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Gordji et al. established the Hyers-Ulam stability and the superstability of𝐶∗-ternary homomorphisms and𝐶∗-ternary derivations
on𝐶∗-ternary algebras, associated with the following functional equation:𝑓((𝑥

2
−𝑥
1
)/3)+𝑓((𝑥

1
−3𝑥
3
)/3)+𝑓((3𝑥

1
+3𝑥
3
−𝑥
2
)/3) =

𝑓(𝑥
1
), by the direct method. Under the conditions in the main theorems, we can show that the related mappings must be zero. In

this paper, we correct the conditions and prove the corrected theorems. Furthermore, we prove the Hyers-Ulam stability and the
superstability of 𝐶∗-ternary homomorphisms and 𝐶∗-ternary derivations on 𝐶∗-ternary algebras by using a fixed point approach.

1. Introduction

A 𝐶
∗-ternary algebra is a complex Banach space𝐴, equipped

with a ternary product (𝑥, 𝑦, 𝑧) 󴀚󴀠 [𝑥, 𝑦, 𝑧] of 𝐴3 into
𝐴, which is C-linear in the outer variables, conjugate C-
linear in the middle variable, and associative in the sense
that [𝑥, 𝑦, [𝑧, 𝑤, V]] = [𝑥[𝑤, 𝑧, 𝑦], V] = [[𝑥, 𝑦, 𝑧], 𝑤, V], and
satisfies ‖[𝑥, 𝑦, 𝑧]‖ ≤ ‖𝑥‖ ⋅ ‖𝑦‖ ⋅ ‖𝑧‖ and ‖[𝑥, 𝑥, 𝑥]‖ = ‖𝑥‖

3.
If a 𝐶∗-ternary algebra (𝐴[⋅, ⋅, ⋅]) has an identity, that is, an
element 𝑒 ∈ 𝐴 such that 𝑥 = [𝑥, 𝑒, 𝑒] = [𝑒, 𝑒, 𝑥] for all 𝑥 ∈ 𝐴,
then it is routine to verify that 𝐴, endowed with 𝑥 ∘ 𝑦 :=

[𝑥, 𝑒, 𝑦] and 𝑥∗ := [𝑒, 𝑥, 𝑒], is a unital 𝐶∗-algebra. Conversely,
if (𝐴, ∘) is a unital 𝐶∗-algebra, then [𝑥, 𝑦, 𝑧] := 𝑥 ∘ 𝑦

∗

∘ 𝑧

makes 𝐴 into a 𝐶∗-ternary algebra. A C-linear mapping𝐻 :

𝐴 → 𝐵 between 𝐶∗-ternary algebras is called a 𝐶∗-ternary
homomorphism if

𝐻([𝑥, 𝑦, 𝑧]) = [𝐻 (𝑥) ,𝐻 (𝑦) ,𝐻 (𝑧)] (1)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐴. A C-linear mapping 𝛿 : 𝐴 → 𝐴 is called a
𝐶
∗-ternary derivation if

𝛿 ([𝑥, 𝑦, 𝑧]) = [𝛿 (𝑥) , 𝑦, 𝑧] + [𝑥, 𝛿 (𝑦) , 𝑧]

+ [𝑥, 𝑦, 𝛿 (𝑧)] (𝑥, 𝑦, 𝑧 ∈ 𝐴) .

(2)

Ternary structures and their generalization, the so-called
𝑛-ary structures, raise certain hopes in view of their applica-
tions in physics (see [1–4]).

The stability problemof functional equations is originated
from the following question of Ulam [5]: under what con-
dition does there exist an additive mapping near an approxi-
mately additive mapping? In 1941, Hyers [6] gave a partial
affirmative answer to the question of Ulam in the context
of Banach spaces. In 1978, Rassias [7] extended the theorem
of Hyers by considering the unbounded Cauchy difference
‖𝑓(𝑥+𝑦)−𝑓(𝑥)−𝑓(𝑦)‖ ≤ 𝜀(‖𝑥‖

𝑝

+‖𝑦‖
𝑝

), (𝜀 > 0, 𝑝 ∈ [0, 1)).
The stability problems of several functional equations have
been extensively investigated by a number of authors and
there are many interesting results concerning this problem
(see [8–12]).

