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Some fixed point theorems for generalized set contraction maps and KKM type ones in Banach spaces are presented. Moreover, a
new generalized set contraction is introduced. As an application, some coincidence theorems for KKM type set contractions are
obtained.

1. Introduction

Let 𝐸 be a Banach space and

P𝑝 (𝐸)

= {𝐴 ⊂ 𝐸 : 𝐴 is a nonempty and has a property 𝑝} .
(1)

Thus Pbd(𝐸), Pcl(𝐸), Pcv(𝐸), Pcp(𝐸), Pco(𝐸), Pcl,bd(𝐸),
Pcp,cv(𝐸), and Prcp(𝐸) denote the classes of all bounded,
closed, convex, compact, connected, closed-bounded, com-
pact-convex, and relatively compact subsets of 𝐸, respectively
[1]. Let 𝐸1 and 𝐸2 be two Banach spaces. A multivalued
mapping 𝑇 : 𝐸1 → P𝑝(𝐸2) is said to be

(i) upper semicontinuous if and only if for every closed
subset 𝐵 of 𝐸2, the set 𝑇

−
(𝐵) = {𝑥 ∈ 𝐸1 : 𝑇(𝑥)∩𝐵 ̸= 0}

is a closed subset of 𝐸1,
(ii) closed if its graph Gr(𝑇) = {(𝑥, 𝑦) ∈ 𝐸1 × 𝐸2 : 𝑦 ∈

𝑇(𝑥)} is a closed subset of 𝐸1 × 𝐸2,
(iii) compact if 𝑇(𝐸1) is a compact subset of 𝐸2.

The first fixed point theorem for multivalued mappings is
due to Kakutani in Banach spaces, in 1941 [2]. He proved a
generalization of Brouwer’s fixed point theorem to the mul-
tivalued mappings.

Theorem 1 (see [2]). Let 𝐾 be a compact subset of a Banach
space 𝐸 and let 𝐹 : 𝐾 → Pcv,cp(𝐾) be an upper semicontin-
uous multivalued operator. Then 𝐹 has a fixed point.

The above theorem has been extended in the literature
by generalizing or modifying the domain space 𝐸, domain
set 𝐾, and the nature of the multivalued operator 𝐹. Here,
compactness plays an essential role. The following definition
of measure of noncompactness on a bounded subset of the
Banach space 𝐸 is given by Dhage in 2010.

Definition 2 (see [1]). A function 𝜇 : Pbd(𝐸) → R+ is called
a measure of noncompactness if it satisfies

(i) 0 ̸= 𝜇
−1
(0) ⊂ Prcp(𝐸),

(ii) if 𝐴 ⊆ 𝐵 then 𝜇(𝐴) ≤ 𝜇(𝐵),

(iii) 𝜇(𝐴) = 𝜇(𝐴), where 𝐴 denotes the closure of 𝐴,
(iv) 𝜇(Conv(𝐴)) = 𝜇(𝐴), whereConv(𝐴) denotes the con-

vex hull of 𝐴,
(v) if {𝐴𝑛} is a decreasing sequence of sets in Pcl,bd(𝐸)

satisfying lim𝑛→∞𝜇(𝐴𝑛) = 0, then the limiting set
𝐴∞ = ∩

∞

𝑛=1
𝐴𝑛 is nonempty.

Definition 3 (see [1]). A multivalued mapping 𝑇 : 𝐸 →

Pcl,bd(𝐸) is calledD-set Lipschitz if there exists a continuous
nondecreasing function 𝜓 : R+ → R+ such that 𝜇(𝑇(𝐴)) ≤
𝜓(𝜇(𝐴)) for all 𝐴 ∈ Pcl,bd(𝐸) with 𝑇(𝐴) ∈ Pcl,bd(𝐸), where
𝜓(0) = 0. Sometimes we call the function 𝜓 to be aD-func-
tion of 𝑇 on 𝐸. In the spatial case, when 𝜓(𝑟) = 𝑘𝑟, 𝑘 > 0, 𝑇 is
called a 𝑘-set Lipschitz mapping and if 𝑘 < 1, then 𝑇 is called
a 𝑘-set contraction on 𝐸. Further, if 𝜓(𝑟) < 𝑟 for 𝑟 > 0, then
𝑇 is called a nonlinearD-set contraction on 𝐸.
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Dhage proved a generalization of Theorem 1 under
weaker upper semicontinuity conditions in 2010 [1].

