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We investigate an orthogonal system of the homogenous Hilbert-Schmidt polynomials with respect to a probability measure which
is invariant under the right action of an infinite-dimensional unitary matrix group. With the help of this system, a corresponding
Hardy-type space of square-integrable complex functions is described. An antilinear isomorphism between the Hardy-type space
and an associated symmetric Fock space is established.

1. Introduction

We investigate an orthogonal system of the Hilbert-Schmidt
polynomials in the space 𝐿

2

𝜒
of square-integrable complex

functions on the projective limit U = lim
←

𝑈(𝑚) of unitary
(𝑚 × 𝑚)-dimensional matrix groups 𝑈(𝑚) (𝑚 ∈ N), called
the space of virtual unitary matrices and endowed with the
projective limit measure 𝜒 = lim

←
𝜒
𝑚
of the probability Haar

measures 𝜒
𝑚

on 𝑈(𝑚). The measure 𝜒 on the space U is
invariant under the right action of the infinite-dimensional
unitary group 𝑈(∞) × 𝑈(∞), where 𝑈(∞) = ⋃

𝑚
𝑈(𝑚).

The space of virtual unitary matrices U was studied by
Neretin [1] and Olshanski [2]. This notion relates to D.
Pickrell’s space of virtual Grassmannian [3] and to Kerov,
Olshanski, and Vershik’s space of virtual permutations [4].
Various spaces of integrable functions with respect to mea-
sures that are invariant under infinite-dimensional groups
have been widely applied in stochastic processes [5], infinite-
dimensional probability [6, 7], complex analysis [8], and so
forth.

The main results of the present paper are Theorems 6-
7 that describe a Hardy-type subspace H2

𝜒
⊂ 𝐿
2

𝜒
spanned

by the finite type homogenous Hilbert-Schmidt polynomials
that are generated by an associated symmetric Fock space.

2. Preliminaries

We consider the following infinite-dimensional unitary
matrix groups:

𝑈 (∞) = ⋃{𝑈 (𝑚) : 𝑚 ∈ N} ,

𝑈
2
(∞) := 𝑈 (∞)𝑈 (∞) ,

(1)

where 𝑈(𝑚) is the group of unitary (𝑚×𝑚)-matrices which
is identified with the subgroup in 𝑈(𝑚 + 1) fixing the (𝑚 +

1)th basis vector. In other words, 𝑈(∞) is the group of
infinite unitary matrices 𝑢 = [𝑢

𝑖𝑗
]
𝑖,𝑗∈N with finitely many

matrix entries 𝑢
𝑖𝑗
distinct from 𝛿

𝑖𝑗
. We equip every group

𝑈(𝑚) with the probability Haar measure 𝜒
𝑚
.

Following [1, 2], every matrix 𝑢
𝑚

∈ 𝑈(𝑚) with 𝑚 > 1, we
write in the following block matrix form:

𝑢
𝑚

= [
𝑧
𝑚−1

𝑎

𝑏 𝑡
] , (2)

corresponding to the partition𝑚 = (𝑚−1)+ 1 so that 𝑧
𝑚−1

∈

𝑈(𝑚 − 1) and 𝑡 ∈ C. Over the group 𝑈(∞) (resp., 𝑈(𝑚)) the
right action is well defined:

𝑢 ⋅ 𝑔 = 𝑤
−1

𝑢V, (3)
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where 𝑢 belongs to 𝑈(∞) (resp., to 𝑈(𝑚)) and 𝑔 = (V, 𝑤)

belongs to 𝑈
2
(∞) (resp., to 𝑈

2
(𝑚) := 𝑈(𝑚) × 𝑈(𝑚)). In

[1, Proposition 0.1], [2, Lemma 3.1], it was proven that the
following Livšic-type mapping:

𝜋
𝑚

𝑚−1
: 𝑈 (𝑚) ∋ 𝑢

𝑚
→ 𝑢
𝑚−1

∈ 𝑈 (𝑚 − 1) , (4)

such that

[
𝑧
𝑚−1

𝑎

𝑏 𝑡
] → {

𝑧
𝑚−1

− 𝑎(1 + 𝑡)
−1

𝑏 : 𝑡 ̸= − 1,

𝑧
𝑚−1

: 𝑡 = −1,
(5)

(which is not a group homomorphism) is Borel and surjective
onto 𝑈(𝑚−1) and commutes with the right action of 𝑈

2
(𝑚−

1).
As is known [1, Theorem 1.6], the pullback of the

probability Haar measure 𝜒
𝑚−1

on 𝑈(𝑚 − 1) under the
mapping 𝜋

𝑚

𝑚−1
is the probability Haarmeasure 𝜒

𝑚
on 𝑈(𝑚),

that is,
𝜒
𝑚−1

∘ 𝜋
𝑚

𝑚−1
= 𝜒
𝑚
. (6)

Let 𝑈

(𝑚) ⊂ 𝑈(𝑚) be the subset of unitary matrices

which do not have {−1}, as an eigenvalue. Then, 𝑈

(𝑚) is

open in 𝑈(𝑚), and the complement 𝑈(𝑚) \ 𝑈

(𝑚) is a 𝜒

𝑚
-

negligible set. Moreover (see [2, Lemma 3.11]), the mapping

𝜋
𝑚

𝑚−1
: 𝑈

(𝑚) → 𝑈


(𝑚 − 1) (7)

is continuous and surjective.
Consider the projective limits, taken with respect to

the surjective Borel projections 𝜋
𝑚

𝑚−1
and their continuous

restrictions 𝜋
𝑚

𝑚−1
|
𝑈

(𝑚)

, respectively,

U = lim
←

𝑈 (𝑚) , U

= lim
←

𝑈

(𝑚) , (8)

called the spaces of virtual unitary matrices. Notice that U is
a Borel subset in the Cartesian product ⨉