Gordji et al. [13] proved the Hyers-Ulam stability and
the superstability of 𝐶∗-ternary homomorphisms and 𝐶

∗-
ternary derivations on 𝐶∗-ternary algebras, associated with
the functional equation
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)

= 𝑓 (𝑥
1
)

(3)
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by applying the direct method. Under the conditions in the
main theorems of [13], we can show that the relatedmappings
must be zero.

In this paper, we change the conditions of [13] and
establish the corrected theorems. Moreover, we prove the
Hyers-Ulam stability and the superstability of 𝐶∗-ternary
homomorphisms and 𝐶∗-ternary derivations on 𝐶∗-ternary
algebras by employing a fixed point method. In fact, we show
that some results of [13] are the special cases of our results.

2. Superstability: Direct Method

Throughout this paper, we assume that 𝐴 is a 𝐶∗-ternary
algebra with norm ‖ ⋅ ‖ and that 𝐵 is a 𝐶∗-ternary algebra
with norm ‖ ⋅ ‖. Moreover, we assume that 𝑛

0
∈ N is a positive

integer and suppose that T1
1/𝑛0

:= {𝑒
𝑖𝜃

; 0 ≤ 𝜃 ≤ 2𝜋/𝑛
0
}.

In this section, we modify some results of [13]. Recall
that a functional equation is called superstable if every
approximate solution is an exact solution of it.

Lemma 1 (see [13]). Let 𝑓 : 𝐴 → 𝐵 be a mapping such that
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1
)
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󵄩
󵄩
󵄩

(4)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Then, 𝑓 is additive.

We correct the statements of [13,Theorem 2.2] as follows.

Theorem 2. Let 𝑝 ̸= 1 and 𝜃 be nonnegative real numbers, and
let 𝑓 : 𝐴 → 𝐵 be a mapping such that
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for all 𝜇 ∈ T1
1/𝑛0

and all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Then, the mapping

𝑓 : 𝐴 → 𝐵 is a 𝐶∗-ternary homomorphism.

Proof. The proof is the same as in the proof of [13, Theorem
2.2].

In the following result, we correct Theorem 3 from [13].
Since the proof is similar, it is omitted.

Theorem 3. Let 𝑝 ̸= 1 and 𝜃 be nonnegative real numbers, and
let 𝑓 : 𝐴 → 𝐴 be a mapping satisfying (5) and
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for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Then, the mapping 𝑓 : 𝐴 → 𝐴 is a

𝐶
∗-ternary derivation.

3. Hyers-Ulam Stability: Direct Method

In this section, we prove the Hyers-Ulam stability of
𝐶
∗-ternary homomorphisms and 𝐶∗-ternary derivations on

𝐶
∗-ternary algebras by the direct method.

Theorem 4. Let 𝑝 > 1 and 𝜃 be nonnegative real numbers,
and let 𝑓 : 𝐴 → 𝐵 be a mapping satisfying (6) and
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for all 𝑥
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𝑥
3

3
𝑛

)]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ lim
𝑛→∞

27
𝑛

𝜃

27
𝑛𝑝

(

󵄩
󵄩
󵄩
󵄩
𝑥
1

󵄩
󵄩
󵄩
󵄩

3𝑝

+

󵄩
󵄩
󵄩
󵄩
𝑥
2

󵄩
󵄩
󵄩
󵄩

3𝑝

+

󵄩
󵄩
󵄩
󵄩
𝑥
3

󵄩
󵄩
󵄩
󵄩

3𝑝

) = 0

(17)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Therefore, the mapping 𝐻 is a unique

𝐶
∗-ternary homomorphism satisfying (9).