Theorem 4. Let 𝑋 be a nonempty, closed, convex, and
bounded subset of a Banach space𝐸 and let𝑇 : 𝑋 → Pcl,cv(𝑋)
be a closed and nonlinearD-set contraction.Then𝑇 has a fixed
point.

Lemma 5 (see [3]). If 𝜓 is a D-function with 𝜓(𝑟) < 𝑟 for
𝑟 > 0, then lim𝑛→∞𝜓

𝑛
(𝑡) = 0 for all 𝑡 ∈ [0,∞).

Recall that a function 𝜑 : R+ → R+ is called a compari-
son function if 𝜑 is increasing and lim𝑛→∞𝜑

𝑛
(𝑡) = 0 for all

𝑡 ∈ R+ [4]. As a consequence, 𝜑(𝑡) < 𝑡 for any 𝑡 > 0, 𝜑 is
continuous at 0, and 𝜑(0) = 0.

A function 𝜑 : R+ → R+ is called a (c)-comparison
function if 𝜑 is increasing and there exist 𝑘0 ∈ N, 𝑎 ∈ (0, 1)

and a convergent series of non-negative terms ∑∞
𝑘=1

]𝑘 such
that

𝜑
𝑘+1

(𝑡) ≤ 𝑎𝜑
𝑘
(𝑡) + ]𝑘, (2)

for 𝑘 ≥ 𝑘0 and any 𝑡 ∈ [0,∞) [5]. If 𝜑 : R+ → R+ is a (c)-
comparison function, then𝜑 is a comparison function [5]. So,
we can defineC-set contraction as follows.

Definition 6. A multivalued mapping 𝑇 : 𝐸 → Pcl,bd(𝐸)
is called C-set contraction if there exists a continuous (c)-
comparison function 𝜑 such that 𝜇(𝑇(𝐴)) ≤ 𝜑(𝜇(𝐴)) for all
𝐴 ∈ Pcl,bd(𝐸) with 𝑇(𝐴) ∈ Pcl,bd(𝐸).

Let (𝑋, 𝑑) be a metric space. The Hausdorff metric 𝐻𝑑
induced by the metric 𝑑 and defined as follows

𝐻𝑑 (𝐴, 𝐵) = max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝑏, 𝐴)} . (3)

Definition 7 (see [6]). Let 𝜀 > 0. A multivalued contractive
(𝜀-contractive) map is a map 𝐹 : 𝑋⊸Pcl,bd(𝑋) such that for
all 𝑥, 𝑦 ∈ 𝑋with 𝑥 ̸= 𝑦 (and for some 𝜀 > 0, 𝑑(𝑥, 𝑦) < 𝜀, resp.),
𝐻𝑑(𝐹(𝑥), 𝐹(𝑦)) < 𝑑(𝑥, 𝑦).

Theorem 8 (see [7]). Let 𝑋 be a nonempty compact and
connected metric space and let 𝐹 : 𝑋 → Pcp(𝑋) be a mul-
tivalued 𝜀-contractive map, then 𝐹 has a fixed point.

We need the following definitions of KKM theory in the
sequel [8].

Assume that 𝑋 is a convex subset of a topological vector
space and 𝑌 is a topological space. If 𝐺 : 𝑋 → P𝑝(𝑌) and
𝐹 : 𝑋 → P𝑝(𝑌) are two multivalued maps and for each
𝐴 ∈ ⟨𝑋⟩, 𝐹(Conv(𝐴)) ⊂ 𝐺(𝐴), then 𝐺 is called generalized
KKM mapping with respect to 𝐹, where ⟨𝑋⟩ denote the
family of all nonempty finite subsets of 𝑋. More generally,
if 𝐹 : 𝑋 → P𝑝(𝑌) satisfies the requirement that for any
generalized KKM mapping 𝐺 : 𝑋 → P𝑝(𝑌) with respect to

