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We introduce stochasticity into a multigroup SIR model with nonlinear incidence. We prove that when the intensity of white noise
is small, the solution of stochastic system converges weakly to a singular measure (i.e., a distribution) if R

0
≤ 1 and there exists

an invariant distribution which is ergodic ifR
0
> 1. This is the same situation as the corresponding deterministic case. When the

intensity of white noise is large, white noise controls this system. This means that the disease will extinct exponentially regardless
of the magnitude ofR

0
.

1. Introduction

Considering different contact patterns, distinct number of
sexual partners, or different geography, and so forth, individ-
ual hosts are often divided into groups in modeling epidemic
diseases. Multigroup models have been proposed in the
literature to describe the transmission dynamics of infectious
diseases in heterogeneous host populations. One of the
earliest work on multigroup models is the seminal paper by
Lajmanovich and Yorke [1] on a class of SIS multigroupmod-
els for the transmission dynamics of Gonorrhea. From then
on, much research has been done on various forms of multi-
group models, see, for example, [2–6]. It is well known that
the global stability of the endemic equilibrium of multigroup
models is a very challenging problem. Recently, Guo et al. [7,
8] and Li and Shuai [9] proposed a graph-theoretic approach
to the method of global Lyapunov functions and completely
solved this problem for some multigroup epidemic models.
Subsequently, this approach or ideas of [7–9] were applied
to the investigation into the dynamics of several classes of
multigroup epidemic models (e.g., [10–13]).

Now we consider a deterministic multigroup SIR (sus-
ceptible, infective, and recovered) epidemic model with
nonlinear incidence:
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= Λ
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∑
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=
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𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
) − (𝜖

𝑘
+ 𝛾
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𝑅̇
𝑘
= 𝛾
𝑘
𝐼
𝑘
− 𝛿
𝑘
𝑅
𝑘
, 𝑘 = 1, 2, . . . , 𝑛.

(1)

Here 𝑆
𝑘
(𝑡), 𝐼
𝑘
(𝑡), and 𝑅

𝑘
(𝑡) denote the susceptible, infective,

and recovered population at time 𝑡 in the 𝑘th group, respec-
tively, 𝑘 = 1, 2, . . . , 𝑛. Suppose the death rates of 𝑆

𝑘
, 𝐼
𝑘
, 𝑅
𝑘
in

the 𝑘th group are different. The parameters in the model (1)
are assumed to be positive and summarized in the following
list:

Λ
𝑘
: influx of individuals into the 𝑘th group;

𝛽
𝑘𝑗
: transmission coefficient between compartments

𝑆
𝑘
and 𝐼
𝑗
;

𝑑
𝑘
: death rate of 𝑆 compartment in the 𝑘th group;

𝜖
𝑘
: death rate of 𝐼 compartment in the 𝑘th group;

𝛿
𝑘
: death rate of 𝑅 compartment in the 𝑘th group;

𝛾
𝑘
: recovery rate of infectious individuals in the 𝑘th

group.

Considering that the death rates of infective and recovered
population are usually no less than the susceptible’s, we
assume 𝑑

𝑘
≤ min{𝜖

𝑘
, 𝛿
𝑘
} for all 𝑘.
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Throughout this paper, we consider the following basic
assumptions on functions 𝜙

𝑗
(𝑥), 𝑥 ∈ (0, +∞), 𝑗 = 1, 2, . . . , 𝑛:

(𝐶
1
) 𝜙
𝑗
(𝑥) is a𝐶1-function on (0, +∞), 𝜙

𝑗
(𝑥) > 0 for 𝑥 > 0

and 𝜙
𝑗
(0) = 0;

(𝐶
2
) there exist positive constants 𝑐

𝑗
such that 𝜙

𝑗
(𝑥) ≤ 𝑐

𝑗
𝑥,

𝑥 ∈ (0, +∞);

(𝐶
3
) lim
𝑥→0

+(𝜙
𝑗
(𝑥)/𝑥) = 𝑐

𝑗
;

(𝐶
4
) [𝜙
𝑗
(𝑥) − 𝜙

𝑗
(𝑦)][𝜙

𝑗
(𝑥)/𝑥 − 𝜙

𝑗
(𝑦)/𝑦] ≤ 0, for any 𝑥 > 0

and 𝑦 > 0.

It is easy to check that classes of 𝜙
𝑗
(𝑥) satisfying (𝐶

1
)–(𝐶
3
)

include common incidence functions such as 𝜙
𝑗
(𝐼
𝑗
) = 𝐼

𝑗

[7], 𝜙
𝑗
(𝐼
𝑗
) = 𝐼

𝑗
/(1 + 𝛼

𝑗
𝐼
𝑗
) [14], 𝜙

𝑗
(𝐼
𝑗
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𝑗
/(1 + 𝛼𝐼

2

𝑗
) [15].

Furthermore, 𝜙
𝑗
(𝐼
𝑗
) = 𝐼
𝑗
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𝑗
(𝐼
𝑗
) = 𝐼
𝑗
/(1 + 𝛼

𝑗
𝐼
𝑗
) satisfy (𝐶

4
).

In Sun [13], the author considered a general multigroup
SIR models with nonlinear incidence by using the same
method as in [9]. Noting that model (1) is a special case of
multigroup SIR models appeared in [13], according to the
results of [13], the following results hold for system (1).

Proposition 1. Assume that 𝐵 = (𝛽
𝑘𝑗
) is irreducible and 𝜙

𝑗
(𝑥)

satisfies (𝐶
1
)–(𝐶
3
).

(1) If R
0

≤ 1, then for system (1), 𝑃
0
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1
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0

2
,

0, 0, . . . , 𝑆
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𝑛
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globally asymptotically stable in Γ;

(2) if R
0
> 1 and (𝐶

4
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for system (1) and 𝑃
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in Γ,

where 𝑆0
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= Λ
𝑘
/𝑑
𝑘
, 𝑘 = 1, 2, . . . , 𝑛, R

0
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0
) (the spectral
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0
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0
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(𝜖
𝑘
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, and Γ = {(𝑆
1
, 𝐼
1
, 𝑅
1
, . . . , 𝑆

𝑛
, 𝐼
𝑛
, 𝑅
𝑛
) ∈ R3𝑛

+
:

𝑆
𝑘
≤ Λ
𝑘
/𝑑
𝑘
, 𝑆
𝑘
+ 𝐼
𝑘
≤ Λ
𝑘
/𝑑
𝑘
, 𝑘 = 1, 2, . . . , 𝑛}.

The aim of this paper is to evaluate the effect of stochastic
parameter perturbation on system (1). Considering the exis-
tence of environmental noise, we introduce randomness into
the model (1) by replacing the parameters 𝑑

𝑘
, 𝜖
𝑘
, and 𝛿

𝑘
by

𝑑
𝑘
󳨀→ 𝑑
𝑘
+ 𝛼
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(2)

where 𝐵
1𝑘
(𝑡), 𝐵

2𝑘
(𝑡), 𝐵

3𝑘
(𝑡), 𝑘 = 1, 2, . . . , 𝑛 are mutual

independent standard Brownian motions with 𝐵
1𝑘
(0) =

0, 𝐵
2𝑘
(0) = 0, 𝐵

3𝑘
(0) = 0, and the intensities of white noises

𝛼
2

𝑘
> 0, 𝛽2

𝑘
> 0, 𝜎2

𝑘
> 0, respectively. Then the stochastic

version corresponding to the deterministic model (1) takes
the following form:
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𝑑𝑡

− 𝛽
𝑘
𝐼
𝑘 (𝑡) 𝑑𝐵2𝑘 (𝑡) ,

𝑑𝑅
𝑘
(𝑡) = [𝛾

𝑘
𝐼
𝑘
(𝑡) − 𝛿

𝑘
𝑅
𝑘
(𝑡)] 𝑑𝑡 − 𝜎

𝑘
𝑅
𝑘
(𝑡) 𝑑𝐵

3𝑘
(𝑡) ,

𝑘 = 1, 2, . . . , 𝑛.

(3)

System (3) with bilinear incidence has been researched by
Ji et al. [16]. They proved that if R

0
≤ 1, the solution of

the model is fluctuating around a steady state, which is the
disease-free equilibrium of the corresponding deterministic
model; while if R

0
> 1, there is a stationary distribution,

which means the disease will prevail.
In this paper, we will prove that when the intensity of

white noise is small, the solution of system (3) converges
weakly to a singular measure (i.e., a distribution) if R

0
≤ 1

and there exists an invariant distribution which is ergodic if
R
0
> 1. This is the same situation as in Proposition 1. When

the intensity of white noise is large, the disease will extinct
exponentially regardless of the magnitude ofR

0
. Compared

to the results of Ji et al. [16] our results can provide a
deep insight into the dynamics of corresponding multigroup
model.

It is worth mentioning that by now there are many
excellent works about stochastic single-group SIR model.
Beretta et al. [17] considered a stochastic SIR model with
time delays and obtained asymptotic mean square stability
conditions for positive equilibrium. In this paper, the authors
assumed that stochastic perturbations are of white noise type,
which are directly proportional to distances 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)
from values of 𝑆∗, 𝐼∗, 𝑅∗, influence on the ̇𝑆(𝑡), ̇𝐼(𝑡), 𝑅̇(𝑡),
respectively. Tornatore et al. [18] discuss a single-group case
of (3). They proved that 0 < 𝛽 < min{𝜆 + 𝜇 − 𝜎

2
/2, 2𝜇}

is a sufficient condition for the asymptotic stability of the
disease-free equilibrium. And only by computer simulations
they showed that if min{𝜆 + 𝜇 − 𝜎

2
/2, 2𝜇} < 𝛽 < 𝜆 + 𝜇 +

𝜎
2
/2, the disease-free equilibrium is stable and the disease

does not occur; if (𝜆 + 𝜇)(𝑅
0
− 1) > 𝜎

2
/2, the disease-

free equilibrium is unstable. Ji et al. [19] considered the
same model as in [18]. They deduce the globally asymptotical
stability and exponential mean square stability of the disease-
free equilibrium under some conditions and investigate the
asymptotic behavior of the solution around the endemic
equilibrium of the deterministic model.