Theorem5. Let𝑝 < 1 and 𝜃 be nonnegative real numbers, and
let 𝑓 : 𝐴 → 𝐵 be a mapping satisfying (6) and (8). Then, there
exists a unique 𝐶∗-ternary homomorphism 𝐻 : 𝐴 → 𝐵 such
that

󵄩
󵄩
󵄩
󵄩
𝐻 (𝑥
1
) − 𝑓 (𝑥

1
)

󵄩
󵄩
󵄩
󵄩
≤

3
𝑝

(1 + 2
𝑝

) 𝜃

󵄩
󵄩
󵄩
󵄩
𝑥
1

󵄩
󵄩
󵄩
󵄩

𝑝

3 − 3
𝑝

(18)

for all 𝑥
1
∈ 𝐴.

Proof. The proof is similar to the proof of Theorem 4.

In the following theorem, we prove the Hyers-Ulam
stability of derivations on 𝐶∗-ternary algebras via the direct
method.

Theorem 6. Let 𝑝 > 1 and 𝜃 be nonnegative real numbers,
and let 𝑓 : 𝐴 → 𝐴 be a mapping satisfying (7) and

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓 (

𝜇𝑥
2
− 𝑥
1

3

) + 𝑓(

𝑥
1
− 3𝜇𝑥

3

3

)

+𝜇𝑓(

3𝑥
1
+ 3𝑥
3
− 𝑥
2

3

) − 𝜇𝑓 (𝑥
1
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝜃 (
󵄩
󵄩
󵄩
󵄩
𝑥
1

󵄩
󵄩
󵄩
󵄩

𝑝

+
󵄩
󵄩
󵄩
󵄩
𝑥
2

󵄩
󵄩
󵄩
󵄩

𝑝

+
󵄩
󵄩
󵄩
󵄩
𝑥
3

󵄩
󵄩
󵄩
󵄩

𝑝

)

(19)

for all 𝜇 ∈ T1
1/𝑛0

and all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Then, there exists a

unique 𝐶∗-ternary derivation𝐷 : 𝐴 → 𝐴 such that

󵄩
󵄩
󵄩
󵄩
𝐷 (𝑥
1
) − 𝑓 (𝑥

1
)

󵄩
󵄩
󵄩
󵄩
≤

3
𝑝

(1 + 2
𝑝

) 𝜃

󵄩
󵄩
󵄩
󵄩
𝑥
1

󵄩
󵄩
󵄩
󵄩

𝑝

3
𝑝
− 3

(20)

for all 𝑥
1
∈ 𝐴.

Proof. By the same reasoning as in the proof of Theorem 4,
there exists a uniqueC-linearmapping𝐷 : 𝐴 → 𝐴 satisfying
(20) which is defined by

𝐷(𝑥
1
) := lim
𝑛→∞

3
𝑛

𝑓(

𝑥
1

3
𝑛

) (21)

for all 𝑥
1
∈ 𝐴. The inequality (7) implies that

󵄩
󵄩
󵄩
󵄩
𝐷 ([𝑥

1
, 𝑥
2
, 𝑥
3
]) − [𝐷 (𝑥

1
) , 𝑥
2
, 𝑥
3
]

− [𝑥
1
, 𝐷 (𝑥

2
) , 𝑥
3
] − [𝑥

1
, 𝑥
2
, 𝐷 (𝑥

3
)]
󵄩
󵄩
󵄩
󵄩

= lim
𝑛→∞

27
𝑛

(

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓(

[𝑥
1
, 𝑥
2
, 𝑥
3
]

27
𝑛

) − [𝑓(

𝑥
1

3
𝑛

) ,

𝑥
2

3
𝑛

,

𝑥
3

3
𝑛

]

− [

𝑥
1

3
𝑛

, 𝑓 (

𝑥
2

3
𝑛

) ,

𝑥
3

3
𝑛

]−[

𝑥
1

3
𝑛

,

𝑥
2

3
𝑛

, 𝑓 (

𝑥
3

3
𝑛

)]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

)

