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2Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Via Archirafi 34, 90123 Palermo, Italy
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Recently, Samet et al. (2012) introduced the notion of 𝛼-𝜓-contractive mappings and established some fixed point results in the
setting of complete metric spaces. In this paper, we introduce the notion of weak 𝛼-𝜓-contractive mappings and give fixed point
results for this class of mappings in the setting of partial metric spaces. Also, we deduce fixed point results in ordered partial metric
spaces. Our results extend and generalize the results of Samet et al.

1. Introduction

The notion of partial metric is one of the most useful
and interesting generalizations of the classical concept of
metric. The partial metric spaces were introduced in 1994 by
Matthews [1] as a part of the study of denotational semantics
of data for networks, showing that the contraction mapping
principle can be generalized to the partial metric context
for applications in program verification. Later on, many
authors studied the existence of several connections between
partial metrics and topological aspects of domain theory
(see [2–8] and the references therein). On the other hand,
some researchers [9, 10] investigated the characterization of
partial metric 0-completeness in terms of fixed point theory,
extending the characterization of metric completeness [11–
14].

Recently, Samet et al. [15] introduced the notion of 𝛼-
𝜓-contractive mappings and established some fixed point
results in the setting of complete metric spaces. In this paper,
we introduce the notion of weak 𝛼-𝜓-contractive mappings
and give fixed point results for this class of mappings in the
setting of partial metric spaces. Also, we deduce fixed point
results in ordered partial metric spaces. Our results extend
and generalize Theorems 2.1–2.3 of [15] and many others. An
application to ordinary differential equations concludes the
paper.

2. Preliminaries

In this section, we recall some definitions and some prop-
erties of partial metric spaces that can be found in [1, 5, 10,
16, 17]. A partial metric on a nonempty set 𝑋 is a function
𝑝 : 𝑋 × 𝑋 → [0, +∞) such that, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, we have

(𝑝
1
) 𝑥 = 𝑦 ⇔ 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦),

(𝑝
2
) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦),

(𝑝
3
) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥),

(𝑝
4
) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧).

A partialmetric space is a pair (𝑋, 𝑝) such that𝑋 is a non-
empty set and 𝑝 is a partial metric on 𝑋. It is clear that if
𝑝(𝑥, 𝑦) = 0, then from (𝑝

1
) and (𝑝

2
) it follows that 𝑥 = 𝑦.

But if 𝑥 = 𝑦, 𝑝(𝑥, 𝑦) may not be 0. A basic example of a
partial metric space is the pair ([0, +∞), 𝑝), where 𝑝(𝑥, 𝑦) =
max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ [0, +∞). Other examples of partial
metric spaces which are interesting from a computational
point of view can be found in [1].

Each partial metric 𝑝 on𝑋 generates a 𝑇
0
topology 𝜏

𝑝
on

𝑋 which has as a base the family of open 𝑝-balls {𝐵
𝑝
(𝑥, 𝜀) :

𝑥 ∈ 𝑋, 𝜀 > 0}, where

𝐵
𝑝
(𝑥, 𝜀) = {𝑦 ∈ 𝑋 : 𝑝 (𝑥, 𝑦) < 𝑝 (𝑥, 𝑥) + 𝜀} (1)

for all 𝑥 ∈ 𝑋 and 𝜀 > 0.
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Let (𝑋, 𝑝) be a partial metric space. A sequence {𝑥
𝑛
} in

(𝑋, 𝑝) converges to a point 𝑥 ∈ 𝑋 if and only if 𝑝(𝑥, 𝑥) =

lim
𝑛→+∞

𝑝(𝑥, 𝑥
𝑛
).

A sequence {𝑥
𝑛
} in (𝑋, 𝑝) is called a Cauchy sequence if

there exists (and is finite) lim
𝑛,𝑚→+∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
).

Apartialmetric space (𝑋, 𝑝) is said to be complete if every
Cauchy sequence {𝑥

𝑛
} in𝑋 converges, with respect to 𝜏

𝑝
, to a

point 𝑥 ∈ 𝑋 such that𝑝(𝑥, 𝑥) = lim
𝑛,𝑚→+∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
).

A sequence {𝑥
𝑛
} in (𝑋, 𝑝) is called 0-Cauchy if

lim
𝑛,𝑚→+∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) = 0. We say that (𝑋, 𝑝) is 0-complete if

every 0-Cauchy sequence in 𝑋 converges, with respect to 𝜏
𝑝
,

to a point 𝑥 ∈ 𝑋 such that 𝑝(𝑥, 𝑥) = 0.
On the other hand, the partial metric space (Q ∩

[0, +∞), 𝑝), whereQ denotes the set of rational numbers and
the partial metric 𝑝 is given by 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}, provides
an example of a 0-complete partial metric space which is not
complete.

It is easy to see that every closed subset of a complete
partial metric space is complete.

Notice that if 𝑝 is a partial metric on𝑋, then the function
𝑝
𝑠
: 𝑋 × 𝑋 → [0, +∞) given by

𝑝
𝑠
(𝑥, 𝑦) = 2𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) − 𝑝 (𝑦, 𝑦) (2)

is a metric on 𝑋. Furthermore, lim
𝑛→+∞

𝑝
𝑠
(𝑥
𝑛
, 𝑥) = 0 if and

only if

𝑝 (𝑥, 𝑥) = lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥) = lim

𝑛,𝑚→+∞
𝑝 (𝑥
𝑛
, 𝑥
𝑚
) . (3)

Lemma 1 (see [1, 16]). Let (𝑋, 𝑝) be a partial metric space.
Then

(a) {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝑝) if and only if it is a

Cauchy sequence in the metric space (𝑋, 𝑝𝑠),
(b) a partial metric space (𝑋, 𝑝) is complete if and only if

the metric space (𝑋, 𝑝𝑠) is complete.

Let 𝑋 be a non-empty set. If (𝑋, 𝑝) is a partial metric
space and (𝑋, ⪯) is a partially ordered set, then (𝑋, 𝑝, ⪯) is
called an ordered partial metric space. Then 𝑥, 𝑦 ∈ 𝑋 are
called comparable if 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥 holds. Let (𝑋, ⪯) be a
partially ordered set, and let 𝑇 : 𝑋 → 𝑋 be a mapping. 𝑇 is
a non-decreasing mapping if 𝑇𝑥 ⪯ 𝑇𝑦 whenever 𝑥 ⪯ 𝑦 for all
𝑥, 𝑦 ∈ 𝑋.

