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This work deals with the put option pricing problems based on the time-fractional Black-Scholes equation, where the fractional
derivative is a so-called modified Riemann-Liouville fractional derivative. With the aid of symbolic calculation software, European
and American put option pricing models that combine the time-fractional Black-Scholes equation with the conditions satisfied by
the standard put options are numerically solved using the implicit scheme of the finite difference method.

1. Introduction

The theory and methodology of partial differential equation
started to become popular to study option pricing problems,
after the classical Black-Scholes equation was proposed. The
available research results include mainly two aspects: one is
to give values of options using more powerful numerical and
analytic methods; the other is to derive new pricing models
that reflect the actual financial market more closely.

The Black-Scholes equation has been increasingly attract-
ing interest over the last two decades since it provides effec-
tively the values of options. But the classical Black-Scholes
equation was established under some strict assumptions.
Therefore, some improved models have been proposed to
weaken these assumptions, such as stochastic interest model
[1], Jump-diffusion model [2], stochastic volatility model [3],
and models with transactions costs [4, 5]. With the discovery
of the fractal structure for financial market, the fractional
Black-Scholes models [6–9] are derived by replacing the
standard Brownian motion involved in the classical model
with fractional Brownian motion. These fractional Black-
Scholes models are still partial differential equations with
integer order derivative, which are reduced to the classical
Black-Scholes equation if we let the Hurst exponent 𝐻 =

1/2. The differential equation involving derivatives of frac-
tional order is a powerful tool for studying fractal geometry

and fractal dynamics. As a generalization of the integer-
order differential equation, fractional differential equation is
used to model important phenomena in various fields such
as fluid flow, electromagnetic, acoustics, electrochemistry,
cosmology, and material science. Recently, fractional partial
differential equation was introduced more and more into
financial theory. Wyss [10] gave the fractional Black-Scholes
equation with a time-fractional derivative to price European
call option. Cartea and del-Castillo-Negrete [11] gave several
fractional diffusion models of option prices in markets with
jumps and priced barrier option using fractional partial
differential equation. Jumarie [12, 13] derived the time- and
space-fractional Black-Scholes equations and gave optimal
fractional Merton’s portfolio. The aim of this paper is to try
to combine Jumarie’s time-fractional Black-Scholes equation
with the terminal and boundary conditions satisfied by the
standard put options to study the pricing problems for
European and American put options.

In the present work, the option price 𝑉 = 𝑉(𝑆, 𝑡) is
suggested to be subject to the time-fractional Black-Scholes
equation [12, 13] with the following form:
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where 𝑟, 𝜎 denote risk-free interest rate and volatility, respec-
tively. 𝜕𝛼𝑉/𝜕𝑡𝛼 involved in (1) is a modified Riemann-Liou-
ville fractional derivative [12–15], which is defined using the
equality
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and can be represented as
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(3)

The value of European put option is taken as a solution of
(1) with the following terminal and boundary conditions:

𝑉 (𝑆, 𝑇) = max (𝐾 − 𝑆, 0) ,

𝑉 (0, 𝑡) = 𝐾 exp (−𝑟 (𝑇 − 𝑡)) ,

𝑉 (𝑆, 𝑡) → 0, 𝑆 → +∞.

(4)

Pricing European put option based on (1) and (4) can be
implemented by finite differences approximation. For Amer-
ican put option, this idea is operable. The main problem for
pricing an American put option is to consider the possibility
of early exercise. To avoid arbitrage, the option value at each
point in the (𝑆, 𝑡) space cannot be less than the intrinsic
value [16]. For that, the principle of dynamic programming
(at a given time, the optimal strategy corresponds to the
maximum of either the exercise value or the value associated
with selecting an optimal strategy an instant later) [17]
expressed by the following equation is applied, which can be
implemented using finite difference method and successive
overrelaxation (SOR) method

𝑉 (𝑆, 𝑡) = max (𝐾 − 𝑆, 𝑉 (𝑆 + 𝑑𝑆, 𝑡 + 𝑑𝑡)) . (5)