≤ lim
𝑛→∞

27
𝑛

𝜃

27
𝑛𝑝

(

󵄩
󵄩
󵄩
󵄩
𝑥
1

󵄩
󵄩
󵄩
󵄩

3𝑝

+

󵄩
󵄩
󵄩
󵄩
𝑥
2

󵄩
󵄩
󵄩
󵄩

3𝑝

+

󵄩
󵄩
󵄩
󵄩
𝑥
3

󵄩
󵄩
󵄩
󵄩

3𝑝

) = 0

(22)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. So

𝐷([𝑥
1
, 𝑥
2
, 𝑥
3
]) = [𝐷 (𝑥

1
) , 𝑥
2
, 𝑥
3
]

+ [𝑥
1
, 𝐷 (𝑥

2
) , 𝑥
3
] + [𝑥

1
, 𝑥
2
, 𝐷 (𝑥

3
)]

(23)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Consequently, the mapping 𝐷 is a

unique 𝐶∗-ternary derivation satisfying (20).
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The following consequence is analogous toTheorem 4 for
𝐶
∗-ternary derivations and its proof is similar to the proof of

Theorems 4 and 6.

Theorem 7. Let 𝑝 < 1 and 𝜃 be nonnegative real numbers,
and let 𝑓 : 𝐴 → 𝐴 be a mapping satisfying (7) and (19). Then,
there exists a unique 𝐶∗-ternary derivation 𝐷 : 𝐴 → 𝐴 such
that

󵄩
󵄩
󵄩
󵄩
𝐷 (𝑥
1
) − 𝑓 (𝑥

1
)

󵄩
󵄩
󵄩
󵄩
≤

3
𝑝

(1 + 2
𝑝

) 𝜃

󵄩
󵄩
󵄩
󵄩
𝑥
1

󵄩
󵄩
󵄩
󵄩

𝑝

3 − 3
𝑝

(24)

for all 𝑥
1
∈ 𝐴.

4. Superstability: A Fixed Point Approach

In this section, we prove the superstability of 𝐶∗-ternary
homomorphisms and of 𝐶

∗-ternary derivations on 𝐶
∗-

ternary algebras by using the fixed point method (Theorem
8).

Let 𝑋 be a set. A function 𝑑 : 𝑋 × 𝑋 → [0,∞] is called
a generalized metric on𝑋 if 𝑑 satisfies

(1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

We recall a fundamental result in the fixed point theory
from [15] which is a useful tool to achieve our purposes in the
sequel.

Theorem 8. Let (𝑋, 𝑑) be a complete generalized metric space,
and let 𝐽 : 𝑋 → 𝑋 be a strictly contractive mapping with the
Lipschitz constant 𝛼 < 1. Then, for each given element 𝑥 ∈ 𝑋,
either

𝑑 (𝐽
𝑛

𝑥, 𝐽
𝑛+1

𝑥) = ∞ (25)

for all nonnegative integers 𝑛 or there exists a positive integer
𝑛
0
such that

(i) 𝑑(𝐽𝑛𝑥, 𝐽𝑛+1𝑥) < ∞, for all 𝑛 ≥ 𝑛
0
;

(ii) the sequence {𝐽𝑛𝑥} converges to a fixed point 𝑦∗ of 𝐽;
(iii) 𝑦∗ is the unique fixed point of 𝐽 in the set 𝑌 = {𝑦 ∈ 𝑋 |

𝑑(𝐽
𝑛0
𝑥, 𝑦) < ∞};

(iv) 𝑑(𝑦, 𝑦∗) ≤ (1/(1 − 𝛼))𝑑(𝑦, 𝐽𝑦) for all 𝑦 ∈ 𝑌.

In 1996, Isac and Rassias [16] were the first to provide
applications of stability theory of functional equations for
the proof of new fixed point theorems with applications.
In 2003, Cădariu and Radu applied a fixed point method
to the investigation of the Jensen functional equation [17].
They presented a short and a simple proof for the Cauchy
functional equation and the quadratic functional equation
in [18, 19], respectively. By using the fixed point methods,
the stability problems of several functional equations have
been extensively investigated by a number of authors. For
instance, the Hyers-Ulam stability and the superstability of a
ternary quadratic derivation on ternary Banach algebras and

𝐶
∗-ternary rings by usingTheorem 8 are investigated in [20].

