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It is known from functional analysis that in classical calculus, the sets 𝜔, ℓ
∞
, 𝑐, 𝑐
0
and ℓ

𝑝
of all bounded, convergent, null and 𝑝-

absolutely summable sequences are Banach spaces with their natural norms and they are complete according to the metric reduced
from their norm, where 0 < 𝑝 < ∞. In this study, our main goal is to construct the spaces 𝜔∗, ℓ∗

∞
, 𝑐∗, 𝑐∗

0
and ℓ

∗

𝑝
over the non-

Newtonian complex field C∗ and to obtain the corresponding results for these spaces, where 0̈ <̈ 𝑝 <̈∞.

1. Preliminaries, Background, and Notations

A complete ordered field is a system consisting of a set𝑋, four
binary operations +̇, −̇, ×̇, ̇

/ for𝑋, and an ordering relation <̇

for𝑋, all of which behave with respect to the set𝑋 exactly as
+, −, ×, /, < behave with respect to the setR of real numbers.
We call 𝑋 the realm of the complete ordered field, [1, page
32]. A complete ordered field is called arithmetic if its realm
is a subset of R. A bijective function with domain R and
range a subset of R is called a generator. For example, the
identity function 𝐼, exponential function, and the function 𝑥

3

are generators.
Bashirov et al. [2] have recently emphasized on the

multiplicative calculus and gave the results with applications
corresponding to thewell-known properties of derivative and
integral in the classical calculus. Quite recently, Uzer [3] has
extended the multiplicative calculus to the complex valued
functions and gave the statements of some fundamental
theorems and concepts of multiplicative complex calculus,
and demonstrated some analogies between the multiplicative
complex calculus and classical calculus by theoretical and
numerical examples. Bashirov and Rıza [4] have studied the
multiplicative differentiation for complex-valued functions
and established the multiplicative Cauchy-Riemann condi-
tions. Bashirov et al. [5] have investigated various problems
from different fields which can be modelled more efficiently
using multiplicative calculus, in place of Newtonian calculus.

Let 𝛼 be a generator with range 𝐴. An arithmetic with
range 𝐴, and operations and ordering relation defined as
follows, is called 𝛼-arithmetic. Let 𝑦, 𝑧 ∈ 𝐴. Then, we
define the operations 𝛼-addition (+̇), 𝛼-subtraction (−̇),
𝛼-multiplication (×̇), 𝛼-division (

̇
/), and 𝛼-ordering (≤̇) as

follows:
𝛼-addition : 𝑦 +̇ 𝑧 = 𝛼 {𝛼

−1

(𝑦) + 𝛼
−1

(𝑧)}

𝛼-subtraction : 𝑦 −̇ 𝑧 = 𝛼 {𝛼
−1

(𝑦) − 𝛼
−1

(𝑧)}

𝛼-multiplication : 𝑦 ×̇ 𝑧 = 𝛼 {𝛼
−1

(𝑦) × 𝛼
−1

(𝑧)}

𝛼-division (𝑧 ̸= 0̇) : 𝑦
̇

/ 𝑧 = 𝛼{

𝛼
−1

(𝑦)

𝛼
−1

(𝑧)

}

𝛼-ordering : 𝑦 ≤̇ 𝑧 ⇐⇒ 𝛼
−1

(𝑦) ≤ 𝛼
−1

(𝑧) .

(1)

With the above new operations, (𝐴, +̇, −̇, ×̇,
̇

/, ≤̇) is an 𝛼-
arithmetic. In other words, one can easily show that
(𝐴, +̇, −̇, ×̇,

̇
/, ≤̇) is a complete ordered field. As was seen, 𝛼-

generator generates 𝛼-arithmetic. For example, the identity
function generates classical arithmetic, and exponential func-
tion generates geometric arithmetic. Each generator gener-
ates exactly one arithmetic and each arithmetic is generated
by exactly one generator. We denote 𝛼-zero by 0̇ and 𝛼-one
by 1̇ which are obtained from 𝛼(0) and 𝛼(1), respectively. 0̇
and numbers obtained by successive 𝛼-addition of 1̇ to 0̇with
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numbers obtained by successive 𝛼-subtraction of 1̇ from 0̇ are
called 𝛼-𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠. Thus, 𝛼-integers are given as follows:

. . . , 𝛼 (−2) , 𝛼 (−1) , 𝛼 (0) , 𝛼 (1) , 𝛼 (2) , . . . (2)

Thus, we have for all 𝑛 ∈ Z that ̇𝑛 = 𝛼(𝑛). Let 𝑥 ∈ 𝐴. If
𝑥 >̇ 0̇ then 𝑥 is called 𝛼-positive and if 𝑥 <̇ 0̇ then 𝑥 is called
𝛼-𝑛𝑒𝑔𝑎𝑡𝑖V𝑒. The 𝛼-absolute value ̇

|𝑥
̇
| of 𝑥 ∈ 𝐴 is defined by

̇
|𝑥

̇
| =

{
{

{
{

{

𝑥, 𝑥 >̇ 0̇,

0̇, 𝑥 = ̇0,

0̇ −̇ 𝑥, 𝑥 <̇ 0̇.

(3)

For any elements 𝑟 and 𝑠 in𝐴with 𝑟 <̇ 𝑠, the set of all elements
𝑥 in𝐴 such that 𝑟 ≤̇ 𝑥 ≤̇ 𝑠 is called an 𝛼-𝑖𝑛𝑡𝑒𝑟V𝑎𝑙, is denoted by
̇
[𝑟, 𝑠

̇
], has 𝛼-extent of 𝑠 −̇ 𝑟, and has the 𝛼-interior consisting

of all elements 𝑥 in 𝐴 such that 𝑟 <̇ 𝑥 <̇ 𝑠. Let (𝑢
𝑛
) be an

infinite sequence of the elements in 𝐴. Then there is at most
one element 𝑢 in 𝐴 such that every 𝛼-interval with 𝑢 in its
𝛼-interior contains all but finitely many terms of (𝑢

𝑛
). If there

is such a number 𝑢, then (𝑢
𝑛
) is said to be 𝛼-𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑡 to 𝑢,

which is called the 𝛼-limit of (𝑢
𝑛
). In other words,

lim
𝑛→∞

𝑢
𝑛
= 𝑢 (𝛼-convergent)

⇐⇒ ∀𝜀 >̇ 0̇, ∃𝑛
0
∈ N ∋

̇
|𝑢
𝑛
−̇𝑢

̇
| <̇ 𝜀

∀𝑛 ≥ 𝑛
0
and some 𝑢 ∈ 𝐴.

(4)

Let 𝛼 and 𝛽 be two arbitrarily selected generators and
let ∗-(“star”) also be the ordered pair of arithmetics (𝛼-
arithmetic,𝛽-arithmetic). (𝐵, +̈, −̈, ×̈, ̈

/, ≤̈) is a 𝛽-arithmetic.
Definitions given for 𝛼-arithmetic are also valid for
𝛽-arithmetic. For example, 𝛽-convergence is defined by
means of 𝛽-intervals and their 𝛽-interiors.

In the ∗-calculus, 𝛼-arithmetic is used for arguments
and 𝛽-arithmetic is used for values; in particular, changes
in arguments and values are measured by 𝛼-differences and
𝛽-differences, respectively.Theoperators of the∗-calculus are
applied only to functions with arguments in 𝐴 and values
in 𝐵. The ∗-𝑙𝑖𝑚𝑖𝑡 of a function 𝑓 at an element 𝑎 in 𝐴 is,
if it exists, the unique number 𝑏 in 𝐵 such that for every
sequence (𝑎

𝑛
) of arguments of 𝑓 distinct from 𝑎, if (𝑎

𝑛
)

is 𝛼-convergent to 𝑎, then {𝑓(𝑎
𝑛
)} 𝛽-converges to 𝑏 and is

denoted by lim∗
𝑥→𝑎

𝑓(𝑥) = 𝑏. That is,

lim∗
𝑥→𝑎

𝑓 (𝑥) = 𝑏 ⇐⇒ ∀𝜖 >̈ 0̈, ∃𝛿 >̇ 0̇ ∋
̈
|𝑓 (𝑥) −̈ 𝑏

̈
| <̈ 𝜖

∀𝑥 ∈ 𝐴 with ̇
|𝑥 −̇ 𝑎

̇
| <̇ 𝛿.

(5)

A function 𝑓 is ∗-𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 at a point 𝑎 in 𝐴 if and only
if 𝑎 is an argument of 𝑓 and lim∗

𝑥→𝑎
𝑓(𝑥) = 𝑓(𝑎). When

𝛼 and 𝛽 are the identity function 𝐼, the concepts of ∗-limit
and∗-continuity are identical with those of classical limit and
classical continuity.

The isomorphism from 𝛼-arithmetic to 𝛽-arithmetic is
the unique function 𝜄(𝑖𝑜𝑡𝑎) that possesses the following three
properties:

(i) 𝜄 is one to one.
(ii) 𝜄 is from 𝐴 onto 𝐵.
(iii) For any numbers 𝑢 and V in 𝐴,

𝜄 (𝑢 +̇ V) = 𝜄 (𝑢) +̈ 𝜄 (V)

𝜄 (𝑢 −̇ V) = 𝜄 (𝑢) −̈ 𝜄 (V)

𝜄 (𝑢 ×̇ V) = 𝜄 (𝑢) ×̈ 𝜄 (V)

𝜄 (𝑢
̇

/ V) = 𝜄 (𝑢)
̈

/ 𝜄 (V) , V ̸= 0̇

𝑢 ≤̇V ⇐⇒ 𝜄 (𝑢) ≤̈ 𝜄 (V) .

