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We present an approximationmethod for convolutionCalderón-Zygmund operators.We give a uniform approximation accuracy of
the operators on the endpoint Triebel-Lizorkin space ̇

𝐹

0;𝑞

1
(2 < 𝑞 < ∞). Our proof mainly relies on the n-dimensional Daubechies

wavelet bases and the atomic-molecular approach.

1. Introduction and Main Result

For rapid application of densematrices (or integral operators)
to vectors, the celebrated work of Beylkin et al. [1] introduced
a class of numerical algorithms which are based on the 2𝑛-
dimensional wavelet bases with compact supports. These
algorithms are also applicable to all Calderón-Zygmund
operators and pseudodifferential operators. Since then, their
algorithms are widely used in compression of matrices,
operator approximation, and establishing boundedness of
operators see [2–9]; In particular, Beylkin et al. [1] approx-
imated a class of Calderón-Zygmund operators by banded
operators and gave the approximation accuracy. It is intrigu-
ing to know whether we can get some similar approximation
methods on some more general spaces. Notice that Yang [9]
approximated the operators by compact operators and gave
the approximation accuracy on 𝐿

𝑝
(1 < 𝑝 < ∞).

In this paper, we are interested in considering the approx-
imation method for a class of Calderón-Zygmund operators
on Triebel-Lizorkin spaces. However, due to technical rea-
sons, we can only get an approximation method for con-
volution Calderón-Zygmund operators on some endpoint
Triebel-Lizorkin spaces (see Theorem 1).

Now, we introduce a class of Calderón-Zygmund oper-
ators. Let D = D(R𝑛) denote the space of Schwartz

test functions and D󸀠 the space of Schwartz distributions
(the dual of D). Suppose that we have a linear continuous
mapping 𝑇 : D → D󸀠 associated with a kernel 𝐾(𝑥, 𝑦)

(in the sense that ⟨𝑇𝑓, 𝑔⟩ = ∬𝑔(𝑥)𝐾(𝑥, 𝑦)𝑓(𝑦)𝑑𝑥 𝑑𝑦 for
test functions 𝑓 and 𝑔 with disjoint supports). We write 𝑇 ∈

𝐶𝑍𝑂

𝛾
if the following three conditions are satisfied.

(I) 𝐾(𝑥, 𝑦) is continuous onΩ = R𝑛×R𝑛\{(𝑥, 𝑦) : 𝑥 = 𝑦}

and satisfies
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where 0 < 𝛾 ≤ 1.
(II) Weak boundedness condition:
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∀𝑅 > 0, 𝑢 ∈ R
𝑛
, 𝑓, 𝑔 ∈ 𝐶

1

0
(𝐵 (𝑢, 𝑅)) .

(3)
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(III) 𝑇1 condition: 𝑇1 ∈ 𝐵𝑀𝑂, 𝑇

∗
1 ∈ 𝐵𝑀𝑂.

Convolution Calderón-Zygmund operators, such as Hil-
bert and Riesz operators, are commonly used in engineering.
For a convolution operator𝑇, its kernel𝐾(𝑥, 𝑦) can bewritten
as 𝐾(𝑥, 𝑦) = 𝐾(𝑥 − 𝑦). In this case, the conditions for the
operator 𝑇 ∈ 𝐶𝐶𝑍𝑂

𝛾
are reduced to the following:

|𝐾 (𝑥)| ≤ 𝐶|𝑥|

−𝑛
; (4)

for 2|𝑥 − 𝑥
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| ≤ |𝑥|,
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where 𝜓 ∈ 𝐶

1

0
(𝐵(0, 1)) and 𝜓

𝑡
(𝑥) = 𝜓(𝑥/𝑡) for 𝑡 > 0.

For convenience, let 𝐶𝐶𝑍𝑂

𝛾
denote the collection of all

convolution operators in 𝐶𝑍𝑂

𝛾
.