Definition 2 (see [15]). Let 𝑇 : 𝑋 → 𝑋 and 𝛼 : 𝑋 × 𝑋 →

[0, +∞). One says that 𝑇 is 𝛼-admissible if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1. (4)

Example 3. Let 𝑋 = [0, +∞), and define the function 𝛼 :

𝑋 × 𝑋 → [0, +∞) by

𝛼 (𝑥, 𝑦) = {

𝑒
𝑥−𝑦 if 𝑥 ≥ 𝑦,

0 if 𝑥 < 𝑦.

(5)

Then, every non-decreasing mapping 𝑇 : 𝑋 → 𝑋 is 𝛼-
admissible. For example themappings defined by𝑇𝑥 = ln(1+
𝑥) and 𝑇𝑥 = 𝑥/(1 + 𝑥) for all 𝑥 ∈ 𝑋 are 𝛼-admissible.

3. Main Results

Throughout this paper, the standard notations and termi-
nologies in nonlinear analysis are used. We start the main
section by presenting the newnotion ofweak𝛼-𝜓-contractive
mappings.

Denote by Ψ the family of non-decreasing functions 𝜓 :

[0, +∞) → [0, +∞) such that𝜓(𝑡) > 0 and lim
𝑛→+∞

𝜓
𝑛
(𝑡) =

0 for each 𝑡 > 0, where 𝜓𝑛 is the 𝑛th iterate of 𝜓.

Remark 4. Notice that the familyΨused in this paper is larger
(less restrictive) than the corresponding family of functions
defined in [15], see also next Examples 12–13.

Lemma 5. For every function𝜓 ∈ Ψ, one has𝜓(𝑡) < 𝑡 for each
𝑡 > 0.

Definition 6. Let (𝑋, 𝑝) be a partial metric space, and let 𝑇 :

𝑋 → 𝑋 be a given mapping. We say that 𝑇 is a weak 𝛼-𝜓-
contractive mapping if there exist two functions 𝛼 : 𝑋×𝑋 →

[0, +∞) and 𝜓 ∈ Ψ such that

𝛼 (𝑥, 𝑦) 𝑝 (𝑇𝑥, 𝑇𝑦)

≤ 𝜓 (max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦)}) ,

(6)

for all 𝑥, 𝑦 ∈ 𝑋. If

𝛼 (𝑥, 𝑦) 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑝 (𝑥, 𝑦)) , (7)

for all 𝑥, 𝑦 ∈ 𝑋, then 𝑇 is an 𝛼-𝜓-contractive mapping.

Remark 7. If 𝑇 : 𝑋 → 𝑋 satisfies the contraction mapping
principle, then 𝑇 is a weak 𝛼-𝜓-contractive mapping, where
𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓(𝑡) = 𝑘𝑡 for all 𝑡 ≥ 0 and
some 𝑘 ∈ [0, 1).

In the sequel, we consider the following property of
regularity. Let (𝑋, 𝑝) be a partial metric space, and let 𝛼 :

𝑋 × 𝑋 → [0, +∞) be a function. Then

(r) 𝑋 is 𝛼-regular if for each sequence {𝑥
𝑛
} ⊂ 𝑋, such that

𝛼(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 for all 𝑛 ∈ N and 𝑥
𝑛
→ 𝑥, we have

that 𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all 𝑛 ∈ N,

(c) 𝑋 has the property (C) with respect to 𝛼 if for each
sequence {𝑥

𝑛
} ⊂ 𝑋, such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for all
𝑛 ∈ N, there exists 𝑛

0
∈ N such that 𝛼(𝑥

𝑚
, 𝑥
𝑛
) ≥ 1 for

all 𝑛 > 𝑚 ≥ 𝑛
0
.

Remark 8. Let 𝑋 be a non-empty set, and let 𝛼 : 𝑋 × 𝑋 →

[0, +∞) be a function. Denote

R := {(𝑥, 𝑦) : 𝛼 (𝑥, 𝑦) ≥ 1} . (8)

IfR is a transitive relation on𝑋, then𝑋 has the property (C)
with respect to 𝛼.

In fact, if {𝑥
𝑛
} ⊂ 𝑋 is a sequence such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1

for all 𝑛 ∈ N, then (𝑥
𝑛
, 𝑥
𝑛+1

) ∈ R for all 𝑛 ∈ N. Now, fix𝑚 ≥ 1

and show that

𝛼 (𝑥
𝑚
, 𝑥
𝑛
) ≥ 1 ∀𝑛 > 𝑚. (9)
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Obviously, (9) holds if 𝑛 = 𝑚 + 1. Assume that (9)
holds for some 𝑛 > 𝑚. From (𝑥

𝑚
, 𝑥
𝑛
), (𝑥
𝑛
, 𝑥
𝑛+1

) ∈ R, since
R is transitive, we get (𝑥

𝑚
, 𝑥
𝑛+1

) ∈ R. This implies that
𝛼(𝑥
𝑚
, 𝑥
𝑛+1

) ≥ 1, and so 𝛼(𝑥
𝑚
, 𝑥
𝑛
) ≥ 1 for all 𝑛 > 𝑚; that

is,𝑋 has the property (C) with respect to 𝛼.

Remark 9. Let (𝑋, 𝑝, ⪯) be an ordered partial metric space,
and let 𝛼 : 𝑋 × 𝑋 → [0, +∞) be a function defined by

𝛼 (𝑥, 𝑦) = {

1 if 𝑥 ⪯ 𝑦,

0 otherwise.
(10)

Then 𝑋 has the property (C) with respect to 𝛼. Moreover, if
for each sequence {𝑥

𝑛
}, such that 𝑥

𝑛
⪯ 𝑥
𝑛+1

for all 𝑛 ∈ N

convergent to some 𝑥 ∈ 𝑋, we have 𝑥
𝑛
⪯ 𝑥 for all 𝑛 ∈ N, and

then𝑋 is 𝛼-regular.

By Remark 8, 𝑋 has the property (C) with respect to 𝛼.
Now, let {𝑥

𝑛
} be a sequence such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1

) ≥ 1 for all
𝑛 ∈ N convergent to some 𝑥 ∈ 𝑋, and then 𝑥

𝑛
⪯ 𝑥
𝑛+1

for
all 𝑛 ∈ N, and hence 𝑥

𝑛
⪯ 𝑥 for all 𝑛 ∈ N. This implies that

𝛼(𝑥
𝑛
, 𝑥) ≥ 1 for all 𝑛 ∈ N, and so𝑋 is 𝛼-regular.
Our first result is the following theorem that generalizes

Theorem 2.1 of [15].

Theorem10. Let (𝑋, 𝑝) be a complete partialmetric space, and
let 𝑇 : 𝑋 → 𝑋 be a weak 𝛼-𝜓-contractive mapping satisfying
the following conditions:

(i) 𝑇 is 𝛼-admissible,

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1,

(iii) 𝑋 has the property (C) with respect to 𝛼,

(iv) 𝑇 is continuous on (𝑋, 𝑝
𝑠
).