(6)

It turns out that 𝜄(𝑥) = 𝛽{𝛼
−1

(𝑥)} for every 𝑥 in 𝐴, and
that 𝜄( ̇𝑛) = ̈𝑛 for every integer 𝑛. Since, for example, 𝑢 +̇ V

= 𝜄
−1

{𝜄(𝑢) +̈ 𝜄(V)}, it should be clear that any statement in
𝛼-arithmetic can readily be transformed into a statement in
𝛽-arithmetic.

2. Non-Newtonian Complex Field and
Some Inequalities

Let ̇𝑎 ∈ (𝐴, +̇, −̇, ×̇,
̇

/, ≤̇) and ̈
𝑏 ∈ (𝐵, +̈, −̈, ×̈,

̈
/, ≤̈) be arbitrarily

chosen elements from corresponding arithmetics. Then the
ordered pair ( ̇𝑎,

̈
𝑏) is called as a ∗-point.The set of all ∗-points

is called the set of non-Newtonian complex numbers and is
denoted by C∗; that is,

C
∗

:= {𝑧
∗

= ̇𝑎 ⊕ (𝑖
∗

⊙
̇
𝑏) : 𝑎, 𝑏 ∈ R, 𝑖

∗

= (0̇, 1̈)}

= {𝑧
∗

= ( ̇𝑎,
̈
𝑏) : ̇𝑎 ∈ 𝐴 ⊆ R,

̈
𝑏 ∈ 𝐵 ⊆ R} .

(7)

The binary operations addition (⊕) and multiplication (⊙) of
non-Newtonian complex numbers 𝑧

∗

1
= ( ̇𝑎
1
,
̈
𝑏
1
) and 𝑧

∗

2
=

( ̇𝑎
2
,
̈
𝑏
2
) are defined, as follows:

⊕ : C
∗

× C
∗

󳨀→ C
∗

(𝑧
∗

1
, 𝑧
∗

2
) 󳨃󳨀→ 𝑧

∗

1
⊕ 𝑧
∗

2
= ( ̇𝑎
1
+̇ ̇𝑎
2
,
̈
𝑏
1
+̈

̈
𝑏
2
) ,

⊙ : C
∗

× C
∗

󳨀→ C
∗

(𝑧
∗

1
, 𝑧
∗

2
) 󳨃󳨀→ 𝑧

∗

1
⊙ 𝑧
∗

2
= (𝛼 ( ̇𝑎

1
̇𝑎
2
−

̈
𝑏
1

̈
𝑏
2
) ,

𝛽 ( ̇𝑎
1

̈
𝑏
2
+

̈
𝑏
1

̇𝑎
2
)) ,

(8)

where ̇𝑎
1
, ̇𝑎
2
∈ 𝐴 and ̈

𝑏
1
,
̈
𝑏
2
∈ 𝐵 with

̇𝑎
1
= 𝛼
−1

( ̇𝑎
1
) = 𝛼
−1

(𝛼 (𝑎
1
)) = 𝑎

1
∈ R,

̈
𝑏
1
= 𝛽
−1

(
̈
𝑏
1
) = 𝛽
−1

(𝛽 (𝑏
1
)) = 𝑏

1
∈ R.

(9)

Then we have the following.

Theorem 1. (C∗, ⊕, ⊙) is a field.

Proof. A straightforward calculation leads to the following
statements:
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(i) (C∗, ⊕) is an Abelian group;
(ii) (C∗ \ {𝜃

∗

}, ⊙) is an Abelian group;
(iii) the operation ⊙ is distributive over the operation
⊕

which conclude that (C∗, ⊕, ⊙) is a field.

Let ̈
𝑏 ∈ 𝐵 ⊆ R. Then the number ̈

𝑏 ×̈
̈
𝑏 is called the 𝛽-

square of ̈
𝑏 and is denoted by 𝑏

2̈. Let ̈
𝑏 be a non-negative

number in 𝐵. Then, 𝛽[√𝛽
−1
(
̈
𝑏)] is called the 𝛽-square root

of ̈
𝑏 and is denoted by ..√ ̈

𝑏. The ∗-distance 𝑑
∗ between two

arbitrarily elements 𝑧∗
1

= ( ̇𝑎
1
,
̈
𝑏
1
) and 𝑧

∗

2
= ( ̇𝑎
2
,
̈
𝑏
2
) of the set

C∗ is defined by

𝑑
∗

: C
∗

× C
∗

󳨀→
̈
[0̈,∞

̈
) = 𝐵
󸀠

⊂ 𝐵

(𝑧
∗

1
, 𝑧
∗

2
) 󳨀→ 𝑑

∗

(𝑧
∗

1
, 𝑧
∗

2
) =

..

√
[𝜄 ( ̇𝑎
1
−̇ ̇𝑎
2
)]
2̈

+̈ (
̈
𝑏
1
−̈

̈
𝑏
2
)

2̈

= 𝛽 [√(𝑎
1
− 𝑎
2
)
2

+ (𝑏
1
− 𝑏
2
)
2

] .

(10)

Up to now, we know that C∗ is a field and the distance
between two points in C∗ is computed by the function 𝑑

∗,
defined by (10). Now, we define the ∗-norm and next derive
some required inequalities in the sense of non-Newtonian
complex calculus.

Let 𝑧∗ ∈ C∗ be an arbitrary element. 𝑑∗(𝑧∗, 𝜃∗) is called
∗-norm of 𝑧∗ and is denoted by ̈

‖ ⋅
̈
‖. In other words,

̈
‖𝑧
∗ ̈
‖ = 𝑑
∗

(𝑧
∗

, 𝜃
∗

)

=

..

√
[𝜄 ( ̇𝑎 −̇ 0̇)]

2̈

+̈ (
̈
𝑏 −̈ 0̈)

2̈

= 𝛽 (√𝑎
2
+ 𝑏
2
) ,

(11)

where 𝑧
∗

= ( ̇𝑎,
̈
𝑏) and 𝜃

∗

= (0̇, 0̈). Moreover, since for all
𝑧
∗

1
, 𝑧
∗

2
∈ C∗ we have 𝑑∗(𝑧∗

1
, 𝑧
∗

2
) =

̈
‖𝑧
∗

1
⊖𝑧
∗

2

̈
‖, 𝑑∗ is the induced

metric from the norm ̈
‖ ⋅

̈
‖.

Lemma 2 (∗-Triangle inequality). Let 𝑧∗
1
, 𝑧
∗

2
∈ C∗. Then,

̈
‖𝑧
∗

1
⊕ 𝑧
∗

2

̈
‖ ≤̈

̈
‖𝑧
∗

1

̈
‖ +̈

̈
‖𝑧
∗

2

̈
‖. (12)

Proof. Let 𝑧∗
1
, 𝑧
∗

2
∈ C∗. Then, a straightforward calculation

gives that

̈
‖𝑧
∗

1
⊕ 𝑧
∗

2

̈
‖

=

..

√
[𝜄 ( ̇𝑎
1
+̇ ̇𝑎
2
)]
2̈

+̈(
̈
𝑏
1
+̈

̈
𝑏
2
)

2̈

= 𝛽 [√(𝑎
1
+ 𝑎
2
)
2

+ (𝑏
1
+ 𝑏
2
)
2

]

≤̈ 𝛽 (√𝑎
2

1
+ 𝑏
2

1
+ √𝑎
2

2
+ 𝑏
2

2
)

= 𝛽{𝛽
−1

[𝛽 (√𝑎
2

1
+ 𝑏
2

1
)] + 𝛽

−1

[𝛽 (√𝑎
2

2
+ 𝑏
2

2
)]}

= 𝛽 [𝛽
−1

(
̈
‖𝑧
∗

1

̈
‖) + 𝛽

−1

(
̈
‖𝑧
∗

2

̈
‖)]

=
̈
‖𝑧
∗

1

̈
‖ +̈

̈
‖𝑧
∗

2

̈
‖.

(13)

Hence, the inequality (12) holds.

Lemma 3. ̈
‖𝑧
∗

1
⊙ 𝑧
∗

2

̈
‖ =

̈
‖𝑧
∗

1

̈
‖ ×̈

̈
‖𝑧
∗

2

̈
‖ for all 𝑧∗

1
, 𝑧
∗

2
∈ C∗.

Proof. Let 𝑧∗
1
, 𝑧
∗

2
∈ C∗. In this case, one can observe by a

routine verification that

̈
‖𝑧
∗

1
⊙ 𝑧
∗

2

̈
‖

=

..

√
{𝜄 [𝛼 ( ̇𝑎

1
̇𝑎
2
−

̈
𝑏
1

̈
𝑏
2
)]}

2̈

+̈ [𝛽 ( ̇𝑎
1

̈
𝑏
2
+

̈
𝑏
1

̇𝑎
2
)]

2̈

= 𝛽 [√(𝑎
1
𝑎
2
− 𝑏
1
𝑏
2
)
2

+ (𝑎
1
𝑏
2
+ 𝑏
1
𝑎
2
)
2

]

= 𝛽(√𝑎
2

1
+ 𝑏
2

1
√𝑎
2

2
+ 𝑏
2

2
)

= 𝛽{𝛽
−1

[𝛽 (√𝑎
2

1
+ 𝑏
2

1
)] × 𝛽

−1

[𝛽 (√𝑎
2

2
+ 𝑏
2

2
)]}

= 𝛽 [𝛽
−1

(
̈
‖𝑧
∗

1

̈
‖) × 𝛽

−1

(
̈
‖𝑧
∗

2

̈
‖)]

=
̈
‖𝑧
∗

1

̈
‖ ×̈

̈
‖𝑧
∗

2

̈
‖,

(14)

as required.

