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This paper deals with the numerical solution of option pricing stochastic volatility model described by a time-dependent, two-
dimensional convection-diffusion reaction equation. Firstly, the mixed spatial derivative of the partial differential equation (PDE)
is removed bymeans of the classical technique for reduction of second-order linear partial differential equations to canonical form.
An explicit difference scheme with positive coefficients and only five-point computational stencil is constructed. The boundary
conditions are adapted to the boundaries of the rhomboid transformed numerical domain. Consistency of the scheme with the
PDE is shown and stepsize discretization conditions in order to guarantee stability are established. Illustrative numerical examples
are included.

1. Introduction

It is well recognized that the Black-Scholes model, where
the prices depend only on the variance of the stock returns,
leads to unreliable prices associated with the hypothesis of
lognormal distribution of the asset returns and constant
volatility. Since 1993, [1] it is known that volatility is a function
of both the strike and the expiry date of the derivative
security. Empirical evidence suggests that asset price volatility
is not constant by variable and stochastic [2].

There are two prominent ways of working around this
problem, namely, local volatility models [1] and stochastic
volatility models [2–4].

Stochastic volatility models have the following general
pattern:

𝑑𝑆 (𝑡) = 𝑝
𝑆 (𝑆 (𝑡), V (𝑡), 𝑡) 𝑑𝑡 + 𝑞

𝑆 (𝑆 (𝑡), V (𝑡), 𝑡) 𝑑𝑊
1
,

𝑑V (𝑡) = 𝑝V (𝑆 (𝑡), V (𝑡), 𝑡) 𝑑𝑡 + 𝑞V (𝑆 (𝑡), V (𝑡), 𝑡) 𝑑𝑊
2,

(1)

where the tradable security 𝑆(𝑡) and its variance V(𝑡) are
correlated; that is, the Wiener stochastic processes satisfy
𝑑𝑊
1
𝑑𝑊
2

= 𝜌𝑑𝑡, and the functional form of 𝑝
𝑆
, 𝑞
𝑆
, 𝑝V, and

𝑞V are determined by the model.
The model proposed by Heston, see [3], [5, chapter

10], takes into account nonlognormal distribution of the

assets returns, leverage effect, and important mean-reverting
property of volatility and has a closed formula when the
parameters are constant [3] or piecewise constant [6].

According to (1), the model of Heston is specified as
follows:

𝑑𝑆 (𝑡) = 𝜇𝑆 (𝑡) 𝑑𝑡 + √V (𝑡)𝑠 (𝑡) 𝑑𝑊
1
,

𝑑V (𝑡) = 𝜅 (𝜃 − V (𝑡)) 𝑑𝑡 + 𝜎√V (𝑡)𝑑𝑊2,

𝑑𝑊
1
𝑑𝑊
2

= 𝜌𝑑𝑡,

(2)

where 𝑊
1
, 𝑊
2
are standard Brownian motions, 𝜇 represents

the deterministic drift, 𝜅 is the mean reversion rate, 𝜃 is the
long-run variance, 𝜎 is the volatility of the variance, and 𝜌 is
the correlation parameter.

Applying the Itô lemma and standard arbitrage argu-
ments leads to the partial differential equation [3, page 329–
335] for the price 𝑈 = 𝑈(𝑆, V, 𝑡) of a contingent claim:

𝜕𝑈

𝜕𝑡
+

1

2
V𝑆2

𝜕
2
𝑈

𝜕𝑆2
+ 𝜌𝜎V𝑆

𝜕
2
𝑈

𝜕𝑆𝜕V
+

1

2
𝜎
2V

𝜕
2
𝑈

𝜕V2
+ 𝑟𝑆

𝜕𝑈

𝜕𝑆

+ 𝜅 (𝜃 − V)
𝜕𝑈

𝜕V
− 𝑟𝑈 = 0,

(3)

0 < 𝑆 < ∞, 0 < V < ∞, 0 ≤ 𝑡 < 𝑇. (4)
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A European vanilla call option with strike price 𝐸 and
maturity 𝑇 satisfies (3) together with the payoff final condi-
tion