The rest of this paper is organized as follows. In Section 2,
we show there is a unique nonnegative solution of system (3).
In Section 3, ifR

0
≤ 1 combined with small or large enough

intensity of white noise, we show that the solution converges
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weakly to a singular measure. Section 4 focuses on the
persistence of the disease. By choosing appropriate Lyapunov
function, we show that there is a stationary distribution for
system (3) and it is ergodic, if R

0
> 1. Finally, for the

self-contained, we present an Appendix which contains some
results used in the previous sections.

Throughout this paper, let (Ω,F, {F
𝑡
}
𝑡≥0

, 𝑃) be a com-
plete probability space with a filtration {F

𝑡
}
𝑡≥0

satisfying the
usual conditions (i.e., it is right continuous andF

0
contains

all 𝑃-null sets). Denote

R
3𝑛

+
= {𝑥 ∈ R

3𝑛
: 𝑥
𝑘
> 0 ∀1 ≤ 𝑘 ≤ 3𝑛} ,

R
3𝑛

+
= {𝑥 ∈ R

3𝑛
: 𝑥
𝑘
≥ 0 ∀1 ≤ 𝑘 ≤ 3𝑛} .

(4)

In general, consider a 𝑑-dimensional stochastic differential
equation

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) on 𝑡 ≥ 𝑡
0 (5)

with initial value 𝑥(𝑡
0
) = 𝑥

0
∈ R𝑑. 𝐵(𝑡) denotes 𝑑-

dimensional standard Brownianmotion defined on the above
probability space. Define the differential operator 𝐿 associ-
ated with (5) by

𝐿 =
𝜕

𝜕𝑡
+

𝑑

∑

𝑘=1

𝑓
𝑘
(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑘

+
1

2

𝑑

∑

𝑘,𝑗=1

[𝑔
𝑇
(𝑥, 𝑡) 𝑔 (𝑥, 𝑡)]

𝑘𝑗

𝜕
2

𝜕𝑥
𝑘
𝜕𝑥
𝑗

.

(6)

If 𝐿 acts on a function 𝑉 ∈ 𝐶
2,1
(𝑅
𝑑
×R
+
;R
+
), then

𝐿𝑉 (𝑥, 𝑡) = 𝑉
𝑡
(𝑥, 𝑡) + 𝑉

𝑥
(𝑥, 𝑡) 𝑓 (𝑥, 𝑡)

+
1

2
trace [𝑔𝑇 (𝑥, 𝑡) 𝑉

𝑥𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑡)] ,

(7)

where 𝑉
𝑡

= 𝜕𝑉/𝜕𝑡, 𝑉
𝑥

= (𝜕𝑉/𝜕𝑥
1
, . . . , 𝜕𝑉/𝜕𝑥

𝑑
), 𝑉
𝑥𝑥

=

(𝜕
2
𝑉/𝜕𝑥
𝑘
𝜕𝑥
𝑗
)
𝑑×𝑑

. By Itô’s formula, if 𝑥(𝑡) ∈ 𝑅
𝑑, then

𝑑𝑉 (𝑥 (𝑡) , 𝑡) = 𝐿𝑉 (𝑥 (𝑡) , 𝑡) 𝑑𝑡

+ 𝑉
𝑥
(𝑥 (𝑡) , 𝑡) 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) .

(8)

Consider (5), assume 𝑓(0, 𝑡) = 0 and 𝑔(0, 𝑡) = 0 for all 𝑡 ≥
𝑡
0
. So 𝑥(𝑡) ≡ 0 is a solution of (5), called the trivial solution

or equilibrium position.

2. Existence and Uniqueness of
the Nonnegative Solution

For a population model, one is interested in whether the
solution is nonnegative and global. Hence in this section
we show that the solution of system (3) is global and non-
negative. By making the change of variables and Lyapunov
analysis method (see [20]), we will show global existence
and uniqueness of the positive solution. From now on, we
denote the solution (𝑆

1
(𝑡), 𝐼
1
(𝑡), 𝑅
1
(𝑡), . . . , 𝑆

𝑛
(𝑡), 𝐼
𝑛
(𝑡), 𝑅
𝑛
(𝑡))

of system (3) as 𝑌(𝑡).

Theorem 2. If assumption (𝐶
1
) holds and 𝐵 = (𝛽

𝑘𝑗
)
𝑛×𝑛

is
irreducible, then for any initial value 𝑌(0) ∈ 𝑅

3𝑛

+
, there is a

unique solution 𝑌(𝑡) of system (3) on 𝑡 ≥ 0, and the solution
will remain in 𝑅

3𝑛

+
with probability 1.

Proof. First consider system

𝑑𝑢
𝑘 (𝑡) =

[

[

Λ
𝑘
𝑒
−𝑢
𝑘
(𝑡)

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝜙
𝑗
(𝑒

V
𝑗
(𝑡)
) − 𝑑
𝑘
−
𝛼
2

𝑘

2

]

]

𝑑𝑡

− 𝛼
𝑘
𝑑𝐵
1𝑘
(𝑡) ,

𝑑V
𝑘 (𝑡) =

[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑒
𝑢
𝑘
(𝑡)−V
𝑘
(𝑡)
𝜙
𝑗
(𝑒

V
𝑗
(𝑡)
) − (𝜖

𝑘
+ 𝛾
𝑘
) −

𝛽
2

𝑘

2

]

]

𝑑𝑡

− 𝛽
𝑘
𝑑𝐵
2𝑘
(𝑡) ,

𝑑𝑤
𝑘
(𝑡) = [𝛾

𝑘
𝑒
V
𝑘
(𝑡)

− 𝛿
𝑘
𝑤
𝑘
(𝑡)] 𝑑𝑡 − 𝜎

𝑘
𝑤
𝑘
(𝑡) 𝑑𝐵

3𝑘
(𝑡) ,

𝑘 = 1, 2, . . . , 𝑛.

(9)

With initial value 𝑢
𝑘
(0) = ln 𝑆

𝑘
(0), V

𝑘
(0) = ln 𝐼

𝑘
(0),

𝑤
𝑘
(0) = 𝑅

𝑘
(0), 1 ≤ 𝑘 ≤ 𝑛. Noting that (𝐶

1
) holds,

the coefficients of system (9) satisfy the local Lipschitz
condition; then there is a unique local solution
(𝑢
1
(𝑡), V
1
(𝑡), 𝑤
1
(𝑡), . . . , 𝑢

𝑛
(𝑡), V
𝑛
(𝑡), 𝑤
𝑛
(𝑡)) on 𝑡 ∈ [0, 𝜏

𝑒
),

where 𝜏
𝑒
is the explosion time. Therefore, by Itô’s formula, it

is easy to see (𝑒𝑢1(𝑡), 𝑒V1(𝑡), 𝑤
1
(𝑡), . . . , 𝑒

𝑢
𝑛
(𝑡)
, 𝑒

V
𝑛
(𝑡)
, 𝑤
𝑛
(𝑡)) is the

unique positive local solution to system (3) with initial value
𝑌(0) ∈ 𝑅

3𝑛

+
.

Next, we will prove that this solution is global. The
following proof is almost the same as in the proof ofTheorem
3.1 in [16]. We do not alter any words except replacing 𝐼

𝑗
by

𝜙
𝑗
(𝐼
𝑗
) and therefore we can obtain that 𝐿𝑉 ≤ 𝑀̃. Here we

omit the details.

3. Exponential Stability of Infectious Disease

It is clear that 𝑃
0
= (Λ
1
/𝑑
1
, 0, 0, Λ

2
/𝑑
2
, 0, 0, . . . , Λ

𝑛
/𝑑
𝑛
, 0, 0)

is the disease-free equilibrium of system (1) but not (3). For
system (1), which has been mentioned in Introduction, 𝑃

0

is globally stable if R
0
≤ 1, which means the disease will

die out after some period of time. Hence, it is interesting to
study the disease-free equilibrium for controlling infectious
disease. Although there is none of disease-free equilibrium
of system (3), in this section, we can still present sufficient
conditions for the disease to extinct exponentially.

Theorem 3. Assume (𝐶
1
), (𝐶
2
) hold and 𝐵 = (𝛽

𝑘𝑗
)
𝑛×𝑛

is
irreducible. If 2𝑑

𝑘
> 𝛼
2

𝑘
, 𝑘 = 1, 2, . . . , 𝑛, then the solution 𝑌(𝑡)

of system (3) with initial value 𝑌(0) ∈ 𝑅
3𝑛

+
has the property
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lim
𝑡→+∞

(log(∑𝑛
𝑘=1

𝑎
𝑘
𝐼
𝑘
)/𝑡) ≤ 𝑐, 𝑎.𝑠. If 𝑐 < 0, the disease will

extinct exponentially almost surely. Here

𝑀
0
= 𝑀(𝑆

0
) = (

𝛽
𝑘𝑗
𝑆
0

𝑘
𝑐
𝑗

𝜖
𝑘
+ 𝛾
𝑘

)

𝑛×𝑛

, 𝑆
0

𝑘
=
Λ
𝑘

𝑑
𝑘

,

𝑎
𝑘
=

𝜔
𝑘

(𝜖
𝑘
+ 𝛾
𝑘
)
, 𝑘 = 1, 2, . . . , 𝑛,

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝑖𝑠 𝑎 𝑙𝑒𝑓𝑡 𝑒𝑖𝑔𝑒𝑛V𝑒𝑐𝑡𝑜𝑟

𝑜𝑓M0 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝜌 (𝑀
0
) ,

𝑐 := max
0≤𝑘,𝑗≤𝑛

{

𝛽
𝑘𝑗
𝑐
𝑗

𝑎
𝑗

}

𝑛

∑

𝑘=1

𝑎
𝑘
𝛼
𝑘
𝑆
0

𝑘

√2𝑑
𝑘
− 𝛼
2

𝑘

+ min
1≤𝑘≤𝑛

{𝜖
𝑘
+ 𝛾
𝑘
} (R
0
− 1) 1R

0
≤1

+ max
1≤𝑘≤𝑛

{𝜖
𝑘
+ 𝛾
𝑘
} (R
0
− 1) 1R

0
≥1

−
1

2∑
𝑛

𝑘=1
(1/𝛽
2

𝑘
)
.