Lemma 4. Let 𝑧
∗

1
, 𝑧
∗

2
∈ C∗. Then, the following inequality

holds:

̈
‖𝑧
∗

1
⊕ 𝑧
∗

2

̈
‖

̈
/ (1̈ +̈

̈
‖𝑧
∗

1
⊕ 𝑧
∗

2

̈
‖)

≤̈
̈
‖𝑧
∗

1

̈
‖

̈
/ (1̈ +̈

̈
‖𝑧
∗

1

̈
‖) +̈

̈
‖𝑧
∗

2

̈
‖

̈
/ (1̈ +̈

̈
‖𝑧
∗

2

̈
‖) .

(15)

Proof. Let 𝑧∗
1
, 𝑧
∗

2
∈ C∗. Then, one can see that

̈
‖𝑧
∗

1
⊕ 𝑧
∗

2

̈
‖

̈
/ (1̈ +̈

̈
‖𝑧
∗

1
⊕ 𝑧
∗

2

̈
‖)

= 𝛽 [√(𝑎
1
+ 𝑎
2
)
2

+ (𝑏
1
+ 𝑏
2
)
2

]

̈
/ {1̈ +̈ 𝛽 [√(𝑎

1
+ 𝑎
2
)
2

+ (𝑏
1
+ 𝑏
2
)
2

]}

= 𝛽
[
[

[

√(𝑎
1
+ 𝑎
2
)
2

+ (𝑏
1
+ 𝑏
2
)
2

1 + √(𝑎
1
+ 𝑎
2
)
2

+ (𝑏
1
+ 𝑏
2
)
2

]
]

]

≤̈ 𝛽
[
[

[

(

√𝑎
2

1
+ 𝑏
2

1

1 + √𝑎
2

1
+ 𝑏
2

1

) + (

√𝑎
2

2
+ 𝑏
2

2

1 + √𝑎
2

2
+ 𝑏
2

2

)
]
]

]
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= 𝛽

{
{

{
{

{

𝛽
−1

[𝛽 (√𝑎
2

1
+ 𝑏
2

1
)]

𝛽
−1

{𝛽 [𝛽
−1

(1̈) + 𝛽
−1

[𝛽 (√𝑎
2

1
+ 𝑏
2

1
)]]}

+

𝛽
−1

[𝛽 (√𝑎
2

2
+ 𝑏
2

2
)]

𝛽
−1

{𝛽{𝛽
−1

(1̈) + 𝛽
−1

[𝛽 (√𝑎
2

2
+ 𝑏
2

2
)]}}

}
}

}
}

}

= 𝛽{[

𝛽
−1

(
̈
‖𝑧
∗

1

̈
‖)

𝛽
−1

(1̈ +̈
̈
‖𝑧
∗

1

̈
‖)

] + [

𝛽
−1

(
̈
‖𝑧
∗

2

̈
‖)

𝛽
−1

(1̈ +̈
̈
‖𝑧
∗

2

̈
‖)

]}

= 𝛽{𝛽
−1

{𝛽[

𝛽
−1

(
̈
‖𝑧
∗

1

̈
‖)

𝛽
−1

(1̈ +̈
̈
‖𝑧
∗

1

̈
‖)

]}

+ 𝛽
−1

{𝛽[

𝛽
−1

(
̈
‖𝑧
∗

2

̈
‖)

𝛽
−1

(1̈ +̈
̈
‖𝑧
∗

2

̈
‖)

]}}

= 𝛽 {𝛽
−1

[
̈
‖𝑧
∗

1

̈
‖

̈
/ (1̈ +̈

̈
‖𝑧
∗

1

̈
‖)] + 𝛽

−1

[
̈
‖𝑧
∗

2

̈
‖

̈
/ (1̈ +̈

̈
‖𝑧
∗

2

̈
‖)]}

=
̈
‖𝑧
∗

1

̈
‖

̈
/ (1̈ +̈

̈
‖𝑧
∗

1

̈
‖) +̈

̈
‖𝑧
∗

2

̈
‖

̈
/ (1̈ +̈

̈
‖𝑧
∗

2

̈
‖) .

(16)

This means that the inequality (15) holds.

Lemma 5 (∗-Minkowski inequality). Let 𝑝 ≥̈ 1̈ and 𝑧
∗

𝑘
, 𝑡
∗

𝑘
∈

C∗ for all 𝑘 ∈ {1, 2, 3, . . . , 𝑛}. Then,

(

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

≤̈ (

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

+̈ (

𝑛
..

∑

𝑘=0

̈
‖𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

.

(17)

Proof. Let 𝑝 ≥̈ 1̈ and 𝑧
∗

𝑘
, 𝑡
∗

𝑘
∈ C∗ for all 𝑘 ∈ {1, 2, 3, . . . , 𝑛}.

Then,
𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖

𝑝

=
̈
‖𝑧
∗

0
⊕ 𝑡
∗

0

̈
‖

𝑝

+̈
̈
‖𝑧
∗

1
⊕ 𝑡
∗

1

̈
‖

𝑝

+̈ ⋅ ⋅ ⋅ +̈
̈
‖𝑧
∗

𝑛
⊕ 𝑡
∗

𝑛

̈
‖

𝑝

= 𝛽 [𝛽
−1

(
̈
‖𝑧
∗

0
⊕ 𝑡
∗

0

̈
‖

𝑝

) + 𝛽
−1

(
̈
‖𝑧
∗

1
⊕ 𝑡
∗

1

̈
‖

𝑝

)

+ ⋅ ⋅ ⋅ + 𝛽
−1

(
̈
‖𝑧
∗

𝑛
⊕ 𝑡
∗

𝑛

̈
‖

𝑝

)] .

(18)

Let us take 𝑧
∗

𝑘
= (𝑥̇
𝑘
, ̈𝑦
𝑘
), 𝑧
𝑘

= (𝑥
𝑘
, 𝑦
𝑘
), 𝑡
∗

𝑘
= (𝑢̇
𝑘
, V̈
𝑘
), 𝑡
𝑘

=

(𝑢
𝑘
, V
𝑘
). Then, since the equality

̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖

=

..

√
[𝜄 (𝑥̇
𝑘
+̇ 𝑢̇
𝑘
)]
2̈

+̈ ( ̈𝑦
𝑘
+̈ V̈
𝑘
)
2̈

= 𝛽 [√(𝑥
𝑘
+ 𝑢
𝑘
)
2

+ (𝑦
𝑘
+ V
𝑘
)
2

]

= 𝛽 (
󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
+ 𝑡
𝑘

󵄨
󵄨
󵄨
󵄨
)

(19)

holds for every fixed 𝑘, we obtain

̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖

𝑝

=
̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖ ×̈ ⋅ ⋅ ⋅ ×̈

̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝-times

= 𝛽 [𝛽
−1

(
̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖) × ⋅ ⋅ ⋅ × 𝛽

−1

(
̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖)]

= 𝛽 {𝛽
−1

[𝛽 (
󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
+ 𝑡
𝑘

󵄨
󵄨
󵄨
󵄨
)] × ⋅ ⋅ ⋅ × 𝛽

−1

[𝛽 (
󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
+ 𝑡
𝑘

󵄨
󵄨
󵄨
󵄨
)]}

= 𝛽 (
󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
+ 𝑡
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

(20)

by (18) and Minkowski inequality in the complex field leads
us to
𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖

𝑝

= 𝛽 {𝛽
−1

[𝛽 (
󵄨
󵄨
󵄨
󵄨
𝑧
0
⊕ 𝑡
0

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)] + 𝛽
−1

[𝛽 (
󵄨
󵄨
󵄨
󵄨
𝑧
1
⊕ 𝑡
1

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)]

+ ⋅ ⋅ ⋅ + 𝛽
−1

[𝛽 (
󵄨
󵄨
󵄨
󵄨
𝑧
𝑛
⊕ 𝑡
𝑛

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)]}

= 𝛽(

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
+ 𝑡
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

≤̈ 𝛽

{

{

{

[

[

(

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

1/𝛽
−1

(𝑝)

+(

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑡
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

1/𝛽
−1

(𝑝)

]

]

𝛽
−1

(𝑝)

}
}

}
}

}

,

(21)

𝛽
−1

{
{

{
{

{

[
[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

+̈ (

𝑛
..

∑

𝑘=0

̈
‖𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]

𝑝

}
}

}
}

}

= 𝛽
−1

{
{

{
{

{

[
[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

+̈ (

𝑛
..

∑

𝑘=0

̈
‖𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]

×̈ ⋅ ⋅ ⋅×̈
[
[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

+̈ (

𝑛
..

∑

𝑘=0

̈
‖𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]

}
}

}
}

}

= 𝛽
−1 [

[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

+̈ (

𝑛
..

∑

𝑘=0

̈
‖𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]

× ⋅ ⋅ ⋅ × 𝛽
−1 [

[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

+̈ (

𝑛
..

∑

𝑘=0

̈
‖𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]
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=

{
{

{
{

{

𝛽
−1 [

[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]

+𝛽
−1 [

[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]

}
}

}
}

}

× ⋅ ⋅ ⋅ ×

{
{

{
{

{

𝛽
−1 [

[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]

+ 𝛽
−1 [

[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]

}
}

}
}

}

=

{
{

{
{

{

𝛽
−1[
[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]

+𝛽
−1 [

[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]

}
}

}
}

}

𝛽
−1

(𝑝)

.