Fractional Black-Scholes equation (1) is actually a special
kind of fractional advection-dispersion equation, which has
time-varying coefficient and time-fractional derivative. A
general fractional advection-dispersion equation has been
studied in many works in the literature. Sousa [18] employed
a second-order explicit finite difference method derived by
a Lax-Wendroff-type time discretization procedure to solve
space-fractional advection-diffusion equation. Mohebbi and
Abbaszadeh [19] applied compact finite difference scheme
to deal with time-fractional advection-dispersion equation
with constant coefficient. Meerschaert and Tadjeran [20]

developed explicit and implicit Euler methods for the space-
fractional advection-dispersion equation. Liu et al. [21] devel-
oped effective numerical methods for solving several space-
time fractional advection-dispersion equations. Liu et al. [22]
used explicit and implicit difference methods to solve space-
time fractional advection-dispersion equation and proved the
stability and convergence of the methods. More powerful
methods, such as implicit MLS meshless method [23], Ado-
mian decomposition method [24], homotopy perturbation
method [25], and spectral regularization method [26], have
been used to solve numerical and analytical solutions for var-
ious types of fractional advection-dispersion equation. In this
paper, we combine time-fractional Black-Scholes equation
(1) with conditions satisfied by European and American put
options to construct put option pricing models. It is obvious
that this fractional derivative model can be reduced to the
classical Black-Scholes model if the derivative order 𝛼 = 1.
As a generalization, this time-fractional pricing model of
European and American put options is solved numerically
using the implicit finite difference technique.

2. Numerical Scheme

Numerical and analytical methods [16–43] are used to study
a great quantity of differential equations. Among them, the
finite difference method is a direct and effective numerical
algorithm. With this technique, the differential equation is
transformed into a difference equation by the discretization of
derivatives, and numerical solutions are finally obtained.The
approach has been extended successfully to deal with various
fractional differential equation [18–22, 38–43]. In this section,
the implicit finite difference mode is given.

Take the change of variable

𝜏 = 𝑇 − 𝑡. (6)

Equation (1) can be transformed into the following form:
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(7)

In order to use finite difference approximation, we start
by 𝑆 ∈ [0, 𝑆max] and 𝜏 ∈ [0, 𝑇). Let ℎ = 𝑆max/𝑀, 𝑘 = 𝑇/𝑁

(𝑀,𝑁 ∈ 𝑍
+
) be the grid sizes in space and time; the compu-

tational domain is discretized by a uniform grid (𝑆
𝑚
, 𝜏
𝑛
) with

𝑆
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= 𝑚ℎ (𝑚 = 0, 1, . . . ,𝑀) and 𝜏

𝑛
= 𝑛𝑘 (𝑛 = 0, 1, . . . , 𝑁),

where 𝑆
𝑀
= 𝑆max is a realistic and practical approximation to

infinity. 𝑉𝑛
𝑚
denotes an approximate solution of (7) in 𝑆

𝑚
at

the time 𝜏
𝑛
.

As pointed out in [12, 13], Jumarie’s definition and the
so-called Caputo’s definition yield the same result when
the function is differentiable. So, we take Caputo finite
difference approximation [38] for the modified Riemann-
Liouville fractional derivative involved in (7), namely,
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where 
𝛼,𝑘
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For spatial derivative, we use the following difference
approximation:

𝜕𝑉

𝜕𝑆
=
𝑉
𝑛

𝑚+1
− 𝑉
𝑛

𝑚−1

2ℎ
+ 𝑂 (ℎ) ,

𝜕
2

𝑉

𝜕𝑆2
=
𝑉
𝑛

𝑚+1
− 2𝑉
𝑛

𝑚
+ 𝑉
𝑛

𝑚−1

ℎ2
+ 𝑂 (ℎ

2

) .