(10)

Proof. Let𝑋
𝑘
, 1 ≤ 𝑘 ≤ 𝑛 be the solution of the equation:

𝑑𝑋
𝑘
(𝑡) = [Λ

𝑘
− 𝑑
𝑘
𝑋
𝑘
(𝑡)] 𝑑𝑡 − 𝛼

𝑘
𝑋
𝑘
(𝑡) 𝑑𝐵

1𝑘
(𝑡) ,

𝑋
𝑘 (0) = 𝑆

𝑘 (0) .

(11)

By comparison theorem for stochastic equations, we have

𝑆
𝑘
(𝑡) ≤ 𝑋

𝑘
(𝑡) , a.s. (12)

It is easy to know that𝑋
𝑘
(𝑡) has the following property:

lim
𝑡→∞

∫
𝑡

0
𝑋
𝑘
𝑑𝑡

𝑡
= 𝑆
0

𝑘
a.s., (13)

lim
𝑡→∞

∫
𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘
− 𝑆
0

𝑘

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

𝑡
≤

𝛼
𝑘
𝑆
0

𝑘

√2𝑑
𝑘
− 𝛼
2

𝑘

,

if 2𝑑
𝑘
> 𝛼
2

𝑘
, 𝑘 = 1, 2, . . . , 𝑛.

(14)

As for the proof of the above two properties, the reader may
refer to the proof of Theorems 3.1 and 4.1 in [21] for details.

Since𝐵 = (𝛽
𝑘𝑗
)
𝑛×𝑛

is irreducible, 𝛽
𝑘𝑗
≥ 0, 𝑘, 𝑗 = 1, 2, . . . , 𝑛

and 𝑆
0

𝑘
> 0, 𝜖

𝑘
+ 𝛾
𝑘
> 0, 𝑐

𝑘
> 0, 𝑘 = 1, 2, . . . , 𝑛, then 𝑀

0
is

also nonnegative and irreducible. Hence by Lemma A.1, there
is a left eigenvector of 𝑀

0
corresponding to 𝜌(𝑀

0
), which is

denoted as (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) and 𝜔

𝑘
> 0, 𝑘 = 1, 2, . . . , 𝑛; that

is,

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) 𝜌 (𝑀

0
) = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
)𝑀
0
. (15)

Let 𝑎
𝑘
= 𝜔
𝑘
/(𝜖
𝑘
+ 𝛾
𝑘
), 𝑘 = 1, 2, . . . , 𝑛. Define 𝐶2-function

𝑉 : 𝑅
𝑛

+
→ 𝑅
+
as follows:

𝑉 (𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑛
) =

𝑛

∑

𝑘=1

𝑎
𝑘
𝐼
𝑘
. (16)

By Itô’s formula, we compute

𝑑 (log𝑉) = 𝐿 (log𝑉) 𝑑𝑡 − 1

𝑉

𝑛

∑

𝑘=1

𝑎
𝑘
𝛽
𝑘
𝐼
𝑘
𝑑𝐵
2𝑘
, (17)

where

𝐿 (log𝑉) = 1

𝑉

𝑛

∑

𝑘=1

𝑎
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
) − (𝜖

𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
]

]

−
∑
𝑛

𝑘=1
𝑎
2

𝑘
𝛽
2

𝑘
𝐼
2

𝑘

2𝑉
2

≤
1

𝑉

𝑛

∑

𝑘=1

𝑎
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑋
𝑘
𝑐
𝑗
𝐼
𝑗
− (𝜖
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
]

]

−
∑
𝑛

𝑘=1
𝑎
2

𝑘
𝛽
2

𝑘
𝐼
2

𝑘

2𝑉
2

=
1

𝑉

𝑛

∑

𝑘=1

𝑎
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑐
𝑗
(𝑋
𝑘
− 𝑆
0

𝑘
) 𝐼
𝑗

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑐
𝑗
𝑆
0

𝑘
𝐼
𝑗
− (𝜖
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
]

]

−
∑
𝑛

𝑘=1
𝑎
2

𝑘
𝛽
2

𝑘
𝐼
2

𝑘

2𝑉
2

(18)

according to (𝐶
2
) and (12). Let

𝐻
1
=

1

𝑉

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑐
𝑗
(𝑋
𝑘
− 𝑆
0

𝑘
) 𝐼
𝑗
,

𝐻
2
=

1

𝑉

𝑛

∑

𝑘=1

𝑎
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑐
𝑗
𝑆
0

𝑘
𝐼
𝑗
− (𝜖
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
]

]

,

𝐻
3
= −

∑
𝑛

𝑘=1
𝑎
2

𝑘
𝛽
2

𝑘
𝐼
2

𝑘

2𝑉
2

.

(19)

Then

𝐻
1
≤

1

𝑉

𝑛

∑

𝑘=1

𝑎
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑐
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘
− 𝑆
0

𝑘

󵄨󵄨󵄨󵄨󵄨
𝐼
𝑗

=
1

𝑉

𝑛

∑

𝑘=1

(𝑎
𝑘

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘
− 𝑆
0

𝑘

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑐
𝑗
𝐼
𝑗
)

≤ max
0≤𝑘,𝑗≤𝑛

{

𝛽
𝑘𝑗
𝑐
𝑗

𝑎
𝑗

}
1

𝑉

𝑛

∑

𝑘=1

(𝑎
𝑘

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘
− 𝑆
0

𝑘

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

𝑎
𝑗
𝐼
𝑗
)

= max
0≤𝑘,𝑗≤𝑛

{

𝛽
𝑘𝑗
𝑐
𝑗

𝑎
𝑗

}

𝑛

∑

𝑘=1

(𝑎
𝑘

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘
− 𝑆
0

𝑘

󵄨󵄨󵄨󵄨󵄨
) .

(20)



Abstract and Applied Analysis 5

In view of the definition of 𝑎
𝑘
and (15), we have

𝐻
2
=

1

𝑉

[

[

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝑎
𝑘
𝛽
𝑘𝑗
𝑐
𝑗
𝑆
0

𝑘
𝐼
𝑗

−

𝑛

∑

𝑘=1

𝑎
𝑘
(𝜖
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
]

=
1

𝑉

[

[

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝜔
𝑘

𝛽
𝑘𝑗
𝑐
𝑗
𝑆
0

𝑘

𝜖
𝑘
+ 𝛾
𝑘

𝐼
𝑗
−

𝑛

∑

𝑘=1

𝜔
𝑘
𝐼
𝑘
]

=
1

𝑉
(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)

× (𝑀
0
(𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑛
)
𝑇
− (𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑛
)
𝑇
)

=
1

𝑉
(R
0
− 1)

𝑛

∑

𝑘=1

𝜔
𝑘
𝐼
𝑘

=
1

𝑉
(R
0
− 1)

𝑛

∑

𝑘=1

(𝜖
𝑘
+ 𝛾
𝑘
) 𝑎
𝑘
𝐼
𝑘

≤ min
1≤𝑘≤𝑛

{𝜖
𝑘
+ 𝛾
𝑘
} (R
0
− 1) 1R

0
≤1

+ max
1≤𝑘≤𝑛

{𝜖
𝑘
+ 𝛾
𝑘
} (R
0
− 1) 1R

0
≥1

:= 𝑚
1
,

𝐻
3
= −

∑
𝑛

𝑘=1
𝑎
2

𝑘
𝛽
2

𝑘
𝐼
2

𝑘

2𝑉
2

= −
∑
𝑛

𝑘=1
𝑎
2

𝑘
𝛽
2

𝑘
𝐼
2

𝑘

2(∑
𝑛

𝑘=1
(𝑎
𝑘
/𝛽
𝑘
) 𝛽
𝑘
𝐼
𝑘
)
2

≤ −
∑
𝑛

𝑘=1
𝑎
2

𝑘
𝛽
2

𝑘
𝐼
2

𝑘

2 (∑
𝑛

𝑘=1
𝑎
2

𝑘
𝛽
2

𝑘
𝐼
2

𝑘
) (∑
𝑛

𝑘=1
(1/𝛽
2

𝑘
))

= −
1

2∑
𝑛

𝑘=1
(1/𝛽
2

𝑘
)
:= 𝑚
2
.

(21)

Hence,

𝐿 (log𝑉) ≤ max
0≤𝑘,𝑗≤𝑛

{

𝛽
𝑘𝑗
𝑐
𝑗

𝑎
𝑗

}

×

𝑛

∑

𝑘=1

(𝑎
𝑘

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘
− 𝑆
0

𝑘

󵄨󵄨󵄨󵄨󵄨
) + 𝑚

1
+ 𝑚
2
,

(22)

which combined with (17) yields

log𝑉 (𝑡)

𝑡
≤

log𝑉 (0)

𝑡

+ max
0≤𝑘,𝑗≤𝑛

{

𝛽
𝑘𝑗
𝑐
𝑗

𝑎
𝑗

}

𝑛

∑

𝑘=1

(

𝑎
𝑘
∫
𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑘
− 𝑆
0

𝑘

󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

𝑡
)

+ 𝑚
1
+ 𝑚
2
−

𝑛

∑

𝑘=1

𝑎
𝑘
𝛽
𝑘

∫
𝑡

0
𝐼
𝑘
/𝑉𝑑𝐵
2𝑘

𝑡
.