𝑈 (𝑆, V, 𝑇) = max (𝑆 − 𝐸, 0) , (5)

and the boundary conditions

𝑈 (0, V, 𝑡) = 0, (6)

𝜕𝑈

𝜕𝑆
(∞, V, 𝑡) = 1, (7)

𝑟𝑆
𝜕𝑈

𝜕𝑆
(𝑆, 0, 𝑡) + 𝜅𝜃

𝜕𝑈

𝜕V
(𝑆, 0, 𝑡) − 𝑟𝑈 (𝑆, 0, 𝑡)

+
𝜕𝑈

𝜕𝑡
(𝑆, 0, 𝑡) = 0,

(8)

𝑈 (𝑆, ∞, 𝑡) = 𝑆, (9)

where 𝜅, 𝜃 are related to 𝜅, 𝜃 by means of the expression 𝜅 =

𝜅+𝜆; 𝜃 = 𝜅𝜃/(𝜅+𝜆), and 𝜆 is themarket price of the volatility
risk.

For constant parameters, Heston [3] uses the method
of characteristic functions to derive a closed-form solution
involving infinite integrals. When the parameters are piece-
wise constant in time, one can still derive a recursive closed
formula using a PDE method [6] or a Markov argument in
combination with affine models [7].

For the case where coefficients are time dependent, the
authors in [8] use a small volatility of volatility expansion
and Malliavin calculus techniques, to derive approximate
analytical solutions. Reliable numerical methods for solving
problems (3)–(9) are suitable for both situations, the general
time-dependent coefficient case as well as for the constant
parameter case, where the closed form proposed solutions
require a further numerical treatment.

There are some approaches for the numerical treatment
of stochastic volatility models such as sparse wavelet [9],
spectral methods [10], and finite-difference methods [11–15].

A feature of the time dependent, two-dimensional
convection-diffusion-reaction equation (3) is the presence
of a mixed spatial derivative. Dealing with finite-difference
methods, this fact involves the existence of negative coeffi-
cient terms into the numerical scheme and deteriorates the
quality of the numerical solution; see the introduction of [16].

Furthermore, finite difference schemes in the presence
of a mixed spatial derivative produces four terms more in
the numerical scheme with the corresponding additional
computational cost and possible rounding accumulation
error.

Both papers [13, 15] construct difference schemes involv-
ing the mixed spatial derivative with associated drawbacks.
Reference [13] derives a compact finite difference scheme
using a nine-point computational stencil. [15] propose three
splitting schemes of the alternating direction implicit (ADI)
type.

In this paper, we construct explicit finite difference
schemes with positive coefficients for solving the Heston

model (3)–(9) for the continuously time-dependent coeffi-
cient case of the mean reversion rate and long-run variance,
after removing the mixed spatial derivative.The organization
of the paper is as follows. The problems coming out from
negative coefficients arising from the discretization of the
diffusion term are not easily remedied [16]; thus, Section 2
addresses the removing of the mixed spatial derivative in
(3) by means of the classical technique for the reduction
of second-order linear partial differential equations in two
variables to canonical form.We also determine the rhomboid
nonrectangular numerical domain where the problem is
discretized after the transformation. In Section 3, we con-
struct an explicit difference scheme with only a five-points
computational stencil. The boundary conditions are adapted
to the boundaries of the numerical domain. Section 4 deals
with the consistency of the scheme with (3). In Section 5, we
study stepsize discretization conditions in order to guarantee
the positivity and stability of the numerical scheme. In
Section 6, illustrative numerical examples are included.

For a matrix 𝐴 = (𝑎𝑖𝑗)𝑚×𝑛 in R𝑚×𝑛, we denote by ‖𝐴‖ =

max{|𝑎
𝑖𝑗
|; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and by ‖𝐴‖

1
the maximum

absolute column sum norm

‖𝐴‖1 = max
1≤𝑗≤𝑛

{

𝑚

∑

𝑖=1


𝑎
𝑖𝑗


} ; (10)

see [17, page 56].

2. On the Transformation Problem and
Its Motivation

Recently, the authors used space-centered forward in time
explicit finite difference schemes for the computation and
numerical analysis of several one-dimensional option pricing
problems [18–20].