(9)

Substituting (8) and (9) to (7) can derive
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where the local truncation error is 𝑂(𝑘 + ℎ2).
From (11), we get the following equality when 𝑛 = 1:
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After combining like terms, we can derive the following equa-
tion:
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For 𝑛 ≥ 2, we obtain

(
𝑟𝑚(𝑇 − 𝑛𝑘)

1−𝛼

2Γ (2 − 𝛼)
−
Γ (1 + 𝛼)

2
𝜎
2

𝑚
2

)𝑉
𝑛

𝑚−1

+ ((𝑛𝑘)
(𝛼−1)

(𝑇 − 𝑛𝑘)
(1−𝛼)


𝛼,𝑘

+
𝑟(𝑇 − 𝑛𝑘)

1−𝛼

Γ (2 − 𝛼)
+ Γ (1 + 𝛼) 𝜎

2

𝑚
2

)𝑉
𝑛

𝑚

− (
Γ (1 + 𝛼)

2
𝜎
2

𝑚
2

+
𝑟𝑚(𝑇 − 𝑛𝑘)

1−𝛼

2Γ (2 − 𝛼)
)𝑉
𝑛

𝑚+1

= (𝑛𝑘)
(𝛼−1)

(𝑇 − 𝑛𝑘)
(1−𝛼)


𝛼,𝑘

× (𝑉
𝑛−1

𝑚
−

𝑛

∑

𝑗=2

𝜔
(𝛼)

𝑗
(𝑉
𝑛−𝑗+1

𝑚
− 𝑉
𝑛−𝑗

𝑚
)) ,

𝑚 = 1, 2, . . . ,𝑀 − 1.

(14)

If the minimum limit of variable 𝑆 is 𝑆min, the corre-
sponding implicit difference approximation can be derived by
replacing𝑚 of the above results (13) and (14) with (𝑆min/ℎ) +
𝑚.

From the terminal and boundary conditions of the Euro-
pean put option, we can get
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In the case of American put option, we perform the above
procedure. At the same time, we should check for the possi-
bility of early exercise after computing 𝑉𝑛

𝑚
and set

𝑉
𝑛
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𝑚
, 𝐾 − 𝑚ℎ) , for 𝑛 = 1, . . . , 𝑁. (16)

Under this implicit scheme, we do not directly apply (16) at
each step but use SOR method to complete this procedure,
which was suggested in [16].

3. Stability and Convergence

In this section, we will analyze the stability and convergence
of implicit finite difference scheme (13) and (14) using Fourier
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analysis involved in [39–41]. For that, (13) and (14) are rewrit-
ten as
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= (

𝑀−1

∑

𝑚=1

ℎ
𝜀
𝑛

𝑚



2

)

1/2

= (∫

𝑆max

0

𝜀
𝑛

(𝑆)


2

𝑑𝑆)

1/2 (22)

can get

𝜀
𝑛

2

2
=

+∞

∑

𝑙=−∞

𝜉𝑛 (𝑙)


2

, (23)

where 𝜉
𝑛
(𝑙) = (1/𝑆max) ∫

𝑆max

0

𝜀
𝑛

(𝑆) exp(−𝐼2𝜋𝑙𝑆/𝑆max)𝑑𝑆.
The solution of (19) and (20) is supposed to have the

following form:

𝜀
𝑛

𝑚
= 𝜉
𝑛
exp (𝐼𝜇𝑚ℎ) , (24)

where 𝜇 = 2𝜋𝑙/𝑆max, 𝐼 = √−1.
Substituting the above expression into (19), we get

𝑎
𝑚,1
𝜉
1
exp (𝐼𝜇 (𝑚 − 1) ℎ) + 𝑏

𝑚,1
𝜉
1
exp (𝐼𝜇𝑚ℎ)

+ 𝑐
𝑚,1
𝜉
1
exp (𝐼𝜇 (𝑚 + 1) ℎ) = 𝜉

0
exp (𝐼𝜇𝑚ℎ) ,

𝑎
𝑚,𝑛
𝜉
𝑛
exp (𝐼𝜇 (𝑚 − 1) ℎ) + 𝑏

𝑚,𝑛
𝜉
𝑛
exp (𝐼𝜇𝑚ℎ)

+ 𝑐
𝑚,𝑛
𝜉
𝑛
exp (𝐼𝜇 (𝑚 + 1) ℎ)

= (1 − 𝜔
(𝛼)

2
) 𝜉
𝑛−1

exp (𝐼𝜇𝑚ℎ)

−

𝑛−1

∑

𝑗=2

(𝜔
(𝛼)

𝑗+1
− 𝜔
(𝛼)

𝑗
) 𝜉
𝑛−𝑗

exp (𝐼𝜇𝑚ℎ)

+ 𝜔
(𝛼)

𝑛
𝜉
0
exp (𝐼𝜇𝑚ℎ) .