(23)

By [22, Lemma 2.6], we get

lim
𝑡→+∞

∫
𝑡

0
𝐼
𝑘
/𝑉𝑑𝐵
2𝑘

𝑡
= 0, a.s. (24)

This together with (14) implies

lim
𝑡→∞

log𝑉
𝑡

≤ max
0≤𝑘,𝑗≤𝑛

{

𝛽
𝑘𝑗
𝑐
𝑗

𝑎
𝑗

}

𝑛

∑

𝑘=1

𝑎
𝑘
𝛼
𝑘
𝑆
0

𝑘

√2𝑑
𝑘
− 𝛼
2

𝑘

+ 𝑚
1
+ 𝑚
2
, a.s.

(25)

Thus, the proof of Theorem 3 is completed.

Remark 4. FromTheorem 3 we know that ifR
0
< 1 and 𝛼

𝑘
,

1 ≤ 𝑘 ≤ 𝑛 are small, the disease will extinct exponentially;
that is, 𝐼

𝑘
→ 0 as 𝑡 → ∞. By using the same arguments

as in [20, 21], we get 𝑆
𝑘
(𝑡)
𝑤

󳨀→ ]
𝑘
and 𝑅

𝑘
(𝑡) → 0 (𝑡 →

+∞), where 𝑤󳨀→ means the weak convergence and ]
𝑘
is a

distribution in 𝑅
+
such that ∫

∞

0
𝑥]
𝑘
(𝑑𝑥) = 𝑆

0

𝑘
and its

density is (𝑀
𝑘
𝑥
2
𝑝(𝑥))
−1, where𝑀

𝑘
is a normal constant and

𝑝(𝑥) = 𝑥
2𝑑
𝑘
/𝛼
2

𝑘 exp(2𝑑
𝑘
𝑆
0

𝑘
/𝛼
2

𝑘
𝑥), 𝑥 > 0. That is, the solution

of system (3) converges weakly to a singular measure (i.e., a
distribution) whenR

0
< 1 and 𝛼

𝑘
, 1 ≤ 𝑘 ≤ 𝑛 are small.

Theorem 5. Assume (𝐶
1
), (𝐶
2
) hold and 𝐵 = (𝛽

𝑘𝑗
)
𝑛×𝑛

is
irreducible. Then the solution 𝑌(𝑡) of system (3) with initial
value 𝑌(0) ∈ 𝑅

3𝑛

+
has the property lim

𝑡→+∞
(log(∑𝑛

𝑘=1
𝐼
𝑘
)/𝑡) ≤

𝑐, 𝑎.𝑠. If 𝑐 < 0, the disease will extinct exponentially almost
surely. Here 𝑐 := max

1≤𝑘,𝑗≤𝑛
{𝛽
𝑘𝑗
𝑐
𝑗
} ∑
𝑛

𝑘=1
𝑆
0

𝑘
− min

1≤𝑘≤𝑛
{𝜖
𝑘
+

𝛾
𝑘
} − 1/2∑

𝑛

𝑘=1
(1/𝛽
2

𝑘
).

Proof. Define 𝐶
2-function 𝑉 : 𝑅

𝑛

+
→ 𝑅

+
by 𝑉(𝐼

1
, 𝐼
2
, . . . ,

𝐼
𝑛
) = ∑
𝑛

𝑘=1
𝐼
𝑘
. By Itô’s formula, we compute

𝑑 (log𝑉) = 𝐿 (log𝑉) 𝑑𝑡 − 1

𝑉

𝑛

∑

𝑘=1

𝛽
𝑘
𝐼
𝑘
𝑑𝐵
2𝑘
, (26)

where

𝐿 (log𝑉) = 1

𝑉

𝑛

∑

𝑘=1

[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
) − (𝜖

𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
]

]

−
∑
𝑛

𝑘=1
𝛽
2

𝑘
𝐼
2

𝑘

2𝑉
2

≤
1

𝑉

𝑛

∑

𝑘=1

[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑋
𝑘
𝑐
𝑗
𝐼
𝑗
− (𝜖
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
]

]

−
∑
𝑛

𝑘=1
𝛽
2

𝑘
𝐼
2

𝑘

2(∑
𝑛

𝑘=1
(1/𝛽
𝑘
) 𝛽
𝑘
𝐼
𝑘
)
2

≤ max
1≤𝑘,𝑗≤𝑛

{𝛽
𝑘𝑗
𝑐
𝑗
}

𝑛

∑

𝑘=1

𝑋
𝑘

− min
1≤𝑘≤𝑛

{𝜖
𝑘
+ 𝛾
𝑘
} −

1

2∑
𝑛

𝑘=1
(1/𝛽
2

𝑘
)
.

(27)
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Then

log𝑉 (𝑡)

𝑡
≤

log𝑉 (0)

𝑡
+ max
1≤𝑘,𝑗≤𝑛

{𝛽
𝑘𝑗
𝑐
𝑗
}

𝑛

∑

𝑘=1

∫
𝑡

0
𝑋
𝑘
𝑑𝑡

𝑡

− min
1≤𝑘≤𝑛

{𝜖
𝑘
+ 𝛾
𝑘
} −

1

2∑
𝑛

𝑘=1
(1/𝛽
2

𝑘
)

−

𝑛

∑

𝑘=1

𝛽
𝑘
∫
𝑡

0
𝐼
𝑘
/𝑉𝑑𝐵
2𝑘

𝑡
.

(28)

Taking 𝑡 → ∞, in view of (24) and (13), we get

lim
𝑡→+∞

log𝑉 (𝑡)

𝑡
≤ max
1≤𝑘,𝑗≤𝑛

{𝛽
𝑘𝑗
𝑐
𝑗
}

𝑛

∑

𝑘=1

𝑆
0

𝑘

− min
1≤𝑘≤𝑛

{𝜖
𝑘
+ 𝛾
𝑘
} −

1

2∑
𝑛

𝑘=1
(1/𝛽
2

𝑘
)
, a.s.

(29)

Remark 6. Theorem 5 tells us that the large perturbation
forces the infective to expire regardless of the magnitude of
R
0
.

4. Ergodicity of System (3)
When studying epidemic dynamical systems, we are also
interested in when the disease will prevail and persist in a
population. For a deterministic model, this is usually solved
by showing that the endemic equilibrium is a global attractor
or is globally asymptotically stable. But, for the stochastic
system (3), there is no endemic equilibrium. In this section,
we explore a weak stability. We show that there is a stationary
distribution based on the theory of [23] (see Appendix),
which reveals the disease will prevail.

From the proof ofTheorem 2, we obtain 𝐿𝑉 ≤ 𝑀̃. Let 𝑉̃ =

𝑉 + 𝑀̃. Then 𝐿𝑉̃ ≤ 𝑉̃ and it is clear that inf
𝑌∈𝑅
3𝑛

+
\𝐷
𝑘

𝑉̃(𝑌) →

∞ as 𝑘 → ∞, where𝐷
𝑘
= (1/𝑘, 𝑘) × (1/𝑘, 𝑘) × ⋅ ⋅ ⋅ × (1/𝑘, 𝑘).

Hence, by Remark 2 of Theorem 4.1 of Hasminskii ([23],
p. 86), we obtain that the solution 𝑌(𝑡) is a homogeneous
Markov process in 𝑅

3𝑛

+
.

Theorem 7. Assume (𝐶
1
)–(𝐶
4
) hold, 𝐵 = (𝛽

𝑘𝑗
)
𝑛×𝑛

is irre-
ducible, and R

0
= 𝜌(𝑀

0
) > 1. If 0 < 𝛼

2

𝑘
< 𝑑
𝑘
, 0 < 𝛽

2

𝑘
<

𝛾
𝑘
+ 𝜖
𝑘
, 0 < 𝜎

2

𝑘
< 𝛿
𝑘
, 𝑘 = 1, 2, . . . , 𝑛 such that

𝛿 < min{
𝑐
𝑘

2
(𝑑
𝑘
− 𝛼
2

𝑘
) 𝑆
∗

𝑘
,
𝑏
𝑘

4
(𝜖
𝑘
+ 𝛾
𝑘
− 𝛽
2

𝑘
) (𝐼
∗

𝑘
)
2
,

𝑚
𝑘

2
(𝛿
𝑘
− 𝜎
2

𝑘
) (𝑅
∗

𝑘
)
2
, 𝑘 = 1, 2, . . . , 𝑛} .

(30)

Then, for any initial value 𝑌(0) ∈ 𝑅
3𝑛

+
, there is a stationary

distribution 𝜇(⋅) for system (3) and it has ergodic property,
where𝑀

0
= 𝑀(𝑆

0
) = (𝛽

𝑘𝑗
𝑆
0

𝑘
𝑐
𝑗
/(𝜖
𝑘
+ 𝛾
𝑘
))
𝑛×𝑛

, 𝑆0
𝑘
= Λ
𝑘
/𝑑
𝑘
,

𝛿 =

𝑛

∑

𝑘=1

[(
𝑎 + 2

2
𝑐
𝑘
+ 𝑏
𝑘
𝑆
∗

𝑘
) 𝑆
∗

𝑘
𝛼
2

𝑘

+ (
𝑎 + 1

2
𝑐
𝑘
+ 𝑏
𝑘
𝐼
∗

𝑘
) 𝐼
∗

𝑘
𝛽
2

𝑘
+𝑚
𝑘
(𝑅
∗

𝑘
)
2
𝜎
2

𝑘
] ,

(31)

𝑎, 𝑏
𝑘
, 𝑚
𝑘
, 𝑘 = 1, 2, . . . , 𝑛 are defined as in the proof, 𝑃∗ =

(𝑆
∗

1
, 𝐼
∗

1
, 𝑅
∗

1
, . . . , 𝑆

∗

𝑛
, 𝐼
∗

𝑛
, 𝑅
∗

𝑛
) is the endemic equilibrium of system

(1), and 𝑐
𝑘
, 𝑘 = 1, 2, . . . , 𝑛 denote the cofactor of the 𝑘th

diagonal element of 𝐿
𝐵
, 𝐵 = (𝛽

𝑘𝑗
)
𝑛×𝑛

= (𝛽
𝑘𝑗
𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
))
𝑛×𝑛

.