(22)

On the other hand, let us prove

𝛽
[

[

(

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

1/𝛽
−1

(𝑝)

]

]

= (

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

. (23)

Indeed,

{

{

{

𝛽
[

[

(

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

1/𝛽
−1

(𝑝)

]

]

}

}

}

𝑝

=𝛽
[

[

(

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

1/𝛽
−1

(𝑝)

]

]

×̈ ⋅ ⋅ ⋅ ×̈ 𝛽
[

[

(

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

1/𝛽
−1

(𝑝)

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝-times

= 𝛽
[

[

(

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

1/𝛽
−1

(𝑝)

× ⋅ ⋅ ⋅ × (

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

1/𝛽
−1

(𝑝)

]

]

= 𝛽

{
{

{
{

{

[

[

(

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

1/𝛽
−1

(𝑝)

]

]

𝛽
−1

(𝑝)

}
}

}
}

}

= 𝛽(

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘

󵄨
󵄨
󵄨
󵄨

𝛽
−1

(𝑝)

)

=

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

.

(24)

Substituting the relation (24) in (22) we obtain,

𝛽
−1

{
{

{
{

{

[
[

[

(

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

+̈ (

𝑛
..

∑

𝑘=0

̈
‖𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

]
]

]

𝑝

}
}

}
}

}

=
[

[

(

𝑛

∑

𝑘=0

|𝑧
𝑘
|
𝛽
−1

(𝑝)

)

1/𝛽
−1

(𝑝)

+ (

𝑛

∑

𝑘=0

|𝑡
𝑘
|
𝛽
−1

(𝑝)

)

1/𝛽
−1

(𝑝)

]

]

𝛽
−1

(𝑝)

.

(25)

By using this equality in (21), we get

(

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

≤̈ (

𝑛
..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

+̈ (

𝑛
..

∑

𝑘=0

̈
‖𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

,

(26)

as desired.

Theorem 6. (C∗, 𝑑∗) is a complete metric space, where 𝑑
∗ is

defined by (10).

Proof. First, we show that 𝑑∗, defined by (10), is a metric on
C∗.

It is immediate for 𝑧∗
1
, 𝑧
∗

2
∈ C∗ that

𝑑
∗

(𝑧
∗

1
, 𝑧
∗

2
) =

..

√
[𝜄 ( ̇𝑎
1
−̇ ̇𝑎
2
)]
2̈

+̈ (
̈
𝑏
1
−̈

̈
𝑏
2
)

2̈

= 𝛽 [√(𝑎
1
− 𝑎
2
)
2

+ (𝑏
1
− 𝑏
2
)
2

] ≥̈ 0̈.

(27)

(i) Now we show that 𝑑∗(𝑧∗
1
, 𝑧
∗

2
) = 0̈ if and only if 𝑧∗

1
=

𝑧
∗

2
for 𝑧∗
1
, 𝑧
∗

2
∈ C∗. Indeed,

𝑑
∗

(𝑧
∗

1
, 𝑧
∗

2
) = 0̈ ⇐⇒

..

√
[𝜄 ( ̇𝑎
1
−̇ ̇𝑎
2
)]
2̈

+̈ (
̈
𝑏
1
−̈

̈
𝑏
2
)

2̈

= 0̈

⇐⇒ 𝛽[√(𝑎
1
− 𝑎
2
)
2

+ (𝑏
1
− 𝑏
2
)
2

] = 𝛽 (0)

⇐⇒ (𝑎
1
− 𝑎
2
)
2

+ (𝑏
1
− 𝑏
2
)
2

= 0

⇐⇒ 𝑎
1
− 𝑎
2
= 0, 𝑏

1
− 𝑏
2
= 0

⇐⇒ 𝑎
1
= 𝑎
2
, 𝑏

1
= 𝑏
2

⇐⇒ ̇𝑎
1
= ̇𝑎
2
,

̈
𝑏
1
=

̈
𝑏
2

⇐⇒ 𝑧
∗

1
= ( ̇𝑎
1
,
̈
𝑏
1
) = ( ̇𝑎

2
,
̈
𝑏
2
) = 𝑧
∗

2
.

(28)
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(ii) One can easily establish for all 𝑧∗
1
, 𝑧
∗

2
∈ C∗ that

𝑑
∗

(𝑧
∗

1
, 𝑧
∗

2
) =

..

√
[𝜄 ( ̇𝑎
1
−̇ ̇𝑎
2
)]
2̈

+̈ (
̈
𝑏
1
−̈

̈
𝑏
2
)

2̈

= 𝛽 [√(𝑎
1
− 𝑎
2
)
2

+ (𝑏
1
− 𝑏
2
)
2

]

= 𝛽 [√(𝑎
2
− 𝑎
1
)
2

+ (𝑏
2
− 𝑏
1
)
2

]

= 𝑑
∗

(𝑧
∗

2
, 𝑧
∗

1
) .

(29)

(iii) We show that the inequality 𝑑
∗

(𝑧
∗

1
, 𝑧
∗

2
) +̈𝑑
∗

(𝑧
∗

2
,

𝑧
∗

3
) ≥̈ 𝑑
∗

(𝑧
∗

1
, 𝑧
∗

3
) holds for all 𝑧∗

1
, 𝑧
∗

2
, 𝑧
∗

3
∈ C∗. In fact,

𝑑
∗

(𝑧
∗

1
, 𝑧
∗

2
) +̈ 𝑑
∗

(𝑧
∗

2
, 𝑧
∗

3
)

=

..

√
[𝜄 ( ̇𝑎
1
−̇ ̇𝑎
2
)]
2̈

+̈ (
̈
𝑏
1
−̈

̈
𝑏
2
)

2̈

+̈

..

√
[𝜄 ( ̇𝑎
2
−̇ ̇𝑎
3
)]
2̈

+̈ (
̈
𝑏
2
−̈

̈
𝑏
3
)

2̈

= 𝛽 [√(𝑎
1
− 𝑎
2
)
2

+ (𝑏
1
− 𝑏
2
)
2

]

+̈ 𝛽 [√(𝑎
2
− 𝑎
3
)
2

+ (𝑏
2
− 𝑏
3
)
2

]

= 𝛽 [√(𝑎
1
− 𝑎
2
)
2

+ (𝑏
1
− 𝑏
2
)
2

+ √(𝑎
2
− 𝑎
3
)
2

+ (𝑏
2
− 𝑏
3
)
2

]

≥̈𝛽 [√(𝑎
1
− 𝑎
3
)
2

+ (𝑏
1
− 𝑏
3
)
2

]

=

..

√
[𝜄 ( ̇𝑎
1
−̇ ̇𝑎
3
)]
2̈

+̈ (
̈
𝑏
1
−̈

̈
𝑏
3
)

2̈

= 𝑑
∗

(𝑧
∗

1
, 𝑧
∗

3
) .

(30)

Therefore, 𝑑∗ is a metric over C∗.
Now, we can show that the metric space (C∗, 𝑑∗) is

complete. Let (𝑧∗
𝑛
)
𝑛∈N

be an arbitrary Cauchy sequence inC∗.
In this case, for all 𝜀 >̈ 0̈ there exists an 𝑛

0
∈ N such that

𝑑
∗

(𝑧
∗

𝑚
, 𝑧
∗

𝑛
) <̈ 𝜀 for all 𝑚, 𝑛 ≥ 𝑛

0
. Let 𝑧∗

𝑚
= ( ̇𝑎
𝑚
,
̈
𝑏
𝑚
) ∈ C∗ and

𝑚 ∈ N. Then,

𝑑
∗

(𝑧
∗

𝑚
, 𝑧
∗

𝑛
) =

..

√
[𝜄 ( ̇𝑎
𝑚
−̇ ̇𝑎
𝑛
)]
2̈

+̈ (
̈
𝑏
𝑚
−̈

̈
𝑏
𝑛
)

2̈

= 𝛽 [√(𝑎
𝑚
− 𝑎
𝑛
)
2

+ (𝑏
𝑚
− 𝑏
𝑛
)
2

]

<̈ 𝜀 = 𝛽 (𝜀
󸀠

) .

(31)

Thus we obtain that

√(𝑎
𝑚
− 𝑎
𝑛
)
2

+ (𝑏
𝑚
− 𝑏
𝑛
)
2

< 𝜀
󸀠

. (32)

On the other hand, since the following inequalities:

󵄨
󵄨
󵄨
󵄨
𝑎
𝑚
− 𝑎
𝑛

󵄨
󵄨
󵄨
󵄨
= √(𝑎

𝑚
− 𝑎
𝑛
)
2

≤ √(𝑎
𝑚
− 𝑎
𝑛
)
2

+ (𝑏
𝑚
− 𝑏
𝑛
)
2

,

󵄨
󵄨
󵄨
󵄨
𝑏
𝑚
− 𝑏
𝑛

󵄨
󵄨
󵄨
󵄨
= √(𝑏

𝑚
− 𝑏
𝑛
)
2

≤ √(𝑎
𝑚
− 𝑎
𝑛
)
2

+ (𝑏
𝑚
− 𝑏
𝑛
)
2

(33)

hold we therefore have by (32) that |𝑎
𝑚

− 𝑎
𝑛
| < 𝜀
󸀠 and |𝑏

𝑚
−

𝑏
𝑛
| < 𝜀
󸀠. This means that (𝑎

𝑛
) and (𝑏

𝑛
) are Cauchy sequences

with real terms. Since R is complete, it is clear that for every
𝜀
󸀠

> 0 there exists an 𝑛
1
∈ N such that |𝑎

𝑛
− 𝑎| < 𝜀

󸀠

/2 for all
𝑛 ≥ 𝑛

1
and for every 𝜀

󸀠

> 0 there exists an 𝑛
2
∈ N such that

|𝑏
𝑛
− 𝑏| < 𝜀

󸀠

/2 for all 𝑛 ≥ 𝑛
2
.