Recently, in [21], Park and Bodaghi proved the stability and
the superstability of∗-derivations associatedwith theCauchy
functional equation and the Jensen functional equation by the
mentioned theorem (for more applications, see [22–28]).

From now on, we denote
𝑛-times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐴 × 𝐴 × ⋅ ⋅ ⋅ × 𝐴 by 𝐴
𝑛. We

prove the superstability of 𝐶∗-ternary homomorphism on
𝐶
∗-ternary algebras by employingTheorem 8 as follows.

Theorem 9. Let 𝜑 : 𝐴
3

→ [0,∞) be a function such that
there exists an 𝛼 < 1 with

𝜑 (𝑥
1
, 𝑥
2
, 𝑥
3
) ≤ 27𝛼𝜑(

𝑥
1

3

,

𝑥
2

3

,

𝑥
2

3

) (26)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Let 𝑓 : 𝐴 → 𝐵 be a mapping satisfying

(5) and
󵄩
󵄩
󵄩
󵄩
𝑓 ([𝑥
1
, 𝑥
2
, 𝑥
3
]) − [𝑓 (𝑥

1
) , 𝑓 (𝑥

2
) , 𝑓 (𝑥

3
)]

󵄩
󵄩
󵄩
󵄩

≤ 𝜑 (𝑥
1
, 𝑥
2
, 𝑥
3
)

(27)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Then, the mapping 𝑓 : 𝐴 → 𝐵 is a

𝐶
∗-ternary homomorphism.

Proof. Since the proof is similar to the proof of [13, Theorem
2.2], we only show some parts of it. From the proof of [13,
Theorem 2.2], one can show that the mapping 𝑓 : 𝐴 → 𝐵 is
C-linear. The inequality (26) implies that

lim
𝑛→∞

1

27
𝑛

𝜑 (3
𝑛

𝑥
1
, 3
𝑛

𝑥
2
, 3
𝑛

𝑥
3
) = 0 (28)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Since 𝑓 is additive, it follows from (27)

and (28) that

𝑓 ([𝑥
1
, 𝑥
2
, 𝑥
3
]) = [𝑓 (𝑥

1
) , 𝑓 (𝑥

2
) , 𝑓 (𝑥

3
)] (29)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Thus, the mapping 𝑓 : 𝐴 → 𝐵 is a

𝐶
∗-ternary homomorphism.

Theorem 10. Let 𝜑 : 𝐴
3

→ [0,∞) be a function such that
there exists an 𝛼 < 1 with

𝜑 (𝑥
1
, 𝑥
2
, 𝑥
3
) ≤

𝛼

3

𝜑 (3𝑥
1
, 3𝑥
2
, 3𝑥
3
) (30)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Let 𝑓 : 𝐴 → 𝐵 be a mapping satisfying

(5) and (27). Then, the mapping 𝑓 : 𝐴 → 𝐵 is a 𝐶∗-ternary
homomorphism.

Proof. Similar to the proof of Theorem 9, the mapping 𝑓 :

𝐴 → 𝐵 is C-linear. It also follows from (30) that

lim
𝑛→∞

3
𝑛

𝜑(

𝑥
1

3
𝑛

,

𝑥
2

3
𝑛

,

𝑥
3

3
𝑛

) = 0 (31)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Since 𝑓 is additive, we can deduce from

(27) and (31) that

𝑓 ([𝑥
1
, 𝑥
2
, 𝑥
3
]) = [𝑓 (𝑥

1
) , 𝑓 (𝑥

2
) , 𝑓 (𝑥

3
)] (32)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Therefore, the mapping 𝑓 is a 𝐶∗-

ternary homomorphism.
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Remark 11. Theorem 2 follows from Theorems 9 and 10 by
taking 𝜑(𝑥

1
, 𝑥
2
, 𝑥
3
) = 𝜃(‖𝑥

1
‖
3𝑝

+ ‖𝑥
2
‖
3𝑝

+ ‖𝑥
3
‖
3𝑝

) for all
𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴.

In analogy withTheorems 9 and 10, we have the following
theorems for the superstability of 𝐶∗-ternary derivations on
𝐶
∗-ternary algebras.