Proof. SinceR
0
> 1 and (𝐶

1
)–(𝐶
4
) hold, from Proposition 1

there is an endemic equilibrium 𝑃
∗ of system (1). Then

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
) + 𝑑
𝑘
𝑆
∗

𝑘
= Λ
𝑘
,

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
) = (𝜖

𝑘
+ 𝛾
𝑘
) 𝐼
∗

𝑘
.

(32)

Define

𝑉 (𝑌) = 𝑎

𝑛

∑

𝑘=1

𝑐
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
− 𝑆
∗

𝑘
log

𝑆
𝑘

𝑆
∗

𝑘

+ 𝐼
𝑘
− 𝐼
∗

𝑘
− 𝐼
∗

𝑘
log

𝐼
𝑘

𝐼
∗

𝑘

)

+

𝑛

∑

𝑘=1

𝑐
𝑘
(𝐼
𝑘
− 𝐼
∗

𝑘
− log

𝐼
𝑘

𝐼
∗

𝑘

)

+
1

2

𝑛

∑

𝑘=1

𝑏
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
+ 𝐼
𝑘
− 𝐼
∗

𝑘
)
2

+
1

2

𝑛

∑

𝑘=1

𝑙
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
+
1

2

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑅
𝑘
− 𝑅
∗

𝑘
)
2

:= 𝑎𝑉
1
+ 𝑉
2
+ 𝑉
3
+ 𝑉
4
+ 𝑉
5
,

(33)

where 𝑎, 𝑏
𝑘
, 𝑚
𝑘
, 𝑙
𝑘
, 𝑘 = 1, 2, . . . , 𝑛 are positive constants to

be determined later, and 𝑐
𝑘
> 0, 𝑘 = 1, 2, . . . , 𝑛 according to

Lemma A.1. Then 𝑉 is positive definite. In view of (32) and
the inequality (𝑥 + 𝑦)

2
≤ 2(𝑥

2
+ 𝑦
2
), by direct calculation, we

get 𝐿𝑉
𝑖
(𝑖 = 1, 2, . . . , 5) as follows:

𝐿𝑉
1
=

𝑛

∑

𝑘=1

𝑐
𝑘
(1 −

𝑆
∗

𝑘

𝑆
𝑘

)(Λ
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
) − 𝑑
𝑘
𝑆
𝑘
)

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝑆
∗

𝑘
𝛼
2

𝑘

2

+

𝑛

∑

𝑘=1

𝑐
𝑘
(1 −

𝐼
∗

𝑘

𝐼
𝑘

)(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
) − (𝜖

𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
)

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝛽
2

𝑘

2
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=

𝑛

∑

𝑘=1

𝑐
𝑘
(1 −

𝑆
∗

𝑘

𝑆
𝑘

)

× (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(1 −

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
)

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
)

) − 𝑑
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
))

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝑆
∗

𝑘
𝛼
2

𝑘

2

+

𝑛

∑

𝑘=1

𝑐
𝑘
(1 −

𝐼
∗

𝑘

𝐼
𝑘

)

× (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
)

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
)

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝐼
𝑘

𝐼
∗

𝑘

)

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝛽
2

𝑘

2

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(1 −

𝑆
∗

𝑘

𝑆
𝑘

+

𝜙
𝑗
(𝐼
𝑗
)

𝜙
𝑗
(𝐼
∗

𝑗
)

−

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
)

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
)

)

−𝑑
𝑘

(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

]

]

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝑆
∗

𝑘
𝛼
2

𝑘

2

+

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(1 −

𝐼
𝑘

𝐼
∗

𝑘

+

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
)

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
)

−

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
) 𝐼
∗

𝑘

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
) 𝐼
𝑘

)]

]

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝛽
2

𝑘

2

=

𝑛

∑

𝑘=1

𝑐
𝑘
[−𝑑
𝑘

(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(2 −

𝑆
∗

𝑘

𝑆
𝑘

−
𝐼
𝑘

𝐼
∗

𝑘

+

𝜙
𝑗
(𝐼
𝑗
)

𝜙
𝑗
(𝐼
∗

𝑗
)

−

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
) 𝐼
∗

𝑘

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
) 𝐼
𝑘

)

+
𝑆
∗

𝑘
𝛼
2

𝑘

2
+
𝐼
∗

𝑘
𝛽
2

𝑘

2
] .

(34)

From the calculation of 𝐿𝑉
1
, we directly get

𝐿𝑉
2
=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(1 −

𝐼
𝑘

𝐼
∗

𝑘

+

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
)

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
)

−

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
) 𝐼
∗

𝑘

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
) 𝐼
𝑘

)]

]

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝛽
2

𝑘

2

(35)

𝐿𝑉
3
=

𝑛

∑

𝑘=1

𝑏
𝑘
{ (𝑆
𝑘
− 𝑆
∗

𝑘
+ 𝐼
𝑘
− 𝐼
∗

𝑘
)

× [Λ
𝑘
− 𝑑
𝑘
𝑆
𝑘
− (𝜖
𝑘
+ 𝛾
𝑘
) 𝐼
𝑘
]

+
𝑆
2

𝑘
𝛼
2

𝑘

2
+
𝐼
2

𝑘
𝛽
2

𝑘

2
}

=

𝑛

∑

𝑘=1

𝑏
𝑘
{ (𝑆
𝑘
− 𝑆
∗

𝑘
+ 𝐼
𝑘
− 𝐼
∗

𝑘
)

× [−𝑑
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
) − (𝜖
𝑘
+ 𝛾
𝑘
) (𝐼
𝑘
− 𝐼
∗

𝑘
)]

+
𝑆
2

𝑘
𝛼
2

𝑘

2
+
𝐼
2

𝑘
𝛽
2

𝑘

2
}

≤ −

𝑛

∑

𝑘=1

𝑏
𝑘
[𝑑
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
+ (𝜖
𝑘
+ 𝛾
𝑘
) (𝐼
𝑘
− 𝐼
∗

𝑘
)
2

− (𝛾
𝑘
+ 𝑑
𝑘
+ 𝜖
𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑘
− 𝐼
∗

𝑘
)]

+

𝑛

∑

𝑘=1

𝑏
𝑘
𝛼
2

𝑘
[(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
+ (𝑆
∗

𝑘
)
2
]

+

𝑛

∑

𝑘=1

𝑏
𝑘
𝛽
2

𝑘
[(𝐼
𝑘
− 𝐼
∗

𝑘
)
2
+ (𝐼
∗

𝑘
)
2
]

= −

𝑛

∑

𝑘=1

𝑏
𝑘
[(𝑑
𝑘
− 𝛼
2

𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

+ (𝜖
𝑘
+ 𝛾
𝑘
− 𝛽
2

𝑘
) (𝐼
𝑘
− 𝐼
∗

𝑘
)
2
]

−

𝑛

∑

𝑘=1

𝑏
𝑘
(𝛾
𝑘
+ 𝑑
𝑘
+ 𝜖
𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
) (𝐼
𝑘
− 𝐼
∗

𝑘
)

+

𝑛

∑

𝑘=1

𝑏
𝑘
[𝛼
2

𝑘
(𝑆
∗

𝑘
)
2
+ 𝛽
2

𝑘
(𝐼
∗

𝑘
)
2
]

≤ −

𝑛

∑

𝑘=1

𝑏
𝑘
[(𝑑
𝑘
− 𝛼
2

𝑘
−

(𝑑
𝑘
+ 𝛾
𝑘
+ 𝜖
𝑘
)
2

2 (𝛾
𝑘
+ 𝑑
𝑘
+ 𝜖
𝑘
− 𝛽
2

𝑘
)
)

× (𝑆
𝑘
− 𝑆
∗

𝑘
)
2
+
1

2
(𝜖
𝑘
+ 𝛾
𝑘
− 𝛽
2

𝑘
) (𝐼
𝑘
− 𝐼
∗

𝑘
)
2
]

+

𝑛

∑

𝑘=1

𝑏
𝑘
[𝛼
2

𝑘
(𝑆
∗

𝑘
)
2
+ 𝛽
2

𝑘
(𝐼
∗

𝑘
)
2
] ,

𝐿𝑉
4
=

𝑛

∑

𝑘=1

𝑙
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)

× (Λ
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
) − 𝑑
𝑘
𝑆
𝑘
)

+

𝑛

∑

𝑘=1

𝑙
𝑘
𝑆
2

𝑘
𝛼
2

𝑘

2
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=

𝑛

∑

𝑘=1

𝑙
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)

× (

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
) − 𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
))

−𝑑
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
))

+

𝑛

∑

𝑘=1

𝑙
𝑘
𝑆
2

𝑘
𝛼
2

𝑘

2

= −

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝑙
𝑘
𝛽
𝑘𝑗
𝑆
∗

𝑘

× (𝑆
𝑘
− 𝑆
∗

𝑘
) (𝜙
𝑗
(𝐼
𝑗
) − 𝜙
𝑗
(𝐼
∗

𝑗
))