Define, 𝑧∗ ∈ C∗ by 𝑧
∗

= ( ̇𝑎,
̈
𝑏). Then, we have

𝑑
∗

(𝑧
∗

𝑛
, 𝑧
∗

) =

..

√
[𝜄 ( ̇𝑎
𝑛
−̇ ̇𝑎)]
2̈

+̈ [
̈
𝑏
𝑛
−̈

̈
𝑏]

2̈

= 𝛽 [√(𝑎
𝑛
− 𝑎)
2

+ (𝑏
𝑛
− 𝑏)
2

]

≤̈ 𝛽 [√(𝑎
𝑛
− 𝑎)
2

+ √(𝑏
𝑛
− 𝑏)
2

]

= 𝛽 (
󵄨
󵄨
󵄨
󵄨
𝑎
𝑛
− 𝑎

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑏
𝑛
− 𝑏

󵄨
󵄨
󵄨
󵄨
)

≤̈ 𝛽(

𝜀
󸀠

2

+

𝜀
󸀠

2

)

= 𝛽 (𝜀
󸀠

) = 𝜀.

(34)

Hence, (C∗, 𝑑∗) is a complete metric space.

Since C∗ is a complete metric space with the metric
𝑑
∗ defined by (10) induced by the norm ̈

‖ ⋅
̈
‖, as a direct

consequence of Theorem 6, we have the following.

Corollary 7. C∗ is a Banach space with the norm ̈
‖ ⋅

̈
‖ defined

by

̈
‖𝑧
∗ ̈
‖ =

..

√
[𝜄 ( ̇𝑎)]

2̈

+̈ (
̈
𝑏)

2̈

; 𝑧
∗

= ( ̇𝑎,
̈
𝑏) ∈ C

∗

.
(35)

3. Sequence Spaces over Non-Newtonian
Complex Field

In this section, we define the sets 𝜔
∗, ℓ∗
∞
, 𝑐∗, 𝑐∗

0
, and ℓ

∗

𝑝
of

all, bounded, convergent, null, and absolutely 𝑝-summable
sequences over the non-Newtonian complex field C∗ which
correspond to the sets 𝜔, ℓ

∞
, 𝑐, 𝑐
0
, and ℓ

𝑝
over the complex

field C, respectively. That is to say that

𝜔
∗

:= {𝑧
∗

= (𝑧
∗

𝑘
) : 𝑧
∗

𝑘
∈ C
∗

∀𝑘 ∈ N} ,

ℓ
∗

∞
:= {𝑧

∗

= (𝑧
∗

𝑘
) ∈ 𝜔
∗

: sup
𝑘∈N

̈
‖𝑧
∗

𝑘

̈
‖ <̈∞} ,

𝑐
∗

:= {𝑧
∗

= (𝑧
∗

𝑘
) ∈ 𝜔
∗

: ∃𝑙
∗

∈ C
∗

∋ lim∗
𝑘→∞

𝑧
∗

𝑘
= 𝑙
∗

} ,

𝑐
∗

0
:= {𝑧

∗

= (𝑧
∗

𝑘
) ∈ 𝜔
∗

: lim∗
𝑘→∞

𝑧
∗

𝑘
= 𝜃
∗

} ,

ℓ
∗

𝑝
:= {𝑧

∗

= (𝑧
∗

𝑘
) ∈ 𝜔
∗

:

..

∑

𝑘

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

<̈∞} .

(36)

For simplicity in notation, here and in what follows, the
summation without limits runs from 0 to ∞. One can easily
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see that the set 𝜔∗ forms a vector space over C∗ with respect
to the algebraic operations addition (+) and scalar multipli-
cation (×) defined on 𝜔

∗, as follows:

+ : 𝜔
∗

× 𝜔
∗

󳨀→ 𝜔
∗

(𝑧
∗

, 𝑡
∗

) 󳨃󳨀→ 𝑧
∗

+ 𝑡
∗

= (𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘
) ;

𝑧
∗

= (𝑧
∗

𝑘
) , 𝑡
∗

= (𝑡
∗

𝑘
) ∈ 𝜔
∗

,

× : C
∗

× 𝜔
∗

󳨀→ 𝜔
∗

(𝛼, 𝑧
∗

) 󳨃󳨀→ 𝛼 × 𝑧
∗

= (𝛼 ⊙ 𝑧
∗

𝑘
) ;

𝑧
∗

= (𝑧
∗

𝑘
) ∈ 𝜔
∗

, 𝛼 ∈ C
∗

.

(37)

Theorem 8. Define the function 𝑑
𝜔
∗ by

𝑑
𝜔
∗ : 𝜔
∗

× 𝜔
∗

󳨀→ 𝐵
󸀠

⊆ 𝐵

(𝑧
∗

, 𝑡
∗

) 󳨃󳨀→ 𝑑
𝜔
∗ (𝑧
∗

, 𝑡
∗

)

=

..

∑

𝑘

𝜇
𝑘
×̈ {𝑑
∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, t∗
𝑘
)]} ,

(38)

where (𝜇
𝑘
) ∈ 𝐵
󸀠

⊆ 𝐵 such that ̈
∑
𝑘
𝜇
𝑘
is convergent with 𝜇

𝑘
>̈ 0̈

for all 𝑘 ∈ N. Then, (𝜔∗, 𝑑
𝜔
∗) is a metric space.

Proof. We show that 𝑑
𝜔
∗ satisfies the metric axioms on the

space 𝜔∗ of all non-Newtonian complex valued sequences.
(i) First we show that 𝑑

𝜔
∗(𝑧
∗

, 𝑡
∗

) ≥̈ 0̈ for all 𝑧∗, 𝑡∗ ∈ 𝜔
∗.

Because (C∗, 𝑑∗) is a metric space, we have 𝑑∗(𝑧∗
𝑘
, 𝑡
∗

𝑘
) ≥̈ 0̈;

𝑧
∗

𝑘
, 𝑡
∗

𝑘
∈ C∗ and 1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
) ≥̈ 0̈. Hence, we obtain that

𝑑
∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)] ≥̈ 0̈. Moreover, since 𝜇

𝑘
>̈ 0̈ for all

𝑘 ∈ N, we have

𝜇
𝑘
×̈ {𝑑
∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)]} ≥̈ 0̈. (39)

This means that

𝑑
𝜔
∗ (𝑧
∗

, 𝑡
∗

) =

..

∑

𝑘

𝜇
𝑘
×̈ {𝑑
∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)]} ≥̈ 0̈.

(40)

(ii) We show that 𝑑
𝜔
∗(𝑧
∗

, 𝑡
∗

) = 0̈ iff 𝑧
∗

= 𝑡
∗. In this situ-

ation, one can see that

𝑑
𝜔
∗ (𝑧
∗

, 𝑡
∗

)

=

..

∑

𝑘

𝜇
𝑘
×̈ {𝑑
∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)]} = 0̈

⇐⇒ 𝜇
𝑘
×̈ {𝑑
∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)]} = 0̈,

∀𝑘 ∈ N

⇐⇒ 𝑑
∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)] = 0̈,

𝜇
𝑘
>̈ 0̈, ∀𝑘 ∈ N

⇐⇒ 𝑑
∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
) = 0̈; 𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
) ≥̈ 0̈, ∀𝑘 ∈ N

⇐⇒ 𝑧
∗

𝑘
= 𝑡
∗

𝑘
; 𝑑
∗metric, ∀𝑘 ∈ N

⇐⇒ 𝑧
∗

= (𝑧
∗

𝑘
) = (𝑡

∗

𝑘
) = 𝑡
∗

.

(41)

(iii) We show that 𝑑
𝜔
∗(𝑧
∗

, 𝑡
∗

) = 𝑑
𝜔
∗(𝑡
∗

, 𝑧
∗

) for 𝑧
∗

=

(𝑧
∗

𝑘
), 𝑡
∗

= (𝑡
∗

𝑘
) ∈ 𝜔
∗. First, we know that 𝑑∗ is a metric over

C∗. Thus,

𝑑
𝜔
∗ (𝑧
∗

, 𝑡
∗

) =

..

∑

𝑘

𝜇
𝑘
×̈ {𝑑
∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)]}

=

..

∑

𝑘

𝜇
𝑘
×̈ {𝑑
∗

(𝑡
∗

𝑘
, 𝑧
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑡
∗

𝑘
, 𝑧
∗

𝑘
)]}

= 𝑑
𝜔
∗ (𝑡
∗

, 𝑧
∗

) .

(42)

(iv) We show that 𝑑
𝜔
∗(𝑧
∗

, 𝑡
∗

) +̈ 𝑑
𝜔
∗(𝑡
∗

, 𝑢
∗

) ≥̈ 𝑑
𝜔
∗(𝑧
∗

, 𝑢
∗

)

holds for 𝑧
∗

= (𝑧
∗

𝑘
), 𝑡
∗

= (𝑡
∗

𝑘
), 𝑢
∗

= (𝑢
∗

𝑘
) ∈ 𝜔

∗. Again,
using the fact that (C∗, 𝑑∗) is a metric space, it is easy to see
by Lemma 4 that

𝑑
𝜔
∗ (𝑧
∗

, 𝑢
∗

)

=

..

∑

𝑘

𝜇
𝑘
×̈ {𝑑
∗

(𝑧
∗

𝑘
, 𝑢
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, 𝑢
∗

𝑘
)]}

≤̈

..