In what follows, we restrict our attention to the operator
𝑇 in 𝐶𝐶𝑍𝑂

𝛾
. In general, the operator is analyzed by the

2𝑛-dimensional wavelet bases. However, Z. Y. Yang and Q.
X. Yang [10], making use of the 𝑛-dimensional Daubechies
wavelet bases, approximated the operator 𝑇 by the banded
operator and gave the approximation accuracy 𝐶2

−𝑢𝛾 on the
homogeneous Besov spaces ̇

𝐵

0,𝑞

𝑝 (1 ≤ 𝑝, 𝑞 ≤ ∞). In this
paper, we focus on an approximationmethod for the operator
𝑇 and obtaining the uniform approximation accuracy on the
endpoint Triebel-Lizorkin spaces ̇

𝐹

0,𝑞

1
, 2 < 𝑞 < ∞, whose

definitions will be given in Section 2.
We first introduce some notations. Let Φ0(𝑥) and Φ

1
(𝑥)

be the one-dimensional Daubechies father and mother
wavelets, respectively. Assume that they are the real-valued
and sufficiently regular functions. For 𝑥 ∈ R𝑛 and 𝜀 =

(𝜀

1
, 𝜀

2
, . . . , 𝜀

𝑛
) ∈ {0, 1}

𝑛, denote Φ𝜀(𝑥) = ∏

𝑛

𝑖=1
Φ

𝜀𝑖
(𝑥

𝑖
). For any

𝑗 ∈ Z and 𝑘 ∈ Z𝑛, let

Φ

𝜀

𝑗,𝑘
(𝑥) = 2

𝑗𝑛/2
Φ

𝜀
(2

𝑗
𝑥 − 𝑘) . (7)

We also put

𝐸

𝑛
= {0, 1}

𝑛
\ {0} ,

Λ

𝑛
= {𝜆 = (𝜀, 𝑗, 𝑘) , 𝜀 ∈ 𝐸

𝑛
, 𝑗 ∈ Z, 𝑘 ∈ Z

𝑛
} .

(8)

Then, {Φ

𝜀

𝑗,𝑘
(𝑥)}

𝜆∈Λ 𝑛
forms orthonormal bases in 𝐿

2
(R𝑛),

and it can be used to characterize general functions or
distributions.

For any 𝜆 ∈ Λ

𝑛
, let 𝑏𝜀
𝑗,𝑘

= ⟨𝐾(𝑥), Φ

𝜀

𝑗,𝑘
(𝑥)⟩, then we have
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(𝑥) (9)

in the sense of distribution. Now, we present the approxima-
tion of 𝑇 by the banded operator 𝑇

𝑢
. For any integer 𝑢 ≥ 0
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𝑛
, we define
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Let𝑇𝜀
𝑢
be the annular operator associated to the kernel𝐾𝜀

𝑢
(𝑥),

and let
𝑇

𝑢
= ∑

0≤𝑢
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𝑇

𝜀

𝑢
󸀠 . (11)

Then, we can approximate 𝑇 by the banded operator 𝑇
𝑢
and

get the uniform approximation accuracy on the endpoint
Triebel-Lizorkin space ̇

𝐹

0,𝑞

1
(1 < 𝑞 < ∞). Our result is stated

as follows.

Theorem 1. Let 1 < 𝑞 < ∞ and 0 < 𝛾 ≤ 1. If 𝑇 ∈ 𝐶𝐶𝑍𝑂

𝛾
,
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Throughout this paper, the symbol 𝐶 denotes a constant
that is independent of the main parameters involved but
whose value may differ from line to line.

2. Endpoint Triebel-Lizorkin Spaces

Let S(R𝑛) be the space of tempered test functions. Let 𝜑 ∈

S(R𝑛) with supp𝜑 ⊂ {𝜉 ∈ R𝑛 : 1/2 ≤ |𝜉| ≤ 2} and |𝜑| ≥ 𝑐 > 0

for {3/5 ≤ |𝜉| ≤ 5/3}; let 𝜑
𝑗
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𝜑(2

𝑗
𝑥). Let 𝛼 ∈ R,

0 < 𝑝 < ∞, and 0 < 𝑞 ≤ ∞. Then, the homogeneous Triebel-
Lizorkin space ̇

𝐹

𝛼,𝑞

𝑝 is defined as the collection of all𝑓 ∈ S󸀠/𝑃
(the tempered distributions modulo polynomials) such that
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with the usual modification made when 𝑞 = ∞; see also
Triebel [11]. And it is well known that the homogeneous
Triebel-Lizorkin space and Besov space are the same when
𝑝 = 𝑞.

