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We study the initial value problem of some nonlinear Dirac equations which are L (R) critical. Corresponding to the structure
of nonlinear terms, global strong solutions can be obtained in different Lebesgue spaces by using solution representation formula.
The uniqueness of weak solutions is proved for the solution U € L*([0, T]; Y™(R)).

1. Introduction

In this study, we are interested in global strong solutions of
nonlinear Dirac type equations:
i (0,U, +0,U;) = ag, F ULU,), )
a
—i (atUZ - axUZ) = %ZF (Ul’ Uz) >
where F(U,,U,) : C* — R is a nonlinear potential function
which will be specified later.
The following Thirring model with the potential
F(U,,U,) = |U1|2|U2|2 has been studied in [1-4]:

-i(0,U, +0,U,) = |U2|2U1’

-i(0,U, - 3,U,) = [U,|'U,, 2)

U, (0,x) = uy (x), U, (0,x) = u, (x).

The initial value problem of (2) was studied in [1, 3] in terms
of Sobolev space H* (s > 1). Low regularity well-posedness
was discussed in [4] showing that there exists a time T > 0
and solution U € C([0,T], H(R)) (s > 0) of the Cauchy
problem (2). Their results were based on the observation of
the null structure of Thirring equations and application of
x*b spaces which is a certain subspace of C([0,T], H*(R)).
They also proved global well-posedness for s > 1/2 and
unconditional uniqueness for s > 1/4. Nonlinear Dirac

equations in R'*" have been studied by several authors [5-
9].
In the context of Bragg grating [10, 11], the nonlinear term
F takes the form
4 4 2071 12
F=|0| +|0y| +4u[]u,]", ®)
. . _ 2 2 — 2
which gives %IF = 2|U,|” + 4|U,|")U, and %ZF = 2|U,|" +
4|U,|*)U,. We may consider the sixth and higher orders. The
following potential term is introduced in the context of the
Bose-Einstein condensates [12]:

F= (|U1|2 + |U2|2) |U1|2|U2|2’ (4)

which gives o5 F = QIU,I*|U,* + [U,[)U, and oy F =
(2|U2|2|U1|2 + |U1|4)U2-

Several authors [4, 5, 7] have studied the initial value
problem of the following Dirac equations with quadratic
nonlinearities:

-i(0,U, +0,U,) = Q, (U, U,), )
—i (atUZ - axUZ) =Q, (UpUz) .

If the nonlinear term is of Q; = |U2|2, Q, =1U, |2 type (Q, =
U,U,, Q, = U,U,, resp.), then one can obtain local well-
posedness for the Sobolev space H* (s > 0) [4] (H® (s > —1/4)
[7], resp.). Note that the scaling properties of quadratic Dirac
equations give the critical Sobolev exponent s, = —1/2.



Now it seems natural to consider the following equations:

3,U, + .U, = i|u, [*|u," U, ©
3,U, - 3.U, = i|u, [*[u,[" U,

which are generalization of the basic cases of the literature
and model problem to investigate regularities of solutions
according to the structure of nonlinearities. Here, m is
positive integer and k = 0,1,...,m.

The system (6) is invariant under the scaling

U™ (t,x) = AU (A", Ax), 7)

from which we deduce a scale invariant Lebesgue space
L™(R). We study the initial value problem of (6) in Lebesgue
space. Let us denote

p(m,k) = Max (m—k,2k +1). (8)

Note that p(m,k) > 2 except for m = 1 and k = 0 where
p(1,0) = 1. We define

Y?(R) = L* (R)n L” (R), )

where p > 2. We call Y7 as subcritical space for p > m, critical
space for p = m, and supercritical space for p < m.

For the initial data u; € LZ(IR)(j = 1,2), we have proved
in [2] that there exists a global strong solution U = (U;,U,)
to the initial value problem (2) in the critical space

U e C([0,00); L* (R)). (10)

Elementary and interesting approach was made. and special
structure of nonlinearity was made use of in applying Fubini’s
theory in integration. The following is concerned with the
existence of global strong solutions for the case of m > 2 or
k=1

Theorem 1. For the initial data v; € YPmR (R) (G = 1,2),
there exists a global strong solution V' = (V,,V,) to the initial
value problem (6) which satisfies

V € C([0,00); Y™ (R)). (1)

Remark 2. (1) Related with the title of this paper, we empha-
size the case p(m, k) < m where global strong solution can be
constructed in the super-critical space.

