
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 585709, 16 pages
http://dx.doi.org/10.1155/2013/585709

Research Article
Global Robust Exponential Dissipativity for Interval Recurrent
Neural Networks with Infinity Distributed Delays

Xiaohong Wang and Huan Qi

Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Correspondence should be addressed to Xiaohong Wang; wxhong2006@163.com

Received 29 January 2013; Accepted 19 May 2013

Academic Editor: Chengming Huang

Copyright © 2013 X. Wang and H. Qi. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concernedwith the robust dissipativity problem for interval recurrent neural networks (IRNNs)with general activation
functions, and continuous time-varying delay, and infinity distributed time delay. By employing a new differential inequality, con-
structing two different kinds of Lyapunov functions, and abandoning the limitation on activation functions being bounded, mono-
tonous and differentiable, several sufficient conditions are established to guarantee the global robust exponential dissipativity for the
addressed IRNNs in terms of linear matrix inequalities (LMIs) which can be easily checked by LMI Control Toolbox in MATLAB.
Furthermore, the specific estimation of positive invariant and global exponential attractive sets of the addressed system is also
derived. Compared with the previous literatures, the results obtained in this paper are shown to improve and extend the earlier
global dissipativity conclusions. Finally, two numerical examples are provided to demonstrate the potential effectiveness of the pro-
posed results.

1. Introduction

Neural networks have been a subject of intense research activ-
ities over the past few decades due to their wide applications
in many areas such as signal processing, pattern recognition,
associative memories, parallel computation, and optimiza-
tion solution.Therefore, increasing attention has been paid to
the problemof stability analysis of neural networkswith time-
varying delays, and recently a lot of research works have been
reported for delayed neural networks and system (see [1–17]
and references therein).

It is well known that the stability problem is central to
analysis of a dynamical systemon an equilibriumpoint. How-
ever, from a practical point of view, it is not always the case
that the neural network trajectories will approach a single
equilibrium point that is the equilibrium point will be
unstable. It is also possible that there is no equilibrium point
in some situations, especially for interval recurrent neural
networks with infinity distributed delays. But what we can
know is that the orbits of the neural networkswill always enter
into a bounded region and stay there from then on.Therefore,
the concept of dissipativity (or called Lagrange stability) has
been introduced in [18]. Actually, the concept of dissipativity

in dynamical systems is a generalization of the Lyapunov sta-
bility. The global Lyapunov stability especially can be viewed
as a special case of global dissipativity by regarding an equi-
librium point as an attractive set [19–21]. Generally speaking,
the goal of study on globally dissipative for neural networks is
to determine globally attractive sets. Therefore, many initial
findings on the global dissipativity [18, 22–30] or Lagrange
stability [31–36] analysis of neural networks have been
reported. At present, global dissipativity theory has been
shown to be an appealing and efficient approach for dealing
with the problems such as stability theory, chaos and synchro-
nization theory, system norm estimation, and robust control
of neural networks without uncertainties [18, 22, 23, 29, 30]
or of those with uncertainties [24–28, 37, 38].

As it is well known, the use of constant fixed delays in
models of delayed feedback provides a good approximation in
simple circuits consisting of a small number of cells. However,
neural networks usually have a spatial extent due to the pres-
ence of amultitude of parallel pathways with a variety of axon
sizes and lengths.Thus there will be a distribution of conduc-
tion velocities along these pathways and a distribution of pro-
pagation delays. In these circumstances, the signal propaga-
tion is not instantaneous and cannot be modeled with
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discrete delays. A more appropriate way is to incorporate
continuously distributed delays [11, 16, 29, 34, 35, 37, 39–41].
However, these distributed delays are usually unbounded,
and this fact motivates our work.

Recently, much attention has also been paid to the robust
questions of interval neural networks [7–12, 39, 40, 42, 43].
In [7], global robust stability for stochastic interval neural
networks with continuously distributed delays of neutral type
has been considered. Bao et al. have investigated the robust
stability problem of interval fuzzy Cohen-Grossberg neural
networks with piecewise constant argument of generalized
type [9]. The global robust passivity analysis for stochastic
fuzzy interval neural networks with time-varying delays has
been studied in [42]. Balasubramaniam et al. have studied
the robust stability for Markovian jumping interval neural
networks with discrete and distributed time-varying delays
[11]. Xu et al. have studied the stochastic exponential robust
stability problem of interval neural networks with reaction-
diffusion terms and mixed delays [12]. And the stationary
oscillation problem of interval neural networks with discrete
and distributed time-varying delays under impulsive pertur-
bations has been studied by using the LMI approach in [40].
Moreover, there are some works on global dissipativity for
interval neural networks with time delays such as time-
varying delays [24, 25, 27, 38], mixed time-varying delays
[26, 37]. Despite the existence of many reported results in the
literature, there are still needs formore in-depth and compre-
hensive investigations. For example, in almost all the existing
results, the activation functions of the neural networks are
limited to be sigmoid functions, piecewise linear monotone
nondecreasing functions with bounded ranges. Moreover, in
these recent publications, time-varying delays [44] terms are
required to be continuously differentiable, and the derivative
is bounded and smaller than one.

Although there has been published a rich literature on
dissipativity problem for neural networks, to the best of our
knowledge, few authors pay attention to the dissipativity
problem for interval neural networks with both discrete and
infinity distributed delays. The problem for global robust
exponential dissipativity of IRNNs with mixed time-varying
delays and general activation functions, particularly made
on it by means of LMIs [2, 6, 27, 36, 38, 40], especially
remains open. Hence, this gives themotivation of our present
investigation. It is worth pointing out that the proposed
results are nontrivial because of (1) establishing a generalized
differential inequality which is aimed dealingwith the infinity
distributed delay appearing in IRNNs; (2) proposing a new
Lyapunov-Krasovskii functional that should be used for the
general activation function skillfully; (3) proving a lemma to
handle the appropriate matrices deformation so as to make
use of linear matrix inequalities.

In this paper, we focus on the problem of global robust
exponential dissipativity for a class of interval recurrent
neural networks with general activation functions andmixed
delays, which consists of time-varying and infinite distributed
delay. For the sake of comparison, Lyapunov function and
Lyapunov-Krasovskii functional are constructed, respec-
tively, which can be used to handle the interval uncertain
termsmasterly by the LMI approach.What is more, when the

LMIs-based uncertain parameters are feasible, several suffi-
cient conditions are established to guarantee the global robust
exponential dissipativity for the addressed IRNNs. And the
specific estimation of positive invariant and global exponen-
tial attractive sets is also put forward. The purpose of this
paper is trebling. First, we demonstrate two important Lem-
mas which play a vital role in the later theorems. Second, we
tackle the problem of global robust exponential dissipativity
for IRNNs with both time-varying and infinite distributed
delays based on the general activation functions. Third, the
results are performed in LMIs, which will be efficiently solved
by theMATLAB LMI Toolbox [45] and compared with those
presented in [26, 36, 37]. The rest of this paper is organized
as follows. In the next section, some preliminaries, including
some definitions, assumptions, and significant lemmas, will
be described. Section 3 will state the main results. Section 4
will present two illustrative examples to verify the main
results, and finally a summery will be given in Section 5.

Notations. Throughout this paper, 𝐼 represents the unit
matrix; in 𝑅

+
= [0, ∞), the symbols 𝑅

𝑛 and 𝑅
𝑛×𝑚 stand,

respectively, for the 𝑛-dimensional Euclidean space and the
set of all 𝑛 × 𝑚 real matrices. 𝐴

𝑇 and 𝐴
−1 denote the matrix

transpose and matrix inverse. 𝐴 > 0 or 𝐴 < 0 denotes that
the matrix 𝐴 is a symmetric and positive definite or negative
definite matrix. Meanwhile, 𝐴 < 𝐵 indicates 𝐴 − 𝐵 < 0 and
‖∗‖ is the Euclidean vector norm.When 𝑥 is a variable, ‖𝑥‖ =

∑
𝑛

𝑖=1
|𝑥
𝑖
|. [∙]† denotes the floor function andΛ = {1, 2, . . . , 𝑛}.

Moreover, in symmetric block matrices, we use an asterisk
“∗” to represent a term that is induced by symmetry and
diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix.

2. Preliminaries

The interval recurrent neural networks with infinity dis-
tributed delays are described by the following equation group:

�̇� (𝑡) = −𝐷𝑥 (𝑡) + 𝐴𝑔 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐶 ∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝑈,

(1)

where 𝑥(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 is the neuron state vector of

the neural network; 𝑈 = (𝑈
1
, . . . , 𝑈

𝑛
)
𝑇 is an external input;

𝜏(𝑡) is the transmission delay of the neural networks, which
is time varying and satisfies 0 ≤ 𝜏(𝑡) ≤ 𝜏, where 𝜏 is a positive
constant; 𝑔(𝑥(⋅)) = (𝑔

1
(𝑥
1
(⋅)), . . . , 𝑔

𝑛
(𝑥
𝑛
(⋅)))
𝑇 represents the

neuron activation function, and ℎ(⋅) = diag{ℎ
1
(⋅), . . . , ℎ

𝑛
(⋅)}

represents the delay kernel function. The matrices 𝐷 =

diag{𝑑
1
, . . . , 𝑑

𝑛
},𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

,𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, and 𝐶 = (𝑐
𝑖𝑗
)
𝑛×𝑛

are some unknown diagonal matrix, connection weight
matrix, the delayed weight matrix, and the distributively
delayed connection weight matrix, respectively, satisfying

𝐷 ∈ D, 𝐴 ∈ A, 𝐵 ∈ B, 𝐶 ∈ C, (2)

where D = [𝐷, 𝐷] := {diag{𝑑
1
, . . . , 𝑑

𝑛
} | 0 < 𝑑

𝑖
≤ 𝑑
𝑖

≤ 𝑑
𝑖
, 𝑖 ∈

Λ}, A = [𝐴, 𝐴] := {(𝑎
𝑖𝑗
)
𝑛×𝑛

| 𝑎
𝑖

≤ 𝑎
𝑖

≤ 𝑎
𝑖
, 𝑖, 𝑗 ∈ Λ},
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B = [𝐵, 𝐵] := {(𝑏
𝑖𝑗
)
𝑛×𝑛

| 𝑏
𝑖

≤ 𝑏
𝑖

≤ 𝑏
𝑖
, 𝑖, 𝑗 ∈ Λ}, C = [𝐶, 𝐶] :=

{(𝑐
𝑖𝑗
)
𝑛×𝑛

| 𝑐
𝑖

≤ 𝑐
𝑖

≤ 𝑐
𝑖
, 𝑖, 𝑗 ∈ Λ} with 𝐷 = diag{𝑑

1
, . . . , 𝑑

𝑛
},

𝐷 = diag{𝑑
1
, . . . , 𝑑

𝑛
}, 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑎
𝑖𝑗
)
𝑛×𝑛

,

𝐵 = (𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐶 = (𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐶 = (𝑎
𝑖𝑗
)
𝑛×𝑛

.
In addition, let

Ω := { diag (𝛿
11

, . . . , 𝛿
1𝑛

, . . . , 𝛿
𝑛1

, . . . , 𝛿
𝑛𝑛

)