−

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝑙
𝑘
𝛽
𝑘𝑗
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
𝜙
𝑗
(𝐼
𝑗
)

−

𝑛

∑

𝑘=1

𝑙
𝑘
𝑑
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2
+

𝑛

∑

𝑘=1

𝑙
𝑘
𝑆
2

𝑘
𝛼
2

𝑘

2

≤ −

𝑛

∑

𝑘=1

𝑛

∑

𝑗=1

𝑙
𝑘
𝛽
𝑘𝑗
𝑆
∗

𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
) (𝜙
𝑗
(𝐼
𝑗
) − 𝜙
𝑗
(𝐼
∗

𝑗
))

−

𝑛

∑

𝑘=1

𝑙
𝑘
(𝑑
𝑘
− 𝛼
2

𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

+

𝑛

∑

𝑘=1

𝑙
𝑘
(𝑆
∗

𝑘
)
2
𝛼
2

𝑘
,

𝐿𝑉
5
=

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑅
𝑘
− 𝑅
∗

𝑘
) (𝛾
𝑘
𝐼
𝑘
− 𝛿
𝑘
𝑅
𝑘
)

+

𝑛

∑

𝑘=1

𝑚
𝑘
𝑅
2

𝑘
𝜎
2

𝑘

2

=

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑅
𝑘
− 𝑅
∗

𝑘
)

× [𝛾
𝑘
(𝐼
𝑘
− 𝐼
∗

𝑘
) − 𝛿
𝑘
(𝑅
𝑘
− 𝑅
∗

𝑘
)]

+

𝑛

∑

𝑘=1

𝑚
𝑘
𝑅
2

𝑘
𝜎
2

𝑘

2

≤

𝑛

∑

𝑘=1

𝑚
𝑘
𝛾
𝑘
(𝐼
𝑘
− 𝐼
∗

𝑘
) (𝑅
𝑘
− 𝑅
∗

𝑘
)

−

𝑛

∑

𝑘=1

𝑚
𝑘
(𝛿
𝑘
− 𝜎
2

𝑘
) (𝑅
𝑘
− 𝑅
∗

𝑘
)
2

+

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑅
∗

𝑘
)
2
𝜎
2

𝑘

≤

𝑛

∑

𝑘=1

𝑚
𝑘
𝛾
2

𝑘

2 (𝛿
𝑘
− 𝜎
2

𝑘
)
(𝐼
𝑘
− 𝐼
∗

𝑘
)
2

−
1

2

𝑛

∑

𝑘=1

𝑚
𝑘
(𝛿
𝑘
− 𝜎
2

𝑘
) (𝑅
𝑘
− 𝑅
∗

𝑘
)
2

+

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑅
∗

𝑘
)
2
𝜎
2

𝑘
.

(36)

By Lemma A.3, we know

𝑛

∑

𝑘=1

𝑐
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝜙
𝑗
(𝐼
𝑗
)

𝜙
𝑗
(𝐼
∗

𝑗
)

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗

𝜙
𝑘
(𝐼
𝑘
)

𝜙
𝑘
(𝐼
∗

𝑘
)
) = 0, (37)

𝑛

∑

𝑘=1

𝑐
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
log

𝜙
𝑗
(𝐼
𝑗
)

𝜙
𝑗
(𝐼
∗

𝑗
)

−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
log

𝜙
𝑘
(𝐼
𝑘
)

𝜙
𝑘
(𝐼
∗

𝑘
)
) = 0. (38)

Besides note that 𝑎 − 1 − log 𝑎 ≥ 0 for 𝑎 > 0; then

1 −
𝑆
∗

𝑘

𝑆
𝑘

≤ − log
𝑆
∗

𝑘

𝑆
𝑘

, (39)

1 −

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
) 𝐼
∗

𝑘

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
) 𝐼
𝑘

≤ − log
𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
) 𝐼
∗

𝑘

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
) 𝐼
𝑘

= − log
𝑆
𝑘

𝑆
∗

𝑘

− log
𝜙
𝑗
(𝐼
𝑗
)

𝜙
𝑗
(𝐼
∗

𝑗
)

− log
𝐼
∗

𝑘

𝐼
𝑘

,

(40)

− log
𝜙
𝑘
(𝐼
𝑘
)

𝜙
𝑘
(𝐼
∗

𝑘
)
− log

𝐼
∗

𝑘

𝐼
𝑘

= − log
𝜙
𝑘
(𝐼
𝑘
) 𝐼
∗

𝑘

𝜙
𝑘
(𝐼
∗

𝑘
) 𝐼
𝑘

≤
𝜙
𝑘
(𝐼
∗

𝑘
) 𝐼
𝑘

𝜙
𝑘
(𝐼
𝑘
) 𝐼
∗

𝑘

− 1.

(41)

Successively substituting (39), (40), (37), (38), and (41) into
(34) yields

𝐿𝑉
1
≤ −

𝑛

∑

𝑘=1

𝑐
𝑘
𝑑
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
( − log

𝑆
∗

𝑘

𝑆
𝑘

− log
𝑆
𝑘

𝑆
∗

𝑘

− log
𝜙
𝑗
(𝐼
𝑗
)

𝜙
𝑗
(𝐼
∗

𝑗
)

− log
𝐼
∗

𝑘

𝐼
𝑘

−
𝐼
𝑘

𝐼
∗

𝑘

+

𝜙
𝑗
(𝐼
𝑗
)

𝜙
𝑗
(𝐼
∗

𝑗
)

)
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+

𝑛

∑

𝑘=1

𝑐
𝑘
[
𝑆
∗

𝑘
𝛼
2

𝑘

2
+
𝐼
∗

𝑘
𝛽
2

𝑘

2
]

= −

𝑛

∑

𝑘=1

𝑐
𝑘
𝑑
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(− log

𝜙
𝑘
(𝐼
𝑘
)

𝜙
𝑘
(𝐼
∗

𝑘
)

− log
𝐼
∗

𝑘

𝐼
𝑘

−
𝐼
𝑘

𝐼
∗

𝑘

+
𝜙
𝑘
(𝐼
𝑘
)

𝜙
𝑘
(𝐼
∗

𝑘
)
)

+

𝑛

∑

𝑘=1

𝑐
𝑘
[
𝑆
∗

𝑘
𝛼
2

𝑘

2
+
𝐼
∗

𝑘
𝛽
2

𝑘

2
]

≤ −

𝑛

∑

𝑘=1

𝑐
𝑘
𝑑
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+

𝑛

∑

𝑘=1

𝑐
𝑘

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(
𝜙
𝑘
(𝐼
∗

𝑘
) 𝐼
𝑘

𝜙
𝑘
(𝐼
𝑘
) 𝐼
∗

𝑘

− 1 −
𝐼
𝑘

𝐼
∗

𝑘

+
𝜙
𝑘
(𝐼
𝑘
)

𝜙
𝑘
(𝐼
∗

𝑘
)
)

+

𝑛

∑

𝑘=1

𝑐
𝑘
[
𝑆
∗

𝑘
𝛼
2

𝑘

2
+
𝐼
∗

𝑘
𝛽
2

𝑘

2
] .

(42)

In view of (𝐶
4
), we obtain

𝜙
𝑘
(𝐼
∗

𝑘
) 𝐼
𝑘

𝜙
𝑘
(𝐼
𝑘
) 𝐼
∗

𝑘

− 1 −
𝐼
𝑘

𝐼
∗

𝑘

+
𝜙
𝑘
(𝐼
𝑘
)

𝜙
𝑘
(𝐼
∗

𝑘
)

=
1

𝜙
𝑘
(𝐼
∗

𝑘
)

𝐼
𝑘

𝜙
𝑘
(𝐼
𝑘
)
(𝜙
𝑘
(𝐼
∗

𝑘
) − 𝜙
𝑘
(𝐼
𝑘
))

× (
𝜙
𝑘
(𝐼
∗

𝑘
)

𝐼
∗

𝑘

−
𝜙
𝑘
(𝐼
𝑘
)

𝐼
𝑘

) ≤ 0.

(43)

Then

𝐿𝑉
1
≤ −

𝑛

∑

𝑘=1

𝑐
𝑘
𝑑
𝑘
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

+

𝑛

∑

𝑘=1

𝑐
𝑘
[
𝑆
∗

𝑘
𝛼
2

𝑘

2
+
𝐼
∗

𝑘
𝛽
2

𝑘

2
] .