Following these ideas for the two-dimensional problem
(3) one gets the following:

𝑈 (𝑆𝑖, V𝑗, 𝜏
𝑛
) ≈ 𝑢
𝑛

𝑖,𝑗
;

𝜕𝑈

𝜕𝜏
(𝑆𝑖, V𝑗, 𝜏

𝑛
) ≈

𝑢
𝑛+1

𝑖,𝑗
− 𝑢
𝑛

𝑖,𝑗

𝑘
;

𝜕𝑈

𝜕𝑆
(𝑆
𝑖
, V
𝑗
, 𝜏
𝑛
) ≈

𝑢
𝑛

𝑖+1,𝑗
− 𝑢
𝑛

𝑖−1,𝑗

2ℎ
1

;

𝜕
2
𝑈

𝜕𝑆2
(𝑆
𝑖
, V
𝑗
, 𝜏
𝑛
) ≈

𝑢
𝑛

𝑖−1,𝑗
− 2𝑢
𝑛

𝑖,𝑗
+ 𝑢
𝑛

𝑖+1,𝑗

ℎ2
1

;

𝜕𝑈

𝜕V
(𝑆
𝑖
, V
𝑗
, 𝜏
𝑛
) ≈

𝑢
𝑛

𝑖,𝑗+1
− 𝑢
𝑛

𝑖,𝑗−1

2ℎ2

;

𝜕
2
𝑈

𝜕V2
(𝑆
𝑖
, V
𝑗
, 𝜏
𝑛
) ≈

𝑢
𝑛

𝑖,𝑗−1
− 2𝑢
𝑛

𝑖,𝑗
+ 𝑢
𝑛

𝑖,𝑗+1

ℎ2
2

;

𝜕
2
𝑈

𝜕𝑆𝜕V
(𝑆
𝑖
, V
𝑗
, 𝜏
𝑛
) ≈

𝑢
𝑛

𝑖+1,𝑗+1
+ 𝑢
𝑛

𝑖−1,𝑗−1
− 𝑢
𝑛

𝑖−1,𝑗+1
− 𝑢
𝑛

𝑖+1,𝑗−1

4ℎ1ℎ2

,

(11)

where 𝜏 = 𝑇 − 𝑡, 𝑘 = Δ𝜏, ℎ
1

= Δ𝑆, ℎ
2

= ΔV, 𝑆
𝑖

= 𝑖ℎ
1
, V
𝑗

=

𝑗ℎ
2
, and 𝜏

𝑛
= 𝑛𝑘.
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By discretizing (3) one achieves the following scheme:

𝑢
𝑛+1

𝑖,𝑗
= (1 − 𝑟𝑘 −

𝑘

ℎ2
1

V
𝑗
𝑆
2

𝑖
−

𝑘

ℎ2
2

𝜎
2V
𝑗
) 𝑢
𝑛

𝑖,𝑗

+
𝑘

2
𝑆
𝑖
(
V
𝑗
𝑆
𝑖

ℎ2
1

+
𝑟

ℎ1

) 𝑢
𝑛

𝑖+1,𝑗
+

𝑘

2
𝑆
𝑖
(
V
𝑗
𝑆
𝑖

ℎ2
1

−
𝑟

ℎ1

) 𝑢
𝑛

𝑖−1,𝑗

+
𝑘

2
(

𝜎
2V
𝑗

ℎ2
2

+
𝜅 (𝜃 − V

𝑗)

ℎ2

) 𝑢
𝑛

𝑖,𝑗+1

+
𝑘

2
(

𝜎
2V𝑗
ℎ2
2

−
𝜅 (𝜃 − V

𝑗
)

ℎ
2

) 𝑢
𝑛

𝑖,𝑗−1

+
𝑘

4ℎ1ℎ2

𝜌𝜎V
𝑗
𝑆
𝑖
(𝑢
𝑛

𝑖+1,𝑗+1
+ 𝑢
𝑛

𝑖−1,𝑗−1

−𝑢
𝑛

𝑖−1,𝑗+1
− 𝑢
𝑛

𝑖+1,𝑗−1
) .