∈ 𝑅
𝑛
2
×𝑛
2

|

𝛿
𝑖𝑗


≤ 1, 𝑖, 𝑗 ∈ Λ} ,

𝐷
0

=
𝐷 + 𝐷

2
, 𝐴

0
=

𝐴 + 𝐴

2
,

𝐵
0

=
𝐵 + 𝐵

2
, 𝐶

0
=

𝐶 + 𝐶

2
,

(𝛼
𝑖𝑗
)
𝑛×𝑛

=
𝐷 − 𝐷

2
, (𝛽

𝑖𝑗
)
𝑛×𝑛

=
𝐴 − 𝐴

2
,

(𝛾
𝑖𝑗
)
𝑛×𝑛

=
𝐵 − 𝐵

2
, (𝜗

𝑖𝑗
)
𝑛×𝑛

=
𝐶 − 𝐶

2
,

𝑀
1

= [√𝛼
11

𝑒
1
, . . . , √𝛼

1𝑛
𝑒
1
, . . . , √𝛼

𝑛1
𝑒
𝑛
, . . . , √𝛼

𝑛𝑛
𝑒
𝑛
]
𝑛×𝑛
2 ,

𝑀
2

= [√𝛽
11

𝑒
1
, . . . , √𝛽

1𝑛
𝑒
1
, . . . , √𝛽

𝑛1
𝑒
𝑛
, . . . , √𝛽

𝑛𝑛
𝑒
𝑛
]
𝑛×𝑛
2

,

𝑀
3

= [√𝛾
11

𝑒
1
, . . . , √𝛾

1𝑛
𝑒
1
, . . . , √𝛾

𝑛1
𝑒
𝑛
, . . . , √𝛾

𝑛𝑛
𝑒
𝑛
]
𝑛×𝑛
2 ,

𝑀
4

= [√𝜗
11

𝑒
1
, . . . , √𝜗

1𝑛
𝑒
1
, . . . , √𝜗

𝑛1
𝑒
𝑛
, . . . , √𝜗

𝑛𝑛
𝑒
𝑛
]
𝑛×𝑛
2

,

𝐽
1

= [√𝛼
11

𝑒
1
, . . . , √𝛼

1𝑛
𝑒
𝑛
, . . . , √𝛼

𝑛1
𝑒
1
, . . . , √𝛼

𝑛𝑛
𝑒
𝑛
]
𝑛
2
×𝑛

,

𝐽
2

= [√𝛽
11

𝑒
1
, . . . , √𝛽

1𝑛
𝑒
𝑛
, . . . , √𝛽

𝑛1
𝑒
1
, . . . , √𝛽

𝑛𝑛
𝑒
𝑛
]
𝑛
2
×𝑛

,

𝐽
3

= [√𝛾
11

𝑒
1
, . . . , √𝛾

1𝑛
𝑒
𝑛
, . . . , √𝛾

𝑛1
𝑒
1
, . . . , √𝛾

𝑛𝑛
𝑒
𝑛
]
𝑛
2
×𝑛

,

𝐽
4

= [√𝜗
11

𝑒
1
, . . . , √𝜗

1𝑛
𝑒
𝑛
, . . . , √𝜗

𝑛1
𝑒
1
, . . . , √𝜗

𝑛𝑛
𝑒
𝑛
]
𝑛
2
×𝑛

,

(3)

where 𝑒
𝑖
∈ 𝑅
𝑛 denotes the column vector with 𝑖th element to

be 1 and others to be 0.
By some simple calculations, one can transform system

(1) into the following form:

�̇� (𝑡) = − [𝐷
0

+ 𝑀
1
Ω
1
𝐽
1
] 𝑥 (𝑡) + [𝐴

0
+ 𝑀
2
Ω
2
𝐽
2
] 𝑔 (𝑥 (𝑡))

+ [𝐵
0

+ 𝑀
3
Ω
3
𝐽
3
] 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ [𝐶
0

+ 𝑀
4
Ω
4
𝐽
4
] ∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝑈,

(4)

Or, equivalently,

�̇� (𝑡) = −𝐷
0
𝑥 (𝑡) + 𝐴

0
𝑔 (𝑥 (𝑡)) + 𝐵

0
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐶
0

∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + MΨ (𝑡) + 𝑈,

(5)

where

M = [𝑀
1
, 𝑀
2
, 𝑀
3
, 𝑀
4
]
𝑛×4𝑛
2 , Ω

𝑖
∈ Ω, 𝑖 = 1, 2, 3, 4,

Ψ (𝑡) = (

Ω
1
𝐽
1

0 0 0

0 Ω
2
𝐽
2

0 0

0 0 Ω
3
𝐽
3

0

0 0 0 Ω
4
𝐽
4

)

× (

𝑥 (𝑡)

𝑔 (𝑥 (𝑡))

𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠

) .

(6)

In this paper, the system (1) is supplemented the initial
condition given by 𝑥(𝑠) = 𝜙(𝑠), 𝑠 ∈ (−∞, 0], and 𝑖 ∈ Λ,
where 𝜙(⋅) ∈ C,C denotes real-valued continuous functions
defined on (−∞, 0]. Here, it is assumed that, for any initial
condition 𝜙(⋅) ∈ C, there exists at least one solution of model
(1). As usual, we will also assume that 𝑔(0) = 0 for all 𝑡 ∈ 𝑅

+

in this paper.
For further discussion, the following assumptions and

lemmas are needed.
(A1) The activation function 𝑔 satisfies 𝑔(0) = 0, and

𝑙
−

𝑗
≤

𝑔
𝑗
(𝑥) − 𝑔

𝑗
(𝑦)

𝑥 − 𝑦
≤ 𝑙
+

𝑗
, (7)

for all 𝑥 ̸= 𝑦, 𝑥, 𝑦 ∈ 𝑅, where 𝑙
+

𝑗
and 𝑙
−

𝑗
, 𝑗 ∈ Λ, are some real

constants.
(A2) The delay kernels ℎ

𝑗
(𝑡), 𝑗 ∈ Λ are some real value

nonnegative continuous functions defined in (−∞, 0] and
satisfy ℎ

𝑗
(𝑡) ≤ h(𝑡), 𝑗 ∈ Λ,

∫

∞

0

ℎ
𝑗
(𝑡) 𝑑𝑡 = 1, ∫

∞

0

h (𝑡) 𝑑𝑡 = h,

∫

∞

0

h (𝑡) 𝑒
𝑡

𝑑𝑡 =̇ h
⋆

< ∞,

(8)

in which h(𝑡) corresponds to some nonnegative function
defined in (−∞, 0]; constants , h, and h⋆ are some positive
numbers.

Next, we first introduce the definitions of global robust
exponential dissipativity for interval recurrent neural net-
works (1) or (5) and then state the notation of the upper
right Dini derivative and some preliminary lemmas, which
are needed to prove our main results.

Definition 1 (see [19]). If there exists a compact set Ω ∈ R𝑛

such that, for all 𝑠 ∈ [−∞, 𝑡
0
], for all 𝑥(𝑠) ∈ R𝑛 \ Ω,

lim
𝑡→+∞

𝜌(𝑥(𝑡), Ω) = 0; then Ω is said to be a globally
attractive set of (1) or (5), where R𝑛 \ Ω is the complement
set of Ω. A set Ω is called positive invariant set of (1) or (5),
if, for all 𝑠 ∈ [−∞, 𝑡

0
], for all 𝑥(𝑠) ∈ R𝑛 \ Ω implies 𝑥(𝑡) ∈ Ω

for 𝑡 ≥ 𝑡
0
.

Definition 2 (see [19]). The neural network defined by (1)
or (5) is called a globally exponentially dissipative system,
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if there exists a radially unbounded and positive definite
Lyapunov function 𝑉(𝑥(𝑡)), which satisfies 𝑉(𝑥(𝑡)) ≥ ‖𝑥‖

𝛼,
where 𝛼 > 0 is a constant, and constants 𝜁 > 0, 𝛽 > 0, such
that for 𝑉(𝑥(𝑡

0
)) > 𝜁, 𝑉(𝑥(𝑡)) > 𝜁, 𝑡 ≥ 𝑡

0
, the inequality

𝑉(𝑥(𝑡))−𝜁 ≤ (𝑉(𝑥(𝑡
0
))−𝜁) exp{−𝛽(𝑡−𝑡

0
)} always holds. And

{𝑥 | 𝑉(𝑥(𝑡)) ≤ 𝜁} is said to be a globally exponentially attrac-
tive set of (1) or (5), where 𝑉(𝑥(𝑡

0
)) ≥ 𝑉(𝑥(𝑡

0
)) and 𝑉(𝑥(𝑡

0
))

is a constant.

Definition 3. The neural network defined by (1) or (5) is
a globally robustly exponentially dissipative system if the
system is globally exponentially dissipative for all𝐷 ∈ D, 𝐴 ∈

A, 𝐵 ∈ B, and 𝐶 ∈ C.

Definition 4. For any function 𝑓(𝑡), we define its right-hand
derivative as

𝐷
+

𝑓 (𝑡) = lim
𝑠→0
+

𝑓 (𝑡 + 𝑠) − 𝑓 (𝑡)

𝑠
. (9)

Lemma 5 (see [40]). For any vectors 𝑎, 𝑏 ∈ 𝑅
𝑛, the inequality

±2𝑎
𝑇

𝑏 ≤ 𝑎
𝑇

𝑋𝑎 + 𝑏
𝑇

𝑋
−1

𝑏 (10)

holds, in which 𝑋 is any 𝑛 × 𝑛 matrix with 𝑋 > 0.

Lemma 6 (Schur complement [13]). For a given matrix 𝑆 =

(
𝑆
11
𝑆
12

𝑆
𝑇

12
𝑆
22

), with 𝑆
11

= 𝑆
𝑇

11
, 𝑆
22

= 𝑆
𝑇

22
, then the following condi-

tions are equivalent:

(1) 𝑆 < 0,
(2) 𝑆
22

< 0, 𝑆
11

− 𝑆
12

𝑆
−1

22
𝑆
𝑇

12
< 0,

(3) 𝑆
11

< 0, 𝑆
22

− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12

< 0.

The following two lemmas will be used for deriving our
main results.

Lemma 7. Let 𝑝, 𝑞, 𝑟, and 𝜏 denote nonnegative constants,
and function 𝑓 ∈ 𝐶(𝑅, 𝑅

+
) satisfies the scalar differential

inequality

𝐷
+

𝑓 (𝑡) ≤ −𝑝𝑓 (𝑡) + 𝑞 sup
𝑡−𝜏≤𝑠≤𝑡

𝑓 (𝑠)

+ 𝑟 ∫

𝜎

0

𝑘 (𝑠) 𝑓 (𝑡 − 𝑠) 𝑑𝑠, 𝑡 ≥ 𝑡
0
,

(11)

where 0 < 𝜎 ≤ +∞, 𝑘(⋅) ∈ 𝐶([0, 𝜎], 𝑅
+
) satisfies ∫

𝜎

0
𝑘(𝑠)𝑒
𝜂
0
𝑠
𝑑𝑠

< ∞ for some positive constant 𝜂
0

> 0 in the case when 𝜎 =

+∞. Moreover, when 𝜎 = +∞, the interval [𝑡 − 𝜎, 𝑡] is under-
stood to be replaced by (−∞, 𝑡]. Assume that

𝑝 > 𝑞 + 𝑟 ∫

𝜎

0

𝑘 (𝑠) 𝑑𝑠. (12)

Then 𝑓(𝑡) ≤ 𝑓(𝑡
0
) exp(−𝜆(𝑡 − 𝑡

0
)) for all 𝑡 ≥ 𝑡

0
, where 𝑓(𝑡

0
) =

sup
𝑡
0
−max{𝜎,𝜏}≤𝑠≤𝑡

0

𝑓(𝑠), and 𝜆 ∈ (0, 𝜂
0
) satisfies the inequality

𝜆 < 𝑝 − 𝑞𝑒
𝜆𝜏

− 𝑟 ∫

𝜎

0

𝑘 (𝑠) 𝑒
𝜆𝑠

𝑑𝑠. (13)

Proof. We first note that condition (11) implies that there
exists a scalar 𝜆 ∈ (0, 𝜂

0
) such that inequality (12) holds.