𝑚∈N𝑈(𝑚) = {𝑢 =

(𝑢
𝑚
) : 𝑢

𝑚
∈ 𝑈(𝑚)} endowed with the product topology,

because all mapping 𝜋
𝑚

𝑚−1
are Borel. Moreover, the canonical

projections
𝜋
𝑚

: U → 𝑈 (𝑚) , 𝜋
𝑚

: U

→ 𝑈


(𝑚) , (9)

such that 𝜋
𝑚−1

= 𝜋
𝑚

𝑚−1
∘ 𝜋
𝑚
, are surjective by surjectivity

of 𝜋
𝑚

𝑚−1
and 𝜋

𝑚

𝑚−1
|
𝑈

(𝑚)

.
Following [2, Lemma 4.8], [1, Section 3.1], with the help

of the Kolmogorov consistent theorem, we uniquely define
a probability measure 𝜒 on U as the projective limit under
the mapping (6),

𝜒 = lim
←

𝜒
𝑚
, (10)

which satisfies the equality 𝜒 = 𝜒
𝑚
∘𝜋
𝑚
for all 𝑚 ∈ N. On U\

U, the measure 𝜒 is zero, because 𝜒
𝑚
is zero on 𝑈(𝑚) \

𝑈

(𝑚) for all 𝑚 ∈ N.
Using (3), right action of the group 𝑈

2
(∞) on the space

of virtual unitary matrices U can be defined (see [2, Defini-
tion 4.5]) as follows:

𝜋
𝑚

(𝑢 ⋅ 𝑔) = 𝑤
−1

𝜋
𝑚

(𝑢) V, 𝑢 ∈ U, (11)

where 𝑚 is so large that 𝑔 = (V, 𝑤) ∈ 𝑈
2
(𝑚).

The canonical dense embedding 𝚤 : 𝑈(∞)  U to any
element 𝑢

𝑚
∈ 𝑈(𝑚) assigns the unique sequence 𝑢 = (𝑢

𝑙
)
𝑙∈N,

such that

𝚤 : 𝑈 (𝑚) ∋ 𝑢
𝑚

→ (𝑢
𝑙
) ∈ U,

𝑢
𝑙
=

{{{{

{{{{

{

𝜋
𝑙+1

𝑙
∘ ⋅ ⋅ ⋅ ∘ 𝜋

𝑚

𝑚−1
(𝑢
𝑚
) : 𝑙 < 𝑚,

𝑢
𝑚
: 𝑙 = 𝑚,

[
𝑢
𝑚

0

0 1
𝑙−𝑚

]: 𝑙 > 𝑚,

(12)

where 1
𝑙−𝑚

is the unit in 𝑈(𝑙 − 𝑚). So, the image 𝚤 ∘

𝑈(∞) consists of stabilizing sequences in U (see [2, Section
4]).

3. Invariant Probability Measure

In what follows, we will endow the space of virtual unitary
matrices U with the measure 𝜒 = lim

←
𝜒
𝑚
. A complex func-

tion on U is called cylindrical [2, Definition 4.5] if it has the
following form:

𝑓 (𝑢) = (𝑓
𝑚

∘ 𝜋
𝑚
) (𝑢) , 𝑢 ∈ U, (13)

for a certain 𝑚 ∈ N and a certain complex function 𝑓
𝑚
on

𝑈(𝑚).
Any continuous bounded function 𝑓 onU has a unique

𝜒-essentially bounded extension onU, because the setU \U

is 𝜒-negligible. Therefore, if the function 𝑈

(𝑚) ∋ 𝜋

𝑚
(𝑢) →

𝑓
𝑚
[𝜋
𝑚
(𝑢)] in the definition (13) is continuous and bounded,

then the corresponding cylindrical function𝑓 is 𝜒 essentially
bounded.

By L∞
𝜒
, we denote closure of the algebraic hull of all

cylindrical 𝜒-essentially bounded functions (13) with respect
to the following norm:

𝑓
L∞
𝜒

= ess sup
𝑢∈U

𝑓 (𝑢)
 . (14)

Lemma 1. The measure 𝜒 = lim
←

𝜒
𝑚
on U is a Radon proba-

bility measure such that

∫
U

𝑓 (𝑢 ⋅ 𝑔) 𝑑𝜒 (𝑢) = ∫
U

𝑓 (𝑢) 𝑑𝜒 (𝑢) , (15)

for all 𝑔 ∈ 𝑈
2
(∞) and 𝑓 ∈ L∞

𝜒
. For any compact set 𝐾 ⊂

𝑈(𝑚) the following equality holds:

(𝜒 ∘ 𝚤) (𝐾) = 𝜒
𝑚

(𝐾) . (16)

Proof. Recall the Prohorov criterion, which is adapted to our
notation (see [9, Chapter IX.4.2, Theorem 1] or [6, Theorem
6]): there exists a Radon probability measure 𝜒

 on U such
that

𝜒

= 𝜒
𝑚

∘ 𝜋
𝑚

U
∀𝑚 ∈ N, (17)

if and only if for every 𝜀 > 0 there exists a compact setK in
U such that the following inequality

(𝜒
𝑚

∘ 𝜋
𝑚
) (K) ≥ 1 − 𝜀 ∀𝑚 ∈ N (18)
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holds; in this case, 𝜒 is uniquely determined by means of
the formula 𝜒


(K) = inf

𝑚∈N(𝜒𝑚 ∘ 𝜋
𝑚
)(K), where K is a

compact set in U.
Let 𝐾

𝑛
⊂ 𝑈

(𝑛) be a compact set with a fixed 𝑛. Putting

𝐾
𝑛−1

= 𝜋
𝑛

𝑛−1
(𝐾
𝑛
), we have

𝜒
𝑛−1

(𝐾
𝑛−1

) = (𝜒
𝑛−1

∘ 𝜋
𝑛

𝑛−1
) (𝐾
𝑛
) = 𝜒
𝑛
(𝐾
𝑛
) . (19)

On the other hand, if we put 𝐾
𝑛+1

= [
𝐾
𝑛
0

0 1
], then via (6),

𝜒
𝑛+1

(𝐾
𝑛+1

) = (𝜒
𝑛
∘ 𝜋
𝑛+1

𝑛
) (𝐾
𝑛+1

)

= (𝜒
𝑛
∘ 𝜋
𝑛+1

𝑛
) [

𝐾
𝑛

0

0 1
] = 𝜒
𝑛
(𝐾
𝑛
) .