Then, 𝑇 has a fixed point, that is; there exists 𝑥∗ ∈ 𝑋 such that
𝑇𝑥
∗
= 𝑥
∗.

Proof. Let 𝑥
0

∈ 𝑋 such that 𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1. Define the

sequence {𝑥
𝑛
} in𝑋 by

𝑥
𝑛+1

= 𝑇𝑥
𝑛
, ∀𝑛 ∈ N. (11)

If 𝑥
𝑛
= 𝑥
𝑛+1

for some 𝑛 ∈ N, then 𝑥
∗
= 𝑥
𝑛
is a fixed point

for 𝑇. Assume that 𝑥
𝑛

̸= 𝑥
𝑛+1

for all 𝑛 ∈ N. Since 𝑇 is 𝛼-
admissible, we have

𝛼 (𝑥
0
, 𝑥
1
) = 𝛼 (𝑥

0
, 𝑇𝑥
0
) ≥ 1

⇒ 𝛼 (𝑇𝑥
0
, 𝑇𝑥
1
) = 𝛼 (𝑥

1
, 𝑥
2
) ≥ 1.

(12)

By induction, we get

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1, ∀𝑛 ∈ N. (13)

Applying inequality (6) with 𝑥 = 𝑥
𝑛−1

and 𝑦 = 𝑥
𝑛
and using

(13), we obtain

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑝 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

≤ 𝛼 (𝑥
𝑛−1

, 𝑥
𝑛
) 𝑝 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
)

≤ 𝜓 (max {𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) ,

𝑝 (𝑥
𝑛−1

, 𝑇𝑥
𝑛−1

) , 𝑝 (𝑥
𝑛
, 𝑇𝑥
𝑛
)})

= 𝜓 (max {𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

)}) .

(14)

If max{𝑝(𝑥
𝑛−1

, 𝑥
𝑛
), 𝑝(𝑥
𝑛
, 𝑥
𝑛+1

)} = 𝑝(𝑥
𝑛
, 𝑥
𝑛+1

), from

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

))

< 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ,

(15)

we obtain a contradiction; therefore, max{𝑝(𝑥
𝑛−1

, 𝑥
𝑛
), 𝑝(𝑥
𝑛
,

𝑥
𝑛+1

)} = 𝑝(𝑥
𝑛−1

, 𝑥
𝑛
), and hence

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓 (𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
)) , ∀𝑛 ∈ N. (16)

By induction, we get

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓
𝑛
(𝑝 (𝑥
0
, 𝑥
1
)) , ∀𝑛 ∈ N. (17)

This implies that

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (18)

Fix 𝜀 > 0, and let 𝑛(𝜀) ∈ N such that

𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

) < 𝜀 − 𝜓 (𝜀) , ∀𝑚 ≥ 𝑛 (𝜀) . (19)

Since 𝑋 has the property (C) with respect to 𝛼, there exists
𝑛
0
∈ N such that 𝛼(𝑥

𝑚
, 𝑥
𝑛
) ≥ 1 for all 𝑛 > 𝑚 ≥ 𝑛

0
. Let𝑚 ∈ N

with𝑚 ≥ max{𝑛
0
, 𝑛(𝜀)}, and we show that

𝑝 (𝑥
𝑚
, 𝑥
𝑛+1

) < 𝜀, ∀𝑛 ≥ 𝑚. (20)

Note that (20) holds for 𝑛 = 𝑚. Assume that (20) holds for
some 𝑛 > 𝑚, then

𝑝 (𝑥
𝑚
, 𝑥
𝑛+2

) ≤ 𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

)

+ 𝑝 (𝑥
𝑚+1

, 𝑥
𝑛+2

) − 𝑝 (𝑥
𝑚+1

, 𝑥
𝑚+1

)

≤ 𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

) + 𝑝 (𝑇𝑥
𝑚
, 𝑇𝑥
𝑛+1

)

≤ 𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

) + 𝛼 (𝑥
𝑚
, 𝑥
𝑛+1

)

× 𝑝 (𝑇𝑥
𝑚
, 𝑇𝑥
𝑛+1

)

≤ 𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

)

+ 𝜓 (max {𝑝 (𝑥
𝑚
, 𝑥
𝑛+1

) , 𝑝 (𝑥
𝑚
, 𝑥
𝑚+1

) ,

𝑝 (𝑥
𝑛+1

, 𝑥
𝑛+2

)})

< 𝜀 − 𝜓 (𝜀) + 𝜓 (𝜀) = 𝜀.

(21)

This implies that (20) holds for 𝑛 ≥ 𝑚, and hence

lim
𝑚,𝑛→+∞

𝑝 (𝑥
𝑚
, 𝑥
𝑛
) = 0. (22)
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Thus, we proved that {𝑥
𝑛
} is a Cauchy sequence in the partial

metric space (𝑋, 𝑝) and hence, by Lemma 1, in the metric
space (𝑋, 𝑝

𝑠
). Since (𝑋, 𝑝) is complete, by Lemma 1, also

(𝑋, 𝑝
𝑠
) is complete.This implies that there exists 𝑥∗ ∈ 𝑋 such

that 𝑝𝑠(𝑥
𝑛
, 𝑥
∗
) → 0 as 𝑛 → +∞; that is,

𝑝 (𝑥
∗
, 𝑥
∗
) = lim
𝑛→+∞

𝑝 (𝑥
∗
, 𝑥
𝑛
) = lim
𝑚,𝑛→+∞

𝑝 (𝑥
𝑚
, 𝑥
𝑛
) = 0.

(23)

From the continuity of 𝑇 on (𝑋, 𝑝
𝑠
), it follows that 𝑥

𝑛+1
=

𝑇𝑥
𝑛
→ 𝑇𝑥

∗ as 𝑛 → +∞. By the uniqueness of the limit, we
get 𝑥∗ = 𝑇𝑥

∗; that is, 𝑥∗ is a fixed point of 𝑇.

In the next theorem, which is a proper generalization of
Theorem 2.2 in [15], we omit the continuity hypothesis of 𝑇.
Moreover, we assume 0-completeness of the space.

Theorem 11. Let (𝑋, 𝑝) be a 0-complete partial metric space,
and let 𝑇 : 𝑋 → 𝑋 be a weak 𝛼-𝜓-contractive mapping
satisfying the following conditions:

(i) 𝑇 is 𝛼-admissible,
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1,

(iii) 𝑋 has the property (C) with respect to 𝛼,
(iv) 𝑋 is 𝛼-regular.

Then, 𝑇 has a fixed point.