Consider the following equation:

𝑄 (𝛾) = 𝑝 − 𝑞𝑒
𝛾𝜏

− 𝑟 ∫

𝜎

0

𝑘 (𝑠) 𝑒
𝛾𝑠

𝑑𝑠 − 𝛾. (14)

Because 𝑄(0) = 𝑝 − 𝑞 − 𝑟 ∫
𝜎

0
𝑘(𝑠)𝑑𝑠 > 0 and 𝑄


(𝛾) = −𝑞𝜏𝑒

𝛾𝜏

− 𝑟 ∫
𝜎

0
𝑠𝑘(𝑠)𝑒

𝛾𝑠
𝑑𝑠 − 1 < 0, we follow that 𝑄(𝛾) is a strictly

monotone decreasing function. Meanwhile, we also notice
that there always exists a positive constant 𝜂

0
such that

𝑄(𝜂
0
) = 𝑝−𝑞𝜏𝑒

𝜂
0
𝜏
−𝑟 ∫
𝜎

0
𝑘(𝑠)𝑒
𝜂
0
𝑠
𝑑𝑠−𝜂
0

< 0.Therefore, by view
of the mean value theorem, there is a constant 0 < 𝜆

∗
< 𝜂
0

such that 𝑄(𝜆
∗
) = 0. Correspondingly, there exists a constant

0 < 𝜆 < 𝜆
∗

< 𝜂
0
such that 𝑄(𝜆) > 0, namely, 𝜆 < 𝑝 − 𝑞𝑒

𝜆𝜏

− 𝑟 ∫
𝜎

0
𝑘(𝑠)𝑒
𝜆𝑠

𝑑𝑠.
Next, we will show 𝑓(𝑡) ≤ 𝑓(𝑡

0
) exp(−𝜆(𝑡 − 𝑡

0
)) for all

𝑡 ≥ 𝑡
0
. In order to do this, let

Ψ (𝑡) = {
𝑓 (𝑡) 𝑒

𝜆(𝑡−𝑡
0
)
, 𝑡 ≥ 𝑡

0
,

𝑓 (𝑡) , 𝑡
0

− max {𝜎, 𝜏} ≤ 𝑡 ≤ 𝑡
0
.

(15)

Nowwe only need to show thatΨ(𝑡) ≤ 𝑓(𝑡
0
), 𝑡 ≥ 𝑡

0
. It is clear

that Ψ(𝑡) ≤ 𝑓(𝑡
0
) for 𝑡

0
− max{𝜎, 𝜏} ≤ 𝑡 ≤ 𝑡

0
by the definition

of𝑓. Next, we can prove thatΨ(𝑡) ≤ 𝑓(𝑡
0
) for 𝑡 ≥ 𝑡

0
. Suppose,

on the contrary, that there exist some 𝑡 ∈ [𝑡
0
, +∞) such

Ψ(𝑡) > 𝑓(𝑡
0
). Let 𝑡

∗
= inf{𝑡 ∈ [𝑡

0
, +∞), Ψ(𝑡) > 𝑓(𝑡

0
)}; then

Ψ (𝑡
∗

) = 𝑓 (𝑡
0
) , Ψ (𝑡) ≤ 𝑓 (𝑡

0
) ,

𝑡 ∈ [𝑡
0

− max {𝜎, 𝜏} , 𝑡
∗

] ,

𝐷
+

Ψ (𝑡
∗

) ≥ 0.

(16)

Suppose that 𝑓(𝜃
𝑡
∗) = sup

𝑡
∗
−𝜏≤𝑠≤𝑡

∗𝑓(𝑠), 𝜃
𝑡
∗ ∈ [𝑡

∗
− 𝜏, 𝑡
∗
].

Calculating the upper right Dini derivative 𝐷
+
Ψ(𝑡) along the

solution of (5), by (12) and (13), we get

𝐷
+

Ψ (𝑡) |
𝑡=𝑡
∗

= 𝐷
+

𝑓 (𝑡
∗

) 𝑒
𝜆(𝑡
∗
−𝑡
0
)

+ 𝜆𝑓 (𝑡
∗

) 𝑒
𝜆(𝑡
∗
−𝑡
0
)

≤ [−𝑝𝑓 (𝑡
∗

) + 𝑞𝑓 (𝜃
𝑡
∗) + 𝑟 ∫

𝜎

0

𝑘 (𝑠) 𝑓 (𝑡
∗

− 𝑠) 𝑑𝑠] 𝑒
𝜆(𝑡
∗
−𝑡
0
)

+ 𝜆𝑓 (𝑡
∗

) 𝑒
𝜆(𝑡
∗
−𝑡
0
)

≤ [(𝜆 − 𝑝) 𝑓 (𝑡
∗

) + 𝑞𝑓 (𝜃
𝑡
∗)

+ 𝑟 ∫

𝜎

0

𝑘 (𝑠) 𝑓 (𝑡
∗

− 𝑠) 𝑑𝑠] 𝑒
𝜆(𝑡
∗
−𝑡
0
)

< −𝑞𝑒
𝜆𝜏

𝑓 (𝑡
∗

) 𝑒
𝜆(𝑡
∗
−𝑡
0
)

+ 𝑞𝑒
𝜆(𝑡
∗
−𝜃
𝑡
∗ )

𝑓 (𝜃
𝑡
∗) 𝑒
𝜆(𝜃
𝑡
∗−𝑡
0
)

− 𝑟𝑓 (𝑡
∗

) 𝑒
𝜆(𝑡
∗
−𝑡
0
)

∫

𝜎

0

𝑘 (𝑠) 𝑒
𝜆𝑠

𝑑𝑠

+ 𝑟 ∫

𝜎

0

𝑘 (𝑠) 𝑒
𝜆𝑠

𝑓 (𝑡
∗

− 𝑠) 𝑒
𝜆(𝑡
∗
−𝑠−𝑡
0
)

𝑑𝑠
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≤ − 𝑞𝑒
𝜆𝜏

Ψ (𝑡
∗

) + 𝑞𝑒
𝜆𝜏

Ψ (𝜃
𝑡
∗) − 𝑟Ψ (𝑡

∗

) ∫

𝜎

0

𝑘 (𝑠) 𝑒
𝜆𝑠

𝑑𝑠

+ 𝑟 ∫

𝜎

0

𝑘 (𝑠) 𝑒
𝜆𝑠

Ψ (𝑡
∗

− 𝑠) 𝑑𝑠

≤ − 𝑞𝑒
𝜆𝜏

Ψ (𝑡
∗

) + 𝑞𝑒
𝜆𝜏

𝑓 (𝑡
0
) − 𝑟Ψ (𝑡

∗

) ∫

𝜎

0

𝑘 (𝑠) 𝑒
𝜆𝑠

𝑑𝑠

+ 𝑟𝑓 (𝑡
0
) ∫

𝜎

0

𝑘 (𝑠) 𝑒
𝜆𝑠

𝑑𝑠 = 0,

(17)

which contradicts (13). So we have provenΨ(𝑡) ≤ 𝑓(𝑡
0
) for all

𝑡 ≥ 𝑡
0
, that is; 𝑓(𝑡) ≤ 𝑓(𝑡

0
) exp(−𝜆(𝑡− 𝑡

0
)) for all 𝑡 ≥ 𝑡

0
, where

𝜆 satisfies (12). This completes the proof.

Remark 8. It should be noted that it is only require that the
function 𝑘(⋅) satisfies the assumption: 𝑘(⋅) ∈ 𝐶([0, 𝜎], 𝑅

+
) is

integrable if 𝜎 < +∞.

Lemma 9. Given constant matrices 𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐵
1
, 𝐵
2
,

𝐵
3
, and 𝐵

4
∈ 𝑅
𝑛×𝑛 and appropriate reversible matrices 𝑋

1
, 𝑋
2
,

𝑋
3
, and 𝑋

4
, let

Σ
1

= (
𝐴
1

𝐵
1

) 𝑋
−1

1
(

𝐴
1

𝐵
1

)

𝑇

+ (
𝐴
2

𝐵
2

) 𝑋
−1

2
(

𝐴
2

𝐵
2

)

𝑇

+ (
𝐴
3

𝐵
3

) 𝑋
−1

3
(

𝐴
3

𝐵
3

)

𝑇

+ (
𝐴
4

𝐵
4

) 𝑋
−1

4
(

𝐴
4

𝐵
4

)

𝑇

,

Σ
2

= (
𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐵
1

𝐵
2

𝐵
3

𝐵
4

) (

𝑋
−1

1
0 0 0

0 𝑋
−1

2
0 0

0 0 𝑋
−1

3
0

0 0 0 𝑋
−1

4

)

× (
𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐵
1

𝐵
2

𝐵
3

𝐵
4

)

𝑇

.

(18)

Then Σ
1

= Σ
2
.

Proof. Firstly, we discuss Σ
1
, and

Σ
1

= (

𝐴
1
𝑋
−1

1
𝐴
𝑇

1
𝐴
1
𝑋
−1

1
𝐵
𝑇

1

𝐵
1
𝑋
−1

1
𝐴
𝑇

1
𝐵
1
𝑋
−1

1
𝐵
𝑇

1

)

+ (

𝐴
2
𝑋
−1

2
𝐴
𝑇

2
𝐴
2
𝑋
−1

2
𝐵
𝑇

2

𝐵
2
𝑋
−1

2
𝐴
𝑇

2
𝐵
2
𝑋
−1

2
𝐵
𝑇

2

)

+ (

𝐴
3
𝑋
−1

3
𝐴
𝑇

3
𝐴
3
𝑋
−1

3
𝐵
𝑇

3

𝐵
3
𝑋
−1

3
𝐴
𝑇

3
𝐵
3
𝑋
−1

3
𝐵
𝑇

3

)

+ (

𝐴
4
𝑋
−1

4
𝐴
𝑇

4
𝐴
4
𝑋
−1

4
𝐵
𝑇

4

𝐵
4
𝑋
−1

4
𝐴
𝑇

4
𝐵
4
𝑋
−1

4
𝐵
𝑇

4

)

= (
Δ
11

Δ
12

∗ Δ
22

) ,

(19)

where Δ
11

= 𝐴
1
𝑋
−1

1
𝐴
𝑇

1
+ 𝐴
2
𝑋
−1

2
𝐴
𝑇

2
+ 𝐴
3
𝑋
−1

3
𝐴
𝑇

3
+ 𝐴
4
𝑋
−1

4
𝐴
𝑇

4
;

Δ
12

= 𝐴
1
𝑋
−1

1
𝐵
𝑇

1
+ 𝐴
2
𝑋
−1

2
𝐵
𝑇

2
+ 𝐴
3
𝑋
−1

3
𝐵
𝑇

3
+ 𝐴
4
𝑋
−1

4
𝐵
𝑇

4
; Δ
22

=

𝐵
1
𝑋
−1

1
𝐵
𝑇

1
+ 𝐵
2
𝑋
−1

2
𝐵
𝑇

2
+ 𝐵
3
𝑋
−1

3
𝐵
𝑇

3
+ 𝐵
4
𝑋
−1

4
𝐵
𝑇

4
.

Calculating Σ
2
, we obtain

Σ
2

= (

𝐴
1
𝑋
−1

1
𝐴
2
𝑋
−1

2
𝐴
3
𝑋
−1

3
𝐴
4
𝑋
−1

4

𝐵
1
𝑋
−1

1
𝐵
2
𝑋
−1

2
𝐵
3
𝑋
−1

3
𝐵
4
𝑋
−1

4

)

×

(
(
(

(

𝐴
𝑇

1
𝐵
𝑇

1

𝐴
𝑇

2
𝐵
𝑇

2

𝐴
𝑇

3
𝐵
𝑇

3

𝐴
𝑇

4
𝐵
𝑇

4

)
)
)

)

= (
Δ
11

Δ
12

∗ Δ
22

) .

(20)

Comparing the above equations, we can know Σ
1

= Σ
2
. The

proof is finished.

Lemma 10 (see [46]). The following inequality is true:

0 ≤ ∫

𝑥
𝑖
(𝑡)

0

(𝑔
𝑖
(𝑠) − 𝑙

−

𝑖
𝑠) 𝑑𝑠 ≤ (𝑔

𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡) .

(21)

3. Main Results

In this section, we shall derive some sufficient conditions for
globally robust exponentially dissipative for the IRNNs (1)
or (5) with general activation functions, continuous time-
varying delay, and infinity distributed time delay by means
of applying the lemmas in Section 2 repeatedly.