𝐹 and the family {𝐺(𝑥) : 𝑥 ∈ 𝑋} has the finite intersection
property, then 𝐹 is said to have the KKM property. Let

KKM (𝑋, 𝑌)

= {𝐹 : 𝑋 → P𝑝 (𝑌) : 𝐹 has the KKM property} .
(4)

Lemma 9 (see [8]). Let 𝑋 be a nonempty convex subset of
Hausdorff topological vector space 𝐸. Then 𝑇|𝐷 ∈ KKM(𝐷, 𝑌)

whenever 𝑇 ∈ KKM(𝑋, 𝑌) and𝐷 is a nonempty convex subset
of𝑋.

Chen and Chang obtained some fixed point theorems for
KKM type set contraction mappings in various spaces [9–
12]. In 2010, Amini-Harandi et al. introduced generalized set
contraction on topological spaces [13].

In Section 2, we present some fixed point theorems for
generalized set contractions which are 𝜀-contractive (KKM 𝜀-
contractive) multivalued maps. In the first step of Section 3,
we introduce a new type of generalized set contraction and
then prove that the results of Section 2 hold for them.
Section 4 is devoted to some KKM coincidence theorems as
applications of these results.

2. Generalized Set Contractions

In this section by applying Theorem 8, we obtain some fixed
point theorems for 𝜀-contractive multivalued maps which
are either generalized set contraction or KKM type ones. In
all cases, the multivalued maps are not necessarily compact
values. We consider measurement of noncompactness in
Definition 2.

Definition 10 (see [13]). A multivalued mapping 𝐹 : 𝐸 →

P𝑝(𝐸) is said to be a generalized set contraction, if for each
𝜖 > 0 there exists 𝛿 > 0 such that for 𝐴 ∈ Pcl,bd(𝐸) with
𝜖 ≤ 𝜇(𝐴) < 𝜖 + 𝛿, there exists 𝑛 ∈ 𝑁 such that 𝜇(𝐹𝑛(𝐴)) < 𝜖.

Lemma 11 (see [13]). Let 𝑋 be a topological space and let
𝜇 be a measure of noncompactness on 𝑋. Suppose that 𝐹
is a generalized set contraction on 𝑋. Then for every subset
𝐴 of 𝑋 for which 𝐹(𝐴) ⊂ 𝐴 and 𝜇(𝐴) < ∞, one has
lim𝑛→∞𝜇(𝐹

𝑛
(𝐴)) = 0.

Proposition 12. Let 𝐸 be a Hausdorff topological space. If
{𝑋𝑛} is a decreasing sequence of closed and connected sets
in Pcl,bd(𝐸) such that lim𝑛→∞𝜇(𝑋𝑛) = 0, then ∩

∞

𝑛=1
𝑋𝑛 is

nonempty, compact, and connected.

Proof. Clearly, 𝐾 = ∩
∞

𝑛=1
𝑋𝑛 is a nonempty, closed, and

compact subset of 𝐸. Let 𝐴 and 𝐵 be two nonempty, disjoint,
and closed sets so that 𝐾 = 𝐴 ∪ 𝐵. We can find disjoint
open sets 𝑈 and 𝑉 around 𝐴 and 𝐵, respectively. For every
𝑛 ∈ N, 𝑋𝑛 \ (𝑈 ∪ 𝑉) is nonempty. If not, then (𝑈 ∩ 𝑋𝑛) and
(𝑉 ∩ 𝑋𝑛) are nonempty and 𝑋𝑛 = (𝑈 ∩ 𝑋𝑛) ∪ (𝑉 ∩ 𝑋𝑛),
which cannot happen. The collection of {𝑋𝑛 \ (𝑈 ∪ 𝑉)} is
also a decreasing sequence of nonempty closed sets. Since
𝜇(𝑋𝑛 \ (𝑈 ∪ 𝑉)) ≤ 𝜇(𝑋𝑛) then 𝜇(𝑋𝑛 \ (𝑈 ∪ 𝑉)) → 0 as
𝑛 → ∞. Hence, ∩∞

𝑛=0
(𝑋𝑛 \ (𝑈 ∪ 𝑉)) is nonempty, that is,

𝐾 ∩ (𝑈 ∪ 𝑉)
𝑐
̸= 0, which is a contradiction.
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Theorem 13. Let 𝑋 be a nonempty, bounded, closed, and
connected subset of Banach space 𝐸. If 𝐹 : 𝑋 → Pcl,co(𝑋)
is an 𝜀-contractive and generalized set contraction, then 𝐹 has
a fixed point and the set of fixed points of 𝐹 is compact.