(25)

Simplifying (25), we obtain

𝜗
𝑚,1
𝜉
1
= 𝜉
0
,

𝜗
𝑚,𝑛
𝜉
𝑛
= (1 − 𝜔

(𝛼)

2
) 𝜉
𝑛−1

−

𝑛−1

∑

𝑗=2

(𝜔
(𝛼)

𝑗+1
− 𝜔
(𝛼)

𝑗
) 𝜉
𝑛−𝑗

+ 𝜔
(𝛼)

𝑛
𝜉
0
,

(26)

where 𝜗
𝑚,𝑛

= 1+(𝑛𝑘)
(1−𝛼)

(𝑇−𝑛𝑘)
(𝛼−1)


−1

𝛼,𝑘
[(𝑟(𝑇−𝑛𝑘)

1−𝛼

/Γ(2−

𝛼))(1 − 𝐼𝑚 sin(𝜇ℎ)) + Γ(1 + 𝛼)𝜎2𝑚2(1 − cos(𝜇ℎ))].

Proposition 1. If 𝜉
𝑛
is a solution of (26), then |𝜉

𝑛
| ≤ |𝜉
0
|.

Proof. For 𝑛 = 1, the first equality of (26) gives |𝜉
1
| = (1/

|𝜗
𝑚,1
|)|𝜉
0
| ≤ |𝜉
0
|. If

𝜉𝑛−1
 ≤

𝜉0
 , (27)

then using the second equality of (26), we obtain

𝜉𝑛
 ≤

1 − 𝜔
(𝛼)

2
− (𝜔
(𝛼)

𝑛
− 𝜔
(𝛼)

2
) + 𝜔
(𝛼)

𝑛

𝜗𝑚,𝑛


𝜉0


=
1

𝜗𝑚,𝑛


𝜉0
 ≤

𝜉0
 .

(28)

According to (13) and (14), we can obtain the following
conclusion using Proposition 1 and equality (23).

Theorem 2. The difference scheme (13) and (14) is uncondi-
tionally stable.
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3.2. Convergence Analysis. Suppose that 𝑉(𝑆
𝑖
, 𝑡
𝑘
) is an exact

solution of (7) at grid point (𝑆
𝑖
, 𝑡
𝑘
) and 𝑉𝑖

𝑘
is the difference

solution of (13) and (14); we define the error 𝜖𝑘
𝑗
= 𝑉(𝑆

𝑖
, 𝑡
𝑘
)−𝑉
𝑖

𝑘

which satisfies the following equation according to (17):

𝑎
𝑚,1
𝜖
1

𝑚−1
+ 𝑏
𝑚,1
𝜖
1

𝑚
+ 𝑐
𝑚,1
𝜖
1

𝑚+1
= 𝑘
𝛼

𝑅
1

𝑚
,

𝑎
𝑚,𝑛
𝜖
𝑛

𝑚−1
+ 𝑏
𝑚,𝑛
𝜖
𝑛

𝑚
+ 𝑐
𝑚,𝑛
𝜖
𝑛

𝑚+1

= (1 − 𝜔
(𝛼)

2
) 𝜖
𝑛−1

𝑚

−

𝑛−1

∑

𝑗=2

(𝜔
(𝛼)

𝑗+1
− 𝜔
(𝛼)

𝑗
) 𝜖
𝑛−𝑗

𝑚
+ 𝑘
𝛼

𝑅
𝑛

𝑚
,

𝑛 = 2, . . . , 𝑁, 𝑚 = 1, 2, . . . ,𝑀 − 1,

(29)