3.1. Results Using Lyapunov Functions. In this part, sufficient
conditions for global robust exponential dissipativity of (1)
or (5) are got by using Lyapunov functions and inequality
techniques.

Theorem11. Assume that Assumptions (A1)-(A2) hold; if there
exist three constants 𝛽

𝑖
> 0, 𝑖 = 1, 2, and 3, seven positive diag-

onal matrices 𝑄
1
, 𝑄
2
, and 𝑄

3
∈ 𝑅
𝑛×𝑛

, 𝑄
4
, 𝑄
5
, 𝑄
6
, and 𝑄

7
∈

𝑅
𝑛
2
×𝑛
2

, and two positive definite matrices 𝑃, 𝑄
8

∈ 𝑅
𝑛×𝑛 such

that the following inequalities hold:

(

(

Π
1

𝑃𝐴
0

𝑃𝐵
0

𝑃𝐶
0

𝑃M 𝑃

∗ 𝑄
1

0 0 0 0

∗ ∗ 𝑄
2

0 0 0

∗ ∗ ∗ 𝑄
3

0 0

∗ ∗ ∗ ∗ Π
2

0

∗ ∗ ∗ ∗ ∗ 𝑄
8

)

)

≥ 0,

𝛽
2
𝑃 ≥ 𝑊𝑄

2
𝑊 + 𝑊𝐽

𝑇

3
𝑄
6
𝐽
3
𝑊,

𝛽
3
𝑃 ≥ 𝑊𝑄

3
𝑊 + 𝑊𝐽

𝑇

4
𝑄
7
𝐽
4
𝑊,

𝛽
1

> 𝛽
2

+ 𝛽
3
h,

(22)
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where Π
1

= 𝑃𝐷
0

+ 𝐷
0
𝑃 − 𝑊𝑄

1
𝑊 − 𝐽

𝑇

1
𝑄
4
𝐽
1

− 𝑊𝐽
𝑇

2
𝑄
5
𝐽
2
𝑊 −

𝛽
1
𝑃, 𝑊 = diag{𝑤

1
, . . . , 𝑤

𝑛
}, 𝑤
𝑗

= max{|𝑙
−

𝑗
|, |𝑙
+

𝑗
|},

Π
2

= (

𝑄
4

0 0 0

0 𝑄
5

0 0

0 0 𝑄
6

0

0 0 0 𝑄
7

) . (23)

Then the neural network defined by (1) or (5) is a globally robust
exponentially dissipative system, and the set Φ = {𝑥 ∈ 𝑅

𝑛
|

𝑥
𝑇
(𝑡)𝑃𝑥(𝑡) ≤ 𝑈

𝑇
𝑄
8
𝑈/(𝛽
1

− 𝛽
2

− 𝛽
3
h)} is a positive invariant

and globally exponential attractive set.

Proof. Now, we consider the following Lyapunov function:

𝑉 (𝑥 (𝑡)) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) . (24)

Calculating the derivative of𝑉(𝑥(𝑡)) along the trajectories
of (5), we can obtain

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

(2)

≤ 2𝑥
𝑇

(𝑡) 𝑃 [−𝐷
0
𝑥 (𝑡) + 𝐴

0
𝑔 (𝑥 (𝑡))

+ 𝐵
0
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐶
0

∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠

+MΨ (𝑡) + 𝑈]

(25)

FromAssumption (A1) and Lemma 5, we know that there
exist three positive diagonal matrices 𝑄

1
, 𝑄
2
, and 𝑄

3
∈ 𝑅
𝑛×𝑛

and a positive definite matrix 𝑄
8

∈ 𝑅
𝑛×𝑛 such that the follow-

ing inequalities hold:

2𝑥
𝑇

(𝑡) 𝑃𝐴
0
𝑔 (𝑥 (𝑡))

≤ 𝑥
𝑇

(𝑡) 𝑃𝐴
0
𝑄
−1

1
𝐴
𝑇

0
𝑃𝑥 (𝑡) + 𝑔

𝑇

(𝑥 (𝑡)) 𝑄
1
𝑔 (𝑥 (𝑡))

≤ 𝑥
𝑇

(𝑡) 𝑃𝐴
0
𝑄
−1

1
𝐴
𝑇

0
𝑃𝑥 (𝑡) + 𝑥

𝑇

(𝑡) 𝑊𝑄
1
𝑊𝑥 (𝑡) ,

(26)

2𝑥
𝑇

(𝑡) 𝑃𝐵
0
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

≤ 𝑥
𝑇

(𝑡) 𝑃𝐵
0
𝑄
−1

2
𝐵
𝑇

0
𝑃𝑥 (𝑡)

+ 𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄
2
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

≤ 𝑥
𝑇

(𝑡) 𝑃𝐵
0
𝑄
−1

2
𝐵
𝑇

0
𝑃𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑊𝑄
2
𝑊𝑥 (𝑡 − 𝜏 (𝑡)) ,

(27)

2𝑥
𝑇

(𝑡) 𝑃𝐶
0

∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠

≤ 𝑥
𝑇

(𝑡) 𝑃𝐶
0
𝑄
−1

3
𝐶
𝑇

0
𝑃𝑥 (𝑡) + (∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

× 𝑄
3

(∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠) ,

(28)

and by well-known Cauchy-Schwarz inequality and Assump-
tion (A2), we get

(∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

𝑄
3

(∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

=

𝑛

∑

𝑗=1

𝑞
(3)

𝑗
(∫

+∞

0

ℎ
𝑗
(𝑢) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝑢)) 𝑑𝑢)

2

≤

𝑛

∑

𝑗=1

𝑞
(3)

𝑗
∫

+∞

0

ℎ
𝑗
(𝑢) 𝑑𝑢 ∫

+∞

0

ℎ
𝑗
(𝑢) 𝑔
2

𝑗
(𝑥
𝑗
(𝑡 − 𝑢)) 𝑑𝑢

≤

𝑛

∑

𝑗=1

𝑞
(3)

𝑗
∫

+∞

0

h (𝑢) 𝑤
2

𝑗
𝑥
2

𝑗
(𝑡 − 𝑢) 𝑑𝑢

= ∫

+∞

0

h (𝑢)

𝑛

∑

𝑗=1

𝑞
(3)

𝑗
𝑤
2

𝑗
𝑥
2

𝑗
(𝑡 − 𝑢) 𝑑𝑢

= ∫

+∞

0

h (𝑠) 𝑥
𝑇

(𝑡 − 𝑠) 𝑊𝑄
3
𝑊𝑥 (𝑡 − 𝑠) 𝑑𝑠,

(29)

which implies that

2𝑥
𝑇

(𝑡) 𝑃𝐶
0

∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠

≤ 𝑥
𝑇

(𝑡) 𝑃𝐶
0
𝑄
−1

3
𝐶
𝑇

0
𝑃𝑥 (𝑡)

+ ∫

+∞

0

h (𝑠) 𝑥
𝑇

(𝑡 − 𝑠) 𝑊𝑄
3
𝑊𝑥 (𝑡 − 𝑠) 𝑑𝑠,

(30)

2𝑥
𝑇

(𝑡) 𝑃𝑈 ≤ 𝑥
𝑇

(𝑡) 𝑃𝑄
−1

8
𝑃𝑥 (𝑡) + 𝑈

𝑇

𝑄
8
𝑈. (31)

In view of the definition of Ω, we have the following
inequality:

Ψ
𝑇

(𝑡) Ψ (𝑡) ≤ 𝑥
𝑇

(𝑡) 𝐽
𝑇

1
𝐽
1
𝑥 (𝑡) + 𝑔

𝑇

(𝑥 (𝑡)) 𝐽
𝑇

2
𝐽
2
𝑔 (𝑥 (𝑡))

+ 𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝐽
𝑇

3
𝐽
3
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ (∫

𝑡

−∞

ℎ(𝑡 − 𝑠)𝑔(𝑥(𝑠))𝑑𝑠)

𝑇

𝐽
𝑇

4
𝐽
4

× (∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠) .

(32)

Considering Lemma 5 and (31), we derive

2𝑥
𝑇

(𝑡) 𝑃MΨ (𝑡)

≤ 𝑥
𝑇

(𝑡) 𝑃MΠ
−1

2
M
𝑇

𝑃𝑥 (𝑡) + Ψ
𝑇

(𝑡) Π
2
Ψ (𝑡)

≤ 𝑥
𝑇

(𝑡) {𝑃MΠ
−1

2
M
𝑇

𝑃 + 𝐽
𝑇

1
𝑄
4
𝐽
1

+ 𝑊𝐽
𝑇

2
𝑄
5
𝐽
2
𝑊} 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) [𝑊𝐽
𝑇

3
𝑄
6
𝐽
3
𝑊] 𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫

+∞

0

h (𝑠) 𝑥
𝑇

(𝑡 − 𝑠) [𝑊𝐽
𝑇

4
𝑄
7
𝐽
4
𝑊] 𝑥 (𝑡 − 𝑠) 𝑑𝑠.

(33)
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Now, adding the terms on the right of (26)–(30) and
(32) to (22), considering conditions (17), and making use of
Lemma 6, we can obtain that

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

(2)

≤ 𝑥
𝑇

(𝑡) {−𝑃𝐷
0

− 𝐷
0
𝑃 + 𝑃𝐴

0
𝑄
−1

1
𝐴
𝑇

0
𝑃 + 𝑊𝑄

1
𝑊

+ 𝑃𝐵
0
𝑄
−1

2
𝐵
𝑇

0
𝑃 + 𝑃𝐶

0
𝑄
−1

3
𝐶
𝑇

0
𝑃+𝑃𝑄

−1

8
𝑃

+ 𝑃MΠ
−1

2
M
𝑇

𝑃 + 𝐽
𝑇

1
𝑄
4
𝐽
1

+ 𝑊𝐽
𝑇

2
𝑄
5
𝐽
2
𝑊} 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) [𝑊𝑄
2
𝑊 + 𝑊𝐽

𝑇

3
𝑄
6
𝐽
3
𝑊] 𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫

+∞

0

h (𝑠) 𝑥
𝑇

(𝑡 − 𝑠) [𝑊𝑄
3
𝑊 + 𝑊𝐽

𝑇

4
𝑄
7
𝐽
4
𝑊] ,

𝑥 (𝑡 − 𝑠) 𝑑𝑠 + 𝑈
𝑇

𝑄
8
𝑈

≤ −𝛽
1
𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝛽
2
𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑃𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝛽
3

∫

+∞

0

h (𝑠) 𝑥
𝑇

(𝑡 − 𝑠) 𝑃𝑥 (𝑡 − 𝑠) 𝑑𝑠 + 𝑈
𝑇

𝑄
8
𝑈

≤ −𝛽
1
𝑉 (𝑥 (𝑡)) + 𝛽

2
𝑉 (𝑥
𝑇

(𝑡 − 𝜏 (𝑡)))

+ 𝛽
3

∫

+∞

0

h (𝑠) 𝑉 (𝑥 (𝑡 − 𝑠)) 𝑑𝑠 + 𝑈
𝑇

𝑄
8
𝑈.

(34)

Transforming (33) into the following inequality, we get

𝑑 (𝑉 (𝑥 (𝑡)) − 𝜂)

𝑑𝑡
|
(2)

≤ −𝛽
1

(𝑉 (𝑥 (𝑡)) − 𝜂) + 𝛽
2

( sup
𝑡−𝜏≤𝑠≤𝑡

𝑉 (𝑥 (𝑠)) − 𝜂)

+ 𝛽
3

∫

+∞

0

h (𝑠) (𝑉 (𝑥 (𝑡 − 𝑠)) − 𝜂) 𝑑𝑠, 𝑡 ≥ 𝑡
0
,

(35)

where 𝜂 = 𝑈
𝑇
𝐻𝑈/(𝛽

1
− 𝛽
2

− 𝛽
3
h).