(44)

By using inequality 𝑎−1− log 𝑎 ≥ 0 for 𝑎 > 0 again, it follows
that

− log
𝑆
𝑘

𝑆
∗

𝑘

≤
𝑆
∗

𝑘

𝑆
𝑘

− 1. (45)

Successively substituting (40), (37), (45), (41), and (43) into
(35), we obtain

𝐿𝑉
2
≤

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(−

𝐼
𝑘

𝐼
∗

𝑘

+

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
)

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
)

− log
𝑆
𝑘

𝑆
∗

𝑘

− log
𝜙
𝑗
(𝐼
𝑗
)

𝜙
𝑗
(𝐼
∗

𝑗
)

− log
𝐼
∗

𝑘

𝐼
𝑘

)]

]

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝛽
2

𝑘

2

=

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(−

𝐼
𝑘

𝐼
∗

𝑘

+

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
)

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
)

− log
𝑆
𝑘

𝑆
∗

𝑘

− log
𝜙
𝑘
(𝐼
𝑘
)

𝜙
𝑘
(𝐼
∗

𝑘
)
− log

𝐼
∗

𝑘

𝐼
𝑘

)]

]

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝛽
2

𝑘

2

≤

𝑛

∑

𝑘=1

𝑐
𝑘
[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(−

𝐼
𝑘

𝐼
∗

𝑘

+

𝑆
𝑘
𝜙
𝑗
(𝐼
𝑗
)

𝑆
∗

𝑘
𝜙
𝑗
(𝐼
∗

𝑗
)

+
𝑆
∗

𝑘

𝑆
𝑘

−1 +
𝐼
𝑘
𝜙
𝑘
(𝐼
∗

𝑘
)

𝐼
∗

𝑘
𝜙
𝑘
(𝐼
𝑘
)
− 1)]

]

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝛽
2

𝑘

2

=

𝑛

∑

𝑘=1

𝑐
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
[

[

(
𝑆
𝑘

𝑆
∗

𝑘

− 1)(

𝜙
𝑗
(𝐼
𝑗
)

𝜙
𝑗
(𝐼
∗

𝑗
)

− 1)

+ (
𝑆
𝑘

𝑆
∗

𝑘

+
𝑆
∗

𝑘

𝑆
𝑘

− 2)

+ (
𝜙
𝑘
(𝐼
∗

𝑘
) 𝐼
𝑘

𝜙
𝑘
(𝐼
𝑘
) 𝐼
∗

𝑘

− 1 −
𝐼
𝑘

𝐼
∗

𝑘

+
𝜙
𝑘
(𝐼
𝑘
)

𝜙
𝑘
(𝐼
∗

𝑘
)
)]

]

)

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝛽
2

𝑘

2

≤

𝑛

∑

𝑘=1

𝑐
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
[

[

(
𝑆
𝑘

𝑆
∗

𝑘

− 1)(

𝜙
𝑗
(𝐼
𝑗
)

𝜙
𝑗
(𝐼
∗

𝑗
)

− 1)

+(
𝑆
𝑘

𝑆
∗

𝑘

+
𝑆
∗

𝑘

𝑆
𝑘

− 2)]

]

)
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+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝛽
2

𝑘

2

=

𝑛

∑

𝑘=1

𝑐
𝑘
(

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑆
𝑘
− 𝑆
∗

𝑘
) (𝜙
𝑗
(𝐼
𝑗
) − 𝜙
𝑗
(𝐼
∗

𝑗
))

+

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝜙
𝑗
(𝐼
∗

𝑗
)
(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

)

+

𝑛

∑

𝑘=1

𝑐
𝑘
𝐼
∗

𝑘
𝛽
2

𝑘

2
.

(46)

Hence

𝑎𝐿𝑉
1
+ 𝐿𝑉
2
+ 𝐿𝑉
4

≤ −

𝑛

∑

𝑘=1

[

[

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
(𝑙
𝑘
𝑆
∗

𝑘
− 𝑐
𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
) (𝜙
𝑗
(𝐼
𝑗
) − 𝜙
𝑗
(𝐼
∗

𝑗
))

+ 𝑐
𝑘
(𝑎𝑑
𝑘
−

𝑛

∑

𝑗=1

𝛽
𝑘𝑗
𝜙
𝑗
(𝐼
∗

𝑗
))

(𝑆
𝑘
− 𝑆
∗

𝑘
)
2

𝑆
𝑘

]

]

−

𝑛

∑

𝑘=1

𝑙
𝑘
(𝑑
𝑘
− 𝛼
2

𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

+

𝑛

∑

𝑘=1

𝑐
𝑘
[
𝛽
2

𝑘

2
(𝑎 + 1) 𝐼

∗

𝑘
+
𝛼
2

𝑘

2
(𝑎 + 2) 𝑆

∗

𝑘
] .

(47)

Choose 𝑙
𝑘

= 𝑐
𝑘
/𝑆
∗

𝑘
and 𝑎 = max{∑𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗
/𝑑
𝑘
, 𝑘 =

1, 2, . . . , 𝑛} such that 𝑙
𝑘
𝑆
∗

𝑘
− 𝑐
𝑘
= 0 and 𝑎𝑑

𝑘
− ∑
𝑛

𝑗=1
𝛽
𝑘𝑗
𝐼
∗

𝑗
≥

0, 𝑘 = 1, 2, . . . , 𝑛. Then

𝑎𝐿𝑉
1
+ 𝐿𝑉
2
+ 𝐿𝑉
4

≤ −

𝑛

∑

𝑘=1

𝑐
𝑘

𝑆
∗

𝑘

(𝑑
𝑘
− 𝛼
2

𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

+

𝑛

∑

𝑘=1

𝑐
𝑘
[
𝛽
2

𝑘

2
(𝑎 + 1) 𝐼

∗

𝑘
+
𝛼
2

𝑘

2
(𝑎 + 2) 𝑆

∗

𝑘
] .

(48)

Furthermore,

𝑎𝐿𝑉
1
+ 𝐿𝑉
2
+ 𝐿𝑉
3
+ 𝐿𝑉
4
+ 𝐿𝑉
5

≤ −

𝑛

∑

𝑘=1

[𝑏
𝑘
(𝑑
𝑘
− 𝛼
2

𝑘
−

(𝑑
𝑘
+ 𝛾
𝑘
+ 𝜖
𝑘
)
2

2 (𝛾
𝑘
+ 𝑑
𝑘
+ 𝜖
𝑘
− 𝛽
2

𝑘
)
)

+
𝑐
𝑘

𝑆
∗

𝑘

(𝑑
𝑘
− 𝛼
2

𝑘
) ] (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

−
1

2

𝑛

∑

𝑘=1

(𝑏
𝑘
(𝜖
𝑘
+ 𝛾
𝑘
− 𝛽
2

𝑘
) −

𝑚
𝑘
𝛾
2

𝑘

𝛿
𝑘
− 𝜎
2

𝑘

) (𝐼
𝑘
− 𝐼
∗

𝑘
)
2

−
1

2

𝑛

∑

𝑘=1

𝑚
𝑘
(𝛿
𝑘
− 𝜎
2

𝑘
) (𝑅
𝑘
− 𝑅
∗

𝑘
)
2

+

𝑛

∑

𝑘=1

[(
𝑎 + 2

2
𝑐
𝑘
+ 𝑏
𝑘
𝑆
∗

𝑘
) 𝑆
∗

𝑘
𝛼
2

𝑘
+ (

𝑎 + 1

2
𝑐
𝑘
+ 𝑏
𝑘
𝐼
∗

𝑘
)

× 𝐼
∗

𝑘
𝛽
2

𝑘
+ 𝑚
𝑘
(𝑅
∗

𝑘
)
2
𝜎
2

𝑘
] .

(49)

Choose 𝑏
𝑘
> 0 such that 𝑏

𝑘
(𝑑
𝑘
− 𝛼
2

𝑘
− (𝑑
𝑘
+ 𝛾
𝑘
+ 𝜖
𝑘
)
2
/2(𝛾
𝑘
+

𝑑
𝑘
+ 𝜖
𝑘
− 𝛽
2

𝑘
))+ (𝑐

𝑘
/𝑆
∗

𝑘
)(𝑑
𝑘
− 𝛼
2

𝑘
) ≥ (𝑐

𝑘
/2𝑆
∗

𝑘
)(𝑑
𝑘
− 𝛼
2

𝑘
) and

choose 𝑚
𝑘

= (𝑏
𝑘
/2)(𝜖
𝑘
+ 𝛾
𝑘
− 𝛽
2

𝑘
)((𝛿
𝑘
− 𝜎
2

𝑘
)/𝛾
2

𝑘
) such that

𝑏
𝑘
(𝜖
𝑘
+𝛾
𝑘
−𝛽
2

𝑘
) − 𝑚

𝑘
𝛾
2

𝑘
/(𝛿
𝑘
−𝜎
2

𝑘
) = (𝑏

𝑘
/2)(𝜖
𝑘
+𝛾
𝑘
−𝛽
2

𝑘
); then

𝑎𝐿𝑉
1
+ 𝐿𝑉
2
+ 𝐿𝑉
3
+ 𝐿𝑉
4
+ 𝐿𝑉
5

≤ −

𝑛

∑

𝑘=1

𝑐
𝑘

2𝑆
∗

𝑘

(𝑑
𝑘
− 𝛼
2

𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

−
1

4

𝑛

∑

𝑘=1

𝑏
𝑘
(𝜖
𝑘
+ 𝛾
𝑘
− 𝛽
2

𝑘
) (𝐼
𝑘
− 𝐼
∗

𝑘
)
2

−
1

2

𝑛

∑

𝑘=1

𝑚
𝑘
(𝛿
𝑘
− 𝜎
2

𝑘
) (𝑅
𝑘
− 𝑅
∗

𝑘
)
2

+

𝑛

∑

𝑘=1

[(
𝑎 + 2

2
𝑐
𝑘
+ 𝑏
𝑘
𝑆
∗

𝑘
) 𝑆
∗

𝑘
𝛼
2

𝑘

+ (
𝑎 + 1

2
𝑐
𝑘
+ 𝑏
𝑘
𝐼
∗

𝑘
) 𝐼
∗

𝑘
𝛽
2

𝑘

+𝑚
𝑘
(𝑅
∗

𝑘
)
2
𝜎
2

𝑘
]

:= −

𝑛

∑

𝑘=1

𝑐
𝑘

2𝑆
∗

𝑘

(𝑑
𝑘
− 𝛼
2

𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

−

𝑛

∑

𝑘=1

𝑏
𝑘

4
(𝜖
𝑘
+ 𝛾
𝑘
− 𝛽
2

𝑘
) (𝐼
𝑘
− 𝐼
∗

𝑘
)
2

−

𝑛

∑

𝑘=1

𝑚
𝑘

2
(𝛿
𝑘
− 𝜎
2

𝑘
) (𝑅
𝑘
− 𝑅
∗

𝑘
)
2
+ 𝛿.