𝜖
𝑛

0
= 𝜖
𝑛

𝑀
= 0, 𝑛 = 1, . . . , 𝑁,

𝜖
0

𝑚
= 0, 𝑚 = 0, . . . ,𝑀,

(30)

where |𝑅𝑛
𝑚
| ≤ 𝐶
1
(𝑘 + ℎ

2

) (𝑛 = 1, 2, . . . , 𝑁) and 𝐶
1
is a positive

constant.
For completing the proof of convergence, we recall several

results below which came from [39].
Similar to the stability analysis, [39] constructed the fol-

lowing grid function:

𝜖
𝑛

(𝑆) =

{{{{

{{{{

{

𝜖
𝑛

𝑚
, when 𝑆

𝑚
−
ℎ

2
< 𝑆 ≤ 𝑆

𝑚
+
ℎ

2
,

𝑚 = 1, . . . ,𝑀 − 1,

0, when 0 ≤ 𝑆 ≤
ℎ

2
or 𝑆max −

ℎ

2
< 𝑆 ≤ 𝑆max,

𝑅
𝑛

(𝑆) =

{{{{

{{{{

{

𝑅
𝑛

𝑚
, when 𝑆

𝑚
−
ℎ

2
< 𝑆 ≤ 𝑆

𝑚
+
ℎ

2
,

𝑚 = 1, . . . ,𝑀 − 1,

0, when 0 ≤ 𝑆 ≤
ℎ

2
or 𝑆max −

ℎ

2
< 𝑆 ≤ 𝑆max.

(31)

Defining

𝜖
𝑛

= [𝜖
𝑛

1
, 𝜖
𝑛

2
, . . . , 𝜖

𝑛

𝑀−1
]
𝑇

, 𝑅
𝑛

= [𝑅
𝑛

1
, 𝑅
𝑛

2
, . . . , 𝑅

𝑛

𝑀−1
]
𝑇

(32)

with the norms

𝜖
𝑛2

= (

𝑀−1

∑

𝑚=1

ℎ
𝜖
𝑛

𝑚



2

)

1/2

= (∫

𝑆max

0

𝜖
𝑛

(𝑆)


2

𝑑𝑆)

1/2

,

𝑅
𝑛2

= (

𝑀−1

∑

𝑚=1

ℎ
𝑅
𝑛

𝑚



2

)

1/2

= (∫

𝑆max

0

𝑅
𝑛

(𝑆)


2

𝑑𝑆)

1/2

(33)

can obtain

𝜖
𝑛

2

2
=

+∞

∑

𝑙=−∞

𝜁𝑛 (𝑙)


2

,

𝑅
𝑛

2

2
=

+∞

∑

𝑙=−∞

𝜂𝑛 (𝑙)


2

,

(34)

where

𝜁
𝑛
(𝑙) =

1

𝑆max
∫

𝑆max

0

𝜖
𝑛

(𝑆) exp(−𝐼2𝜋𝑙𝑆
𝑆max

)𝑑𝑆,

𝜂
𝑛
(𝑙) =

1

𝑆max
∫

𝑆max

0

𝑅
𝑛

(𝑆) exp(−𝐼2𝜋𝑙𝑆
𝑆max

)𝑑𝑆.

(35)

We can let
𝜖
𝑛

𝑚
= 𝜁
𝑛
exp (𝐼𝜇𝑚ℎ) ,

𝑅
𝑛

𝑚
= 𝜂
𝑛
exp (𝐼𝜇𝑚ℎ) ,

(36)

where 𝜇 = 2𝜋𝑙/𝑆max, 𝐼 = √−1.
Substituting the above expressions into (29) and simpli-

fying them can get
𝜗
𝑚,1
𝜁
1
= 𝑘
𝛼

𝜂
1
,

𝜗
𝑚,𝑛
𝜁
𝑛
= (1 − 𝜔

(𝛼)

2
) 𝜁
𝑛−1

−

𝑛−1

∑

𝑗=2

(𝜔
(𝛼)