Theorem 12. Let 𝜑 : 𝐴
3

→ [0,∞) be a function satisfying
(26). Let 𝑓 : 𝐴 → 𝐴 be a mapping satisfying (5) and

󵄩
󵄩
󵄩
󵄩
𝑓 ([𝑥
1
, 𝑥
2
, 𝑥
3
]) − [𝑓 (𝑥

1
) , 𝑥
2
, 𝑥
3
]

− [𝑥
1
, 𝑓 (𝑥
2
) , 𝑥
3
] − [𝑥

1
, 𝑥
2
, 𝑓 (𝑥
3
)]

󵄩
󵄩
󵄩
󵄩

≤ 𝜑 (𝑥
1
, 𝑥
2
, 𝑥
3
)

(33)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Then, the mapping 𝑓 : 𝐴 → 𝐴 is a

𝐶
∗-ternary derivation.

Proof. The proof is similar to the proof of Theorem 9.

Theorem 13. Let 𝜑 : 𝐴
3

→ [0,∞) be a function satisfying
(30). Let 𝑓 : 𝐴 → 𝐴 be a mapping satisfying (5) and (33).
Then, the mapping 𝑓 : 𝐴 → 𝐴 is a 𝐶∗-ternary derivation.

Proof. Refer to the proof of Theorem 10.

Note thatTheorem 3 follows immediately fromTheorems
12 and 13 by putting𝜑(𝑥

1
, 𝑥
2
, 𝑥
3
) = 𝜃(‖𝑥

1
‖
3𝑝

+‖𝑥
2
‖
3𝑝

+‖𝑥
3
‖
3𝑝

)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴.

5. Hyers-Ulam Stability: Fixed Point Method

In this section, we applyTheorem 8 to prove the Hyers-Ulam
stability of 𝐶

∗-ternary homomorphisms and 𝐶
∗-ternary

derivations on 𝐶∗-ternary algebras.

Theorem 14. Let 𝜑 : 𝐴
3

→ [0,∞) be a function satisfying
(30). Let 𝑓 : 𝐴 → 𝐵 be a mapping satisfying (27) and

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓 (

𝜇𝑥
2
− 𝑥
1

3

) + 𝑓(

𝑥
1
− 3𝜇𝑥

3

3

)

+𝜇𝑓(

3𝑥
1
+ 3𝑥
3
− 𝑥
2

3

) − 𝜇𝑓 (𝑥
1
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝜑 (𝑥
1
, 𝑥
2
, 𝑥
3
)

(34)

for all 𝜇 ∈ T1
1/𝑛0

and all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Then, there exists a

unique 𝐶∗-ternary homomorphism𝐻 : 𝐴 → 𝐵 such that

󵄩
󵄩
󵄩
󵄩
𝐻 (𝑥
1
) − 𝑓 (𝑥

1
)
󵄩
󵄩
󵄩
󵄩
≤

𝛼

1 − 𝛼

𝜑 (𝑥
1
, 2𝑥
1
, 0) (35)

for all 𝑥
1
∈ 𝐴.

Proof. Letting 𝜇 = 1, 𝑥
2
= 2𝑥
1
, and 𝑥

3
= 0 in (34), we get

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

3𝑓 (

𝑥
1

3

) − 𝑓 (𝑥
1
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ (𝑥
1
, 2𝑥
1
, 0) (36)

for all 𝑥
1
∈ 𝐴. Consider the set

𝑆 := {ℎ : 𝐴 󳨀→ 𝐵} (37)

and introduce the generalized metric on 𝑆 as follows:

𝑑 (𝑔, ℎ) = inf {𝜇 ∈ R
+

:

󵄩
󵄩
󵄩
󵄩
𝑔 (𝑥) − ℎ (𝑥)