(50)

Note that

𝛿 < min{
𝑐
𝑘

2
(𝑑
𝑘
− 𝛼
2

𝑘
) 𝑆
∗

𝑘
,
𝑏
𝑘

4
(𝜖
𝑘
+ 𝛾
𝑘
− 𝛽
2

𝑘
) (𝐼
∗

𝑘
)
2
,

𝑚
𝑘

2
(𝛿
𝑘
− 𝜎
2

𝑘
) (𝑅
∗

𝑘
)
2
, 𝑘 = 1, 2, . . . , 𝑛} .

(51)
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Then the ellipsoid

−

𝑛

∑

𝑘=1

𝑐
𝑘

2𝑆
∗

𝑘

(𝑑
𝑘
− 𝛼
2

𝑘
) (𝑆
𝑘
− 𝑆
∗

𝑘
)
2

−

𝑛

∑

𝑘=1

𝑏
𝑘

4
(𝜖
𝑘
+ 𝛾
𝑘
− 𝛽
2

𝑘
) (𝐼
𝑘
− 𝐼
∗

𝑘
)
2

−

𝑛

∑

𝑘=1

𝑚
𝑘

2
(𝛿
𝑘
− 𝜎
2

𝑘
) (𝑅
𝑘
− 𝑅
∗

𝑘
)
2
+ 𝛿 = 0

(52)

lies entirely in 𝑅
3𝑛

+
. We can take 𝑈 to be a neighborhood of

the ellipsoid with 𝑈 ⊆ 𝐸
3𝑛

= 𝑅
3𝑛

+
, so for 𝑥 ∈ 𝐸

3𝑛
\ 𝑈, 𝐿𝑉 ≤

−𝐾 (𝐾 is a positive constant), which implies condition (B.2)
in Lemma A.5 is satisfied.

Note that the diffusion matrix of system (3) is

𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

= diag (𝛼2
1
𝑆
2

1
, 𝛽
2

1
𝐼
2

1
, 𝜎
2

1
𝑅
2

1
, . . . , 𝛼

2

𝑛
𝑆
2

𝑛
, 𝛽
2

𝑛
𝐼
2

𝑛
, 𝜎
2

𝑛
𝑅
2

𝑛
) .

(53)

For any bounded domain𝐷 ⊂ 𝑅
3𝑛

+
there is

𝑀 = min {𝛼2
𝑖
𝑆
2

𝑖
, 𝛽
2

𝑖
𝐼
2

𝑖
, 𝜎
2

𝑖
𝑅
2

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, 𝑌 ∈ 𝐷} > 0

(54)

such that
3𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝜉
𝑖
𝜉
𝑗
=

𝑛

∑

𝑖=1

𝛼
2

𝑖
𝑆
2

𝑖
𝜉
2

3𝑖−2
+

𝑛

∑

𝑖=1

𝛽
2

𝑖
𝐼
2

𝑖
𝜉
2

3𝑖−1

+

𝑛

∑

𝑖=1

𝜎
2

𝑖
𝑅
2

𝑖
𝜉
2

3𝑖
≥ 𝑀

󵄩󵄩󵄩󵄩󵄩
𝜉
2󵄩󵄩󵄩󵄩󵄩

(55)

for all 𝑌 ∈ 𝐷, 𝜉 ∈ 𝑅
3𝑛, which implies condition (B.1) is also

satisfied. Therefore, by Lemma A.5, the stochastic system (3)
has a stationary distribution 𝜇(⋅) and it is ergodic.

Appendix

For the completeness of the paper, in this section, we list some
theory used in the upper sections.

(1) Some graph theory (see [9, 24]): a directed graph or
a digraph G = (𝑉, 𝐸) contains a set 𝑉 = {1, 2, . . . , 𝑛} of
vertices and a set 𝐸 of arcs (𝑘, 𝑗) leading from initial vertex 𝑘
to terminal vertex 𝑗. A digraphG is weighted if each arc (𝑗, 𝑘)
is assigned a positive weight 𝑎

𝑘𝑗
. Given a weighted digraph

G with 𝑛 vertices, define the weight matrix 𝐴 = (𝑎
𝑘𝑗
)
𝑛×𝑛

whose entry 𝑎
𝑘𝑗

equals the weight of arc (𝑗, 𝑘) if it exists,
and 0 otherwise. A weighted digraph is denoted as (G, 𝐴).
A digraph G is strongly connected if for any pair of distinct
vertices, there exists a directed path from one to the other. A
weighted digraph (G, 𝐴) is strongly connected if and only if
the weight matrix 𝐴 is irreducible [25].

Lemma A.1. If 𝐴 is nonnegative and irreducible, then the
spectral radius 𝜌(𝐴) of 𝐴 is a simple eigenvalue, and 𝐴 has
a positive eigenvector 𝜔 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑛
) corresponding to

𝜌(𝐴).

Remark A.2. The result of this lemma is given in P. 27, [25,
Theorem 1.4].

The Laplacian matrix of (G, 𝐴) is defined as

𝐿
𝐴
=

[
[
[
[
[
[
[
[
[

[

∑

𝑘 ̸= 1

𝑎
1𝑘

−𝑎
12

⋅ ⋅ ⋅ −𝑎
1𝑛

−𝑎
21

∑

𝑘 ̸= 2

𝑎
2𝑘

⋅ ⋅ ⋅ −𝑎
2𝑛

...
... d

...
−𝑎
𝑛1

−𝑎
𝑛2

⋅ ⋅ ⋅ ∑

𝑘 ̸= 𝑛

𝑎
𝑛𝑘

]
]
]
]
]
]
]
]
]

]

. (A.1)

Let 𝑐
𝑘
denote the cofactor of the 𝑘th diagonal element of 𝐿

𝐴
,

which has following property.

Lemma A.3 (see [9]). Assume 𝑛 ≥ 2.

(1) If (G, 𝐴) is strongly connected, then 𝑐
𝑘
> 0 for 1 ≤ 𝑘 ≤

𝑛.
(2) The following identity holds:

𝑛

∑

𝑘,𝑗=1

𝑐
𝑘
𝑎
𝑘𝑗
𝐺
𝑘
(𝑥
𝑘
) =

𝑛

∑

𝑘,𝑗=1

𝑐
𝑘
𝑎
𝑘𝑗
𝐺
𝑗
(𝑥
𝑗
) , (A.2)

where 𝐺
𝑘
(𝑥
𝑘
), 1 ≤ 𝑘 ≤ 𝑛 are arbitrary functions.

Remark A.4. Lemma 2.1 of [8] gives the result (1) of
Lemma A.3, and the result (2) is referred to [9,Theorem 2.3].

(2) Some theory about stationary distribution (see [23]):
let 𝑋(𝑡) be a homogeneous Markov process in 𝐸

𝑙
(𝐸
𝑙
denotes

Euclidean 𝑙-space) described by the stochastic equation

𝑑𝑋 (𝑡) = 𝑏 (𝑋) 𝑑𝑡 +

𝑘

∑

𝑟=1

𝑔
𝑟
(𝑋) 𝑑𝐵

𝑟
(𝑡) . (A.3)

The diffusion matrix is

𝐴 (𝑥) = (𝑎
𝑖𝑗
(𝑥)) , 𝑎

𝑖𝑗
(𝑥) =

𝑘

∑

𝑟=1

𝑔
𝑖

𝑟
(𝑥) 𝑔
𝑗

𝑟
(𝑥) . (A.4)

Assumption B. There exists a bounded domain 𝑈 ⊂ 𝐸
𝑙
with

regular boundary Γ, having the following properties.

(B.1) In the domain 𝑈 and some neighbourhood thereof,
the smallest eigenvalue of the diffusionmatrix𝐴(𝑥) is
bounded away from zero.

(B.2) If 𝑥 ∈ 𝐸
𝑙
\ 𝑈, the mean time 𝜏 at which a path issuing

from 𝑥 reaches the set𝑈 is finite, and sup
𝑥∈𝐾

𝐸
𝑥
𝜏 < ∞

for every compact subset 𝐾 ⊂ 𝐸
𝑙
.

Lemma A.5 (see [23]). If (B) holds, then the Markov process
𝑋(𝑡) has a stationary distribution 𝜇(⋅). Let 𝑓(⋅) be a function
integrable with respect to the measure 𝜇. Then

𝑃
𝑥
{ lim
𝑇→∞

1

𝑇
∫

𝑇

0

𝑓 (𝑋 (𝑡)) 𝑑𝑡 = ∫

𝐸
𝑙

𝑓 (𝑥) 𝜇 (𝑑𝑥)} = 1 (A.5)

for all 𝑥 ∈ 𝐸
𝑙
.
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Remark A.6. The proof is given in [23]. Exactly, the existence
of stationary distribution with density is referred toTheorem
4.1, P. 119 and Lemma 9.4, P. 138. The weak convergence and
the ergodicity are obtained inTheorem5.1, P. 121 andTheorem
7.1, P. 130.

To validate (B.1), it suffices to prove 𝐹 is uniformly
elliptical in 𝑈, where 𝐹𝑢 = 𝑏(𝑥) ⋅ 𝑢

𝑥
+ (1/2) tr(𝐴(𝑥)𝑢

𝑥𝑥
); that

is, there is a positive number𝑀 such that

𝑘

∑

𝑖,𝑗=1

𝑎
𝑖𝑗 (𝑥) 𝜉𝑖𝜉𝑗 ≥ 𝑀

󵄨󵄨󵄨󵄨
𝜉
󵄨󵄨󵄨󵄨

2
, 𝑥 ∈ 𝑈, 𝜉 ∈ 𝑅

𝑘 (A.6)

(see Chapter 3, P. 103 of [26] and Rayleigh’s principle in [27]
Chapter 6, P. 349). To verify (B.2), it is sufficient to show that
there exists some neighborhood 𝑈 and a nonnegative 𝐶

2-
function such that and for any 𝐸

𝑙
\ 𝑈, 𝐿𝑉 is negative (for

details refer to [28], P. 1163).
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