From formula (34), we can know that it satisfies the (11)
of Lemma 7. Meanwhile, noticing Assumption (A2), it can be
deduced that 𝛽

1
> 𝛽
2

+ 𝛽
3
h ⇔ 𝛽

1
> 𝛽
2

+ 𝛽
3

∫
+∞

0
h(𝑠)𝑑𝑠. So

(12) of Lemma 7 is also satisfied. From this, when 𝑉(𝑥(𝑡)) >

𝜂, sup
𝑡−𝜏≤𝑠≤𝑡

𝑉(𝑥(𝑠)) > 𝜂, and sup
−∞≤𝑠≤𝑡

𝑉(𝑥(𝑠)) > 𝜂,
according to Lemma 7, we are able to derive

𝑉 (𝑥 (𝑡)) − 𝜂 ≤ (𝑉 (𝑥 (𝑡)) − 𝜂) exp (−𝜆 (𝑡 − 𝑡
0
)) , (36)

where 𝑉(𝑥(𝑡)) = sup
−∞≤𝑠≤𝑡

𝑉(𝑥(𝑠)), 𝜆 ∈ (0, ) satisfies

𝜆 < 𝛽
1

− 𝛽
2
𝑒
𝜆𝜏

− 𝛽
3

∫

+∞

0

h (𝑠) 𝑒
𝜆𝑠

𝑑𝑠. (37)

Simultaneously, judging by [1], it is easy to prove that there
exists a constant 𝛼 such that 𝑉(𝑥(𝑡)) ≥ ‖𝑥‖

𝛼. In terms of Def-
initions 1, 2, and 3, we know that the neural network defined

by (1) or (5) is a globally robust exponentially dissipative
system, and Φ = {𝑥 ∈ 𝑅

𝑛
| 𝑥
𝑇
(𝑡)𝑃𝑥(𝑡) ≤ 𝑈

𝑇
𝐻𝑈/(𝛽

1
−

𝛽
2

− 𝛽
3
h)} is a positive invariant and globally exponentially

attractive set of system (1) or (5). Hence, the proof of
Theorem 11 is completed.

Remark 12. It should be noted that the exponential conver-
gence rate 𝜆 of IRNNs (1) or (5) is also derived in (35). More-
over, one may find that condition 𝛽

1
− 𝛽
2

− 𝛽
3
h > 0 implies

that there exists constant 𝜆 ∈ (0, ) such that (1) or (5) holds
for any given 𝜏 > 0.

When𝐷, 𝐴, 𝐵, and𝐶 are some known constantmatrices,
we have the following simple result.

Corollary 13. Assume that Assumptions (A1)-(A2) hold; then
the neural network defined by (1) or (5) is a globally exponential
dissipative system if there exist three constants 𝛽

𝑖
> 0, 𝑖 = 1, 2,

and 3, three positive diagonal matrices 𝑄
1
, 𝑄
2
, and 𝑄

3
∈ 𝑅
𝑛×𝑛,

and two positive definite matrices 𝑃, 𝐻 ∈ 𝑅
𝑛×𝑛 such that the

following inequalities hold:

(

Π
1

𝑃𝐴 𝑃𝐵 𝑃𝐶 𝑃

∗ 𝑄
1

0 0 0

∗ ∗ 𝑄
2

0 0

∗ ∗ ∗ 𝑄
3

0

∗ ∗ ∗ ∗ 𝐻

) ≥ 0,

𝛽
2
𝑃 ≥ 𝑊𝑄

2
𝑊,

𝛽
3
𝑃 ≥ 𝑊𝑄

3
𝑊,

𝛽
1

> 𝛽
2

− 𝛽
3
h,

(38)

where Π
1

= 𝑃𝐷 + 𝐷𝑃 − 𝑊𝑄
1
𝑊 − 𝑃𝐻

−1
𝑃 − 𝛽

1
𝑃, 𝑊 =

diag{𝑤
1
, . . . , 𝑤

𝑛
},𝑤
𝑗

= max{|𝑙
−

𝑗
|, |𝑙
+

𝑗
|}, and the set Φ = {𝑥 ∈

𝑅
𝑛

| 𝑥
𝑇
(𝑡)𝑃𝑥(𝑡) ≤ 𝑈

𝑇
𝐻𝑈/(𝛽

1
− 𝛽
2

− 𝛽
3
h)} is a positive

invariant and globally exponential attractive set.

In the IRNNs system (1), when getting rid of the term
of infinite distributed delay ∫

𝑡

−∞
ℎ(𝑡 − 𝑠)𝑔(𝑥(𝑠))𝑑𝑠, we get

Corollary 14 based onTheorem 11.

Corollary 14. Assume that Assumption (A1) holds, if there
exist three constants 𝛽

𝑖
> 0, 𝑖 = 1, 2, five positive diagonal

matrices 𝑄
1
, 𝑄
2

∈ 𝑅
𝑛×𝑛

, 𝑄
3
, 𝑄
4
, and 𝑄

5
∈ 𝑅
𝑛
2
×𝑛
2

, and two
positive definite matrices 𝑃, 𝑄

6
∈ 𝑅
𝑛×𝑛 such that the following

inequalities hold:

(

Π
1

𝑃𝐴
0

𝑃𝐵
0

𝑃M 𝑃

∗ 𝑄
1

0 0 0

∗ ∗ 𝑄
2

0 0

∗ ∗ ∗ Π
3

0

∗ ∗ ∗ ∗ 𝑄
6

) ≥ 0,

𝛽
2
𝑃 ≥ 𝑊𝑄

2
𝑊 + 𝑊𝐽

𝑇

3
𝑄
5
𝐽
3
𝑊,

𝛽
1

> 𝛽
2
,

(39)
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where Π
1

= 𝑃𝐷
0

+ 𝐷
0
𝑃 − 𝑊𝑄

1
𝑊 − 𝐽

𝑇

1
𝑄
3
𝐽
1

− 𝑊𝐽
𝑇

2
𝑄
4
𝐽
2
𝑊 −

𝑃𝑄
−1

6
𝑃 − 𝛽
1
𝑃, 𝑊 = diag{𝑤

1
, . . . , 𝑤

𝑛
},𝑤
𝑗

= max{|𝑙
−

𝑗
|, |𝑙
+

𝑗
|},

Π
3

= (

𝑄
3

0 0

0 𝑄
4

0

0 0 𝑄
5

) . (40)

Then the neural network defined by (1) or (5) is a globally robust
exponentially dissipative system, and the set Φ = {𝑥 ∈ 𝑅

𝑛
|

𝑥
𝑇
(𝑡)𝑃𝑥(𝑡) ≤ 𝑈

𝑇
𝑄
8
𝑈/(𝛽
1

− 𝛽
2
)} is a positive invariant and

globally exponential attractive set.

Proof. In front of the course of proof is almost parallel to that
of Theorem 11, except for inequality (27) in Theorem 11, here
no longer say. In the end, we can also obtain

𝑑 (𝑉 (𝑥 (𝑡)) − 𝜂)

𝑑𝑡

(1)

≤ −𝛽
1

(𝑉 (𝑥 (𝑡)) − 𝜂)

+ 𝛽
2

(𝑉 (𝑥 (𝑡)) − 𝜂) , 𝑡 ≥ 𝑡
0
,

(41)

where 𝜂 = 𝑈
𝑇
𝐻𝑈/(𝛽

1
− 𝛽
2
), 𝑉(𝑥(𝑡)) = sup

𝑡−𝜏≤𝑠≤𝑡
𝑉(𝑥(𝑠)).

It is noticed that 𝛽
1

> 𝛽
2
; hence according to the

famous Halanay Inequality [47], when 𝑉(𝑥(𝑡)) > 𝜂 and
sup
𝑡−𝜏≤𝑠≤𝑡

𝑉(𝑥(𝑠)) > 𝜂, we are able to derive

𝑉 (𝑥 (𝑡)) − 𝜂 ≤ (𝑉 (𝑥 (𝑡)) − 𝜂) exp (−𝜆 (𝑡 − 𝑡
0
)) , (42)

where𝜆 is the unique positive root of𝜆 = 𝛽
1
−𝛽
2
𝑒
𝜆𝜏. Similarly,

it is obtained that Ω = {𝑥 ∈ 𝑅
𝑛

| 𝑥
𝑇
(𝑡)𝑃𝑥(𝑡) ≤ 𝑈

𝑇
𝐻𝑈/(𝛽

1
−

𝛽
2
)} is a positive invariant and globally exponential attractive

set of system (1). Hence, the proof is gained.

3.2. Results Using Lyapunov-Krasovskii Functionals. In this
part, sufficient conditions for global robust exponential dis-
sipativity of (1) or (5) are obtained by using Lyapunov-
Krasovskii functional and inequality techniques.

Theorem15. Assume that Assumptions (A1)-(A2) hold, if there
exist three constants𝛽

𝑖
> 0, 𝑖 = 1, 2, and 3, eight positive diago-

nal matrices 𝑄, 𝑅
1
, 𝑅
2
, and 𝑅

3
∈ 𝑅
𝑛×𝑛, 𝑅

4
, 𝑅
5
, 𝑅
6
, and 𝑅

7
∈

𝑅
𝑛
2
×𝑛
2

, and two positive definite matrices 𝑃, 𝑅
8

∈ 𝑅
𝑛×𝑛 such

that the following inequalities hold:

Γ < 0,

𝑊𝑅
2
𝑊 + 𝑊𝐽

𝑇

3
𝑅
6
𝐽
3
𝑊 ≤ 𝛽

2
𝑃,

𝑊𝑅
3
𝑊 + 𝑊𝐽

𝑇

4
𝑅
7
𝐽
4
𝑊 ≤ 𝛽

3
𝑃,

𝛽
2

+ 𝛽
3
h < 1 + 𝛽

1
,

Γ = (

(

Θ
11

Θ
12

Θ
13

Θ
14

Θ
15

Θ
16

∗ Θ
22

𝑄𝐵
0

𝑄𝐶
0

𝑄M 𝑄

∗ ∗ −𝑅
2

0 0 0

∗ ∗ ∗ −𝑅
3

0 0

∗ ∗ ∗ ∗ −Π 0

∗ ∗ ∗ ∗ ∗ −𝑅
8

)

)

,

(43)

where Θ
11

= 𝑃 + 𝑄(𝐹 − 𝐿) − 𝑃𝐷
0

− 𝐷
0
𝑃 + 2𝐿𝑄𝐷

0
+ 𝑊𝑅

1
𝑊 +

𝐽
𝑇

1
𝑅
4
𝐽
1
+𝑊𝐽
𝑇

2
𝑅
5
𝐽
2
𝑊,Θ
12

= 𝑃𝐴
0
− 𝐿𝑄𝐴

0
−𝐷
0
𝑄,Θ
13

= 𝑃𝐵
0
−

𝐿𝑄𝐵
0
, Θ
14

= 𝑃𝐶
0

− 𝐿𝑄𝐶
0
, Θ
15

= 𝑃M − 𝐿𝑄M, Θ
16

= 𝑃 − 𝐿𝑄,
Θ
22

= 𝑄𝐴
0

+ 𝐴
𝑇

0
𝑄 − 𝑅

1
, 𝑊 = diag{𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
}, 𝑤
𝑗

=

max{|𝑙
−

𝑗
|, |𝑙
+

𝑗
|}, for all 𝑗 ∈ Λ, 𝐿 = diag{𝑙

−

1
, 𝑙
−

2
, . . . , 𝑙−
𝑛
},𝐹 =

diag{𝑙
+

1
, 𝑙
+

2
, . . . , 𝑙

+

𝑛
},

Π = (

𝑅
4

0 0 0

0 𝑅
5

0 0

0 0 𝑅
6

0

0 0 0 𝑅
7

) . (44)

Then the neural network defined by (1) or (5) is a globally robust
exponentially dissipative system, and the set

Ω = {𝑥 ∈ 𝑅
𝑛

| 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) ≤
𝑈
𝑇
𝑅
8
𝑈

1 + 𝛽
1

− 𝛽
2

− 𝛽
3
h

} (45)

is a positive invariant and globally exponential attractive set of
system (1).