(20)

As a consequence, the compact set K = (𝐾
𝑚
) in U,

generated by a compact set 𝐾
𝑛

⊂ 𝑈

(𝑛) with the help of

mappings 𝜋𝑛
𝑛−1

, satisfies the following condition:

𝜒
𝑛
(𝐾
𝑛
) = 𝜒
𝑚

(𝐾
𝑚
) ∀𝑚 ∈ N. (21)

The probability Haar measure 𝜒
𝑛
is regular on 𝑈(𝑛), and

the complement 𝑈(𝑛) \ 𝑈

(𝑛) is a negligible set. Hence,

if 𝐾
𝑛
runs over all compact sets in 𝑈


(𝑛), then

sup
𝐾
𝑛
⊂𝑈

(𝑛)

𝜒
𝑛
(𝐾
𝑛
) = 1. (22)

Therefore, for every 𝜀 > 0 there exists a compact set 𝐾
𝑛

⊂

𝑈

(𝑛) such that 𝜒

𝑛
(𝐾
𝑛
) ≥ 1 − 𝜀. From (21), it follows that

for every 𝜀 > 0 the compact set K satisfies the hypothesis
of Prohorov’s criterion:

(𝜒
𝑚

∘ 𝜋
𝑚
) (K) = 𝜒

𝑚
(𝐾
𝑚
) ≥ 1 − 𝜀 ∀𝑚 ∈ N. (23)

So, in view of this criterion, there exists a unique Radon prob-
ability measure 𝜒

 on U which satisfies the condition (17).
However, on the projective limits U = lim

←
𝑈

(𝑚), there exists

a unique 𝑈
2
(∞)-invariant Radonmeasure 𝜒, determined by

the equality (15). Using the uniqueness property of projective
limits, we obtain 𝜒


= 𝜒.Themeasure 𝜒 on U\U is defined

to be zero, because 𝜒
𝑚
is zero on 𝑈(𝑚) \ 𝑈


(𝑚).

As a consequence of (21), we obtain (16), because

𝜒 (K) = inf
𝑚∈N

𝜒
𝑚

(𝐾
𝑚
) = 𝜒
𝑛
(𝐾
𝑛
) . (24)

As is known [1, Proposition 3.2], themeasure 𝜒 is𝑈2(∞)-
invariant under the right actions (11) on the space U. Hence,
for every 𝑓 ∈ L∞

𝜒
, the equality (15) holds.

4. Shift Groups

Consider that in the space L∞
𝜒
, the group of shifts

𝑄
𝑔
𝑓 (𝑢) = 𝑓 (𝑢 ⋅ 𝑔) , 𝑔 ∈ 𝑈

2
(∞) 𝑢 ∈ U, (25)

is generated by the right action of 𝑈
2
(∞) over U. Choosing

instead of 𝑈(∞) a compact subgroup 𝑈(𝑚) or the compact
subgroups

𝑈
0
= {𝑔
0
(𝜗) = exp (i𝜗) : 𝜗 ∈ (−𝜋, 𝜋]} ,

𝑈
𝑗
(𝑚) = {𝑔𝑚𝑗 (𝜗) = 1

𝑗−1
⊗ exp (i𝜗) ⊗ 1

𝑚−𝑗
: 𝜗 ∈ (−𝜋, 𝜋]}

𝑗 = 1, . . . , 𝑚,

(26)

we obtain the corresponding subgroups of shifts 𝑄
𝑔
with ele-

ments 𝑔 ∈ 𝑈
2
(𝑚) or with elements 𝑔

0
(𝜗) ∈ 𝑈

2

0
and 𝑔

𝑚𝑗
(𝜗) ∈

𝑈
2

𝑗
(𝑚), respectively. Here, 1

𝑚
means the unit element in

𝑈(𝑚).

Lemma 2. For any 𝑓 ∈ L∞
𝜒

the following equalities:

∫
U

𝑓𝑑𝜒 = ∫
U

𝑑𝜒 (𝑢) ∫
𝑈
2
(𝑚)

𝑄
𝑔
𝑓 (𝑢) 𝑑 (𝜒

𝑚
⊗ 𝜒
𝑚
) (𝑔) , (27)

∫
U

𝑓 𝑑𝜒 =
1

2𝜋
∫
U

𝑑𝜒 (𝑢) ∫

𝜋

−𝜋

𝑄
𝑔(𝜗)

𝑓 (𝑢) 𝑑𝜗, (28)

with 𝑔(𝜗) ∈ 𝑈
2

0
or 𝑈
2

𝑗
(𝑚) hold.

Proof. For any 𝑓 ∈ L∞
𝜒
, the function (𝑢, 𝑔) → 𝑄

𝑔
𝑓(𝑢) =

𝑓(𝑢 ⋅ 𝑔) is integrable on the Cartesian productU×𝑈
2
(𝑚). By

the Fubini theorem, we obtain

∫
U

𝑑𝜒 (𝑢) ∫
𝑈
2
(𝑚)

𝑄
𝑔
𝑓 (𝑢) 𝑑 (𝜒

𝑚
⊗ 𝜒
𝑚
) (𝑔)

= ∫
𝑈
2
(𝑚)

𝑑 (𝜒
𝑚

⊗ 𝜒
𝑚
) (𝑔) ∫

U

𝑄
𝑔
𝑓 (𝑢) 𝑑𝜒 (𝑢) .