(2) Taking the embedding YI(R) — Y'(R) (q > r)
into account, it is likely to say that the system (6) with small
p(m, k) has better smoothing property than equations with
large p(m, k). We can check, in the case of (4), the existence
of solution V' € C([0,00); Y (R)) because of p4,2) =5 >
4 = p(4,0).

(3) For the case of m = 1 and kK = 0, we can construct
a global strong solution V' = (V;,V}) to the initial value
problem (6) which satisfies

V e C([0,00); L' (R)) (12)

for the initial data vj € LY(R) (j=1,2).
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Our second result is concerned with the uniqueness of
weak solutions. The null structure of the nonlinearity of
Thirring model which is L2 critical problem was used in [2] to
prove the uniqueness in Y*. To treat the general nonlinearity
in (6) of which we could not find the null structure, a different
approach is considered.

Theorem 3. LetU andV be solutions of (6) in the distribution
sense with same initial data. Moreover, one assumes that

U,V e L® ([0, T); Y™ (R)). (13)

Then, one has ||(U - V)(t, )2 =0for0<t <T.

Theorems 1 and 3 imply that if p(m, k) > m + 2 then a
strong solution to the initial value problem (6) is unique and
is in fact a well-posed solution.

Theorem1 is proved in Section2 and Theorem 3 in
Section 2.2. We use C to denote various constants and A < B
to denote an estimate of the form A < CB.

2. Proof of Theorem 1

To construct global strong solution of (6), we basically follow
the idea of [2] with modification. We will find a solution
representation formula. Then, global strong solutions can be
obtained by constructing an explicit approximation and using
Fubini’s theorem.

2.1. Representation Formula of Classical Solution. In this
subsection, we consider C*((0,T) x R) solutions which
satisfy (6) in the classical sense. An explicit representation
of its solution is given in terms of initial data [2, 13]. It
is interesting to express the solution of nonlinear partial
differential equations in terms of initial data.

Integrating (6) along the outgoing and ingoing character-
istics, we obtain

U, (t,x) =uy (x —t)
X exp (i Jr U, (s, x -t + s)lk
0

x |U, (s,x -t + s)|m_kds> ,
(14)
U, (t,x) =u, (x +1)
‘ Kk
X exp (1] |U2 (s,x+t—s)|
0

X |Uy (s, x+ - s)|m7kds> .

Taking into account

|U1 (t, x)| = |u1 (x— t)| , |U2 (t,x)| = |u2 (x + t)| , (15)
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(14) becomes
Uy (t,x) =uy (x —1t)

i k rx+t m—k
<o (-0l [ Oy,

U, (t,x) =u, (x +1)

X exp (%qu G+ L_t oy (y)lm_kdy) :
(16)

In the case of k = m, we have the following obvious
representation formula of solution:

U, (t,x) =u; (x —t)exp (it|u1 (x - t)|m) ,
17)
U, (t,x) = u, (x +t) exp (it‘|u1 (x - t)|m) .

2.2. Global Strong Solutions in YP(R). We now present the
proof of Theorem 1. Let us introduce a strong solution of the
initial value problem of the system (6).

Definition 4. Consider the Cauchy problem (6) with initial
datav = (v, v,) € YPU™O(R)). It is said that V = (V},V,) is
a strong solution to the Cauchy problem on the time interval
[0, T] provided that

(v, V,) € C ([0, T1; YP™0 (R)) (18)
satisfy (6) in the sense of distributions. That is, for any ¢ €
Co’((-T,T) x R), we have

r k -k
| ] vid@ s vidg iVl Vi duae
0o Jr
(19)
+ J v ()¢ (0,x)dx =0,
R

T
J- J V30, = V,0,¢ + i|V2|k|V1 |m_kV2‘/’ dxdt
o Jr (20)
+ J v, (x) ¢ (0,x)dx = 0.
R

Remark 5. We say that V is a weak solution if V€
L®([0, T]; YPK)(R)) satisfies (6) in the sense of distribution.

For the initial data v € Yp(m’k)(lR) (j = 1,2), we propose
that the following functions V; are the global strong solution
of (6):

i (t)x) l (;C t)
I 2 1 y y >

Vy(t,x) =v, (x +1)

i k X+t m—k
><exp<z|v2 (x+1)] Lit v ()] dy>.