For the homogeneous Triebel-Lizorkin space, Koskela
et al. gave the characterization via grand Littlewood-Paley
functions in [12] and gave the pointwise characterization in
[13]. Now, we recall its characterization based on wavelets.
In fact, the Daubechies wavelet bases {Φ
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(for more details, see also [6, 7, 14]).
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Proposition 2. For 1 ≤ 𝑝 < ∞ and 1 ≤ 𝑞 ≤ ∞, there exist
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Triebel-Lizorkin spaces have been studied by means of
the atomic and molecular decompositions. Next, we state the
atomic-molecular decomposition for the endpoint space ̇

𝐹

0,𝑞

1
;

see Meyer and Yang [7] for more details. Let Q denote the
collection of all dyadic cubes 𝑄

𝑗,𝑘
, 𝑗 ∈ Z, 𝑘 ∈ Z𝑛. Now, we

recall the following two definitions which can be found in
[6, 7, 15].
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Proposition 5. Let 1 ≤ 𝑞 < ∞. The following three conditions
are equivalent:
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for some fixed𝐶

1
, 𝐶

2
> 0 independent of 𝑓. For more details,

we refer the reader to [6, 15], This will play a key role in
Section 3.

3. Estimate of 𝑇𝜀
󸀠

𝑢
and Proof of Theorem 1

To prove Theorem 1, we first estimate the annular operator
𝑇

𝜀
󸀠

𝑢
. For any 𝜀󸀠 ∈ 𝐸

𝑛
and integer 𝑢 ≥ 1, let

𝐵

𝜀
󸀠

𝑢
= sup
𝑗
󸀠

∑

2
𝑢−1
≤
|
𝑘
󸀠
|
<2
𝑢

2

−𝑗
󸀠
𝑛/2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

. (18)

Lemma 6. For 1 < 𝑞 < ∞, let 𝜏
𝑞
= 1 − (1/𝑞). One has

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑇

𝜀
󸀠

𝑢

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1
→𝐹̇
0,𝑞

1

≤ 𝐶𝑢

𝜏𝑞
𝐵

𝜀
󸀠

𝑢
. (19)

Proof. In terms of the molecular decomposition for the space
̇

𝐹

0,𝑞

1
, we only need to prove that for an arbitrary ̇

𝐹

0,𝑞

𝑞
-molecule

𝑎,
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑇

𝜀
󸀠

𝑢
𝑎 (𝑥)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

≤ 𝐶𝑢

𝜏𝑞
𝐵

𝜀
󸀠

𝑢
, (20)

where 𝐶 is independent of 𝑎.
Denote𝑚 = 𝑗

󸀠
− 𝑗, then we have

𝑇

𝜀
󸀠

𝑢
𝑎 (𝑥) = ∑

𝜀,𝑚

∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

× ∑

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠𝑎

𝜀

𝑗,𝑘
(Φ

𝜀

𝑗,𝑘
∗ Φ

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠) (𝑥) .

(21)

Thus,
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑇

𝜀
󸀠

𝑢
𝑎 (𝑥)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

≤ ∑

𝜀

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∑

𝑚≤0

∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

× ∑

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠𝑎

𝜀

𝑗,𝑘
(Φ

𝜀

𝑗,𝑘
∗ Φ

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠) (𝑥)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

+∑

𝜀

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∑

𝑚>0

∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

× ∑

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠𝑎

𝜀

𝑗,𝑘
(Φ

𝜀

𝑗,𝑘
∗ Φ

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠) (𝑥)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

:= 𝐼

1
+ 𝐼

2
.

(22)

In the following, we consider the estimates of 𝐼
1
and 𝐼

2
.