(29)

This equality yields the required formula (27), because
the internal integral on the right-hand side is independent
of 𝑔 and ∫

𝑈
2
(𝑚)

𝑑(𝜒
𝑚

⊗ 𝜒
𝑚
) = 1. In turn, putting instead

of 𝑈(𝑚) the subgroups 𝑈
0
and 𝑈

𝑗
(𝑚), we obtain equalities

(28).

5. The Homogeneous Hilbert-Schmidt
Polynomials

Consider the countable orthogonal Hilbertian sum

E := ⨁

𝑚∈N

C
𝑚

= {𝑥 = (𝑥
𝑚
) : 𝑥
𝑚

∈ C
𝑚
, ‖𝑥‖E < ∞} , (30)

with the scalar product ⟨𝑥 | 𝑦⟩E = ∑
𝑚

⟨𝑥
𝑚

| 𝑦
𝑚
⟩C𝑚 , where

every coordinate 𝑥
𝑚

∈ C𝑚 is identified with its image (0, . . . ,

0, 𝑥
𝑚
, 0, . . .) ∈ E under the embedding C𝑚  E.

Let ⊗
𝑛

hE stand for the complete 𝑛th tensor power of
the Hilbert subspace E, endowed with the Hilbertian scalar
product and norm, respectively,

⟨𝑥
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

𝑛
| 𝜓
𝑛
⟩
⊗
𝑛

h
E = ∑

𝑗

⟨𝑥
1
| 𝑦
1𝑗
⟩E . . . ⟨𝑥

𝑛
| 𝑦
𝑛𝑗
⟩
E
,

𝜓𝑛
⊗𝑛

h
E
= ⟨𝜓
𝑛
| 𝜓
𝑛
⟩
1/2

⊗
𝑛

h
E
,

(31)
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where 𝑥
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

𝑛
, 𝑦
1𝑗

⊗ ⋅ ⋅ ⋅ ⊗ 𝑦
𝑛𝑗

∈ ⊗
𝑛

hE with 𝑥
𝑡𝑗
, 𝑦
𝑡𝑗

∈ E for
all 𝑡 = 1, . . . , 𝑛 and 𝜓

𝑛
= ∑
𝑗
𝑦
1𝑗

⊗ ⋅ ⋅ ⋅ ⊗ 𝑦
𝑛𝑗
denotes a finite

sum. Put ⊗0hE = C. We use the following short denotation:

𝑥
⊗𝑛

= 𝑥 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑥, 𝑥 ∈ E. (32)

Replacing the space E by the subspace C𝑚, we similarly
define the tensor product ⊗

𝑛

hC
𝑚. There is the unitary embed-

ding ⊗
𝑛

hC
𝑚

 ⊗
𝑛

hE. If 𝑚 = 1, then ⊗
𝑛

hC = C.
For any finite sum 𝜓

𝑛
= ∑
𝑗
𝑦
1𝑗

⊗ ⋅ ⋅ ⋅ ⊗ 𝑦
𝑛𝑗
from the space

⊗
𝑛

hC
𝑚 (or ⊗

𝑛

hE), we can to define the finite type 𝑛-homoge-
neous Hilbert-Schmidt polynomials:

C
𝑚

∋ 𝑥 → ⟨𝑥
⊗𝑛

| 𝜓
𝑛
⟩
⊗
𝑛

h
C𝑚

= ∑

𝑗

𝑛

∏

𝑡=1

⟨𝑥 | 𝑦
𝑡𝑗
⟩
C𝑚

. (33)

Consider the canonical orthonormal bases:
E (C
𝑚
) = {e

𝑚1
, . . . , e

𝑚𝑚
} in C

𝑚
,

E (E) = ⋃{E (C
𝑚
) : 𝑚 ∈ N} in E,

(34)

where e
𝑚𝑙

= (
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1

𝑙

, 0, . . . , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚
.

If s : {1, . . . , 𝑛} → {s(1), . . . , s(𝑛)} runs over all 𝑛-
elements permutations S(𝑛), then the symmetric 𝑛th tensor
power ⊙

𝑛

hC
𝑚 is defined to be a codomain of the symmetriza-

tion mapping:

⊗
𝑛

hC
𝑚

∋ 𝑥
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

𝑛
→ 𝑥
1
⊙ ⋅ ⋅ ⋅ ⊙ 𝑥

𝑛
,

𝑥
1
⊙ ⋅ ⋅ ⋅ ⊙ 𝑥

𝑛
:=

1

𝑛!
∑

s∈S(𝑛)

𝑥s(1) ⊗ ⋅ ⋅ ⋅ ⊗ 𝑥s(𝑛),
(35)

which is an orthogonal projector. Similarly, the symmetric
𝑛th tensor power⊙𝑛hE can be defined.Clearly,⊙

𝑛

hC
𝑚 is a closed

subspace in ⊙
𝑛

hE.
Given a pair of numbers (𝑚, 𝑛) ∈ N × Z

+
, we consider

the 𝑛-fold tensor power of the canonical mapping 𝜋
𝑚

: U ∋

𝑢 → 𝜋
𝑚
(𝑢) ∈ 𝑈(𝑚),

U ∋ 𝑢 → 𝜋
⊗𝑛

𝑚
(𝑢) ∈ L (⊙

𝑛

hC
𝑚
) , (36)

where 𝜋
⊗𝑛

𝑚
(𝑢) := 𝜋

𝑚
(𝑢) ⊗ ⋅ ⋅ ⋅ ⊗ 𝜋

𝑚
(𝑢)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

. If 𝑛 = 0, we put
𝜋
⊗0

𝑚
(𝑢) = 1 for all 𝑢 ∈ U and 𝑚 ∈ N. The mapping (36) is

Borel and has a continuous restriction to U, because 𝜋
𝑚
has

the same property (see Section 2).
Let a
𝑚

∈ C𝑚 be an arbitrary fixed element such that
‖a
𝑚
‖C𝑚 = 1. Then, a⊗𝑛

𝑚
∈ ⊙
𝑛

hC
𝑚. Using the mapping (36),

we can write
[𝜋
⊗𝑛

𝑚
(𝑢)] (a

⊗𝑛

𝑚
) = [𝜋

𝑚
(𝑢)] (a

𝑚
) ⊗ ⋅ ⋅ ⋅ ⊗ [𝜋

𝑚
(𝑢)] (a

𝑚
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

.