Proof. Let𝑋0 = 𝑋 and𝑋𝑛 = 𝐹𝑛(𝑋) for all 𝑛 ∈ N. Since𝐹 is an
𝜀-contractivemap, then𝐹 is continuous and𝐹(𝐴) ⊆ 𝐹(𝐴). On
the other hand,𝐹𝑛+1(𝑋) ⊆ 𝐹

𝑛
(𝑋), sowe have𝐹(𝑋𝑛) ⊆ 𝑋𝑛 and

𝑋𝑛+1 ⊆ 𝑋𝑛. Since 𝐹 is continuous with closed and connected
values, then by [14, Lemma 1.6], 𝐹(𝑋) is connected. Hence,
𝑋𝑛 which is closure of connected set 𝐹𝑛(𝑋) for all 𝑛 ∈ N, is
connected. But 𝜇(𝑋𝑛) = 𝜇(𝐹

𝑛
(𝑋)), and by Lemma 11 we have

𝜇(𝑋𝑛) → 0. Therefore, by Proposition 12, 𝐾 = ∩
∞

𝑛=1
𝑋𝑛 is

nonempty compact and connected. Since 𝐹(𝐾) ⊆ 𝐾, then the
desired conclusion followed by an application of Theorem 8
to the multivalued map 𝐹 : 𝐾 → Pcp(𝐾).

Let 𝐵 = {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐹(𝑥)}. We claim that 𝜖0 = 𝜇(𝐵) = 0.
If 𝜇(𝐵) ̸= 0 then 𝜇(𝐵) = 𝜇(𝐹

𝑛
(𝐵)). Since 𝐹 is a generalized

set contraction, then for 𝜖0 > 0, there exists 𝛿 > 0 such that
for 𝐵 ⊆ 𝑋 with 𝜖0 ≤ 𝜇(𝐵) < 𝜖0 + 𝛿, there exists 𝑛 ∈ N

such that 𝜖0 = 𝜇(𝐵) < 𝜖0, which is a contradiction. So 𝐵

is relatively compact, and since 𝐹 is continuous, then 𝐵 is a
compact subset of𝑋.

If 𝐹 : 𝐸 → P𝑝(𝐸) is a 𝑘-set contraction, then 𝐹 is a gen-
eralized set contraction, but the converse is not true [13].
Therefore, we have the following result.

Corollary 14. Let 𝑋 be a nonempty, bounded, closed, and
connected subset of Banach space 𝐸. If 𝐹 : 𝑋 → Pcl,co(𝑋)
is an 𝜀-contractive and 𝑘-set contraction, then 𝐹 has a fixed
point.

Corollary 15. Let 𝑋 be a nonempty, closed, and bounded
subset of Banach space 𝐸. If 𝐹 : 𝑋 → Pcl,bd(𝑋) is an 𝜀-
contractive and generalized set contraction, then there exists a
compact subset 𝐾 of𝑋 such that 𝐹(𝐾) ⊆ 𝐾.

Theorem 16. Let𝑋 be a nonempty, closed, and bounded subset
of Banach space 𝐸. If 𝐹 ∈ KKM(𝑋,𝑋) is an 𝜀-contractive and
generalized set contraction with nonempty closed and bounded
values, then 𝐹 has a fixed point.