(21)

For the smooth function sequence {uﬁ.")}f;’l (j = 1,2) which

mH(R) as n — 00, we consider

converges to v; in Y?
sequence of classical solutions U;”) of (6). First of all, we

estimate the difference of (
(16) and (21), we have

Vi, U;")). Using the representation

(v, -Uf”) (& )|

< exp( |u(")

ol [ o)

x (v —ui" (x—t)l

X+t

+|v, (x_t)< @2 =) [ () dy

i/l (x-1)] e o™ )

S'( _”1 (x—t)|

+ = |1/1 (x— t)|

ol [ o

'm—k

i o [ ) dy|

=(A) +(B),
(22)

where we used | — e”| < |x — y| for x, y € R. The L norm
of the first term (A) can be treated as follows:

(JR |(v1 - u(ln)) (x - t)'qu>

To estimate the L? norm of the second term (B), we consider
the following three cases.

"v1 —u; )" (23)

(i) For the case k = 0, we have with2 < p <m
» X+t " X+t " m p
JR vy (x =) J_t v ()["dy - I [ ) dyl dx

o (Il + ) ol

<

(24)

(ii) For the case k = m, we have with 1 < p < (2m +
1)/(m+1)

(2t)PJ [y Ge= 0wy (e =] = ful? e = ]| ax
R
< @O fon s = o

< (It + o).

(25)



(iii) For other cases 1 < k <m — 1, we havewith 1 < p <

p(m, k)/(k +1)

J- vy (x—1)|”

mG=oF [ o

m—k p
oy e - f)” u8” ()| dy’ dx

X+t i p
Ssgpq thz(y) " dy>

xX—

|v1 (x -

X JR |v1 (x - t)|p

ol

X J vy (x - t)|p.u§”) (x - t)lkpdx
R

|u(”) (x - t)'klpdx

m— n m—k P
v D" = [ ()] Idy)

X+t I P »
<sup( [ J "y ) I

L(k+l)p
(k-1)p
X ”Vl - uln)| Lk+Dp <|| 1| kk+llzf ” ) ' k+1)p>
m—k (n) m—k P
+sup(J [v, ()] |u y)| ldy)
kp
X |lV1||L(k+1 |u(n) LkeDp>
(26)
where
SUP<J v ()" >
(Zt)P/2||v2|| form—k =1,
||V2||(LT,: kk)P form-k>2,
mek | o) k] o\ (27)
sup [ [l 0P = "y
(2t)P/2“v iz form-k=1,
k-1\?
v = (Bl 5 )

form-k > 2.

Now, we are ready to prove that V = (V;,V,) is a global
strong solution to the Cauchy problem (6). It is easy to check
(18) by considering the representation (21). Making use of the
classical solution to (6), we have

T
j J Viduh + Vided +ilVi [{[Va| " Vi dicdt
0 R

+ J v (%) ¢ (0,x)dx
R
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") (3¢ + 0,¢) dxdt

f i

+ JR (v - ui”)) ¢ (0,x)dx

T
e[ (vl
0 JR

Lo Ul ) gt

= M+Q2)+3).
(28)

Considering (23)-(26) with g = p = p(m, k)/(k + 1), the first
integral (1) can be estimated as follows:

(1= T sup (o &, ) o + 10 &) )

(29)

X sup “

0<t<T En)) () “Lq’

where
os<lt1§T" UYI)) G ')"Lq
’ ”Vl - ugn) 1
+ @Dl e
X“Vl u; )”U,(mk) (" 1||$(y2<‘)0 “ o 'l;;(yj?f)
A T AT L A
form-k=1,
< n-ul,,

(m—k) P
[l I 2 =
(k=1)
o (Il + o)
_ k-1\?
s (bl )

><||V1||Lp(mk>\|u “Lp(mk)]

(1)
1

form-k>2.
(30)

The integral (2) can be bounded easily:

jR (vl - u(ln)) $(0,x)dx < "v1 —u®

12 “(/5 (0, x)"Lz- (31)
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To take care of the integral (3), we decompose the integral
by using representation (16) and (21) with the notation

E(vy,v,,k) = exp((i/2)lvy (x = O [7 v, ()" *dy):
T
[ ] (v,
0 JR
)|k W) |k
- U U U ) 6,20

<[ [ (e o - i -0 e 0™

X vy (x —t) E (vy, vy, k) ¢ (£, x) dxdt

L1,

X (|v2 (x + t)|m_k

k
ugn) (x - t)|

- [ e ")
x v, (x —t) E (v, vy, k) ¢ (£, x) dxdt
T o
o[ ol o
- ugn)) (x —t) E (v;, vy, k) ¢ (t, x) dxdt

I

(v, vy k) = E(ug"),u2 , ))gb(t x) dxdt

X

ul” (x - t)| | e+ 1) “U (x — 1)

+

(o
I
’

= (D) + 1) + (II1) + (IV),

X

(32)

where we understand that the integral (I) does not exist for
k = 0 and the integral (II) for k = m.