Proof. Now, we consider another Lyapunov functional

𝑉 (𝑥 (𝑡)) = 𝑥
𝑇

𝑃𝑥 (𝑡) + 2

𝑛

∑

𝑖=1

𝑞
𝑖
∫

𝑥
𝑖
(𝑡)

0

(𝑔
𝑖
(𝑠) − 𝑙

−

𝑖
𝑠) 𝑑𝑠. (46)

Calculating the derivative of𝑉(𝑥(𝑡)) along the trajectories
of (5) and using Lemma 10, we can obtain

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

(2)

≤ 2𝑥
𝑇

(𝑡) 𝑃 [−𝐷
0
𝑥 (𝑡) + 𝐴

0
𝑔 (𝑥 (𝑡)) + MΨ (𝑡)

+ 𝐵
0
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶
0

∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝑈]

+ 2(𝑔 (𝑥 (𝑡)) − 𝐿𝑥 (𝑡))
𝑇

𝑄

× [−𝐷
0
𝑥 (𝑡) + 𝐴

0
𝑔 (𝑥 (𝑡))

+ MΨ (𝑡) + 𝐵
0
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶
0

∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝑈]

= 2 (𝑥
𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄)

× (−𝐷
0
𝑥 (𝑡) + 𝐴

0
𝑔 (𝑥 (𝑡)))

+ 2 (𝑥
𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄)

× 𝐵
0
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2 (𝑥
𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄) 𝐶
0
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× ∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠

+ 2 (𝑥
𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄)MΨ (𝑡)

+ 2 (𝑥
𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄) 𝑈.

(47)

FromAssumption (A1), for given positive diagonal matrix 𝑅
1

we have

2 (𝑥
𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄)

× (−𝐷
0
𝑥 (𝑡) + 𝐴

0
𝑔 (𝑥 (𝑡)))

≤ 2𝑥
𝑇

(𝑡) (−𝑃𝐷
0

+ 𝐿𝑄𝐷
0
) 𝑥 (𝑡) + 2𝑔

𝑇

(𝑥 (𝑡)) 𝑄𝐴
0
𝑔 (𝑥 (𝑡))

+ 2𝑥
𝑇

(𝑡) (𝑃𝐴
0

− 𝐿𝑄𝐴
0

− 𝑄𝐷
0
) 𝑔 (𝑥 (𝑡))

+ 𝑥
𝑇

(𝑡) 𝑊𝑅
1
𝑊𝑥 (𝑡) − 𝑔

𝑇

(𝑥 (𝑡)) 𝑅
1
𝑔 (𝑥 (𝑡))

= (
𝑥(𝑡)

𝑔(𝑥(𝑡))
)

𝑇

Ξ
1

(
𝑥 (𝑡)

𝑔 (𝑥 (𝑡))
) ,

(48)

where

Ξ
1

= (
Ξ
11

𝑃𝐴
0

− 𝐿𝑄𝐴
0

− 𝐷
0
𝑄

∗ 𝑄𝐴
0

+ 𝐴
𝑇

0
𝑄 − 𝑅

1

) , (49)

Ξ
11

= −𝑃𝐷
0

− 𝐷
0
𝑃 + 2𝐿𝑄𝐷

0
+ 𝑊𝑅

1
𝑊.

By using Assumption (A1) and Lemma 5, we know that
there exist six positive diagonal matrices 𝑅

2
, 𝑅
3

∈ 𝑅
𝑛×𝑛

, 𝑄
4
,

𝑄
5
, 𝑄
6
, and𝑄

7
∈ 𝑅
𝑛
2
×𝑛
2

and a positive definitematrix𝑅
8
such

that the following inequalities hold:

2 (𝑥
𝑇

(𝑡) 𝑃𝐵
0

+ 𝑔
𝑇

(𝑥 (𝑡)) 𝑄𝐵
0

− 𝑥
𝑇

(𝑡) 𝐿𝑄𝐵
0
) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

≤ (𝑥
𝑇

(𝑡) 𝑃𝐵
0

+ 𝑔
𝑇

(𝑥 (𝑡)) 𝑄𝐵
0

− 𝑥
𝑇

(𝑡) 𝐿𝑄𝐵
0
) 𝑅
−1

2

× (𝑥
𝑇

(𝑡) 𝑃𝐵
0

+ 𝑔
𝑇

(𝑥 (𝑡)) 𝑄𝐵
0

− 𝑥
𝑇

(𝑡) 𝐿𝑄𝐵
0
)
𝑇

+ 𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑅
2
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

≤ (
𝑥(𝑡)

𝑔(𝑥(𝑡))
)

𝑇

(
(𝑃 − 𝐿𝑄) 𝐵

0

𝑄𝐵
0

) 𝑅
−1

2
(

(𝑃 − 𝐿𝑄)𝐵
0

𝑄𝐵
0

)

𝑇

× (
𝑥 (𝑡)

𝑔 (𝑥 (𝑡))
) + 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑊𝑅
2
𝑊𝑥 (𝑡 − 𝜏 (𝑡)) ,

2 (𝑥
𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄) 𝑈

≤ 𝑈
𝑇

𝑅
8
𝑈 + (𝑥

𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄) 𝑅
−1

8

× (𝑥
𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄)
𝑇

= (
𝑥(𝑡)

𝑔(𝑥(𝑡))
)

𝑇

(
𝑃 − 𝐿𝑄

𝑄
) 𝑅
−1

8

× (
𝑃 − 𝐿𝑄

𝑄
)

𝑇

(
𝑥 (𝑡)

𝑔 (𝑥 (𝑡))
) + 𝑈

𝑇

𝑅
8
𝑈,

2 (𝑥
𝑇

(𝑡) 𝑃𝐶
0

+ 𝑔
𝑇

(𝑥 (𝑡)) 𝑄𝐶
0

− 𝑥
𝑇

(𝑡) 𝐿𝑄𝐶
0
)

× ∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠

≤ (𝑥
𝑇

(𝑡) 𝑃𝐶
0

+ 𝑔
𝑇

(𝑥 (𝑡)) 𝑄𝐶
0

− 𝑥
𝑇

(𝑡) 𝐿𝑄𝐶
0
) 𝑅
−1

3

× (𝑥
𝑇

(𝑡) 𝑃𝐶
0

+ 𝑔
𝑇

(𝑥 (𝑡)) 𝑄𝐶
0

− 𝑥
𝑇

(𝑡) 𝐿𝑄𝐶
0
)
𝑇

+ (∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

𝑅
3

× (∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠) .

(50)

Similarly, by well-known Cauchy-Schwarz inequality and
Assumption (A2), we get

(∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

𝑅
3

(∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

≤ ∫

+∞

0

h (𝑠) 𝑥
𝑇

(𝑡 − 𝑠) 𝑊𝑅
3
𝑊𝑥 (𝑡 − 𝑠) 𝑑𝑠,

(51)

which implies that

2 (𝑥
𝑇

(𝑡) 𝑃𝐶
0

+ 𝑔
𝑇

(𝑥 (𝑡)) 𝑄𝐶
0

− 𝑥
𝑇

(𝑡) 𝐿𝑄𝐶
0
)

× ∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠

≤ (
𝑥(𝑡)

𝑔(𝑥(𝑡))
)

𝑇

(
(𝑃 − 𝐿𝑄) 𝐶

0

𝑄𝐶
0

) 𝑅
−1

3

× (
(𝑃 − 𝐿𝑄)𝐶

0

𝑄𝐶
0

)

𝑇

(
𝑥 (𝑡)

𝑔 (𝑥 (𝑡))
)

+ ∫

+∞

0

h (𝑠) 𝑥
𝑇

(𝑡 − 𝑠) 𝑊𝑅
3
𝑊𝑥 (𝑡 − 𝑠) 𝑑𝑠,

(52)

2 (𝑥
𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄)MΨ (𝑡)

≤ [(𝑥
𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄)M]
𝑇

Π
−1

× [(𝑥
𝑇

(𝑡) 𝑃 + 𝑔
𝑇

(𝑥 (𝑡)) 𝑄 − 𝑥
𝑇

(𝑡) 𝐿𝑄)M]

+ Ψ(𝑡)
𝑇

ΠΨ (𝑡)

≤ (
𝑥 (𝑡)

𝑔 (𝑥 (𝑡))
)

𝑇

(
(𝑃 − 𝐿𝑄)M

𝑄M
) Π
−1

× (
(𝑃 − 𝐿𝑄)M

𝑄M
)

𝑇

(
𝑥 (𝑡)

𝑔 (𝑥 (𝑡))
)

+ 𝑥
𝑇

(𝑡) 𝐽
𝑇

1
𝑅
4
𝐽
1
𝑥 (𝑡) + 𝑔

𝑇

(𝑥 (𝑡)) 𝐽
𝑇

2
𝑅
5
𝐽
2
𝑔 (𝑥 (𝑡))

+ 𝑔
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝐽
𝑇

3
𝑅
6
𝐽
3
𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))
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+ (∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

𝐽
𝑇

4
𝑄
7
𝐽
4

× (∫

𝑡

−∞

ℎ (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

≤ (
𝑥(𝑡)

𝑔 (𝑥 (𝑡))
)

𝑇

(
(𝑃 − 𝐿𝑄)M

𝑄M
) Π
−1

(
(𝑃 − 𝐿𝑄)M

𝑄M
)

𝑇

× (
𝑥 (𝑡)

𝑔 (𝑥 (𝑡))
) + 𝑥
𝑇

(𝑡) [𝐽
𝑇

1
𝑅
4
𝐽
1

+ 𝑊𝐽
𝑇

2
𝑅
5
𝐽
2
𝑊] 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) [𝑊𝐽
𝑇

3
𝑅
6
𝐽
3
𝑊] 𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫

+∞

0

h (𝑠) 𝑥
𝑇

(𝑡 − 𝑠) [𝑊𝐽
𝑇

4
𝑄
7
𝐽
4
𝑊] 𝑥 (𝑡 − 𝑠) 𝑑𝑠.

(53)

Here, the processing method of the term Ψ(𝑡)
𝑇

ΠΨ(𝑡) is
similar to the technique of Theorem 11.

Substituting (47)–(52) in (46) andusing Lemma9,we also
have

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

(1)

≤ (
𝑥(𝑡)

𝑔(𝑥(𝑡))
)

𝑇

(Ξ̃
1

+ Ξ
2
) (

𝑥 (𝑡)

𝑔 (𝑥 (𝑡))
)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) [𝑊𝑅
2
𝑊 + 𝑊𝐽

𝑇

3
𝑅
6
𝐽
3
𝑊] 𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫

+∞

0

h (𝑠) 𝑥
𝑇

(𝑡 − 𝑠) [𝑊𝑅
3
𝑊 + 𝑊𝐽

𝑇

4
𝑅
7
𝐽
4
𝑊]

× 𝑥 (𝑡 − 𝑠) 𝑑𝑠 + 𝑈
𝑇

𝑅
8
𝑈,

(54)

where

Ξ̃
1

= (
Ξ
11

+ 𝐽
𝑇

1
𝑅
4
𝐽
1

+ 𝑊𝐽
𝑇

2
𝑅
5
𝐽
2
𝑊 𝑃𝐴

0
− 𝐿𝑄𝐴

0
− 𝐷
0
𝑄

∗ 𝑄𝐴
0

+ 𝐴
𝑇

0
𝑄 − 𝑅

1

) ,

(55)

Ξ
2

= (
(𝑃 − 𝐿𝑄) 𝐵

0
(𝑃 − 𝐿𝑄) 𝐶

0
(𝑃 − 𝐿𝑄)M 𝑃 − 𝐿𝑄

𝑄𝐵
0

𝑄𝐶
0

𝑄M 𝑄
)

× (

𝑅
−1

2
0 0 0

0 𝑅
−1

3
0 0

0 0 Π
−1

0

0 0 0 𝑅
−1

8

)

× (
(𝑃 − 𝐿𝑄) 𝐵

0
(𝑃 − 𝐿𝑄) 𝐶

0
(𝑃 − 𝐿𝑄)M 𝑃 − 𝐿𝑄

𝑄𝐵
0

𝑄𝐶
0

𝑄M 𝑄
)

𝑇

.