(i) For any𝑚 ≤ 0, put ̃Φ𝜀,𝜀
󸀠

𝑚
(𝑥) = 2

−𝑚𝑛
(Φ

𝜀
󸀠

𝑚,0
∗Φ

𝜀
)(𝑥), then

𝐼

1
≤ 𝐶∑

𝑚≤0

2

𝑚𝑛
∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

×

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∑

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠𝑎

𝜀

𝑗,𝑘
̃

Φ

𝜀,𝜀
󸀠

𝑚
(2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
))

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

.

(23)
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For fixed𝑚 and 𝑘

󸀠, let 𝑇𝑚
𝑘
󸀠 be the operator associated with the

kernel

𝐾

𝑚

𝑘
󸀠 (𝑥, 𝑦) = ∑

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

2

𝑗𝑛
̃

Φ

𝜀,𝜀
󸀠

𝑚
(2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
))

× Φ

𝜀
(2

𝑗
𝑦 − (𝑘 + 2

−𝑚
𝑘

󸀠
)) .

(24)

By the properties of Daubechies wavelets, we can get that the
operator 𝑇𝑚

𝑘
󸀠 is bounded on ̇

𝐹

0,𝑞

1
(see also [16, lemma 3.1]).

Set

𝑔

𝑚

𝑘
󸀠 = ∑

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠𝑎

𝜀

𝑗,𝑘
Φ

𝜀
(2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
)) . (25)

Bymeans of the orthonormality of thewavelet bases, the right
side of (23) is equal to

𝐶∑

𝑚≤0

2

𝑚𝑛
∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

󵄩

󵄩

󵄩

󵄩

𝑇

𝑚

𝑘
󸀠𝑔

𝑚

𝑘
󸀠

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

. (26)

Moreover, 𝐼
1
is bounded by

𝐶∑

𝑚≤0

2

𝑚𝑛
∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

󵄩

󵄩

󵄩

󵄩

𝑔

𝑚

𝑘
󸀠

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

. (27)

Namely, we have

𝐼

1
≤ 𝐶∑

𝑚≤0

2

𝑚𝑛
∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

×

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∑

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠𝑎

𝜀

𝑗,𝑘
Φ

𝜀
(2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
))

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

.

(28)

Notice that the sum ∑

𝑗:𝑄𝑗,𝑘⊂𝑄𝑠,𝑝
is adding among all 𝑗 with

𝑠 ≤ 𝑗, we split ∑
𝑗:𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

into ∑

𝑗:𝑄𝑗,𝑘⊂𝑄𝑠,𝑝
= ∑

𝑠≤𝑗<𝑠+𝑢
+∑

𝑗≥𝑠+𝑢
.

Hence, we obtain

𝐼

1
≤ 𝐶∑

𝑚≤0

2

𝑚𝑛

× ∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

(

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∑

𝑠≤𝑗<𝑠+𝑢

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠𝑎

𝜀

𝑗,𝑘
Φ

𝜀

× (2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
))

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

+

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∑

𝑗≥𝑠+𝑢

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠𝑎

𝜀

𝑗,𝑘
Φ

𝜀

× (2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
))

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

)

:= 𝐶∑

𝑚≤0

2

𝑚𝑛
∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

(𝐽

𝑚,𝑢

1,𝑘
󸀠 + 𝐽

𝑚,𝑢

2,𝑘
󸀠 ) .

(29)

Now, we consider 𝐽

𝑚,𝑢

1,𝑘
󸀠 and 𝐽

𝑚,𝑢

2,𝑘
󸀠 . As for 𝐽

𝑚,𝑢

1,𝑘
󸀠 , we use

Proposition 2 to get that

𝐽

𝑚,𝑢

1,𝑘
󸀠 ≤ 𝐶∫( ∑

𝑠≤𝑗<𝑠+𝑢

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑞

×

󵄨

󵄨

󵄨

󵄨

󵄨

𝑎

𝜀

𝑗,𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

𝑞

𝜒 (2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
)))

1/𝑞

𝑑𝑥

≤ 𝐶2

𝑚𝑛/2sup
𝑗
󸀠

2

−𝑗
󸀠
𝑛/2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

× ∫( ∑

𝑠≤𝑗<𝑠+𝑢

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

2

𝑗𝑞𝑛/2󵄨
󵄨

󵄨

󵄨

󵄨

𝑎

𝜀

𝑗,𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

𝑞

× 𝜒 (2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
)))

1/𝑞

𝑑𝑥.