∑

𝑘

𝜇
𝑘
×̈ { [𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
) +̈ 𝑑
∗

(𝑡
∗

𝑘
, 𝑢
∗

𝑘
)]

̈
/ {1̈ +̈ [𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
) +̈ 𝑑
∗

(𝑡
∗

𝑘
, 𝑢
∗

𝑘
)]}}

≤̈

..

∑

𝑘

𝜇
𝑘
×̈ {{𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)]}

+̈ {𝑑
∗

(𝑡
∗

𝑘
, 𝑢
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑡
∗

𝑘
, 𝑢
∗

𝑘
)]}}

=

..

∑

𝑘

𝜇
𝑘
×̈ {𝑑
∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑧
∗

𝑘
, 𝑡
∗

𝑘
)]}

+̈

..

∑

𝑘

𝜇
𝑘
×̈ {𝑑
∗

(𝑡
∗

𝑘
, 𝑢
∗

𝑘
)

̈
/ [1̈ +̈ 𝑑

∗

(𝑡
∗

𝑘
, 𝑢
∗

𝑘
)]}

= 𝑑
𝜔
∗ (𝑧
∗

, 𝑡
∗

) +̈ 𝑑
𝜔
∗ (𝑡
∗

, 𝑢
∗

) ,

(43)

as required.

Theorem 9. The set ℓ∗
∞

is a sequence space.

Proof. It is trivial that the inclusion ℓ
∗

∞
⊂ 𝜔
∗ holds.

(i) We show that 𝑧∗ + 𝑡
∗

∈ ℓ
∗

∞
for 𝑧∗ = (𝑧

∗

𝑘
), 𝑡
∗

= (𝑡
∗

𝑘
) ∈

ℓ
∗

∞
. Indeed, combining the hypothesis

sup
𝑘∈N

̈
‖𝑧
∗

𝑘

̈
‖ <̈∞, sup

𝑘∈N

̈
‖𝑡
∗

𝑘

̈
‖ <̈∞ (44)
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with the fact ̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖ ≤̈

̈
‖𝑧
∗

𝑘

̈
‖ +̈

̈
‖𝑡
∗

𝑘

̈
‖ obtained from Lemma 2,

we can easily derive that

sup
𝑘∈N

̈
‖𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘

̈
‖ ≤̈ sup
𝑘∈N

̈
‖𝑧
∗

𝑘

̈
‖ +̈ sup
𝑘∈N

̈
‖𝑡
∗

𝑘

̈
‖ <̈∞. (45)

Hence, 𝑧∗ + 𝑡
∗

∈ ℓ
∗

∞
.

(ii) We show that 𝛼 × 𝑧
∗

∈ ℓ
∗

∞
for any 𝛼 ∈ C∗ and for

𝑧
∗

= (𝑧
∗

𝑘
) ∈ ℓ
∗

∞
.

Since ̈
‖𝛼⊙𝑧
∗

𝑘

̈
‖ =

̈
‖𝛼

̈
‖ ×̈

̈
‖𝑧
∗

𝑘

̈
‖ by Lemma 3 and sup

𝑘∈N
̈
‖𝑧
∗

𝑘

̈
‖ <̈

∞, it is immediate that

sup
𝑘∈N

̈
‖𝛼 ⊙ 𝑧

∗

𝑘

̈
‖ =

̈
‖𝛼

̈
‖ ×̈ sup
𝑘∈N

̈
‖𝑧
∗

𝑘

̈
‖ <̈∞ (46)

which means that 𝛼 × 𝑧
∗

∈ ℓ
∗

∞
.

Therefore, we have proved that ℓ∗
∞

is a subspace of the
space 𝜔∗.

Theorem 10. Define the relation 𝑑
∗

∞
by

𝑑
∗

∞
: ℓ
∗

∞
× ℓ
∗

∞
󳨀→ 𝐵

󸀠

⊆ 𝐵

(𝑧
∗

, 𝑡
∗

) 󳨃󳨀→ 𝑑
∗

∞
(𝑧
∗

, 𝑡
∗

) = sup
𝑘∈N

̈
‖𝑧
∗

𝑘
⊖ 𝑡
∗

𝑘

̈
‖.

(47)

Then, (ℓ∗
∞
, 𝑑
∗

∞
) is a complete metric space.

Proof. One can easily show by a routine verification that 𝑑∗
∞

satisfies the metric axioms on the space ℓ
∗

∞
. So, we omit the

details.
Now, we prove the second part of the theorem. Let (𝑧∗

𝑚
)

be a Cauchy sequence in ℓ
∗

∞
, where 𝑧

∗

𝑚
= (𝑧
∗

𝑘

𝑚

)
𝑘∈N

. Then,
there exists a positive integer 𝑘

0
such that 𝑑

∗

∞
(𝑧
∗

𝑚
, 𝑧
∗

𝑟
) =

sup
𝑘∈N

̈
‖𝑧
∗

𝑘

𝑚

⊖ 𝑧
∗

𝑘

𝑟
̈
‖ <̈ 𝜀 for all 𝑚, 𝑟 ∈ N with 𝑚, 𝑟 > 𝑘

0
. For

any fixed 𝑘, if𝑚, 𝑟 > 𝑘
0
then

̈
‖𝑧
∗

𝑘

𝑚

⊖ 𝑧
∗

𝑘

𝑟
̈
‖ <̈ 𝜀. (48)

In this case for any fixed 𝑘, (𝑧
∗

𝑘

0

, 𝑧
∗

𝑘

1

, . . .) is a Cauchy
sequence of non-Newtonian complex numbers and since
C∗ is complete, it converges to a 𝑧

∗

𝑘
∈ C∗. Define 𝑧

∗

=

(𝑧
∗

0
, 𝑧
∗

1
, . . .)with infinitely many limits 𝑧∗

0
, 𝑧
∗

1
, . . .. Let us show

𝑧
∗

∈ ℓ
∗

∞
and 𝑧

∗

𝑚
→ 𝑧
∗, as 𝑚 → ∞. Indeed, by (48), by

letting 𝑟 → ∞, for𝑚 > 𝑘
0
we obtain that

̈
‖𝑧
∗

𝑘

𝑚

⊖ 𝑧
∗

𝑘

̈
‖ ≤̈ 𝜀. (49)

On the other hand, since 𝑧
∗

𝑚
= (𝑧
∗

𝑘

𝑚

)
𝑘∈N

∈ ℓ
∗

∞
, there exists

𝑡
𝑚

∈ 𝐵 ⊆ R such that ̈
‖𝑧
∗

𝑘

𝑚
̈
‖ ≤̈ 𝑡
𝑚
for all 𝑘 ∈ N. Hence, by

triangle inequality (12), the inequality

̈
‖𝑧
∗

𝑘

̈
‖ ≤̈

̈
‖𝑧
∗

𝑘
⊖ 𝑧
∗

𝑘

𝑚
̈
‖ +̈

̈
‖𝑧
∗

𝑘

𝑚
̈
‖ ≤̈ 𝜀 +̈ 𝑡

𝑚
(50)

holds for all 𝑘 ∈ N which is independent of 𝑘. Hence, 𝑧∗ =

(𝑧
∗

𝑘
)
𝑘∈N ∈ ℓ

∗

∞
. By (49), since𝑚 > 𝑘

0
, we obtain 𝑑

∗

∞
(𝑧
∗

𝑚
, 𝑧
∗

) =

sup
𝑘∈N

̈
‖𝑧
∗

𝑘

𝑚

⊖𝑧
∗

𝑘

̈
‖ ≤̈ 𝜀.Therefore, the sequence (𝑧∗

𝑚
) converges

to 𝑧
∗ which means that ℓ∗

∞
is complete.

Since it is known by Theorem 10 that ℓ
∞

is a complete
metric space with the metric 𝑑∗

∞
induced by the norm ̈

‖ ⋅
̈
‖
∞
,

defined by

̈
‖𝑧
∗ ̈
‖
∞

= sup
𝑘∈N

̈
‖𝑧
∗

𝑘

̈
‖; 𝑧

∗

= (𝑧
∗

𝑘
) ∈ ℓ
∗

∞
, (51)

we have the following.

Corollary 11. ℓ
∗

∞
is a Banach space with the norm ̈

‖ ⋅
̈
‖
∞

defined by (51).

Now,we give the following lemma required in proving the
fact that ℓ∗

𝑝
is a sequence space in the case 0̈ <̈ 𝑝 <̈ 1̈.

Lemma 12. Let 0̈ <̈ 𝑝 <̈ 1̈. Then, the inequality ( ̈𝑎 +̈
̈
𝑏)

𝑝

<̈ ̈𝑎
𝑝

+̈
̈
𝑏
𝑝 holds for all ̈𝑎,

̈
𝑏 >̈ 0̈.

Proof. Let 0̈ <̈ 𝑝 <̈ 1̈ and ̈𝑎,
̈
𝑏 >̈ 0̈. Then, one can easily see that

( ̈𝑎 +̈
̈
𝑏)

𝑝

= ( ̈𝑎 +̈
̈
𝑏) ×̈ ⋅ ⋅ ⋅ ×̈ ( ̈𝑎 +̈

̈
𝑏)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝-times

= 𝛽 {𝑎 + 𝑏} ×̈ ⋅ ⋅ ⋅ ×̈ 𝛽 {𝑎 + 𝑏}

= 𝛽

{
{

{
{

{

𝛽
−1

[𝛽 (𝑎 + 𝑏)] × ⋅ ⋅ ⋅ × 𝛽
−1

[𝛽 (𝑎 + 𝑏)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛽
−1

(𝑝)-times

}
}

}
}

}

= 𝛽{(𝑎 + 𝑏)
𝛽
−1

(𝑝)

}

<̈𝛽 {𝑎
𝛽
−1

(𝑝)

+ 𝑏
𝛽
−1

(𝑝)

}

= 𝛽 {𝛽
−1

( ̈𝑎
𝑝

) + 𝛽
−1

(
̈
𝑏
𝑝

)}

= ̈𝑎
𝑝

+̈
̈
𝑏
𝑝

,

(52)

as desired.