󵄩
󵄩
󵄩
󵄩

≤ 𝜇𝜑 (𝑥, 2𝑥, 0) , ∀𝑥 ∈ 𝐴} ,

(38)

where, as usual, inf 𝜙 = +∞. Similar to the proof of [29,
Theorem 2.2], we can show that 𝑑 is a generalized metric on
𝑆 and the metric space (𝑆, 𝑑) is complete. We now define the
linear mapping 𝐽 : 𝑆 → 𝑆 via 𝐽𝑔(𝑥) := (1/3)𝑔(3𝑥) for all
𝑥 ∈ 𝐴. Let 𝑔, ℎ ∈ 𝑆 be given such that 𝑑(𝑔, ℎ) = 𝜀. Then

󵄩
󵄩
󵄩
󵄩
𝑔 (𝑥) − ℎ (𝑥)

󵄩
󵄩
󵄩
󵄩
≤ 𝜑 (𝑥, 2𝑥, 0) (39)

for all 𝑥 ∈ 𝐴. Hence

󵄩
󵄩
󵄩
󵄩
𝐽𝑔 (𝑥) − 𝐽ℎ (𝑥)

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

3

𝑔 (3𝑥) −

1

3

ℎ (3𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝛼𝜑 (𝑥, 2𝑥, 0)

(40)

for all 𝑥 ∈ 𝐴. Thus, 𝑑(𝑔, ℎ) = 𝜀 implies that 𝑑(𝐽𝑔, 𝐽ℎ) ≤ 𝛼𝜀.
This means that

𝑑 (𝐽𝑔, 𝐽ℎ) ≤ 𝛼𝑑 (𝑔, ℎ) (41)

for all 𝑔, ℎ ∈ 𝑆. It follows from (36) that
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓 (𝑥
1
) −

1

3

𝑓 (3𝑥
1
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

1

3

𝜑 (3𝑥
1
, 6𝑥
1
, 0) ≤ 𝛼𝜑 (𝑥

1
, 2𝑥
1
, 0)

(42)

for all 𝑥
1
∈ 𝐴. So 𝑑(𝑓, 𝐽𝑓) ≤ 𝛼. By Theorem 8, there exists a

mapping𝐻 : 𝐴 → 𝐵 satisfies the following:

(1) 𝐻 is a fixed point of 𝐽, that is,

𝐻(3𝑥) = 3𝐻 (𝑥) (43)

for all 𝑥 ∈ 𝐴. Indeed, the mapping𝐻 is a unique fixed
point of 𝐽 in the set𝑀 = {𝑔 ∈ 𝑆 : 𝑑(ℎ, 𝑔) < ∞}. This
implies that 𝐻 satisfying (43) such that there exists a
𝜇 ∈ (0,∞) satisfying

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥) − 𝐻 (𝑥)

󵄩
󵄩
󵄩
󵄩
≤ 𝜇𝜑 (𝑥, 2𝑥, 0) (44)

for all 𝑥 ∈ 𝐴;
(2) 𝑑(𝐽𝑛𝑓,𝐻) → 0 as 𝑛 → ∞, and thus, we have the

following equality:

lim
𝑛→∞

1

3
𝑛

𝑓 (3
𝑛

𝑥) = 𝐻 (𝑥) (𝑥 ∈ 𝐴) ; (45)

(3) 𝑑(𝑓,𝐻) ≤ (1/(1 − 𝛼))𝑑(𝑓, 𝐽𝑓), which implies the
followin inequality:

𝑑 (𝑓,𝐻) ≤

𝛼

1 − 𝛼

. (46)

This shows that the inequality (35) holds.The rest of the proof
is similar to the proof of Theorem 4.



6 Abstract and Applied Analysis

Theorem 15. Let 𝜑 : 𝐴
3

→ [0,∞) be a function satisfying
(26). Let 𝑓 : 𝐴 → 𝐵 be a mapping satisfying (27) and (34).
Then, there exists a unique 𝐶∗-ternary homomorphism 𝐻 :

𝐴 → 𝐵 such that
󵄩
󵄩
󵄩
󵄩
𝐻 (𝑥
1
) − 𝑓 (𝑥

1
)
󵄩
󵄩
󵄩
󵄩
≤

1

1 − 𝛼

𝜑 (𝑥
1
, 2𝑥
1
, 0) (47)

for all 𝑥
1
∈ 𝐴.