(37)

To any 𝑛-homogeneous Hilbert-Schmidt polynomial (33),
there corresponds the function

𝜓
∗

𝑛
(𝑢) := ⟨[𝜋

⊗𝑛

𝑚
(𝑢)] (a

⊗𝑛

𝑚
) | 𝜓
𝑛
⟩
⊗
𝑛

h
C𝑚

= ∑

𝑗

𝑛

∏

𝑡=1

⟨[𝜋
𝑚

(𝑢)] (a
𝑚
) | 𝑦
𝑡𝑗
⟩
C𝑚

(38)

of the variable 𝑢 ∈ U. Any cylindrical function of the form
U ∋ 𝑢 → ⟨[𝜋

𝑚
(𝑢)](a

𝑚
) | 𝑦
𝑡𝑗
⟩
C𝑚

has a continuous bounded
restriction toU. Therefore, it is 𝜒-essentially bounded onU,
because U \ U is a 𝜒-negligible set. Consequently, 𝜓∗

𝑛
∈ 𝐿
∞

𝜒

and 𝜓
∗

𝑛
|U is continuous and bounded.

Definition 3. We define P𝑛h(C
𝑚
) to be the space of all func-

tions 𝜓
∗

𝑛
of the variable 𝑢 ∈ U, determined by the finite type

𝑛-homogeneous Hilbert-Schmidt polynomials (33).

Lemma 4. For any element a
𝑚

∈ C𝑚 such that ‖a
𝑚
‖C𝑚 = 1

the set

S
𝑚

= {𝑥 = [𝜋
𝑚

(𝑢)] (a
𝑚
) : 𝑢 ∈ U} (39)

coincides with the unit sphere in C𝑚. As a consequence, the
one-to-one antilinear corresponding

⊙
𝑛

hC
𝑚

∋ 𝜓
𝑛
 𝜓
∗

𝑛
∈ P
𝑛

h (C
𝑚
) . (40)

Holds, and any function 𝜓
∗

𝑛
is independent of the choice of an

element a
𝑚

∈ S𝑚.

Proof. Suppose, on the contrary, that there is an element 𝜓
𝑛
∈

⊙
𝑛

hC
𝑚 such that ⟨𝑥⊗𝑛 | 𝜓

𝑛
⟩
⊗
𝑛

h
C𝑚 = 0 for all 𝑥 = [𝜋

𝑚
(𝑢)](a

𝑚
) ∈

S𝑚 with 𝑢 ∈ U. The mapping

𝜋
𝑚

: U ∋ 𝑢 → 𝜋
𝑚

(𝑢) ∈ 𝑈 (𝑚) (41)

is surjective by surjectivity of the mapping 𝜋
𝑚
(see [2,

Lemma 3.1]). Hence, the set S𝑚 coincides with the unit sphere
in C𝑚 and is independent on the choice of an element a

𝑚
. By

𝑛-homogeneity, we have ⟨𝑥
⊗𝑛

| 𝜓
𝑛
⟩
⊗
𝑛

h
C𝑚 = 0 for all 𝑥 ∈ C𝑚.

Apply the following polarization formula for symmetric
tensor products (see, e.g., [10, Section 1.5]):

𝑧
1
⊙ ⋅ ⋅ ⋅ ⊙ 𝑧

𝑛
=

1

2𝑛𝑛!
∑

1≤𝑡≤𝑛

∑

𝛿
𝑡
=±1

𝛿
1
⋅ ⋅ ⋅ 𝛿
𝑛
𝑥
⊗𝑛

, (42)

with 𝑥 = ∑
𝑛

𝑡=1
𝛿
𝑡
𝑧
𝑡
∈ C𝑚, which is valid for all 𝑧

1
, . . . , 𝑧

𝑛
∈

C𝑚. It follows that ⟨𝑧
1

⊙ ⋅ ⋅ ⋅ ⊙ 𝑧
𝑛

| 𝜓
𝑛
⟩
⊗
𝑛

h
C𝑚 = 0 for all

elements 𝑧
1
, . . . , 𝑧

𝑛
∈ C𝑚. Hence, 𝜓

𝑛
= 0, because the subset

of all elements 𝑧
1
⊙⋅ ⋅ ⋅⊙𝑧

𝑛
is total in ⊙

𝑛

hC
𝑚. As a consequence,

the subset

{𝑥
⊗𝑛

= [𝜋
⊗𝑛

𝑚
(𝑢)] (a

⊗𝑛

𝑚
) : 𝑢 ∈ U} (43)

is also total in ⊙
𝑛

hC
𝑚. It immediately yields the correspon-

dence (40).

Consider the symmetric Fock space F and its closed
subspace F

𝑚
, where

F := C ⊕ E ⊕ (⊙
2

hE) ⊕ (⊙
3

hE) ⊕ ⋅ ⋅ ⋅ ,

F
𝑚

:= C ⊕ C
𝑚

⊕ (⊙
2

hC
𝑚
) ⊕ (⊙

3

hC
𝑚
) ⊕ ⋅ ⋅ ⋅ .