Proof. Let 𝑥
0

∈ 𝑋 such that 𝛼(𝑥
0
, 𝑇𝑥
0
) ≥ 1. Define the

sequence {𝑥
𝑛
} in 𝑋 by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
, for all 𝑛 ∈ N. Following

the proof of Theorem 10, we know that 𝛼(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 for all
𝑛 ∈ N and that {𝑥

𝑛
} is a 0-Cauchy sequence in the 0-complete

partial metric space (𝑋, 𝑝). Consequently, there exists 𝑥∗ ∈ 𝑋

such that

𝑝 (𝑥
∗
, 𝑥
∗
) = lim
𝑛→+∞

𝑝 (𝑥
∗
, 𝑥
𝑛
) = lim
𝑚,𝑛→+∞

𝑝 (𝑥
𝑚
, 𝑥
𝑛
) = 0.

(24)

On the other hand, from 𝛼(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 for all 𝑛 ∈ N and
the hypothesis (iv), we have

𝛼 (𝑥
𝑛
, 𝑥
∗
) ≥ 1, ∀𝑛 ∈ N. (25)

Now, using the triangular inequality, (6) and (25), we get

𝑝 (𝑇𝑥
∗
, 𝑥
∗
)

≤ 𝑝 (𝑇𝑥
∗
, 𝑇𝑥
𝑛
)

+ 𝑝 (𝑥
𝑛+1

, 𝑥
∗
) − 𝑝 (𝑥

𝑛+1
, 𝑥
𝑛+1

)

≤ 𝛼 (𝑥
𝑛
, 𝑥
∗
) 𝑝 (𝑇𝑥

𝑛
, 𝑇𝑥
∗
)

+ 𝑝 (𝑥
𝑛+1

, 𝑥
∗
)

≤ 𝜓 (max {𝑝 (𝑥
𝑛
, 𝑥
∗
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

𝑝 (𝑥
∗
, 𝑇𝑥
∗
)})

+ 𝑝 (𝑥
𝑛+1

, 𝑥
∗
) .

(26)

Since𝑝(𝑥
𝑛
, 𝑥
∗
), 𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) → 0 as 𝑛 → +∞, for 𝑛 great
enough, we have

max {𝑝 (𝑥
𝑛
, 𝑥
∗
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

) , 𝑝 (𝑥
∗
, 𝑇𝑥
∗
)} = 𝑝 (𝑥

∗
, 𝑇𝑥
∗
) ,

(27)

and hence

𝑝 (𝑇𝑥
∗
, 𝑥
∗
) ≤ 𝜓 (𝑝 (𝑥

∗
, 𝑇𝑥
∗
)) < 𝑝 (𝑥

∗
, 𝑇𝑥
∗
) . (28)

This is a contradiction, and so we obtain 𝑝(𝑇𝑥
∗
, 𝑥
∗
) = 0; that

is, 𝑇𝑥∗ = 𝑥
∗.

The following example illustrates the usefulness of
Theorem 10.

Example 12. Let 𝑋 = [0, +∞) and 𝑝 : 𝑋 × 𝑋 → [0, +∞)

be defined by 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. Clearly,
(𝑋, 𝑝) is a complete partial metric space. Define the mapping
𝑇 : 𝑋 → 𝑋 by

𝑇𝑥 =

{
{

{
{

{

2𝑥 −

3

2

if𝑥 > 1,

𝑥

1 + 𝑥

if 0 ≤ 𝑥 ≤ 1.

(29)

At first, we observe that we cannot find 𝑘 ∈ [0, 1) such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘 max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦)} (30)

for all 𝑥, 𝑦 ∈ 𝑋, since we have

𝑝 (𝑇1, 𝑇2)

= max {1
2

,

5

2

} =

5

2

> 𝑘

5

2

= 𝑘 max {max {1, 2} ,max {1, 1
2

} ,

max {2, 5
2

}}

(31)

for all 𝑘 ∈ [0, 1). Now, we define the function 𝛼 : 𝑋 × 𝑋 →

[0, +∞) by

𝛼 (𝑥, 𝑦) = {

1 if 𝑥, 𝑦 ∈ [0, 1] ,

0 otherwise.
(32)

Clearly 𝑇 is a weak 𝛼-𝜓-contractive mapping with 𝜓(𝑡) =

𝑡/(1 + 𝑡) for all 𝑡 ≥ 0. In fact, for all 𝑥, 𝑦 ∈ 𝑋, we have

𝛼 (𝑥, 𝑦) 𝑝 (𝑇𝑥, 𝑇𝑦)

= max{ 𝑥

1 + 𝑥

,

𝑦

1 + 𝑦

}

= 𝜓 (𝑝 (𝑥, 𝑦))

≤ 𝜓 (max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) ,

𝑝 (𝑦, 𝑇𝑦)}) .

(33)
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Moreover, there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1. In

fact, for 𝑥
0
= 1, we have

𝛼 (1, 𝑇1) = 𝛼 (1,

1

2

) = 1. (34)

Obviously,𝑇 is continuous on (𝑋, 𝑝𝑠) since 𝑝𝑠(𝑥, 𝑦) = |𝑥−𝑦|,
and so we have to show that𝑇 is 𝛼-admissible. In doing so, let
𝑥, 𝑦 ∈ 𝑋 such that 𝛼(𝑥, 𝑦) ≥ 1. This implies that 𝑥, 𝑦 ∈ [0, 1],
and by the definitions of 𝑇 and 𝛼, we have

𝑇𝑥 =

𝑥

1 + 𝑥

∈ [0, 1] , 𝑇𝑦 =

𝑦

1 + 𝑦

∈ [0, 1] ,

𝛼 (𝑇𝑥, 𝑇𝑦) = 1.

(35)

Then, 𝑇 is 𝛼-admissible. Moreover, if {𝑥
𝑛
} is a sequence such

that 𝛼(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 1 for all 𝑛 ∈ N, then 𝑥
𝑛
∈ [0, 1] for all

𝑛 ∈ N, and hence 𝛼(𝑥
𝑚
, 𝑥
𝑛
) ≥ 1 for all 𝑛 > 𝑚 ≥ 1. Thus, 𝑋

has the property (C) with respect to 𝛼.
Now, all the hypotheses ofTheorem 10 are satisfied, and so

𝑇 has a fixed point. Notice thatTheorem 10 (alsoTheorem 11)
guarantees only the existence of a fixed point but not the
uniqueness. In this example, 0 and 3/2 are two fixed points
of 𝑇.

Moreover, ∑+∞
𝑛=1

𝜓
𝑛
(𝑡) = ∑

+∞

𝑛=1
(𝑡/(1 + 𝑛𝑡)) ̸< +∞, and so

𝑇 is not an 𝛼-𝜓-contractive mapping in the sense of [15] with
respect to the complete metric space (𝑋, 𝑝𝑠); that is,Theorem
2.1 of [15] cannot be applied in this case.