Proof. By Corollary 15, there exists a compact subset 𝐾 of
𝑋 such that 𝐹(𝐾) ⊆ 𝐾. Let 𝑌 = 𝐹(𝐾). Hence there exists
a finite subset 𝐴 of 𝐾 such that 𝑌 ⊆ ∪𝑥∈𝐴𝑁(𝑥, 𝜀), where
𝑁(𝑥, 𝜀) = {𝑦 ∈ 𝐸 : ‖𝑥 − 𝑦‖ < 𝜀}. Define a map 𝑇 : 𝐾 →

P𝑝(𝑌) by 𝑇(𝑥) = 𝑌 \ 𝑁(𝑥, 𝜖) for all 𝑥 ∈ 𝐾; then 𝑇(𝑥)

is closed for each 𝑥 ∈ 𝐾 and ∩𝑥∈𝐴𝑇(𝑥) = 0. Since 𝑌 ⊆

𝐾 ⊆ 𝑋 and 𝐹 ∈ KKM(𝑋,𝑋), then by Lemma 9, 𝐹|𝐾 ∈

KKM(𝐾, 𝑌). Thus, 𝑇 is not a generalized KKM map with
respect to 𝐹|𝐾. Hence, there exists {𝑥0, 𝑥1, . . . , 𝑥𝑛} of 𝐾 such
that 𝐹(Conv({𝑥0, 𝑥1, . . . , 𝑥𝑛})) ̸⊆ ∪

𝑛

𝑖=0
𝑇(𝑥𝑖). Thus there exists

𝑦 ∈ 𝐹(Conv({𝑥0, 𝑥1, . . . , 𝑥𝑛})) such that 𝑦 ∉ ∪
𝑛

𝑖=0
𝑇(𝑥𝑖),

that is, 𝑦 ∈ 𝐹(𝑧) for some 𝑧 ∈ Conv({𝑥0, 𝑥1, . . . , 𝑥𝑛}) and
𝑦 ∈ 𝑁(𝑥𝑖, 𝜖), so 𝑥𝑖 ∈ 𝑁(𝑦, 𝜖) for 𝑖 ∈ {0, 1, . . . , 𝑛}. Since
𝑧 ∈ Conv({𝑥0, 𝑥1, . . . , 𝑥𝑛}) ⊂ 𝐵(𝑦, 𝜖), then 𝑦 ∈ 𝐹(𝑧) ∩ 𝐵(𝑧, 𝜖).
Since 𝑌 is a compact subset of 𝑋, then 𝑦 converges to some
𝑥 ∈ 𝑌 as 𝜖 → 0. Consequently, 𝑧 converges to 𝑥 as 𝜖 → 0.

Since 𝐹 is continuous, then by [14, Lemma 1.6] we have 𝑥 ∈

𝐹(𝑥).

3. Asymptotic Generalized Set Contractions

In this section, we define a new type of set contraction in
Banach spaces. Then we prove that the results of Section 2
hold for them. Also, we conclude some fixed point theorems
for nonlinearD-set contractions.

Definition 17. Let 𝑋 be a nonempty, closed, and bounded
subset of a Banach space 𝐸. A multivalued mapping 𝐹 : 𝑋 →

P𝑝(𝑋) is said to be an asymptotic generalized set contraction,
if there exists a sequence {𝜑𝑛} of functions fromR+ in to itself
satisfies

(i) for each 𝜀 > 0, there exists 𝛿 > 0 and𝑚 ∈ N such that
𝜑𝑚(𝑡) ≤ 𝜀 for all 𝜀 ≤ 𝑡 < 𝜀 + 𝛿,

(ii) 𝜇(𝐹𝑛(𝑋)) < 𝜑𝑛(𝜇(𝑋)).

Theorem 18. Let 𝑋 be a nonempty, bounded, closed, and
connected subset of Banach space 𝐸. If 𝐹 : 𝑋 → Pcl,co(𝑋)
is an 𝜀-contractive and asymptotic generalized set contraction,
then 𝐹 has a fixed point.

