the
behavior of y, is sensitive to smoothness properties of the
potential g. If g is m times differentiable, then y, = O(n™™).
If g is analytic function, then y,, = O(e *") for some positive
a. For the Mathieu operator T(p,) the following asymptotic
formula holds: y, = O4"/((n - DD?). Thus for large n

the length v, of the nth gap is a very small number. Table 5
confirms this result for large n (see y,, for n > 10). Moreover
Table 5 shows that these results continue to hold for n >
5. Since for the small values of n (n < 5) the asymptotic
formulas do not give any information, we cannot compare
the theoretical results with the results in Table 5. Note that in
Tables 4 and 5 the eigenvalues and the lengths of the gaps are
computed using Matlab. In Table 4 this program transects to
14 figures, because this accuracy is acceptable for estimations
of the eigenvalues. However, we compute the lengths of the
gaps without transaction, since (as it is noted above) for large
n the theoretical results give the estimations of y, with very
high accuracy.

It is natural and well known that for large eigenvalues
the asymptotic method gives us approximations with smaller
errors. Since the method of Section 3 gives high precision
results for the small eigenvalues and gaps (see Tables 4 and
5), the comparison of the Tables 1-5, where we estimate the
eigenvalues and gaps by the methods of Sections 2 and 3,
respectively, for the potential (108), shows that the results of
the asymptotic method given in Tables 1-3 are not precise for
the small eigenvalues.
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