Now, we give an example involving a mapping 𝑇 that is
not continuous. Also, this example shows that ourTheorem 11
is a proper generalization of Theorem 2.2 in [15].

Example 13. Let 𝑋 = Q ∩ [0, +∞) and 𝑝 as in Example 12.
Clearly, (𝑋, 𝑝) is a 0-complete partial metric space which is
not complete.Then,Theorem 10 is not applicable in this case.
Define the mapping 𝑇 : 𝑋 → 𝑋 by

𝑇𝑥 =

{
{
{
{

{
{
{
{

{

2𝑥 −

5

2

if 𝑥 > 2,

𝑥

1 + 𝑥

if 0 ≤ 𝑥 ≤ 2.

(36)

It is clear that 𝑇 is not continuous at 𝑥 = 2 with respect to the
metric 𝑝𝑠. Define the function 𝛼 : 𝑋 × 𝑋 → [0, +∞) by

𝛼 (𝑥, 𝑦) = {

1 if 𝑥, 𝑦 ∈ [0, 2] ,

0 otherwise.
(37)

Clearly 𝑇 is a weak 𝛼-𝜓-contractive mapping with 𝜓(𝑡) =

𝑡/(1 + 𝑡) for all 𝑡 ≥ 0. In fact, for all 𝑥, 𝑦 ∈ 𝑋, we have

𝛼 (𝑥, 𝑦) 𝑝 (𝑇𝑥, 𝑇𝑦)

≤ 𝜓 (𝑝 (𝑥, 𝑦))

≤ 𝜓 (max {𝑝 (𝑥, 𝑦) ,

𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦)}) .

(38)

Proceeding as in Example 12, the reader can show that all
the required hypotheses of Theorem 11 are satisfied, and so 𝑇
has a fixed point. Here, 0 and 5/2 are two fixed points of 𝑇.

Moreover, since (𝑋, 𝑝𝑠) is not complete, where 𝑝𝑠(𝑥, 𝑦) =
|𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ 𝑋, we conclude that neitherTheorem 2.1
norTheorem 2.2 of [15] can be applied to cover this case, also
because ∑+∞

𝑛=1
𝜓
𝑛
(𝑡) ̸< +∞.

To ensure the uniqueness of the fixed point, we will
consider the following hypothesis:

(H) for all 𝑥, 𝑦 ∈ 𝑋 with 𝛼(𝑥, 𝑦) < 1, there exists
𝑧 ∈ 𝑋 such that 𝛼(𝑥, 𝑧) ≥ 1, 𝛼(𝑦, 𝑧) ≥ 1, and
lim
𝑛→+∞

𝑝(𝑇
𝑛−1

𝑧, 𝑇
𝑛
𝑧) = 0.

Theorem 14. Adding condition (𝐻) to the hypotheses of
Theorem 10 (resp., Theorem 11), one obtain the uniqueness of
the fixed point of 𝑇.

Proof. Suppose that 𝑥∗ and 𝑦∗ are two fixed points of 𝑇 with
𝑥
∗

̸= 𝑦
∗. If 𝛼(𝑥∗, 𝑦∗) ≥ 1, using (6), we get

𝑝 (𝑥
∗
, 𝑦
∗
) ≤ 𝛼 (𝑥

∗
, 𝑦
∗
) 𝑝 (𝑇𝑥

∗
, 𝑇𝑦
∗
)

= 𝜓 (𝑝 (𝑥
∗
, 𝑦
∗
)) < 𝑝 (𝑥

∗
, 𝑦
∗
) ,

(39)

which is a contradiction, and so 𝑥∗ = 𝑦
∗. If 𝛼(𝑥∗, 𝑦∗) < 1 by

(H), there exists 𝑧 ∈ 𝑋 such that

𝛼 (𝑥
∗
, 𝑧) ≥ 1, 𝛼 (𝑦

∗
, 𝑧) ≥ 1. (40)

Since 𝑇 is 𝛼-admissible, from (40), we get

𝛼 (𝑥
∗
, 𝑇
𝑛
𝑧) ≥ 1, 𝛼 (𝑦

∗
, 𝑇
𝑛
𝑧) ≥ 1, ∀𝑛 ∈ N. (41)

Let 𝑧
𝑛
= 𝑇
𝑛
𝑧 for all 𝑛 ∈ N. Using (41) and (6), we have

𝑝 (𝑥
∗
, 𝑧
𝑛
) = 𝑝 (𝑇𝑥

∗
, 𝑇𝑧
𝑛−1

)

≤ 𝛼 (𝑥
∗
, 𝑧
𝑛−1

) 𝑝 (𝑇𝑥
∗
, 𝑇𝑧
𝑛−1

)

≤ 𝜓 (max {𝑝 (𝑥
∗
, 𝑧
𝑛−1

) , 𝑝 (𝑥
∗
, 𝑇𝑥
∗
) ,

𝑝 (𝑧
𝑛−1

, 𝑇𝑧
𝑛−1

)})

= 𝜓 (max {𝑝 (𝑥
∗
, 𝑧
𝑛−1

) , 𝑝 (𝑧
𝑛−1

, 𝑧
𝑛
)}) .

(42)

Now, let 𝐽 = {𝑛 ∈ N : max{𝑝(𝑥∗, 𝑧
𝑛−1

), 𝑝(𝑧
𝑛−1

, 𝑧
𝑛
)} =

𝑝(𝑧
𝑛−1

, 𝑧
𝑛
). If 𝐽 is an infinite subset of N, then

𝑝 (𝑥
∗
, 𝑧
𝑛
) ≤ 𝜓 (𝑝 (𝑧

𝑛−1
, 𝑧
𝑛
)) < 𝑝 (𝑧

𝑛−1
, 𝑧
𝑛
) ∀𝑛 ∈ 𝐽. (43)

Then, letting 𝑛 → +∞ with 𝑛 ∈ 𝐽 in the previous inequality,
we get

lim
𝑛→+∞

𝑝 (𝑥
∗
, 𝑧
𝑛
) = 0. (44)

If 𝐽 is a finite subset of N, then there exists 𝑛
0
∈ N such

that

max {𝑝 (𝑥
∗
, 𝑧
𝑛−1

) , 𝑝 (𝑧
𝑛−1

, 𝑧
𝑛
)} = 𝑝 (𝑥

∗
, 𝑧
𝑛−1

) ∀𝑛 > 𝑛
0
.