(56)

Following from Γ < 0, there exists 0 < 𝛽
1

≪ 1 such that

(

(

Θ̃
11

Θ
12

Θ
13

Θ
14

Θ
15

Θ
16

∗ Θ
22

𝑄𝐵
0

𝑄𝐶
0

𝑄M 𝑄

∗ ∗ −𝑅
2

0 0 0

∗ ∗ ∗ −𝑅
3

0 0

∗ ∗ ∗ ∗ −Π 0

∗ ∗ ∗ ∗ ∗ −𝑅
8

)

)

< 0,

(57)

where Θ̃
11

= (1 + 𝛽
1
)(𝑃 + 𝑄(𝐹 − 𝐿)) − 𝑃𝐷

0
− 𝐷
0
𝑃 + 2𝐿𝑄𝐷

0
+

𝑊𝑅
1
𝑊 + 𝐽

𝑇

1
𝑅
4
𝐽
1
. In the light of Lemma 6, one gets

(
Θ̃
11

Θ
12

∗ Θ
22

) + Ξ
2

< 0. (58)

Meanwhile, it is noticed that

(
Θ̃
11

Θ
12

∗ Θ
22

) = Ξ̃
1

+ (
(1 + 𝛽

1
) (𝑃 + 𝑄 (𝐹 − 𝐿)) 0

0 0
) . (59)

Therefore, it can be deduced that

Ξ̃
1

+ Ξ
2

< (
− (1 + 𝛽

1
) (𝑃 + 𝑄 (𝐹 − 𝐿)) 0

0 0
) . (60)

Combining the inequalities 𝑊𝑅
2
𝑊 + 𝑊𝐽

𝑇

3
𝑅
6
𝐽
3
𝑊 ≤ 𝛽

2
𝑃,

𝑊𝑅
3
𝑊 + 𝑊𝐽

𝑇

4
𝑅
7
𝐽
4
𝑊 ≤ 𝛽

3
𝑃 and formulas (53) and (54), we

can derive

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

(2)

≤ − (1 + 𝛽
1
) 𝑥
𝑇

(𝑡) (𝑃 + 𝑄 (𝐹 − 𝐿)) 𝑥 (𝑡)

+ 𝛽
2
𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑃𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑈
𝑇

𝑅
8
𝑈

+ 𝛽
3

∫

+∞

0

h (𝑠) 𝑥
𝑇

(𝑡 − 𝑠) 𝑃𝑥 (𝑡 − 𝑠) 𝑑𝑠, 𝑡 ≥ 𝑡
0
.

(61)

From Assumption (A1) and formula (43), one also gets

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) ≤ 𝑉 (𝑥 (𝑡)) ≤ 𝑥
𝑇

(𝑡) (𝑃 + 𝑄 (𝐹 − 𝐿)) 𝑥 (𝑡) .

(62)

Noticing 𝑥
𝑇
(𝑡 − 𝜏(𝑡))𝑃𝑥(𝑡 − 𝜏(𝑡)) ≤ 𝑉(𝑡 − 𝜏(𝑡)) ≤

sup
𝑡−𝜏≤𝑠≤𝑡

𝑉(𝑥(𝑠)) and according to (60) and (61), we obtain

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

(2)

≤ − (1 + 𝛽
1
) 𝑉 (𝑥 (𝑡)) + 𝛽

2
sup
𝑡−𝜏≤𝑠≤𝑡

𝑉 (𝑥 (𝑠))

+ 𝛽
3

∫

+∞

0

h (𝑠) 𝑉 (𝑥 (𝑡 − 𝑠)) 𝑑𝑠 + 𝑈
𝑇

𝑅
8
𝑈, 𝑡 ≥ 𝑡

0
.

(63)
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Transforming (62) into the following inequality, we get

𝑑 (𝑉 (𝑥 (𝑡)) − 𝜂)

𝑑𝑡

(2)

≤ − (1 + 𝛽
1
) (𝑉 (𝑥 (𝑡)) − 𝜂)

+ 𝛽
2

( sup
𝑡−𝜏≤𝑠≤𝑡

𝑉 (𝑥 (𝑠)) − 𝜂)

+ 𝛽
3

∫

+∞

0

h (𝑠) (𝑉 (𝑥 (𝑡 − 𝑠)) − 𝜂) 𝑑𝑠, 𝑡 ≥ 𝑡
0
,

(64)

where 𝜂 = 𝑈
𝑇
𝑅
8
𝑈/(1 + 𝛽

1
− 𝛽
2

− 𝛽
3
h).

From formula (63), we can know that it satisfies (11) of
Lemma 7. Meanwhile, noticing Assumption (A2), it can be
deduced that 1+𝛽

1
> 𝛽
2
+𝛽
3
h ⇔ 1+𝛽

1
> 𝛽
2
+𝛽
3

∫
+∞

0
h(𝑠)𝑑𝑠.

So (12) of Lemma 7 is also satisfied. From this, according to
Lemma 7, when 𝑉(𝑥(𝑡)) > 𝜂, sup

𝑡−𝜏≤𝑠≤𝑡
𝑉(𝑥(𝑠)) > 𝜂, and

sup
−∞≤𝑠≤𝑡

𝑉(𝑥(𝑠)) > 𝜂, we are able to derive

𝑉 (𝑥 (𝑡)) − 𝜂 ≤ (𝑉 (𝑥 (𝑡)) − 𝜂) exp (−𝜆
0

(𝑡 − 𝑡
0
)) , (65)

where 𝑉(𝑥(𝑡)) = sup
−∞≤𝑠≤𝑡

𝑉(𝑥(𝑠)), and 𝜆
0

∈ (0, ) satisfies

𝜆
0

< 1 + 𝛽
1

− 𝛽
2
𝑒
𝜆
0
𝜏

− 𝛽
3

∫

+∞

0

h (𝑠) 𝑒
𝜆
0
𝑠

𝑑𝑠. (66)

Simultaneously, judging by [1], it is easy to prove that there
exists a constant 𝛼 such that𝑉(𝑥(𝑡)) ≥ ‖𝑥‖

𝛼. In terms of Defi-
nitions 1, 2, and 3, we know that the neural network defined by
(1) or (5) is a globally robust exponentially dissipative system.
And noticing 𝑉(𝑥(𝑡)) ≥ 𝑥

𝑇
(𝑡)𝑃𝑥(𝑡), it is said that Ω = {𝑥 ∈

𝑅
𝑛

| 𝑥
𝑇
(𝑡)𝑃𝑥(𝑡) ≤ 𝑈

𝑇
𝑅
8
𝑈/(1 + 𝛽

1
− 𝛽
2

− 𝛽
3
h)} is a positive

invariant and globally exponential attractive set of system (1)
or (5). Hence, the proof of Theorem 15 is completed.

Remark 16. For the dissipativity or Lagrange condition given
in [22, 25, 26, 28, 31–35, 37], the time delays are constant
delays or time-varying delays that are differentiable such that
their derivatives are not greater than one or finite. Note that
in this paper we do not impose those restrictions on our time-
varying delays, which means that our presented results have
wider application range.

In the special condition that 𝐶 = 0 and 𝐷, 𝐴, and 𝐵 are
some known constant matrices, the model (1) can be rewrit-
ten as follows:

�̇� (𝑡) = −𝐷𝑥 (𝑡) + 𝐴𝑔 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝑈. (67)

The other conditions are similar to the model (1). Through
Theorem 15, the following corollary can be obtained.

Corollary 17. Assume that Assumptions (A1) holds, if there
exist three constants 𝛽

𝑖
> 0, 𝑖 = 1, 2, three positive diagonal

matrices 𝑄, 𝑅
1
, and 𝑅

2
∈ 𝑅
𝑛×𝑛, and two positive definite

matrices 𝑃, 𝐻 ∈ 𝑅
𝑛×𝑛 such that the following inequalities hold:

Γ = (

Θ
11

Θ
12

Θ
13

Θ
14

∗ Θ
22

𝑄𝐵 𝑄

∗ ∗ −𝑅
2

0

∗ ∗ ∗ −𝐻

) < 0,

𝑊𝑅
2
𝑊 ≤ 𝛽

2
𝑃,

𝛽
2

< 1 + 𝛽
1
,

(68)

whereΘ
11

= 𝑃+𝑄(𝐹−𝐿)−𝑃𝐷−𝐷𝑃+2𝐿𝑄𝐷+𝑊𝑅
1
𝑊, Θ
12

=

𝑃𝐴−𝐿𝑄𝐴−𝐷𝑄, Θ
13

= 𝑃𝐵−𝐿𝑄𝐵, Θ
14

= 𝑃−𝐿𝑄, Θ
22

= 𝑄𝐴+

𝐴
𝑇
𝑄 − 𝑅

1
, 𝑊 = diag{𝑤

1
, . . . , 𝑤

𝑛
}, 𝑤
𝑗

= max{|𝑙
−

1
|, |𝑙
+

1
|}, for all

𝑗 ∈ Λ, 𝐿 = diag{𝑙
−

1
, 𝑙
−

2
, . . . , 𝑙

−

𝑛
}, 𝐹 = diag{𝑙

+

1
, 𝑙
+

2
, . . . , 𝑙

+

𝑛
}, then the

neural network (66) is a globally exponential dissipative
system, and the set

Ω = {𝑥 ∈ 𝑅
𝑛

| 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) ≤
𝑈
𝑇
𝐻𝑈

1 + 𝛽
1

− 𝛽
2

} (69)

is a positive invariant and globally exponentially attractive set
of system (66).

Proof. The course of proof is almost parallel to that of
Corollary 14 andTheorem 15.

Remark 18. When 𝛽
1

> 0, 𝛽
2

= 1 in Corollary 17, its result
will turn into that of [36] right away.

Remark 19. To the best of our knowledge, few authors have
discussed the dissipativity analysis of interval neural net-
works with general activation functions and infinity dis-
tributed delay, and there are few results made on it by LMIs
[2, 6, 27, 36, 38, 40]. So, the results of this paper are novel and
meaningful. Meanwhile, different from [26, 36, 37], some of
the more general results are considered in this paper.

Remark 20. It is not also difficult to find that Lemmas 7 and 9
play a vital roles in the whole paper, especially Lemma 7.The
full-text results are obtained based on the case of 𝜎 = +∞ in
Lemma 7. In addition, it is needed to point out that Lemma 7
is also suitable for the RNNs (1) with finite distributed delays
∫
𝑡

𝑡−𝜎(𝑡)
𝑓(𝑥(𝑠))𝑑𝑠. Consequently, the results of this text are

also suitable for the case of finite distributed delay. So, the
conclusions of this paper are more general and valuable than
the literature [26, 37].

Remark 21. In this paper, the main results are obtained
mainly by means of constructing two different kinds of
𝑉(𝑥(𝑡)), of which the difference is depended on the form of
general activation function 𝑔(𝑥(𝑡)). Generally speaking,The-
orem 11 is suitable for the case that 𝑔(𝑥(𝑡)) is unbounded con-
tinuous function and Lurie-type function, andTheorem 15 is
adapted that 𝑔(𝑥(𝑡)) is bounded function and Lipschitz-type
function. After a short while, in the part of Example 1, about
this will be given elaborate illustration.
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4. Illustrative Examples

In this section, two numerical examples are presented to
demonstrate the usefulness of the developed methods on the
globally robust dissipativity by comparing with the previous
results of [19, 26, 28].

Example 1. Consider the interval neural networks model (1)
with the following parameters:

𝜏 (𝑡) = 0.3 + 0.5[sin (𝑡)]
†

, 𝑈 = (1 1)
𝑇

,

𝐷 = (
7.8 0

0 9.6
) , 𝐷 = (

6.2 0

0 8.4
) ,

𝐴 = (
1.6 0.1

0.9 1.2
) , 𝐴 = (

0 −0.5

0.1 0
) ,

𝐵 = (
2 0.4

−0.3 1.6
) , 𝐵 = (

0.4 −0.2

−1.1 0.4
) ,

𝐶 = (
0.2 0.8

0 1.2
) , 𝐶 = (

−1.4 0.2

−0.8 0
) .