Changing variables x + t = yand x — t = s, the first
integral (I) can be bounded as follows:

IQKLEW

x |vy )| | (3> )| dyds
s+2T
< sup (J v, D" ¢ (3 9)] dy)
<[ N -u) )
X <|v1 (s)|k7

vy O = [ )| | v, "

+ lu&")(s)|k71> vy (s)| ds

soup( [ 1 Ol (ol ) -

Lt

k-1
|

(s + Ju?

(33)

5
where we note that k > 1. We also have
s+2T ek
sup J [va D" |9 (3. 5)| dy
s+2T
supJ- |¢ (y.s)|dy ifm-k=0,
’ ) s+2T 2 1/2
||v2||L251§p(J |6 (y>5)] dy> ifm-k=1,
M|k it m—-k>2,
(34)

where we denote M = supZT|</>(t, x)| where X = {(x,t) | x €
R,0<t<T}.

For the integral (II), we consider two cases. Note that the
integral (II) disappears if k = m. For the first case m — k = 1,
we have

s+2T
i< [ [ ©ff e 02 - 14 )]
x| ()] ¢ (3, 5)| dyds
s+2T
< sup (J v, )] = [15” ()| 16 (3:9)] dy)

x JR 'u&") (s)|k v, (s)| ds

1/2

< sgP(FZT |6 (y. S)Izdy>

(n)

o R P Ty

(35)

where k > 1 because m = 1 and k = 0 case is excluded. For
the second case m — k > 2, we have

i< [ [ ol
y=2
x vy ()] (3, 5)| dsdy

y
< sup <J 'u(ln) (S)'k v ()] ¢ (3> 5)] ds)
y y=2T

[v2 () e

- ui") () |m_k|

n m—k— ) k=1

=l (Rl ).

(36)
where we have
4 (n) k
supJ u; (s)' [vi )| |¢ (3, 5)| ds
y y-2T
y , A\
blosao( [ p0ns)fas) ifk=o,
b y y=2T

ke Vl "Lkﬂ lfk > 1.

(37)



The integral (III) can be treated in a similar way to (II).
For the case k = 0, we have

[(TID)|
y
< sup (J (v = ) 9)] ¢ (35)| d5> el
y y=2T
} o G8)
< sup(l |6 (3:9)| d5>
y y-2T
oy = [
For the case k > 1, we have
s+2T ™ m—k
(D) < sup (J W D 18 (9) dy)
k 39
X = o o e 9
k
< M| e = | s [ -

Taking into account le™ —e”| < |x — y| for x, y € R, the
integral (IV) can be bounded for the case k = 0:

L ot

Y y m
[/ o= [ [ut? 0"l 3.9 dsdy

N

X

ssap ([ [l o - 2 o] )
“J,

where supremum sup,  is taken over s € Rands < y <
s + 2T Then, we obtain

ug” ()’)|m JJ’ |u§") (s)| |6 (y,s)| dsdy,
y=2T
(40)

V) % o = (Pl + o)

» Sl;P( Ly_n ¢ (7, S)lzdS)

For the case k > 1, we have

" |, v 4D
o o

s+2T —
[ b of e o

X

y
v o) J v, (| *dh

—|u” (s)|k jy |ul” (h)|m'kdh‘ 6| dyds
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s+2T k+1 —k
<[] o e oo o
N

J
. J~R J»s+2T 'ugn) (5)|k+1'ugn) (y)'mfk

k
() - | (s)|
y
<
S
y
< sup <j
ys \Js
K+l s+2T
X J uﬁ") (s)| ' v, (s)|kj
R s
y
+ sup <J
ys \Js

v ) -

=

m— n m—k
fra O] = [ ]| g (7.5)] s

X

m—k
W (W[ dh$ (v, 5)| dyds

Imm“%#%Wﬂ%>

" m—k
u? (p)|" gl dyds

k+1

ul (h)'m_kdh> JR [l (s)|

™ k s+2T
n
u, (s)| ”

S

" m—k
x u? ()| ¢l dyds.