𝑗+1
− 𝜔
(𝛼)

𝑗
) 𝜁
𝑛−𝑗

+ 𝑘
𝛼

𝜂
𝑛
,

(37)

where 𝜗
𝑚,𝑛

= 1+(𝑛𝑘)
(1−𝛼)

(𝑇−𝑛𝑘)
(𝛼−1)


−1

𝛼,𝑘
([(𝑟(𝑇−𝑛𝑘)

1−𝛼

/Γ(2−

𝛼))(1 − 𝐼𝑚 sin(𝜇ℎ)) + Γ(1 + 𝛼)𝜎2𝑚2(1 − cos(𝜇ℎ))].

Proposition 3. There exists a positive constant 𝐶
2
, so that

|𝜁
𝑛
| ≤ 𝐶
2
𝑛𝑘
𝛼

|𝜂
1
|.

Proof. From [39], we know
𝑅
𝑛2

≤ 𝐶
1
√𝑆max (𝑘 + ℎ

2

) (𝑛 = 1, 2, . . . , 𝑁) , (38)

𝜂𝑛
 ≤ 𝐶2

𝜂1
 (𝑛 = 1, 2, . . . , 𝑁) . (39)

Then the first equality of (37) tells us that
𝜁1
 ≤

1

𝜗𝑚,𝑛


𝑘
𝛼 𝜂1

 ≤ 𝐶2𝑘
𝛼 𝜂1

 . (40)

If we let
𝜁𝑛−1

 ≤ 𝐶2 (𝑛 − 1) 𝑘
𝛼 𝜂1

 , (41)

using the second equality of (37), we can obtain

𝜁𝑛
 ≤

1

𝜗𝑚,𝑛




(1 − 𝜔
(𝛼)

2
) (𝑛 − 1)

+

𝑛−1

∑

𝑗=2

(𝜔
(𝛼)

𝑗
− 𝜔
(𝛼)

𝑗+1
) (𝑛 − 𝑗) + 1



𝐶
2
𝑘
𝛼 𝜂1



≤
1

𝜗𝑚,𝑛




(1 − 𝜔
(𝛼)

2
) (𝑛 − 1)

+

𝑛−1

∑

𝑗=2

(𝜔
(𝛼)

𝑗
− 𝜔
(𝛼)

𝑗+1
) (𝑛 − 1) + 1



𝐶
2
𝑘
𝛼 𝜂1



≤
1

𝜗𝑚,𝑛



(1 − 𝜔

(𝛼)

𝑛
) (𝑛 − 1) + 1


𝐶
2
𝑘
𝛼 𝜂1



≤ 𝑛𝐶
2
𝑘
𝛼 𝜂1

 .

(42)



6 Abstract and Applied Analysis

0

1

2

3

4

5

−1

V
(S
,t
)

S

𝛼 = 1/5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

0

1

2

3

4

5

−1

V
(S
,t
)

S

𝛼 = 1/2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

Figure 1: Solution curve with 𝑡 = 0.5. Solid line: numerical solution; Soft dot: analytical solution.

According to equalities (34) and inequality (38), we can
obtain the following conclusion using Proposition 3.

Theorem 4. The implicit difference scheme (13) and (14) is 𝐿
2
-

convergent.

4. Computational Examples

Option pricing model based on the time-fractional differen-
tial equation (1) is studied. The implicit difference scheme of
(7) is given in Section 2. From the finite difference forms, it is
clear that (13) and (14) are just the implicit difference scheme
of the classical Black-Scholes equation if we let 𝛼 = 1. This
known implicit difference results are given in [16, 17, 36]. In
this section, we focus mainly on investigating the results with
0 < 𝛼 < 1. To explain the stability and convergence of the
implicit numerical schemes,we firstly takeExample 1with the
given terminal and boundary condition as an example.