Theorem 13. The sets 𝑐
∗

, 𝑐
∗

0
, and ℓ

∗

𝑝
are sequence spaces,

where 0̈ <̈ 𝑝 <̈∞.

Proof. It is not hard to establish by the similar way that 𝑐∗
0
and

ℓ
∗

𝑝
are the sequence spaces. So, to avoid the repetition of the

similar statements, we consider only the set 𝑐∗.
It is obvious that the inclusion 𝑐

∗

⊂ 𝜔
∗ strictly holds.

(i) Let 𝑧∗ = (𝑧
∗

𝑘
), 𝑡
∗

= (𝑡
∗

𝑘
) ∈ 𝑐
∗. Then, there exist 𝑙∗

1
, 𝑙
∗

2
∈

C∗ such that lim∗
𝑘→∞

𝑧
∗

𝑘
= 𝑙
∗

1
and lim∗

𝑘→∞
𝑡
∗

𝑘
= 𝑙
∗

2
.Thus, there

exist 𝑘
1
, 𝑘
2
∈ N such that

∀𝜀 >̈ 0̈,
̈
‖𝑧
∗

𝑘
⊖ 𝑙
∗

1

̈
‖ ≤̈ 𝜀

̈
/2̈ ∀𝑘 ≥ 𝑘

1
,

∀𝜀 >̈ 0̈,
̈
‖𝑡
∗

𝑘
⊖ 𝑙
∗

2

̈
‖ ≤̈ 𝜀

̈
/2̈ ∀𝑘 ≥ 𝑘

2
.

(53)
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Thus if we set 𝑘
0
= max{𝑘

1
, 𝑘
2
}, by (53) we obtain for all

𝑘 ≥ 𝑘
0
that

̈
‖ (𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘
) ⊖ (𝑙
∗

1
⊕ 𝑙
∗

2
)

̈
‖

=
̈
‖ (𝑧
∗

𝑘
⊖ 𝑙
∗

1
) ⊕ (𝑡
∗

𝑘
⊖ 𝑙
∗

2
)

̈
‖

≤̈
̈
‖𝑧
∗

𝑘
⊖ 𝑙
∗

1

̈
‖ +̈

̈
‖𝑡
∗

𝑘
⊖ 𝑙
∗

2

̈
‖

≤̈ 𝜀
̈

/ 2̈ +̈ 𝜀
̈

/ 2̈

= 𝜀

(54)

which means that
lim∗
𝑘→∞

(𝑧
∗

𝑘
⊕ 𝑡
∗

𝑘
) = 𝑙
∗

1
⊕ 𝑙
∗

2
= lim∗
𝑘→∞

𝑧
∗

𝑘
⊕ lim∗
𝑘→∞

𝑡
∗

𝑘
. (55)

Therefore, 𝑧∗ + 𝑡
∗

∈ 𝑐
∗.

(ii) Let 𝑧∗ = (𝑧
∗

𝑘
) ∈ 𝑐
∗ and 𝛼 ∈ C∗ \ {𝜃

∗

}. Since 𝑧
∗

∈ 𝑐
∗

there exists an 𝑙
∗

∈ C∗ such that lim∗
𝑘→∞

𝑧
∗

𝑘
= 𝑙
∗, we have

∀𝜀 >̈ 0̈, ∃𝑘
0
∈ N such that ̈

‖𝑧
∗

𝑘
⊖ 𝑙
∗ ̈
‖ ≤̈ 𝜀

̈
/

̈
‖𝛼

̈
‖ ∀𝑘 ≥ 𝑘

0
.

(56)

Thus, for 𝑘 ≥ 𝑘
0
, we have
̈
‖ (𝛼 ⊙ 𝑧

∗

𝑘
) ⊖ (𝛼 ⊙ ℓ

∗

)
̈
‖

=
̈
‖𝛼 ⊙ (𝑧

∗

𝑘
⊖ ℓ
∗

)
̈
‖

=
̈
‖𝛼

̈
‖ ×̈

̈
‖𝑧
∗

𝑘
⊖ ℓ
∗ ̈
‖

≤̈
̈
‖𝛼

̈
‖ ×̈ 𝜀

̈
/

̈
‖𝛼

̈
‖

= 𝜀

(57)

which implies that lim∗
𝑘→∞

(𝛼 ⊙ 𝑧
∗

𝑘
) = 𝛼 ⊙ 𝑙

∗

= 𝛼 ⊙

lim∗
𝑘→∞

𝑧
∗

𝑘
Hence, 𝛼 × 𝑧

∗

∈ 𝑐
∗.

That is to say that 𝑐∗ is a subspace of 𝜔∗.

Theorem 14. (𝑐
∗

, 𝑑
∗

∞
), (𝑐
∗

0
, 𝑑
∗

∞
), and (ℓ

∗

𝑝
, 𝑑
∗

𝑝
) are complete

metric spaces, where 𝑑∗
𝑝
is defined as follows:

𝑑
∗

𝑝
(𝑧
∗

, 𝑡
∗

) =

{
{
{
{
{

{
{
{
{
{

{

..

∑

𝑘

̈
‖𝑧
∗

𝑘
⊖ 𝑡
∗

𝑘

̈
‖

𝑝

, 0̈<̈𝑝<̈1̈

(

..

∑

𝑘

̈
‖𝑧
∗

𝑘
⊖ 𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

, 𝑝≥̈1̈;

𝑧
∗

= (𝑧
∗

𝑘
) , 𝑡
∗

= (𝑡
∗

𝑘
) ∈ ℓ
∗

𝑝
.

(58)

Proof. We consider only the space ℓ∗
𝑝
with 𝑝 ≥̈ 1̈.

(i) For 𝑧∗ = (𝑧
∗

𝑘
), 𝑡
∗

= (𝑡
∗

𝑘
) ∈ ℓ
∗

𝑝
, we establish that the two

sided implication 𝑑
∗

𝑝
(𝑧
∗

, 𝑡
∗

) = 0̈ ⇔ 𝑧
∗

= 𝑡
∗ holds. In fact,

𝑑
∗

𝑝
(𝑧
∗

, 𝑡
∗

) = (

..

∑

𝑘

̈
‖𝑧
∗

𝑘
⊖ 𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

= 0̈

⇐⇒

..

∑

𝑘

̈
‖𝑧
∗

𝑘
⊖ 𝑡
∗

𝑘

̈
‖

𝑝

= 0̈

⇐⇒ ∀𝑘 ∈ N,
̈
‖𝑧
∗

𝑘
⊖ 𝑡
∗

𝑘

̈
‖

𝑝

= 0̈

⇐⇒ ∀𝑘 ∈ N,
̈
‖𝑧
∗

𝑘
⊖ 𝑡
∗

𝑘

̈
‖ = 0̈

⇐⇒ ∀𝑘 ∈ N, 𝑧
∗

𝑘
= 𝑡
∗

𝑘

⇐⇒ 𝑧
∗

= (𝑧
∗

𝑘
) = (𝑡

∗

𝑘
) = 𝑡
∗

.

(59)

(ii) For 𝑧
∗

= (𝑧
∗

𝑘
), 𝑡
∗

= (𝑡
∗

𝑘
) ∈ ℓ

∗

𝑝
, we show that

𝑑
∗

𝑝
(𝑧
∗

, 𝑡
∗

) = 𝑑
∗

𝑝
(𝑡
∗

, 𝑧
∗

). In this situation, since ̈
‖𝑧
∗

𝑘
⊖ 𝑡
∗

𝑘

̈
‖ =

̈
‖𝑡
∗

𝑘
⊖ 𝑧
∗

𝑘

̈
‖ holds for every fixed 𝑘 ∈ N it is immediate that

𝑑
∗

𝑝
(𝑧
∗

, 𝑡
∗

) = (

..

∑

𝑘

̈
‖𝑧
∗

𝑘
⊖ 𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

= (

..

∑

𝑘

̈
‖𝑡
∗

𝑘
⊖ 𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

= 𝑑
∗

𝑝
(𝑡
∗

, 𝑧
∗

) .

(60)

(iii) By Minkowski inequality in Lemma 5, we have for
𝑧
∗

= (𝑧
∗

𝑘
), 𝑡
∗

= (𝑡
∗

𝑘
), 𝑢
∗

= (𝑢
∗

𝑘
) ∈ ℓ
∗

𝑝
that

𝑑
∗

𝑝
(𝑧
∗

, 𝑡
∗

) = (

..

∑

𝑘

̈
‖𝑧
∗

𝑘
⊖ 𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

= [

..

∑

𝑘

̈
‖ (𝑧
∗

𝑘
⊖ 𝑢
∗

𝑘
) ⊕ (𝑢

∗

𝑘
⊖ 𝑡
∗

𝑘
)

̈
‖

𝑝

]

1
̈
/𝑝

≤̈(

..

∑

𝑘

̈
‖𝑧
∗

𝑘
⊖ 𝑢
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

+̈ (

..

∑

𝑘

̈
‖𝑢
∗

𝑘
⊖ 𝑡
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

= 𝑑
∗

𝑝
(𝑧
∗

, 𝑢
∗

) +̈ 𝑑
∗

𝑝
(𝑢
∗

, 𝑡
∗

) .