Proof. Let (𝑆, 𝑑) be the generalized metric space defined in
the proof of Theorem 14. Consider the linear mapping 𝐽 :

𝑆 → 𝑆 such that

𝐽𝑔 (𝑥) := 3𝑔 (

𝑥

3

) (48)

for all 𝑥 ∈ 𝑋. The inequality (36) implies that 𝑑(𝑓, 𝐽𝑓) ≤ 1. So
𝑑(𝑓,𝐻) ≤ 1/(1 − 𝛼). Thus, we obtain the inequality (47). The
rest of the proof is similar to the proofs of Theorems 4 and
14.

The following parallel results for the Hyers-Ulam stability
of derivations on𝐶∗-ternary algebras can be proved in similar
ways to the proofs ofTheorems 6 and 14, and so we omit their
proofs.

Theorem 16. Let 𝜑 : 𝐴
3

→ [0,∞) be a function satisfying
(30). Let 𝑓 : 𝐴 → 𝐴 be a mapping satisfying (33) and

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓 (

𝜇𝑥
2
− 𝑥
1

3

) + 𝑓(

𝑥
1
− 3𝜇𝑥

3

3

)

+𝜇𝑓(

3𝑥
1
+ 3𝑥
3
− 𝑥
2

3

) − 𝜇𝑓 (𝑥
1
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝜑 (𝑥
1
, 𝑥
2
, 𝑥
3
)

(49)

for all 𝜇 ∈ T1
1/𝑛0

and all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴. Then, there exists a

unique 𝐶∗-ternary derivation𝐷 : 𝐴 → 𝐴 such that

󵄩
󵄩
󵄩
󵄩
𝐷 (𝑥
1
) − 𝑓 (𝑥

1
)
󵄩
󵄩
󵄩
󵄩
≤

𝛼

1 − 𝛼

𝜑 (𝑥
1
, 2𝑥
1
, 0) (50)

for all 𝑥
1
∈ 𝐴.

Theorem 17. Let 𝜑 : 𝐴
3

→ [0,∞) be a function satisfying
(26). Let 𝑓 : 𝐴 → 𝐴 be a mapping satisfying (33) and (49).
Then, there exists a unique 𝐶∗-ternary derivation𝐷 : 𝐴 → 𝐴

such that
󵄩
󵄩
󵄩
󵄩
𝐷 (𝑥
1
) − 𝑓 (𝑥

1
)
󵄩
󵄩
󵄩
󵄩
≤

1

1 − 𝛼

𝜑 (𝑥
1
, 2𝑥
1
, 0) (51)

for all 𝑥
1
∈ 𝐴.

Remark 18. All results of Section 3 are the direct conse-
quences of the results of this section as follows:

(i) Theorem 4 follows from Theorem 15 by taking 𝜑(𝑥
1
,

𝑥
2
, 𝑥
3
) = 𝜃(‖𝑥

1
‖
3𝑝

+‖𝑥
2
‖
3𝑝

+‖𝑥
3
‖
3𝑝

) for all𝑥
1
, 𝑥
2
, 𝑥
3
∈

𝐴, and 𝛼 = 31−𝑝;
(ii) we can obtain Theorem 5 fromTheorem 14 by letting

𝜑(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝜃(‖𝑥

1
‖
3𝑝

+ ‖𝑥
2
‖
3𝑝

+ ‖𝑥
3
‖
3𝑝

) for all
𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴, and 𝛼 = 3𝑝−1;

(iii) if we put 𝜑(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝜃(‖𝑥

1
‖
3𝑝

+ ‖𝑥
2
‖
3𝑝

+ ‖𝑥
3
‖
3𝑝

)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴, and 𝛼 = 3

1−𝑝 in Theorem 17,
then we concludeTheorem 6;

(iv) putting 𝜑(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝜃(‖𝑥

1
‖
3𝑝

+‖𝑥
2
‖
3𝑝

+‖𝑥
3
‖
3𝑝

) for
all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐴, and 𝛼 = 3𝑝−1 in Theorem 16, we get

Theorem 7.
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