(42)

Considering s < y < s+ 2T, we can bound (IV) as follows.
For the case m — k = 0, we have

1
|(IV)| <2T ugn) Tl‘:—vﬁ»l “Vl - u(ln) L2m+
el ™ m-1 s+2T
(Il + ) sue ([t ol ).
(43)
For the case m — k = 1, we have
1AV)] < V2T v, = | e o [ s
s2T 5 1/2 (44)
X ”u;ﬂ) L252P<L |(/5 (y, S)l dy)
For other cases (k > 1 and m — k > 2), we finally have
ke —k-1
V)< M, = 8 (ool )
—k K+l
o g I 7 Y
(45)

(n) 2m-2k (n) k+1 (n)
+M||”2 ek (B || e V1 T My

k-1 k-1
(Il ot )
Then, we have |[(1)| + |(2)| + |[(3)] — 0asn — oo which
implies that (19) holds.

"L2k+l

(n)
1

u

Proof of Theorem 3

Here, we prove Theorem 3 which shows the uniqueness
of weak solutions to (6). Before proving Theorem 3, we
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introduce a lemma given in [14] for easy reference. Consider
the following equations on the time interval [-L, L]:

(at + ax) ve = fo
(0,-0)v. = f.

(46)

Lemma 6. Suppose that f, € L'([-L,L] x R) and v, €
L®([-L, L]); LY(R)) satisfy (46) in the sense of distribution.
Then, one has

L-T
J v, (T, y)| dy
-L+T

L T L-t
< I |v, (0, y)| dy +J I |f+ (¢, y)| dydt,
—-L L+t

e (47)

JLTT [v_ (T, y)|dy

< J_LL [v_ (0, y)| dy + JOT j_LL; |f- (&, )| dydt.

Now let U; and V; be two weak solutions of (6) with the
same initial data. We define w; =U; -V, Then, we have
equations for w;:

. k-1 m—k
dw; + 0w, = l(|U1| - |V1|) |U1| |U2| U,

|m—k—l

+"'+i|V1|k(|U2|_|V2|)|U2 U

T AN A i (AR )Y o8

S ANA.
k-1 m—k (48)
0w, - 0,w, = i (|Uy| - VL)) |U,| |U,|" U,

Tt i|V2|k (|U1| - |V1|) |U1|m_k_1U2
+o iV (U - D T,
+i[V Vi w,.

Multiplying by complex conjugates, respectively, and taking
the real parts, we obtain

at|w1|2 + ax|w1|2

=2(|u)] - Vi) [U, U, 1 (U0

o 2V (U] - V) Im (T, )

2 2 (49)
atl“"zl - axlel
|k

=2 (|U2| - |V2|) |U2 _1|U1|m_k Im (ﬁzwz)

m—k—1

+"'+2|V2|k|V1| ([ui] = vi|) Im (szz)’

where we note that Re(iIVllkIVZImkawllz) = 0 =
Re(iIVZIkIVIImkawZIZ). Applying Lemma 6 to (49) and con-
sidering wj(O, x) = 0, we have

L-T 2
J |w, (. y)|"dy
—L+T

U

Uy || e

T
< [ = Wil ol 0

m—k—1

k
ot Vil [Vall 0] = V2l e

XU ez eor | ezt

It iy g M)
where we understand || f| > = (I_LH |f(t, %) dx)
To estimate |||Uj(t, | - IVj(t, I (j = 1,2) in (50) we

multiply (6) by IUjImﬁ j to obtain

Lm+2

m+2

3, UL ™ + o, |u, ™ = o,
(51)
at|U2|m+2 _ ax|U2|m+2 -0.
With the same equations for V;, we obtain
at (lU1|m+2 _ |V1|m+2) + ax (|U1lm+2 _ |V1|m+2) _ 0, ( )
52
at (lU2|m+2 _ |V2|m+2) _ ax (|U2lm+2 _ |V2|m+2) -0
Applying Lemma6 and considering |U;(0, x)|™+2
IV;(0, x)|™? = 0, we have
Lt
| s e0] = v, 60"
—L+t
(53)

I
< J;L:t ||Uj(t, x)|m+2 3 'Vj(t, x)|m+2| dx <0,

Considering the inequality (50), we conclude that

L-T
|- ol (& y)Pdy = 0.
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