(30)

Let ⊗𝑛
1
[𝑎

𝑖
, 𝑏

𝑖
] denote the Cartesian product [𝑎

1
, 𝑏

1
] × [𝑎

2
, 𝑏

2
] ×

⋅ ⋅ ⋅ × [𝑎

𝑛
, 𝑏

𝑛
]. Let

𝑓

𝑚

𝑗,𝑘
󸀠 (𝑥) = ∑

𝑘:𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

2

𝑗𝑞𝑛/2󵄨
󵄨

󵄨

󵄨

󵄨

𝑎

𝜀

𝑗,𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

𝑞

𝜒 (2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
)) , (31)

then the support of 𝑓

𝑚

𝑗,𝑘
󸀠(𝑥) is contained in ⊗

𝑛

1
[(𝑝

𝑖
/2

𝑠
) +

(𝑘

󸀠

𝑖
/2

𝑗+𝑚
), ((𝑝

𝑖
+ 1)/2

𝑠
) + (𝑘

󸀠

𝑖
/2

𝑗+𝑚
)]. Moreover, we can obtain

that

supp𝑓𝑚
𝑗,𝑘
󸀠 (𝑥) ∩ supp𝑓𝑚

𝑗1,𝑘
󸀠 (𝑥) = 0 (32)

when |𝑗 − 𝑗

1
| ≥ 𝐶. In other words, the number of the nonzero

terms in the sum ∑

𝑠≤𝑗<𝑠+𝑢
𝑓

𝑚

𝑗,𝑘
󸀠(𝑥) is a constant, which is
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independent of 𝑢. By the inequality (𝛼 + 𝛽)

1/𝑞
≤ 𝛼

1/𝑞
+ 𝛽

1/𝑞,
we have

𝐽

𝑚,𝑢

1,𝑘
󸀠 ≤ 𝐶2

𝑚𝑛/2sup
𝑗
󸀠

2

−𝑗
󸀠
𝑛/2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

× ∫ ∑

𝑠≤𝑗<𝑠+𝑢

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

2

𝑗𝑛/2 󵄨
󵄨

󵄨

󵄨

󵄨

𝑎

𝜀

𝑗,𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

𝜒 (2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
)) 𝑑𝑥

≤ 𝐶2

𝑚𝑛/2sup
𝑗
󸀠

2

−𝑗
󸀠
𝑛/2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

× ∫ ∑

𝑠≤𝑗<𝑠+𝑢

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

2

𝑗𝑛/2 󵄨
󵄨

󵄨

󵄨

󵄨

𝑎

𝜀

𝑗,𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

𝜒 (2

𝑗
𝑥 − 𝑘) 𝑑𝑥.

(33)

From Hölder’s inequality, we obtain

𝐽

𝑚,𝑢

1,𝑘
󸀠 ≤ 𝐶2

𝑚𝑛/2sup
𝑗
󸀠

2

−𝑗
󸀠
𝑛/2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝜏𝑞

× ∫( ∑

𝑠≤𝑗<𝑠+𝑢

× ( ∑

𝑘:𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

2

𝑗𝑛/2 󵄨
󵄨

󵄨

󵄨

󵄨

𝑎

𝜀

𝑗,𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

𝜒 (2

𝑗
𝑥 − 𝑘))

𝑞

)

1/𝑞

𝑑𝑥

≤ 𝐶2

𝑚𝑛/2sup
𝑗
󸀠

2

−𝑗
󸀠
𝑛/2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝜏𝑞

× ∫( ∑

𝑠≤𝑗<𝑠+𝑢

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

2

𝑗𝑞𝑛/2󵄨
󵄨

󵄨

󵄨

󵄨

𝑎

𝜀

𝑗,𝑘

󵄨

󵄨

󵄨

󵄨

󵄨

𝑞

𝜒 (2

𝑗
𝑥 − 𝑘))

1/𝑞

𝑑𝑥.