(45)
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This implies that

𝑝 (𝑥
∗
, 𝑧
𝑛
) ≤ 𝜓
𝑛−𝑛0

(𝑝 (𝑥
∗
, 𝑧
𝑛0
)) , ∀𝑛 > 𝑛

0
. (46)

Then, letting 𝑛 → +∞, we get

lim
𝑛→+∞

𝑝 (𝑥
∗
, 𝑧
𝑛
) = 0. (47)

Similarly, using (41) and (6), we get

lim
𝑛→+∞

𝑝 (𝑦
∗
, 𝑧
𝑛
) = 0. (48)

Since𝑝𝑠(𝑥, 𝑦) ≤ 2𝑝(𝑥, 𝑦), using (47) and (48), we deduce that

lim
𝑛→+∞

𝑝
𝑠
(𝑥
∗
, 𝑧
𝑛
) = lim
𝑛→+∞

𝑝
𝑠
(𝑦
∗
, 𝑧
𝑛
) = 0. (49)

Now, the uniqueness of the limit gives us 𝑥
∗

= 𝑦
∗. This

finishes the proof.

From Theorems 10 and 11, we obtain the following
corollaries.

Corollary 15. Let (𝑋, 𝑝) be a complete partial metric space,
and let 𝑇 : 𝑋 → 𝑋 be an 𝛼-𝜓-contractive mapping satisfying
the following conditions:

(i) 𝑇 is 𝛼-admissible,
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1,

(iii) 𝑋 has the property (𝐶) with respect to 𝛼,
(iv) 𝑇 is continuous on (𝑋, 𝑝

𝑠
).

Then, 𝑇 has a fixed point.

Corollary 16. Let (𝑋, 𝑝) be a 0-complete partial metric space,
and let 𝑇 : 𝑋 → 𝑋 be an 𝛼-𝜓-contractive mapping satisfying
the following conditions:

(i) T is 𝛼-admissible,
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1,

(iii) 𝑋 has the property (𝐶) with respect to 𝛼,
(iv) 𝑋 is 𝛼-regular.

Then, 𝑇 has a fixed point.

From the proof of Theorem 14, we deduce the following
corollaries.

Corollary 17. One adds to the hypotheses of Corollary 15
(resp., Corollary 16) the following condition:

(HC) for all 𝑥, 𝑦 ∈ 𝑋 with 𝛼(𝑥, 𝑦) < 1, there exists 𝑧 ∈ 𝑋

such that 𝛼(𝑥, 𝑧) ≥ 1 and 𝛼(𝑦, 𝑧) ≥ 1,

and one obtains the uniqueness of the fixed point of 𝑇.

4. Consequences

Now, we show that many existing results in the literature can
be deduced easily from our theorems.

4.1. Contraction Mapping Principle

Theorem18 (Matthews [1]). Let (𝑋, 𝑝) be a 0-complete partial
metric space, and let𝑇 : 𝑋 → 𝑋 be a givenmapping satisfying

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑝 (𝑥, 𝑦) (50)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑘 ∈ [0, 1). Then 𝑇 has a unique fixed
point.

Proof. Let 𝛼 : 𝑋 × 𝑋 → [0, +∞) be defined by 𝛼(𝑥, 𝑦) = 1,
for all 𝑥, 𝑦 ∈ 𝑋, and let𝜓 : [0, +∞) → [0, +∞) be defined by
𝜓(𝑡) = 𝑘𝑡. Then 𝑇 is an 𝛼-𝜓-contractive mapping. It is easy
to show that all the hypotheses of Corollaries 16 and 17 are
satisfied. Consequently, 𝑇 has a unique fixed point.

Remark 19. In Example 12, Theorem 18 cannot be applied
since 𝑝(𝑇1, 𝑇2) > 𝑝(2, 1). However, using our Corollary 15,
we obtain the existence of a fixed point of 𝑇.

4.2. Fixed Point Results in Ordered Metric Spaces. The exis-
tence of fixed points in partially ordered sets has been
considered in [18]. Later on, some generalizations of [18]
are given in [19–24]. Several applications of these results to
matrix equations are presented in [18]; some applications to
periodic boundary value problems and particular problems
are given in [22, 23], respectively.

In this section, we will show that many fixed point results
in ordered metric spaces can be deduced easily from our
presented theorems.

4.2.1. Ran and Reurings Type Fixed Point Theorem. In 2004,
Ran and Reurings proved the following theorem.

Theorem20 (Ran andReurings [18]). Let (𝑋, ⪯) be a partially
ordered set, and suppose that there exists a metric 𝑑 in 𝑋 such
that the metric space (𝑋, 𝑑) is complete. Let 𝑇 : 𝑋 → 𝑋 be
a continuous and non-decreasing mapping with respect to ⪯.
Suppose that the following two assertions hold:

(i) there exists 𝑘 ∈ [0, 1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘 𝑑(𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦,

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
,

(iii) 𝑇 is continuous.

Then, 𝑇 has a fixed point.

From Theorem 10, we deduce the following generaliza-
tion and extension of the Ran and Reurings theorem in the
framework of ordered complete partial metric spaces.

Theorem 21. Let (𝑋, 𝑝, ⪯) be an ordered complete partial
metric space, and let 𝑇 : 𝑋 → 𝑋 be a non-decreasing
mappingwith respect to⪯. Suppose that the following assertions
hold:

(i) there exists 𝜓 ∈ Ψ such that 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(max{𝑝(𝑥,
𝑦), 𝑝(𝑥, 𝑇𝑥), 𝑝(𝑦, 𝑇𝑦)}) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦,
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(ii) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
,

(iii) 𝑇 is continuous on (𝑋, 𝑝
𝑠
).

Then, 𝑇 has a fixed point.

Proof. Define the function 𝛼 : 𝑋 × 𝑋 → [0, +∞) by

𝛼 (𝑥, 𝑦) = {

1 if 𝑥 ⪯ 𝑦,

0 otherwise.
(51)

From (i), we have
𝛼 (𝑥, 𝑦) 𝑝 (𝑇𝑥, 𝑇𝑦)

≤ 𝜓 (max {𝑝 (𝑥, 𝑦) ,

𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦)}) ,

∀𝑥, 𝑦 ∈ 𝑋.

(52)

Then,𝑇 is a weak𝛼-𝜓-contractivemapping. Now, let𝑥, 𝑦 ∈ 𝑋

such that 𝛼(𝑥, 𝑦) ≥ 1. By the definition of 𝛼, this implies that
𝑥 ⪯ 𝑦. Since 𝑇 is a non-decreasing mapping with respect to
⪯, we have 𝑇𝑥 ⪯ 𝑇𝑦, which gives us that 𝛼(𝑇𝑥, 𝑇𝑦) = 1. Then
𝑇 is 𝛼-admissible. From (ii), there exists 𝑥

0
∈ 𝑋 such that

𝑥
0
⪯ 𝑇𝑥
0
, and so 𝛼(𝑥

0
, 𝑇𝑥
0
) = 1. Moreover, by Remark 9, 𝑋

has the property (C) with respect to 𝛼.
Therefore, all the hypotheses of Theorem 10 are satisfied,

and so 𝑇 has a fixed point.