(61)

Hence, triangle inequality is satisfied by 𝑑
∗

𝑝
on the space

ℓ
∗

𝑝
. Therefore, the function 𝑑

∗

𝑝
is a metric over the space ℓ

∗

𝑝
.

Now we show that the metric space (ℓ
∗

𝑝
, 𝑑
∗

𝑝
) is complete.

Let (𝑧∗
𝑚
)
𝑚∈N be an arbitrary Cauchy sequence in the space ℓ∗

𝑝
,

where 𝑧∗
𝑚

= (𝑧
∗

1

𝑚

, 𝑧
∗

2

𝑚

, . . .). Then, for any 𝜀 >̈ 0̈ there exists an
𝑛
0
∈ N such that

𝑑
∗

𝑝
(𝑧
∗

𝑚
, 𝑧
∗

𝑛
) = (

..

∑

𝑘

̈
‖𝑧
∗

𝑘

𝑚

⊖ 𝑧
∗

𝑘

𝑛
̈
‖

𝑝

)

1
̈
/𝑝

<̈ 𝜀 (62)

for all 𝑚, 𝑛 ≥ 𝑛
0
. Hence, for 𝑚, 𝑛 ≥ 𝑛

0
and every fixed 𝑘 ∈ N,

we obtain

̈
‖𝑧
∗

𝑘

𝑚

⊖ 𝑧
∗

𝑘

𝑛
̈
‖ <̈ 𝜀. (63)

If we set 𝑘 fixed then, it follows by (63) that (𝑧
∗

𝑘

0

, 𝑧
∗

𝑘

1

, . . .)

is a Cauchy sequence. Since C∗ is complete, this sequence
converges to a point say 𝑧

∗

𝑘
. Let us define the sequence 𝑧

∗

=

(𝑧
∗

0
, 𝑧
∗

1
, . . .)with these limits and show 𝑧

∗

∈ ℓ
∗

𝑝
and 𝑧
∗

𝑚
→ 𝑧
∗,
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as 𝑚 → ∞. Indeed, by (62), we obtain the inequality for all
𝑚, 𝑛 ∈ N with𝑚, 𝑛 ≥ 𝑛

0
that

𝑗

..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

𝑚

⊖ 𝑧
∗

𝑘

𝑛
̈
‖

𝑝

<̈ 𝜀
𝑝

∀𝑗 ∈ N (64)

and thus we have by letting 𝑛 → ∞ and𝑚 > 𝑛
0
that

𝑗

..

∑

𝑘=0

̈
‖𝑧
∗

𝑘

𝑚

⊖ 𝑧
∗

𝑘

̈
‖

𝑝

<̈ 𝜀
𝑝

∀𝑗 ∈ N (65)

which gives as 𝑗 → ∞ and for all𝑚 > 𝑛
0
that

[𝑑
∗

𝑝
(𝑧
∗

𝑚
, 𝑧
∗

)]

𝑝

=

..

∑

𝑘

̈
‖𝑧
∗

𝑘

𝑚

⊖ 𝑧
∗

𝑘

̈
‖

𝑝

<̈ 𝜀
𝑝

. (66)

Setting 𝑧
∗

𝑘
= 𝑧
∗

𝑘

𝑚

⊕ (𝑧
∗

𝑘
⊖ 𝑧
∗

𝑘

𝑚

) and applying Lemma 5 we
obtain by (66) and the fact (𝑧∗

𝑘

𝑚

) ∈ ℓ
∗

𝑝
that

(

..

∑

𝑘

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

= (

..

∑

𝑘

̈
‖𝑧
∗

𝑘

𝑚

⊕ (𝑧
∗

𝑘
⊖ 𝑧
∗

𝑘

𝑚

)
̈
‖

𝑝

)

1
̈
/𝑝

≤̈ (

..

∑

𝑘

̈
‖𝑧
∗

𝑘

𝑚
̈
‖

𝑝

)

1
̈
/𝑝

+̈ (

..

∑

𝑘

̈
‖𝑧
∗

𝑘
⊖ 𝑧
∗

𝑘

𝑚
̈
‖

𝑝

)

1
̈
/𝑝

<̈∞

(67)

whichmeans that 𝑧∗ = (𝑧
∗

𝑘
) ∈ ℓ
∗

𝑝
.Therefore, we see from (66)

that 𝑧∗
𝑚

→ 𝑧
∗. Since the arbitrary Cauchy sequence (𝑧

∗

𝑚
) =

(𝑧
∗

𝑘

𝑚

)
𝑘,𝑚∈N

∈ ℓ
∗

𝑝
is convergent, the space ℓ

∗

𝑝
is complete.

Corollary 15. 𝑐
∗ and 𝑐

∗

0
are the Banach spaces equipped with

the norm ̈
‖ ⋅

̈
‖
∞

defined in (51).
Since it is known byTheorem 14 that ℓ∗

𝑝
is a completemetric

space with the metric 𝑑∗
𝑝
induced in the case 𝑝 ≥̈ 1̈ by the norm

̈
‖ ⋅

̈
‖
𝑝
and in the case 0̈ <̈ 𝑝 <̈ 1̈ by the 𝑝-norm ̈

‖ ⋅
̂̈
‖
𝑝
, defined for

𝑧
∗

= (𝑧
∗

𝑘
) ∈ ℓ
∗

𝑝
by

̈
‖𝑧
∗ ̈
‖
𝑝
= (

..

∑

𝑘

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

)

1
̈
/𝑝

̈
‖𝑧
∗̂̈
‖
𝑝
=

..

∑

𝑘

̈
‖𝑧
∗

𝑘

̈
‖

𝑝

, (68)

we have the following.

Corollary 16. The space ℓ
∗

𝑝
is a Banach space with the norm

̈
‖ ⋅

̈
‖
𝑝
and 𝑝-norm ̈

‖ ⋅
̂̈
‖
𝑝
defined by (68).

4. Conclusion

We present some important inequalities such as triangle,
Minkowski, and some other inequalities in the sense of non-
Newtonian complex calculus which are frequently used. We
state the classical sequence spaces over the non-Newtonian

complex field C∗ and try to understand their structure of
being non-Newtonian complex vector space. There are lots
of techniques that have been developed in the sense of non-
Newtonian complex calculus. If the non-Newtonian complex
calculus is employed instead of the classical calculus in the
formulations, then many of the complicated phenomena in
physics or engineering may be analyzed more easily.

As an alternative to the classical (additive) calculus,
Grossman and Katz [1] introduced some new kind of calcu-
lus named as non-Newtonian calculus, geometric calculus,
anageometric calculus, and bigeometric calculus. Türkmen
and Başar [6, 7] have recentlystudied the classical sequence
spaces and related topics, in the sense of geometric calculus.
Quite recently, Çakmak andBaşar [8] have alsoworked on the
same subject by using non-Newtonian calculus. In the present
paper, we use the non-Newtonian complex calculus instead
of non-Newtonian real calculus and geometric calculus. It is
trivial that in the special cases of the generators 𝛼 and 𝛽, the
non-Newtonian complex calculus gives the special kind of the
following calculus:

(i) if 𝛼 = 𝛽 = 𝐼, the identity function, then the non-New-
tonian complex calculus is reduced to the classical
calculus;

(ii) if 𝛼 = 𝐼 and 𝛽 = exp, then the non-Newtonian
complex calculus is reduced to the geometric calculus;

(iii) if 𝛼 = exp and 𝛽 = 𝐼, then the non-Newtonian
complex calculus is reduced to the anageometric
calculus;

(iv) if 𝛼 = 𝛽 = exp, then the non-Newtonian complex
calculus is reduced to the bigeometric calculus.

Since our results are obtained by using the non-Newtonian
complex calculus, they are much more general and compre-
hensive than those of Türkmen and Başar [6, 7], Çakmak and
Başar [8].

Quite recently, Talo and Başar have studied the certain
sets of sequences of fuzzy numbers and introduced the
classical sets ℓ

∞
(𝐹), 𝑐(𝐹), 𝑐

0
(𝐹), and ℓ

𝑝
(𝐹) consisting of

the bounded, convergent, null, and absolutely 𝑝-summable
sequences of fuzzy numbers in [9]. Nextly, they have defined
the alpha-, beta-, and gamma-duals of a set of sequences
of fuzzy numbers and gave the duals of the classical sets of
sequences of fuzzy numbers together with the characteriza-
tion of the classes of infinite matrices of fuzzy numbers trans-
forming one of the classical set into another one. Following
Bashirov et al. [2] and Uzer [3], we give the corresponding
results for multiplicative calculus to the results derived for
the sets of fuzzy valued sequences in Talo and Başar [9], as a
beginning. As a natural continuation of this paper, we should
record from now on that it is meaningful to define the alpha-,
beta-, and gamma-duals of a set of sequences over the non-
Newtonian complex field C∗ and to determine the duals of
classical spaces ℓ

∗

∞
, 𝑐∗, 𝑐∗

0
, and ℓ

∗

𝑝
. Further, one can obtain

the similar results by using another type of calculus instead
of non-Newtonian complex calculus.
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calculus and its applications,” Journal of Mathematical Analysis
and Applications, vol. 337, no. 1, pp. 36–48, 2008.

[3] A. Uzer, “Multiplicative type complex calculus as an alternative
to the classical calculus,” Computers & Mathematics with Appli-
cations, vol. 60, no. 10, pp. 2725–2737, 2010.

[4] A. Bashirov andM. Rıza, “On complexmultiplicative differenti-
ation,” TWMS Journal of Applied and Engineering Mathematics,
vol. 1, no. 1, pp. 75–85, 2011.

[5] A. E. Bashirov, E. Mısırlı, Y. Tandoğdu, and A. Özyapıcı, “On
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