(34)

Since ‖𝑎‖
𝐹̇
0,𝑞

𝑞

≤ 𝐶|𝐵|

1/𝑞−1, then we get that ‖𝑎‖
𝐹̇
0,𝑞

1

≤ 𝐶. Thus

𝐽

𝑚,𝑢

1,𝑘
󸀠 ≤ 𝐶2

𝑚𝑛/2
𝑢

𝜏𝑞sup
𝑗
󸀠

2

−𝑗
󸀠
𝑛/2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

. (35)

As for 𝐽𝑚,𝑢
2,𝑘
󸀠 , we have

𝐽

𝑚,𝑢

2,𝑘
󸀠 ≤ 𝐶2

𝑚𝑛/2sup
𝑗
󸀠

2

−𝑗
󸀠
𝑛/2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

×

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∑

𝑗≥𝑠+𝑢

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

2

𝑗𝑛/2
𝑎

𝜀

𝑗,𝑘
Φ

𝜀
(2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
))

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

:= 𝐶2

𝑚𝑛/2sup
𝑗
󸀠

2

−𝑗
󸀠
𝑛/2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

󵄩

ℎ

𝑚

𝑢,𝑘
󸀠 (𝑥)

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

.

(36)

By Definition 3, we can verify that (2−𝑚 + 2

𝑀
)

−𝜏𝑞𝑛
ℎ

𝑚

𝑢,𝑘
󸀠(𝑥) is

a ̇

𝐹

0,𝑞

𝑞
-atom with the norm 𝐶, see also [16] for more details.

Furthermore, we obtain ‖ℎ

𝑚

𝑢,𝑘
󸀠(𝑥)‖

𝐹̇
0,𝑞

1

≤ (2

−𝑚
+2

𝑀
)

𝜏𝑞𝑛. Hence,

𝐽

𝑚,𝑢

2,𝑘
󸀠 ≤ 𝐶2

𝑚𝑛/2sup
𝑗
󸀠

2

−𝑗
󸀠
𝑛/2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

(2

−𝑚
+ 2

𝑀
)

𝜏𝑞𝑛

. (37)

By (29) and (35), it follows that

𝐼

1
≤ 𝐶∑

𝑚≤0

2

3𝑚𝑛/2
𝑢

𝜏𝑞
𝐵

𝜀
󸀠

𝑢
≤ 𝐶𝑢

𝜏𝑞
𝐵

𝜀
󸀠

𝑢
. (38)

(ii) The estimate for 𝐼
2
can be treated as that for 𝐼

1
. For

convenience of the reader, we repeat some details as follows.
Let ̃Φ𝜀,𝜀

󸀠

𝑚
(𝑥) = 2

𝑚𝑛
(Φ

𝜀
󸀠

𝑚,0
∗Φ

𝜀
)(2

−𝑚
𝑥). Following the idea used

to get (28), we have

𝐼

2
≤ 𝐶∑

𝑚>0

2

−𝑚𝑛
∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

×

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∑

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠𝑎

𝜀

𝑗,𝑘
Φ

𝜀
(2

𝑗+𝑚
𝑥 − (𝑘

󸀠
+ 2

𝑚
𝑘))

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

.