Example 22. Let 𝑋 = [0, +∞) and 𝑝 : 𝑋 × 𝑋 → [0, +∞)

be defined by 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. Clearly,
(𝑋, 𝑝) is a complete partial metric space. Define the mapping
𝑇 : 𝑋 → 𝑋 by

𝑇𝑥 = 2𝑥, ∀𝑥 ∈ 𝑋. (53)

Clearly 𝑇 is a continuous mapping with respect to the metric
𝑝
𝑠. We endow 𝑋 with the usual order of real numbers. Now,

condition (𝑖) ofTheorem 21 is not satisfied for 𝑥 = 1 ≤ 3 = 𝑦.
In fact, if we assume the contrary, then

𝑝 (𝑇1, 𝑇3) = 6 ≤ 𝜓 (𝑝 (1, 3)) = 𝜓 (3) < 3, (54)

which is a contradiction. Then, we cannot apply Theorem 21
to prove the existence of a fixed point of 𝑇.

Define the function 𝛼 : 𝑋 × 𝑋 → [0, +∞) by

𝛼 (𝑥, 𝑦) =

{
{
{

{
{
{

{

1

4

if (𝑥, 𝑦) ̸= (0, 0) ,

1 if (𝑥, 𝑦) = (0, 0) .

(55)

It is clear that

𝛼 (𝑥, 𝑦) 𝑝 (𝑇𝑥, 𝑇𝑦) ≤

1

2

𝑝 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (56)

Then, 𝑇 is a weak 𝛼-𝜓-contractive mapping with 𝜓(𝑡) = 𝑡/2

for all 𝑡 ≥ 0. Now, let 𝑥, 𝑦 ∈ 𝑋 such that 𝛼(𝑥, 𝑦) ≥ 1. By
the definition of 𝛼, this implies that 𝑥 = 𝑦 = 0. Then we
have 𝛼(𝑇𝑥, 𝑇𝑦) = 𝛼(0, 0) = 1, and so 𝑇 is 𝛼-admissible. Also,
for 𝑥
0
= 0, we have 𝛼(𝑥

0
, 𝑇𝑥
0
) = 1. Consequently, all the

hypotheses of Theorem 10 are satisfied, then we deduce the
existence of a fixed point of 𝑇. Here 0 is a fixed point of 𝑇.

4.2.2. Nieto and Rodŕıguez-López Type Fixed Point Theorem.
In 2005, Nieto and Rodŕıguez-López proved the following
theorem.

Theorem23 (Nieto and Rodŕıguez-López [22]). Let (𝑋, ⪯) be
a partially ordered set, and suppose that there exists a metric 𝑑
in𝑋 such that the metric space (𝑋, 𝑑) is complete. Let𝑇 : 𝑋 →

𝑋 be a non-decreasing mapping with respect to ⪯. Suppose that
the following assertions hold:

(i) there exists 𝑘 ∈ [0, 1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘 𝑑(𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦,
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
,

(iii) if {𝑥
𝑛
} is a non-decreasing sequence in 𝑋 such that

𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → +∞, then 𝑥

𝑛
⪯ 𝑥 for all 𝑛.

Then, 𝑇 has a fixed point.

FromTheorem 11, we deduce the following generalization
and extension of the Nieto and Rodŕıguez-López theorem in
the framework of ordered 0-complete partial metric spaces.

Theorem 24. Let (𝑋, 𝑝, ⪯) be an ordered 0-complete partial
metric space, and let 𝑇 : 𝑋 → 𝑋 be a non-decreasing
mappingwith respect to⪯. Suppose that the following assertions
hold:

(i) there exists 𝜓 ∈ Ψ such that 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(max{𝑝(𝑥,
𝑦), 𝑝(𝑥, 𝑇𝑥), 𝑝(𝑦, 𝑇𝑦)}) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ⪯ 𝑦,

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝑥

0
⪯ 𝑇𝑥
0
,

(iii) if {𝑥
𝑛
} is a non-decreasing sequence in 𝑋 such that

𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → +∞, then 𝑥

𝑛
⪯ 𝑥 for all 𝑛.

Then,𝑇 has a fixed point.

Proof. Define the function 𝛼 : 𝑋 × 𝑋 → [0, +∞) by

𝛼 (𝑥, 𝑦) = {

1 if𝑥 ⪯ 𝑦,

0 otherwise.
(57)

The reader can show easily that 𝑇 is a weak 𝛼-𝜓-contractive
and 𝛼-admissible mapping. Now, by Remark 9, 𝑋 has the
property (C) with respect to 𝛼 and is 𝛼-regular. Thus all the
hypotheses of Theorem 11 are satisfied, and 𝑇 has a fixed
point.

Remark 25. In, Example 22, also Theorem 24 cannot be
applied since condition (𝑖) is not satisfied.

Remark 26. To establish the uniqueness of the fixed point,
Ran and Reurings, Nieto and Rodŕıguez-López [18, 22] con-
sidered the following hypothesis:

(u) for all 𝑥, 𝑦 ∈ 𝑋, there exists 𝑧 ∈ 𝑋 such that 𝑥 ⪯ 𝑧

and 𝑦 ⪯ 𝑧.

Notice that in establishing the uniqueness it is enough to
assume that (u) holds for all 𝑥, 𝑦 ∈ 𝑋 that are not comparable.
This result is also a particular case of Corollary 17. Precisely,
if 𝑥, 𝑦 ∈ 𝑋 are not comparable, then there exists 𝑧 ∈ 𝑋 such
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that 𝑥 ⪯ 𝑧 and 𝑦 ⪯ 𝑧. This implies that 𝛼(𝑥, 𝑧) ≥ 1 and
𝛼(𝑦, 𝑧) ≥ 1, and here, we consider the same function 𝛼 used
in the previous proof. Then, hypothesis (HC) of Corollary 17
is satisfied, and so we deduce the uniqueness of the fixed
point. For establishing the uniqueness of the fixed point in
Theorems 21 and 24, we consider the following hypothesis:

(U) for all 𝑥, 𝑦 ∈ 𝑋 that are not comparable, there
exists 𝑧 ∈ 𝑋 such that 𝑥 ⪯ 𝑧, 𝑦 ⪯ 𝑧, and
lim
𝑛→+∞

𝑝(𝑇
𝑛−1

𝑧, 𝑇
𝑛
𝑧) = 0.