Example 1. Consider (1) that is subject to the following
conditions:

𝑉 (𝑆, 𝑇) = 𝑉 (𝑆, 𝑇) = 𝜎
2

(2𝑇 − 𝑇
𝛼

) − 2 ln (𝑆) ,

𝑉 (𝑆min, 𝑡) = exp (−𝑟 (𝑇 − 𝑡)) (𝜎2 (2𝑡 − 𝑡𝛼) − 2 ln (𝑆min)) ,

𝑉 (𝑆max, 𝑡) = exp (−𝑟 (𝑇 − 𝑡)) (𝜎2 (2𝑡 − 𝑡𝛼) − 2 ln (𝑆max)) .

(43)

Under the condition 𝑟 = 𝜎2, (1) has an analytical solution

𝑉 (𝑆, 𝑡) = exp (−𝑟 (𝑇 − 𝑡)) (𝜎2 (2𝑡 − 𝑡𝛼) − 2 ln (𝑆)) . (44)

Figure 1 shows analytical solution and numerical solution
obtained by the implicit difference method at time 𝑡 = 0.5

when 𝑟 = 0.01, 𝜎 = 0.1, 𝑇 = 1, 𝑆min = 0.1, 𝑆max = 1, 𝑀 =

19, and 𝑁 = 10. Numerical solution compares well with
analytical solution, which proves that the implicit scheme is

stable.Under the sameparameters, Figure 2 gives the absolute
error between numerical solutions and analytical solutions,
which illustrates that the numerical results are convergent.

Example 2. European put option pricing model is based on
(1) and the condition (4) under the following parameters:

𝐾 = 50, 𝑟 = 0.01, 𝜎 = 0.3, 𝑇 = 1,

𝑆max = 100, 𝑀 = 20, 𝑁 = 10.

(45)

Through coding, the European put option values with 𝛼 =

1, 1/2, 5/7, 9/10 are plotted in Figure 3 at 𝑡 = 0.1/0.5/1.

Example 3. Consider American put option pricing model.
The following parameters are selected for the present study:

𝐾 = 60, 𝑟 = 0.01, 𝜎 = 0.4, 𝑇 = 1,

𝑆max = 120, 𝑀 = 30, 𝑁 = 10.

(46)

Figure 4 indicates a price comparison of the American put
option at 𝑡 = 0.2/0.6/1 (relaxation parameter and tolerance
parameter are 1.2 and 0.001 in the applied process of SOR
method).

Using Examples 1, 2, and 3, we examine the implementa-
tion of the implicit finite difference method for the fractional
partial differential equation system. According to Figures 1
and 2 in Example 1, we can confirm that the implicit numeri-
cal scheme is stable and convergent. From Figures 3 and 4, we
can see that the numerical scheme is very effective. Figures
3 and 4 present numerical simulation of the price of the
European and American put options when the order of the
time-fractional derivative takes different values. Their visible
shapes and development trend are similar to the classical put
option pricing model based on the standard Black-Scholes
equation, which illustrates the essential characteristics of the
European and American put options. For making the figures
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Figure 2: Absolute error between numerical solution and analytical solution. dash-dotted line: 𝑡 = 0.3; dotted line: 𝑡 = 0.5; solid line: 𝑡 = 0.8.
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Figure 3: European put option. dash-dotted line: 𝑡 = 0.1; dotted line: 𝑡 = 0.5; solid line: 𝑡 = 1.
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Figure 4: American put option. dash-dotted line: 𝑡 = 0.2; dotted line: 𝑡 = 0.6; solid line: 𝑡 = 1.

clear, we choose the small values of 𝑀 and 𝑁 and get the
similar conclusions if largening the number of steps in time
and space. As a generalization of the standard models, these
fractional Black-Scholes models are powerful and will be of
great interest to researchers in further work.

5. Conclusions

In this work, the finite differencemethod is employed to solve
the time-fractional Black-Scholes equation together with the
conditions satisfied by the standard put options. Application
of the fractional differential equation to the pricing theory of
option is in its beginning stage and needs more further work.
This fractional model mentioned in this paper can model
the price of other financial derivatives like warrant, swaps,
and so on. The successful application of the finite difference
method proves that this technique is effective and requires
less computational work to solve fractional partial differential
equation.
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