(39)

Splitting ∑
𝑗:𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

into ∑ 𝑠≤𝑗<𝑠+𝑢−𝑚

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

and ∑ 𝑗≥𝑠+𝑢−𝑚

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

, then

𝐼

2
≤ 𝐶∑

𝑚>0

2

−𝑚𝑛
∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

×(

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∑

𝑠≤𝑗<𝑠+𝑢−𝑚

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠𝑎

𝜀

𝑗,𝑘
Φ

𝜀
(2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
))

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩 𝐹̇
0,𝑞

1

+

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∑

𝑗≥𝑠+𝑢−𝑚

𝑄𝑗,𝑘⊂𝑄𝑠,𝑝

𝑏

𝜀
󸀠

𝑗+𝑚,𝑘
󸀠𝑎

𝜀

𝑗,𝑘
Φ

𝜀

× (2

𝑗
𝑥 − (𝑘 + 2

−𝑚
𝑘

󸀠
))

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1

)

:= 𝐶∑

𝑚>0

2

−𝑚𝑛
∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

(𝐿

𝑚,𝑢

1,𝑘
󸀠 + 𝐿

𝑚,𝑢

2,𝑘
󸀠) .

(40)

The estimates of 𝐿𝑚,𝑢
1,𝑘
󸀠 and 𝐿

𝑚,𝑢

2,𝑘
󸀠 can be obtained as we

handle 𝐽

𝑚,𝑢

1,𝑘
󸀠 and 𝐽

𝑚,𝑢

2,𝑘
󸀠 , respectively. In conclusion, it follows

that

𝐼

2
≤ 𝐶𝑢

𝜏𝑞
𝐵

𝜀
󸀠

𝑢
.

(41)

This completes the proof of Lemma 6.

In addition to the estimate of the annular operator𝑇𝜀
󸀠

𝑢
, we

need the estimate for wavelet coefficients of 𝐾(𝑥), which can
be found in [10].
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Proposition 7. Let 𝐾(𝑥) be the distribution kernel associated
to 𝑇 ∈ 𝐶𝐶𝑍𝑂

𝛾
, then one has

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

𝐶2

𝑗
󸀠
𝑛/2

(1 +

󵄨

󵄨

󵄨

󵄨

𝑘

󸀠󵄨
󵄨

󵄨

󵄨

)

𝑛+𝛾
, (𝜀

󸀠
, 𝑗

󸀠
, 𝑘

󸀠
) ∈ Λ

𝑛
. (42)

We are now in a position to proveTheorem 1. By virtue of
(42), we obtain that

𝐵

𝜀
󸀠

𝑢
= sup
𝑗
󸀠

∑

2
𝑢−1
≤|𝑘
󸀠
|<2
𝑢

2

−𝑗
󸀠
𝑛/2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑏

𝜀
󸀠

𝑗
󸀠
,𝑘
󸀠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶2

−𝑢𝛾
. (43)

Together with Lemma 6, we have

󵄩

󵄩

󵄩

󵄩

𝑇 − 𝑇

𝑢

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1
→𝐹̇
0,𝑞

1

≤ ∑

𝑢
󸀠
>𝑢

∑

𝜀
󸀠

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑇

𝜀
󸀠

𝑢
󸀠

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1
→𝐹̇
0,𝑞

1

≤ 𝐶

+∞

∑

𝑢󸀠=𝑢+1

(𝑢

󸀠
)

𝜏𝑞
2

−𝑢
󸀠
𝛾
.

(44)

On the other hand, since 𝜏
𝑞
belongs to the interval (0, 1), then

a direct computation leads to that

󵄩

󵄩

󵄩

󵄩

𝑇 − 𝑇

𝑢

󵄩

󵄩

󵄩

󵄩𝐹̇
0,𝑞

1
→𝐹̇
0,𝑞

1

≤ 𝐶𝑢2

−𝑢𝛾
. (45)

This completes the proof of Theorem 1.

Remark 8. Notice that the atomic and molecular decomposi-
tions for the endpoint space ̇

𝐹

0,𝑞

1
play an important role in our

proof. However, up to the best knowledge of the authors, it is
unknownwhether the Triebel-Lizorkin space ̇

𝐹

𝑠,𝑞

𝑝 (𝑠 ∈ R, 1 <

𝑝, 𝑞 < ∞) has similar atomic andmolecular decompositions.
It would be interesting to know whether our method can
be adjusted to get the approximation accuracy for the more
general Triebel-Lizorkin space ̇

𝐹

𝑠,𝑞

𝑝 (𝑠 ∈ R, 1 < 𝑝, 𝑞 < ∞).
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