Proof. Define a sequence {𝑋𝑛} of sets in Pcl,bd(𝑋) such that
𝑋0 = 𝑋 and 𝑋𝑛 = 𝐹𝑛(𝑋) for all 𝑛 ∈ N. As the proof of
Theorem 13,𝐹(𝑋𝑛) ⊆ 𝑋𝑛,𝑋𝑛+1 ⊂ 𝑋𝑛, and𝑋𝑛 is connected for
all 𝑛 ∈ N. If there exists an integer𝑁 > 0 such that𝜇(𝑋𝑁) = 0,
then𝑋𝑁 is a compact and connected set and invariant under
𝐹. Thus Theorem 8 implies that 𝐹 : 𝑋𝑁 → Pcp(𝑋𝑁) has a
fixed point. So we assume that 𝜇(𝑋𝑛) ̸= 0 for all 𝑛 ∈ N. Define
𝜀𝑛 = 𝜇(𝑋𝑛) and 𝑟 = inf 𝜀𝑛. If 𝑟 ̸= 0, by Definition 17, there
exists 𝑛0 ∈ N, 𝛿𝑟 > 0 and 𝑚 ∈ N such that 𝜑𝑚(𝑡) ≤ 𝑟 for all
𝑟 ≤ 𝑡 < 𝑟 + 𝛿𝑟 and 𝑟 ≤ 𝜀𝑛0

< 𝑟 + 𝛿𝑟, so

𝜀𝑛0+𝑚
= 𝜇 (𝑋𝑛0+𝑚

) = 𝜇 (𝐹
𝑛0+𝑚

(𝑋))

< 𝜑𝑚 (𝜇 (𝐹
𝑛0
(𝑋))) = 𝜑𝑚 (𝜇 (𝑋𝑛0

)) ≤ 𝑟,

(5)

which is a contradiction. Hence 𝜇(𝑋𝑛) ⇀ 0 as 𝑛 → ∞.
Now by Proposition 12, 𝐾 = ∩

∞

𝑛=1
𝑋𝑛 is nonempty, compact,

and connected. Moreover 𝐹(𝐾) ⊆ 𝐾. So by Theorem 8, the
multivalued map 𝐹 : 𝐾 → Pcp(𝐾) has a fixed point.

Corollary 19. Let 𝑋 be a nonempty, closed, and bounded
subset of Banach space 𝐸. If 𝐹 : 𝑋 → Pcl,bd(𝑋) is an 𝜀-
contractive and asymptotic generalized set contraction, then
there exists a compact subset 𝐾 of𝑋 such that 𝐹(𝐾) ⊆ 𝐾.

The proof of following theorem is similar to that of
Theorem 16; hence it is omitted.

Theorem 20. Let 𝑋 be a nonempty, closed, and bounded
subset of Banach space𝐸. If𝐹 ∈ KKM(𝑋,𝑋) is an 𝜀-contractive
and asymptotic generalized set contraction with nonempty
closed and bounded values, then 𝐹 has a fixed point.

Proposition 21. Let 𝑋 be a nonempty, closed, and bounded
subset of Banach space 𝐸. If 𝐹 : 𝑋 → Pcl,bd(𝑋) is a nonlinear
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D-set contraction, then 𝐹 is an asymptotic generalized set
contraction.

Proof. Let 𝐹 be a nonlinear D-set contraction with D-
function 𝜓. Define 𝜑𝑛 = 𝜓

𝑛 for all 𝑛 ∈ N. Clearly, 𝜇(𝐹𝑛(𝑋)) ≤
𝜓
𝑛
(𝜇(𝑋)) = 𝜑𝑛(𝜇(𝑋)), on the other hand, by Lemma 5 we

have 𝜑𝑛(𝑡) → 0 as 𝑛 → ∞. Thus 𝐹 is an asymptotic gen-
eralized set contraction.

Applying Proposition 21,Theorems 18 and 20, it is easy to
conclude the following results.

Corollary 22. Let 𝑋 be a nonempty, bounded, closed, and
connected subset of Banach space 𝐸. If 𝐹 : 𝑋 → Pcl,co(𝑋) is
an 𝜀-contractive and nonlinearD-set contraction, then 𝐹 has a
fixed point.

Corollary 23. Let 𝑋 be a nonempty, closed, and bounded
subset of Banach space𝐸. If𝐹 ∈ KKM(𝑋,𝑋) is an 𝜀-contractive
and nonlinear D-set contraction with nonempty closed and
bounded values, then 𝐹 has a fixed point.

Remark 24. Since every C-set contraction is a nonlinearD-
set contraction, then Theorem 4, Corollaries 22 and 23 hold
for these mappings.

4. Some Applications in KKM Theory

In this section we obtain two coincidence theorems for KKM
type set contractions.