(44)
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We will use the following notations:

(𝑚) := (𝑚1, . . . , 𝑚𝑚) ,

𝑘
(𝑚)

:= (𝑘
𝑚1

, . . . , 𝑘
𝑚𝑚

) ∈ Z
𝑚

+
,

𝑘(𝑚)
 := 𝑘
𝑚1

+ ⋅ ⋅ ⋅ + 𝑘
𝑚𝑚

,

𝑘
(𝑚)

! := 𝑘
𝑚1

! ⋅ . . . ⋅ 𝑘
𝑚𝑚

!.

(45)

As is well known (see, e.g., [11]), the system of symmetric
tensor elements, indexed by the set 𝑘

(𝑚)
,

E (⊙
𝑛

hC
𝑚
) = {e

⊗𝑘
(𝑚)

(𝑚)
= e
⊗𝑘
𝑚1

𝑚1
⊙ ⋅ ⋅ ⋅ ⊙ e

⊗𝑘
𝑚𝑚

𝑚𝑚
:

𝑘
(𝑚)

∈ Z
𝑚

+
;
𝑘(𝑚)

 = 𝑛}

(46)

forms an orthogonal basis in the subspace

⊙
𝑛

hC
𝑚

⊂ F
𝑚
. (47)

We will also use the following notations:

[𝑚] := {(11) , (21, 22) , . . . , (𝑚1, . . . , 𝑚𝑚)} ,

{𝑘} := {𝑘
(1)

, . . . , 𝑘
(𝑚)

} ∈

𝑚

⨉

𝑟=1

Z
𝑟

+
,

|{𝑘}| :=
𝑘(1)

 + ⋅ ⋅ ⋅ +
𝑘(𝑚)

 ,

{𝑘}! := 𝑘
(1)

! ⋅ . . . ⋅ 𝑘
(𝑚)

!.

(48)

Then, the systemof symmetric tensor elements with a fixed 𝑛,
indexed by the sets [𝑚] and {𝑘},

E
𝑛
= ⋃

𝑚∈N

{e
⊗{𝑘}

[𝑚]
= e
⊗𝑘
(1)

(1)
⊙ ⋅ ⋅ ⋅ ⊙ e

⊗𝑘
(𝑚)

(𝑚)
:

e
⊗𝑘
(1)

(1)
∈ E (⊙

|𝑘
(1)
|

h
C) , . . . , e

⊗𝑘
(𝑚)

(𝑚)
∈ E (⊙

|𝑘
(𝑚)
|

h
C
𝑚
)

with fixed |{𝑘}| = 𝑛} ,

(49)

forms an orthogonal basis in the subspace ⊙
𝑛

hE ⊂ F.Thus, the
system

E = {E
𝑛
: 𝑛 ∈ Z

+
} (50)

forms an orthogonal basis in the symmetric Fock space F.
By virtue of the one-to-one mapping (40), the system

of symmetric tensor elements E(⊙
𝑛

hC
𝑚
) uniquely defines the

following corresponding system:

E
∗

𝑚,𝑛
⊂ P
𝑛

h (C
𝑚
) , (51)

of the following 𝜒
𝑚
-integrable cylindrical functions:

e
∗𝑘
(𝑚)

(𝑚)
(𝑢) := ⟨[𝜋

⊗𝑛

𝑚
(𝑢)] (e

⊗𝑛

𝑚1
) | e
⊗𝑘
(𝑚)

(𝑚)
⟩
⊗
𝑛

h
C𝑚

=

𝑚

∏

𝑟=1

⟨(𝜋
𝑚

∘ 𝑢) (e
𝑚1

) | e
𝑚𝑟

⟩
𝑘
𝑚𝑟

C𝑚
,

(52)

of the variable 𝑢 ∈ U, where we take a
𝑚

= e
𝑚1
. Consider the

system of functions of the variable 𝑢 ∈ U,

E
∗

𝑛
= ⋃

𝑚∈N

{e
∗{𝑘}

[𝑚]
= e
∗𝑘
(1)

(1)
⋅ ⋅ ⋅ ⋅ ⋅ e

∗𝑘
(𝑚)

(𝑚)
:

e
∗𝑘
(1)

(1)
∈ E
∗

1,|𝑘(1)|
, . . . , e

∗𝑘
(𝑚)

(𝑚)
∈ E
∗

𝑚,|𝑘(𝑚)|

with fixed |{𝑘}| = 𝑛} ,

(53)

generated by the systemof symmetric tensor elements E
𝑛
. All

these functions belong to the space L∞
𝜒

by their definition.
Denote

E
∗
= {E
∗

𝑛
: 𝑛 ∈ Z

+
} , E

∗

𝑚
= {E
∗

𝑚,𝑛
: 𝑛 ∈ Z

+
} . (54)

6. The Hardy-Type Space

Let 𝐿
2

𝜒
be the space of square 𝜒-integrable complex func-

tions , 𝑓 on the space of virtual matrices U. Since 𝜒 is a
probability measure, the embeddingL∞

𝜒
⊂ 𝐿
2

𝜒
holds and

𝑓
𝐿2
𝜒

≤ ess sup
𝑢∈U

𝑓 (𝑢)
 , 𝑓 ∈ L

∞

𝜒
. (55)

Denote by H2
𝜒
𝑚

the 𝐿
2

𝜒
-closure of complex linear spans

of the subsystem E∗
𝑚
. As is well known (see, e.g., [12,Theorem

5.6.8]), the space H2
𝜒
𝑚

is isomorphic to the classic Hardy
space H2

𝜒
𝑚

(B𝑚) of analytic complex functions on the open
unit ball B𝑚 = {𝑥

𝑚
∈ C𝑚 : ‖𝑥

𝑚
‖C𝑚 < 1}. Therefore, the fol-

lowing more general definition seems natural (see, also [8]).

Definition 5. The Hardy-type space H2
𝜒
on the space of

virtual unitary matrices U is defined to be the 𝐿
2

𝜒
-closure of

the complex linear span of the system E∗.