(70)

And the delay kernel ℎ(𝑠) is elected as ℎ
𝑖
(𝑠) = 𝑒

−𝑠 for 𝑠 ∈

[0, +∞), 𝑖 = 1, 2, and 3.
In this case, by simple calculation, it can be obtained that

𝐷
0

=
𝐷 + 𝐷

2
= (

7 0

0 9
) ,

𝐴
0

=
𝐴 + 𝐴

2
= (

0.8 −0.2

0.5 0.6
) ,

𝐵
0

=
𝐵 + 𝐵

2
= (

1.2 0.1

−0.7 1
) ,

𝐶
0

=
𝐶 + 𝐶

2
= (

−0.6 0.5

−0.4 0.6
) ,

(𝛼
𝑖𝑗
)
2×2

=
𝐷 − 𝐷

2
= (

0.8 0

0 0.6
) ,

(𝛽
𝑖𝑗
)
2×2

=
𝐴 − 𝐴

2
= (

0.8 0.3

0.4 0.6
) ,

(𝛾
𝑖𝑗
)
2×2

=
𝐵 − 𝐵

2
= (

0.8 0.3

0.4 0.6
) ,

(𝜐
𝑖𝑗
)
2×2

=
𝐶 − 𝐶

2
= (

0.8 0.3

0.4 0.6
) ,

𝑀
1

= [
√0.8 0 0 0

0 0 0 √0.6
] ,

𝑀
2

= 𝑀
3

= 𝑀
4

= [
√0.8 √0.3 0 0

0 0 √0.4 √0.6
] ,

𝐽
1

=

[
[
[

[

√0.8 0

0 0

0 0

0 √0.6

]
]
]

]

,

𝐽
2

= 𝐽
3

= 𝐽
4

=

[
[
[

[

√0.8 0

√0.3 0

0 √0.4

0 √0.6

]
]
]

]

.

(71)

Clearly, h = 1, 𝜏 = 0.8, and we choose  = 0.8 < 1. In addi-
tion, let 𝑔(𝑥(𝑡)) = (1/4)(|𝑥 + 1| − |𝑥 − 1|); the activation
function satisfies Assumption (A1) with 𝐿 = diag{−0.5, −0.5},
𝐹 = 𝑊 = diag{0.5, 0.5}. In this case, we choose 𝛽

1
= 1, 𝛽

2
=

0.5, and 𝛽
3

= 0.4. Obviously, it satisfies the condition 𝛽
2

+

𝛽
3
h < 1 + 𝛽

1
. Note thatM = [𝑀

1
, 𝑀
2
, 𝑀
3
, 𝑀
4
], and solving

the LMIs inTheorem 15 using the Matlab LMI Control Tool-
box, we obtain the feasible solutions as follows:

𝑃 = (
32.07 1.41

1.41 51.68
) , 𝑄 = (

27.35 0

0 45.68
) ,

𝑅
1

= (
432.2 0

0 910.0
) , 𝑅

2
= (

4.878 0

0 3.413
) ,

𝑅
3

= (
1.099 0

0 1.311
) ,

𝑅
4

= 192.5𝐼
4×4

, 𝑅
8

= 186.35𝐼
2×2

,

𝑅
5

= (

55.5 0 0 0

0 153.7 0 0

0 0 231.6 0

0 0 0 155.9

) ,

𝑅
6

= (

2.73 0 0 0

0 18.6 0 0

0 0 12.9 0

0 0 0 7.13

) ,

𝑅
7

= (

4.84 0 0 0

0 23.31 0 0

0 0 14.96 0

0 0 0 8.63

) .

(72)

Hence, the above results show that all the conditions stated
in Theorem 15 have been satisfied, and the networks (70) is
a globally robust exponentially dissipative system. Moreover,
by calculating the eigenvalues of 𝑃, we gain that the set Ω =

{𝑥 ∈ 𝑅
𝑛

| 31.97𝑥
2

1
+ 51.78𝑥

2

2
≤ 𝑈
𝑇
𝑅
8
𝑈/(1 + 𝛽

1
− 𝛽
2

− 𝛽
3
h) =

186.35/1.1 = 169.41} is a positive invariant and globally
exponential attractive set of (1).

On the other hand, we can conclude that system (70) is
globally robust exponentially dissipative byTheorem 11.

All other things are being equal; if the activation function
𝑔(𝑥) is replaced by 𝑔(𝑥(𝑡)) = (1/2) tanh(𝑥(𝑡)), then it is easy
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to check that the LMIs in Theorem 15 do not have feasible
solution in MATLAB. Therefore, Theorem 15 is ineffective
in the case. However, it can be deduced that the LMIs in
Theorem 11 are feasible, and

𝑃 = (
3.907 −0.044

−0.044 5.761
) , 𝑄

1
= (

24.13 0

0 44.59
) ,

𝑄
2

= (
1.601 0

0 1.293
) , 𝑄

3
= (

0.946 0

0 1.010
) ,

𝑄
4

= 14.672𝐼
4×4

, 𝑄
8

= 13.912𝐼
2×2

,

𝑄
5

= (

29.5 0 0 0

0 76.3 0 0

0 0 111.2 0

0 0 0 74.8

) ,

𝑄
6

= (

1.137 0 0 0

0 3.464 0 0

0 0 2.626 0

0 0 0 1.923

) ,

𝑄
7

= (

1.501 0 0 0

0 3.464 0 0

0 0 2.626 0

0 0 0 1.923

) .

(73)

Thereby, by Theorem 11, we obtain that system (70) with
𝑔(𝑥(𝑡)) = (1/2) tanh(𝑥(𝑡)) is globally robust exponentially
dissipative, which implies that Theorem 11 can be applied to
the case not covered inTheorem 15.

Remark 22. By virtue of Theorem 3.4 in [28], we have 𝐴 +

𝐴
𝑇

+ (‖𝐵
∗
‖
∞

+ ‖𝐵
∗
‖
1

+ ‖𝐶
∗
‖
∞

+ ‖𝐶
∗
‖
1
) 𝐼 = (

10.7 1

1 9.9
) > 0,

which does not satisfy the condition of Theorem 3.4, so the
conclusion of [28] is not feeble in this case. It implies that the
proposed results in this paper improve and generalize [28].

Remark 23. It should be noted that the exponentially dissi-
pative rate 𝜆 in Example 1 is also obtained, and it satisfies
𝜆 ∈ (0, 0.8) and 𝜆 < 1 − 0.5𝑒

0.8𝜆
− 0.4 ∫

+∞

0
𝑒
(𝜆−1)𝑠

𝑑𝑠.

Remark 24. In order to imitate the dynamic behavior of
system (1), we choose some parameters in (70) randomly as
follows:

𝐷 = (
6.4 0

0 8
) , 𝐴 = (

1 0.8

0.5 1
) ,

𝐵 = (
1.5 0.1

−0.8 1
) , 𝐶 = (

−1 0.5

−0.6 1
) .

(74)

Figures 1 and 2 depict the state trajectories of system (1)
with parameters (70), respectively. Figure 3 depicts the phase
plots of system (1) with parameters (70) in the case of
𝑔(𝑥(𝑡)) = (1/2)(|𝑥+1|−|𝑥−1|).These numerical results show
that system (1) with parameters (70) is globally robustive
exponentially dissipative.
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Figure 1: The state trajectories of 𝑥
1
in system (70) with arbitrary

initial condition.
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Figure 2: The state trajectories of 𝑥
2
in system (70) with arbitrary

initial condition.
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Figure 3: The phase plots of system (70) with random initials.
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Example 2. Considering the following two-neuron RNNs
with time-varying delay:

�̇� (𝑡) = −𝐷𝑥 (𝑡) + 𝐴𝑔 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝑈, (75)

where 𝜏(𝑡) = 0.3 + 0.5[sin(𝑡)]
†

, 𝑈 = (1, 1)
𝑇,

𝐷 = (
3.5 0

0 6.2
) , 𝐴 = (

8 −2

4 2
) ,

𝐵 = (
2 −5

4 8
) .

(76)

Clearly, 𝜏 = 0.8. In addition, If the activation function is
chosen as 𝑔(𝑥(𝑡)) = (1/5)(𝑥(𝑡)+ tanh(𝑥(𝑡))), it is obvious that
the activation function 𝑔(⋅) satisfies Assumption (A1) with
𝐿 = 0, 𝐹 = 𝑊 = (

0.4 0

0 0.4
).

Under the circumstance, we choose 𝛽
1

= 0.5, 𝛽
2

= 1.
Obviously, it satisfies the condition 𝛽

2
< 1+𝛽

1
.Then by using

theMATLABLMIControl Toolbox, the solutions are derived
as follows:

𝑃 = (
5.2632 0.2579

0.2579 9.0456
) , 𝑄 = (

1.0160 0

0 1.7402
) ,

𝑅
1

= (
170.0008 0

0 115.4947
) ,

𝑅
2

= (
73.5609 0

0 143.4947
) ,

𝐻 = (
79.0877 −0.3404

−0.3404 78.1530
) .

(77)

Calculating the eigenvalues of 𝑃, we get the eigenvalues of it
are 5.2457 and 9.0631.Therefore, following fromCorollary 17,
we gain that the set Ω = {𝑥 ∈ 𝑅

𝑛
| 5.2457𝑥

2

1
+ 9.0631𝑥

2

2
≤

𝑈
𝑇
𝐻𝑈/(1+𝛽

1
−𝛽
2
) = 156.5599/0.5 = 313.1198} is a positive

invariant and globally exponential attractive set of system
(75). However, according toTheorem 4.2 of [19], we gain

𝑄
(1)

= (

𝐴 + 𝐴
𝑇

2
+ 𝐼
2×2

+ diag{−
𝑑
1

𝑤
1

, −
𝑑
2

𝑤
2

}
𝐵

2

𝐵

2

𝑇

−𝐼
2×2

)

= (

0.25 1 1 −2.5

1 −12.5 2 4

1 2 −1 0

−2.5 4 0 −1

) .

(78)

By calculating we get the four eigenvalues of 𝑄
(1) which are

−14.2006,−2.6268, 0.0778, and 2.4997, fromwhichwe are able
to know that𝑄

(1) is not negative definite. So the conclusion in
[19] can not be applied to determine the positive invariant and
globally exponential attractive sets of (75) and further ensure
the dissipation of system (75).

Meanwhile, noting the conditions of Example 2 also
which satisfies Corollary 4 in [26], we verify the effectiveness

of its conclusion bymeans of solving the LMI in equation (34)
of [26]. It is easy to check that the linearmatrix inequality (34)
in [26] has not got feasible solution. Hence, for this example,
our results in this paper are less conservative than those in
[19, 26].

5. Conclusion

In this paper, we have studied the globally robust exponen-
tially dissipative for interval neural networks with general
activation functions and infinity distributed delays. To the
authors best knowledge, few scholars have investigated the
globally robust exponentially dissipative for interval neural
networks even without infinity distributed delays [26, 37].
By employing the inequality techniques including a novelty
delay differential inequality and some LMIs, we have estab-
lished some sufficient conditions to ensure globally robust
exponentially dissipative for interval neural networks with
both time-varying delays and infinity distributed delays. In
addition, a series of positive invariant and globally exponen-
tially attractive sets of system (1) or (5) are also obtained.
Those obtained results improve and complement some recent
works (e.g., in [19, 25, 26, 28, 36, 37]).These criteria are stated
in LMIs, so that their verification and applications are
straightforward and convenient. The results obtained in this
paper have also been justified by numerical examples using
computer simulations.

For the further work, we intend to generalize the tech-
niques introduced in this paper to the stochastic neural net-
works based onmemristor [17, 48, 49] or impulsive stochastic
reaction-diffusion [12, 14] and fuzzy neural networks [4, 15,
16, 50].
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