Theorem 25. Let 𝑋 be a nonempty, closed, bounded, and
convex subset of Banach space 𝐸. If 𝐹 : 𝑋 → Pcl,bd(𝑋) and
𝐺 : 𝑋 → Pcv(𝑋) are two multivalued mappings satisfying

(i) 𝐹 ∈ KKM(𝑋,𝑋),

(ii) 𝐹 is a generalized (an asymptotic) set contraction and
𝜀-contractive map,

(iii) for each compact subset𝐶 of𝑋 and any 𝑦 ∈ 𝑋,𝐺−(𝑦)∩
𝐶 is open in 𝐶,

then, there exists 𝑥0, 𝑦0 ∈ 𝑋 such that 𝑦0 ∈ 𝐹(𝑥0) and 𝑥0 ∈
𝐺(𝑦0).

Proof. By Corollary 15 (Corollary 19), there exists a compact
subset 𝐾 of 𝑋 such that 𝐹(𝐾) ⊂ 𝐾. Since 𝐺(𝑥) ̸= 0 and 𝐾 is
compact, then 𝑋 = ∪𝑥∈𝑋𝐺

−
(𝑋) and 𝐾 = ∪

𝑛

𝑖=1
(𝐺
−
(𝑥𝑖) ∩ 𝐾)

for some 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋. Define a map 𝑆 : 𝑋 → P𝑝(𝐾) by
𝑆(𝑥) = 𝐾 \ (𝐺

−
(𝑥) ∩ 𝐾) for each 𝑥 ∈ 𝑋, then ∩𝑛

𝑖=1
𝑆(𝑥𝑖) = 0.

Therefore, 𝑆 is not a generalized KKMmap with respect to 𝐹.
So there exists a finite subset 𝐴 = {𝑎1, . . . 𝑎𝑚} of 𝑋 such that
𝐹(Conv(𝐴)) ̸⊆ 𝑆(𝐴). Hence, there exist 𝑥0 ∈ Conv(𝐴) and
𝑦0 ∈ 𝐹(𝑥0) such that 𝑦0 ∉ 𝑆(𝐴). Thus 𝑦0 ∈ 𝐺

−
(𝑎𝑖) ∩ 𝐾 and

so 𝑎𝑖 ∈ 𝐺(𝑦0) for 𝑖 = 1, . . . , 𝑚. Since 𝐺(𝑦0) is convex, then
Conv(𝐴) ⊆ 𝐺(𝑦0) and so 𝑥0 ∈ 𝐺(𝑦0).

By Proposition 21, Corollary 19, and slight modification
of the proof of Theorem 25, we have the following theorem.

Theorem 26. Let 𝑋 be a nonempty, closed, bounded, and
convex subset of Banach space 𝐸. If 𝐹 : 𝑋 → Pcl,cv(𝑋) and
𝐺 : 𝑋 → Pcv(𝑋) are two multivalued mappings satisfying

(i) 𝐹 ∈ KKM(𝑋,𝑋) is a nonlinearD-set contraction.
(ii) for each compact subset𝐶 of𝑋 and any 𝑦 ∈ 𝑋,𝐺−(𝑦)∩

𝐶 is open in 𝐶,

then, there exists 𝑥0, 𝑦0 ∈ 𝑋 such that 𝑦0 ∈ 𝐹(𝑥0) and 𝑥0 ∈
𝐺(𝑦0).

References

[1] B. C. Dhage, “Some generalizations of mulit-valued version of
Schauder’s fixed point theoremwith applications,”Cubo, vol. 12,
no. 3, pp. 139–151, 2010.

[2] S. A. Kakutani, “A generalization of Brouwer’s fixed point
theorem,” Duke Mathematical Journal, vol. 8, pp. 457–459, 1941.

[3] B. C. Dhage, “Asymptotic stability of nonlinear functional
integral equations via measures of noncompactness,” Commu-
nications onAppliedNonlinearAnalysis, vol. 15, no. 2, pp. 89–101,
2008.

[4] I. A. Rus, Generalized Contractions and Applications, Cluj
University Press, Cluj-Napoca, Romania, 2001.
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