Theorem 6. The system E∗ of all functions e
∗{𝑘}

[𝑚]
=

e
∗𝑘
(1)

(1)
⋅ ⋅ ⋅ ⋅ ⋅ e

∗𝑘
(𝑚)

(𝑚)
with 𝑚 ∈ N, such that e∗𝑘(𝑟)

(𝑟)
∈ E∗
𝑟,|𝑘
(𝑟)
|
as

𝑟 = 1, . . . , 𝑚, forms an orthogonal basis in the Hardy-type
spacesH2

𝜒
with norms


e
∗{𝑘}

[𝑚]

𝐿2
𝜒

= (

𝑚

∏

𝑟=1

(𝑟 − 1)!(𝑘)
𝑟
!

(𝑟 − 1 +
(𝑘)𝑟

)!
)

1/2

. (56)

Proof. If |{𝑘}| ̸= |{𝑞}|, then from (28), it follows that

∫
U

e
∗{𝑘}

[𝑚]
⋅ e
∗{𝑞}

[𝑛]
𝑑𝜒

= ∫
U

e
∗{𝑘}

[𝑚]
(exp (i𝜗) 𝑢) ⋅ e

∗{𝑞}

[𝑛]
(exp (i𝜗) 𝑢) 𝑑𝜒 (𝑢)

=
1

2𝜋
∫
U

e
∗{𝑘}

[𝑚]
e
∗{𝑞}

[𝑛]
𝑑𝜒∫

𝜋

−𝜋

exp (i (|{𝑘}| −
{𝑞}

) 𝜗) 𝑑𝜗

= 0.

(57)

So, e∗{𝑘}
[𝑚]

⊥ e
∗{𝑞}

[𝑛]
in the space 𝐿

2

𝜒
if |{𝑘}| ̸= |{𝑞}| for all indices

[𝑚], [𝑛].
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Let |{𝑘}| = |{𝑞}| and 𝑚 > 𝑛 for definiteness. If the
elements e

∗{𝑘}

[𝑚]
and e

∗{𝑞}

[𝑛]
are different, then there exists a

subindex 𝑚𝑠 ∈ {11, 21, 22, . . ., 𝑚1, . . ., 𝑚𝑚} in the block-
index [𝑚] = [(11), (21, 22), . . ., (𝑚1, . . .,𝑚𝑚)] such that𝑚𝑠 ∉

{11, 21, 22, . . . , 𝑛1, . . . , 𝑛𝑛}, where [𝑛] = [(11), (21, 22), . . .,
(𝑛1, . . . , 𝑛𝑛)]. The formula (28) implies that for the group of
shifts 𝑄

𝑔
𝑚𝑠
(𝜗)

generated by elements 𝑔
𝑚𝑠

(𝜗) ∈ 𝑈
2

𝑠
(𝑚) with the

subindex 𝑚𝑠,

∫
U

e
∗{𝑘}

[𝑚]
⋅ e
∗{𝑞}

[𝑛]
𝑑𝜒

= ∫
U

𝑄
𝑔
𝑚𝑠
(𝜗)
e
∗{𝑘}

[𝑚]
⋅ 𝑄
𝑔
𝑚𝑠
(𝜗)
e
∗{𝑞}

[𝑛]
𝑑𝜒

=
1

2𝜋
∫
U

e
∗{𝑘}

[𝑚]
⋅ e
∗{𝑞}

[𝑛]
𝑑𝜒∫

𝜋

−𝜋

exp (i𝑘
𝑚𝑠

𝜗) 𝑑𝜗 = 0.

(58)

Hence, e∗{𝑘}
[𝑚]

⊥ e
∗{𝑞}

[𝑛]
in 𝐿
2

𝜒
.

Let now |{𝑘}| = |{𝑞}| and 𝑚 = 𝑛. If e∗{𝑘}
[𝑚]

̸= e
∗{𝑞}

[𝑛]
, then

{𝑘} ̸= {𝑞}. Hence, there exists a sub-index 𝑟𝑠 in the block-
index [𝑚] = [𝑛] such that 𝑘

𝑟𝑠
̸= 𝑞
𝑟𝑠
. Similarly as previous

mentioned, applying the formula (28) to the group of shifts
𝑄
𝑔
𝑟𝑠
(𝜗)

generated by elements 𝑔
𝑟𝑠
(𝜗) ∈ 𝑈

2

𝑠
(𝑟) with the sub-

index 𝑟𝑠, we get

∫
U

e
∗{𝑘}

[𝑚]
⋅ e
∗{𝑞}

[𝑛]
𝑑𝜒

=
1

2𝜋
∫
U

e
∗{𝑘}

[𝑚]
e
∗{𝑞}

[𝑛]
𝑑𝜒∫

𝜋

−𝜋

exp (i (𝑘
𝑟𝑠

− 𝑞
𝑟𝑠
) 𝜗) 𝑑𝜗

= 0.

(59)

Hence, in this case also e
∗{𝑘}

[𝑚]
⊥ e
∗{𝑞}

[𝑛]
under the measure 𝜒.

Let 𝑔
𝑟
= (1
𝑟
, 𝑤
𝑟
) ∈ 𝑈
2
(𝑟) and 𝑢 ∈ U. Using (11) and (52),

we have

∫
𝑈
2
(𝑟)

𝑄
𝑔
𝑟


e
∗(𝑘)
𝑟

(𝑟)



2

(𝑢) 𝑑 (𝜒
𝑟
⊗ 𝜒
𝑟
) (𝑔
𝑟
)

= ∫
𝑈(𝑟)

𝑟

∏

𝑙=1


⟨[𝑤
−1

𝑟
𝜋
𝑟
(𝑢)] (e

𝑟1
) | e
𝑟𝑙
⟩
𝑘
𝑟𝑙

C𝑟



2

𝑑𝜒
𝑟
(𝑤
𝑟
) .