5. Application to Ordinary
Differential Equations

In this section, we present a typical application of fixed
point results to ordinary differential equations. In fact, in the
literature there are many papers focusing on the solution of
differential problems approached via fixed point theory (see,
e.g., [15, 25, 26] and the references therein). For such a case,
even without any additional problem structure, the optimal
strategy can be obtained by finding the fixed point of an
operator 𝑇 which satisfies a contractive condition in certain
spaces.

Here, we consider the following two-point boundary
value problem for second order differential equation:

−

𝑑
2
𝑥

𝑑𝑡
2
= 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1]

𝑥 (0) = 𝑥 (1) = 0,

(58)

where 𝑓 : [0, 1] × R → R is a continuous function. Recall
that the Green’s function associated to (58) is given by

𝐺 (𝑡, 𝑠) = {

𝑡 (1 − 𝑠) 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝑠 (1 − 𝑡) 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(59)

Let 𝐶(𝐼) (𝐼 = [0, 1]) be the space of all continuous
functions defined on 𝐼. It is well known that such a space with
the metric given by

𝑑 (𝑥, 𝑦) =




𝑥 − 𝑦




∞

= max
𝑡∈𝐼





𝑥 (𝑡) − 𝑦 (𝑡)




 (60)

is a complete metric space.
Now, we consider the following conditions:

(i) for all 𝑡 ∈ 𝐼, for all 𝑎, 𝑏 ∈ R with |𝑎|, |𝑏| ≤ 1, we have




𝑓 (𝑡, 𝑎) − 𝑓 (𝑡, 𝑏)





≤ 8𝜓 (|𝑎 − 𝑏|) , (61)

where 𝜓 ∈ Ψ,
(ii) there exists 𝑥

0
∈ 𝐶(𝐼) such that ‖𝑥

0
‖
∞

≤ 1,
(iii) for all 𝑥 ∈ 𝐶(𝐼),

‖𝑥‖∞
≤ 1 ⇒











∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠









∞

≤ 1. (62)

Theorem27. Suppose that conditions (𝑖)−(𝑖𝑖𝑖) hold.Then (58)
has at least one solution 𝑥

∗
∈ 𝐶
2
(𝐼).

Proof. Consider 𝐶(𝐼) endowed with the partial metric given
by

𝑝 (𝑥, 𝑦) = {





𝑥 − 𝑦




∞

if ‖𝑥‖∞,




𝑦



∞

≤ 1,





𝑥 − 𝑦




∞

+ 𝜌 otherwise,
(63)

where 𝜌 > 0. It is easy to show that (𝐶(𝐼), 𝑝) is 0-complete but
is not complete. In fact,

𝑝
𝑠
(𝑥, 𝑦) =

{
{

{
{

{

2




𝑥 − 𝑦




∞

if (‖𝑥‖∞,




𝑦



∞

≤ 1)

or (‖𝑥‖∞,




𝑦



∞

> 1) ,

2




𝑥 − 𝑦




∞

+ 𝜌 otherwise,
(64)

and consequently (𝐶(𝐼), 𝑝𝑠) is not complete.
On the other hand, it is well known that 𝑥 ∈ 𝐶(𝐼), and is a

solution of (58), is equivalent to 𝑥 ∈ 𝐶(𝐼) is a solution of the
integral equation

𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, ∀𝑡 ∈ 𝐼. (65)

Define the operator 𝑇 : 𝐶(𝐼) → 𝐶(𝐼) by

𝑇𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, ∀𝑡 ∈ 𝐼. (66)

Then solving problem (58) is equivalent to finding 𝑥∗ ∈
𝐶(𝐼) that is a fixed point of 𝑇. Now, let 𝑥, 𝑦 ∈ 𝐶(𝐼) such that
‖ 𝑥‖
∞
, ‖ 𝑦‖
∞

≤ 1. From (i), we have





𝑇𝑥 (𝑡) − 𝑇𝑦 (𝑡)






=











∫

1

0

𝐺 (𝑡, 𝑠) × [𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))] 𝑑𝑠











≤ ∫

1

0

𝐺 (𝑡, 𝑠)




𝑓 (𝑠, 𝑥 (𝑠)) −𝑓 (𝑠, 𝑦 (𝑠))





𝑑𝑠

≤ 8∫

1

0

𝐺 (𝑡, 𝑠) 𝜓 (




𝑥 (𝑠) − 𝑦 (𝑠)





) 𝑑𝑠

≤ 8(sup
𝑡∈𝐼

∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠)

× 𝜓 (




𝑥 − 𝑦




∞

)

≤ 𝜓 (




𝑥 − 𝑦




∞

) .

(67)

Note that for all 𝑡 ∈ 𝐼,∫1
0
𝐺(𝑡, 𝑠)𝑑𝑠 = (−𝑡

2
/2)+(𝑡/2), which

implies that

sup
𝑡∈𝐼

∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 =

1

8

. (68)

Then, for all 𝑥, 𝑦 ∈ 𝐶(𝐼) such that ‖ 𝑥‖
∞
, ‖ 𝑦‖
∞

≤ 1, we
have





𝑇𝑥 − 𝑇𝑦




∞

≤ 𝜓 (




𝑥 − 𝑦




∞

) . (69)
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Define the function 𝛼 : 𝐶(𝐼) × 𝐶(𝐼) → [0, +∞) by

𝛼 (𝑥, 𝑦) = {

1 if ‖𝑥‖∞,




𝑦



∞

≤ 1,

0 otherwise.
(70)

For all 𝑥, 𝑦 ∈ 𝐶(𝐼), we have

𝛼 (𝑥, 𝑦)




𝑇𝑥 − 𝑇𝑦




∞

≤ 𝜓 (




𝑥 − 𝑦




∞

) . (71)

Then, 𝑇 is an 𝛼-𝜓-contractive mapping. From condition (iii),
for all 𝑥, 𝑦 ∈ 𝐶(𝐼), we get

𝛼 (𝑥, 𝑦) ≥ 1 ⇒ ‖𝑥‖∞
,




𝑦



∞

≤ 1

⇒ ‖𝑇𝑥‖∞
,




𝑇𝑦




∞

≤ 1

⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1.

(72)

Then, 𝑇 is 𝛼-admissible. From conditions (ii) and (iii), there
exists 𝑥

0
∈ 𝐶(𝐼) such that 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1. Thus, all the

conditions of Corollary 16 are satisfied, and hence we deduce
the existence of 𝑥∗ ∈ 𝐶(𝐼) such that 𝑥∗ = 𝑇𝑥

∗; that is, 𝑥∗ is a
solution to (58).
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