(60)

However, the previous integral with the Haar measure 𝜒
𝑟
is

independent of 𝜋
𝑟
(𝑢) ∈ 𝑈(𝑟). It follows that

∫
𝑈
2
(𝑟)

𝑄
𝑔
𝑟


e
∗(𝑘)
𝑟

(𝑟)



2

(𝑢) 𝑑 (𝜒
𝑟
⊗ 𝜒
𝑟
) (𝑔
𝑟
)

= ∫
𝑈(𝑟)

𝑟

∏

𝑙=1


⟨𝑤
−1

𝑟
(e
𝑟1
) | e
𝑟𝑙
⟩
𝑘
𝑟𝑙

C𝑟



2

𝑑𝜒
𝑟
(𝑤
𝑟
)

=
(𝑟 − 1)!(𝑘)

𝑟
!

(𝑟 − 1 +
(𝑘)𝑟

) !
=


e
∗(𝑘)
𝑟

(𝑟)



2

𝐿
2

𝜒𝑟

(61)

by the well-known formula [12, Section 1.4.9]. Using the
formula (27) 𝑚-times for 𝑟 = 1, . . . , 𝑚, we get

∫
U


e
∗{𝑘}

[𝑚]



2

𝑑𝜒

= ∫
U

𝑑𝜒 (𝑢)

𝑚

∏

𝑟=1

∫
𝑈
2
(𝑟)

𝑄
𝑔
𝑟


e
∗(𝑘)
𝑟

(𝑟)



2

(𝑢) 𝑑 (𝜒
𝑟
⊗ 𝜒
𝑟
) (𝑔
𝑟
)

=

𝑚

∏

𝑟=1


e
∗𝑘
(𝑟)

(𝑟)



2

𝐿
2

𝜒𝑟

,

(62)

because ∫
U
𝑑𝜒 = 1. It follows that


e
∗{𝑘}

[𝑚]



2

𝐿
2

𝜒

=

𝑚

∏

𝑟=1


e
∗𝑘
(𝑟)

(𝑟)



2

𝐿
2

𝜒𝑟

=

𝑚

∏

𝑟=1

(𝑟 − 1)!(𝑘)
𝑟
!

(𝑟 − 1 +
(𝑘)𝑟

) !
, (63)

for all e∗{𝑘}
[𝑚]

= e
∗𝑘
(𝑚)

(1)
⋅ ⋅ ⋅ ⋅ ⋅ e

∗𝑘
(𝑚)

(𝑚)
.

As is known (see, e.g., [11]), the system E
𝑚
of symmetric

tensors e
⊗(𝑘)
𝑚

(𝑚)
with a fixed 𝑚 forms an orthogonal basis

in the symmetric Fock space F
𝑚
with norms ‖e

⊗(𝑘)
𝑚

(𝑚)
‖
F
𝑚

=

√(𝑘)
𝑚
!/|(𝑘)
𝑚
|!. Similarly, the system E of symmetric tensors

e
⊗{𝑘}

[𝑚]
= e
⊗(𝑘)
1

(1)
⊙ ⋅ ⋅ ⋅ ⊙ e

⊗𝑘
(𝑚)

(𝑚)
with all 𝑚 ∈ N, such that e⊗(𝑘)𝑟

(𝑟)
∈

E
𝑟,|(𝑘)
𝑟
|
as 𝑟 = 1, . . . , 𝑚, forms an orthogonal basis in the

symmetric Fock space F with norms ‖e⊗{𝑘}
[𝑚]

‖
F
= √{𝑘}!/|{𝑘}|!.

Combining Lemma 4, Theorem 6, and [12, Theorem
5.6.8], we obtain the following.

Theorem 7. Antilinear extensions of the one-to-one mappings
between the orthonormal bases

e
⊗(𝑘)
𝑚

(𝑚)


e
⊗(𝑘)
𝑚

(𝑚)

F
𝑚



e
∗(𝑘)
𝑚

(𝑚)


e
∗(𝑘)
𝑚

(𝑚)

𝐿2
𝜒𝑚

,

e
⊗{𝑘}

[𝑚]


e
⊗{𝑘}

[𝑚]

F



e
∗{𝑘}

[𝑚]


e
∗{𝑘}

[𝑚]

𝐿2
𝜒

,

(64)

uniquely define the corresponding anti-linear isometric isomor-
phisms

F
𝑚

≃ H
2

𝜒
𝑚

(B
𝑚
) , F ≃ H

2

𝜒
. (65)

Reasoning by analogy with [8, Proposition 6.1 andTheo-
rem 7.1], it is easy to show that the Hardy spaceH2

𝜒
possesses

the reproducing kernel of a Cauchy type

C (V, 𝑢) = ∑

𝑛∈Z
+

∑

|{𝑘}|=𝑛

e
∗{𝑘}

[𝑚]
(V) e∗{𝑘}
[𝑚]

(𝑢)


e
∗{𝑘}

[𝑚]



2

𝐿
2

𝜒

=

∞

∏

𝑚=1

(1 − ⟨(𝜋
𝑚

∘ V) (e
𝑚1

) | (𝜋
𝑚

∘ 𝑢) (e
𝑚1

)⟩
E
)
−𝑚

,

(66)



Abstract and Applied Analysis 7

with 𝑢, V ∈ U, where the sum ∑
|{𝑘}|=𝑛

is over all indices {𝑘} ∈

{⨉
𝑚

𝑟=1
Z𝑟
+
: 𝑚 ∈ N} such that |{𝑘}| = 𝑛. As a consequence, the

integral representation of any function 𝑓 ∈ H2
𝜒
,

𝑓 (𝜆V) = ∫
U

𝑓 (𝑢)C (𝜆V, 𝑢) 𝑑𝜒 (𝑢) (67)

gives a unique analytic extension in the complex variable 𝜆 ∈

B1 for all elements V ∈ U such that

∑

𝑚∈N

𝑚
(𝜋𝑚 ∘ V) (e

𝑚1
)


2

C𝑚
< ∞. (68)
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