(12)

Note that if 𝜌 ̸= 0, that is, when variables 𝑆 and V are
correlated, in the last term of the right-hand side of the
scheme, (12) involves two terms with negative coefficients
because 𝜌 ∈ [−1, 1] and 𝜎, V𝑗, and 𝑆𝑖 are positive. The
existence of these terms with negative coefficients does not
allow the technique developed in [18–20].This fact motivates
the transformation of problem (3) into an equivalent one
where the mixed spatial derivative term disappears.

Firstly, we eliminate the reaction term 𝑟𝑈 bymeans of the
substitution

𝑉 = 𝑒
𝑟𝜏

𝑈, 𝜏 = 𝑇 − 𝑡, (13)

obtaining

𝜕𝑉

𝜕𝜏
=

1

2
V𝑆2

𝜕
2
𝑉

𝜕𝑆2
+ 𝜌𝜎V𝑆

𝜕
2
𝑉

𝜕𝑆𝜕V
+

1

2
𝜎
2V

𝜕
2
𝑉

𝜕V2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆

+ 𝜅 (𝜃 − V)
𝜕𝑉

𝜕V
.

(14)

Now, following the classical techniques for reduction
of second-order linear partial differential equations in two
independent variables to canonical form, see for instance
chapter 3 of [21], we proceed to classify the right-hand side
of (14) by means of the sign of the discriminant

Δ (𝑆, V) = 𝐵
2

− 4𝐴𝐶 = 𝜎
2V2𝑆2 (𝜌

2
− 1) , (15)

where

𝐵 = 𝜌𝜎V𝑆; 𝐴 =
1

2
V𝑆2; 𝐶 =

1

2
𝜎
2V. (16)

Under the assumption of correlated variables with −1 <

𝜌 < 1, (14) becomes of elliptic type and the suitable
substitution for eliminating the mixed spatial derivative
term is given by solving the following ordinary differential
equation:

𝑑V

𝑑𝑆
=

𝜎 (𝜌 + 𝑖√1 − 𝜌2)

𝑆
=

𝜎 (𝜌 + 𝑖𝜌)

𝑆
,

(17)

where

𝜌 = √1 − 𝜌2. (18)

Solving (17) one gets the following:

V + 𝑍
0

= 𝜎 (𝜌 + 𝑖𝜌) ln 𝑆, (19)

where the integration constant 𝑍
0
is related to the new

variables by

𝑍
0

= 𝑦 + 𝑖𝑥. (20)

From (19) and (20), it follows the expression of the new
variables

𝑥 = 𝜌𝜎 ln 𝑆; 𝑦 = 𝜌𝜎 ln 𝑆 − V. (21)

By denoting 𝑊(𝑥, 𝑦, 𝜏) = 𝑉(𝑆, V, 𝜏), (14) takes the
following equivalent elliptic form:

𝜕𝑊

𝜕𝜏
=

1

2
𝜌
2
𝜎
2V(

𝜕
2
𝑊

𝜕𝑥2
+

𝜕
2
𝑊

𝜕𝑦2
) + 𝜌𝜎 (𝑟 −

1

2
V)

𝜕𝑊

𝜕𝑥

+ (𝜌𝜎 (𝑟 −
1

2
V) − 𝜅 (𝜃 − V))

𝜕𝑊

𝜕𝑦
,

(22)

where V from (21) takes the expression in terms of 𝑥 and 𝑦,
given by the following:

V =
𝜌

𝜌
𝑥 − 𝑦. (23)

It is important to remark that the previous substitution
has also computational advantages because the elimination
of the mixed derivative saves four terms using the same
discretization scheme; see the last term of the right-hand side
of (12).

Note that from (21), (4) the domain of the transformed
problem (22) one gets the following:

−∞ < 𝑥 < +∞, 0 < 𝜏 ≤ 𝑇, (24)

and Vmeans the variance of an underlying asset that must be
positive, from (23) it follows that (𝜌/𝜌)𝑥 − 𝑦 > 0; thus,

−∞ < 𝑦 <
𝜌

𝜌
𝑥 = 𝑚𝑥; 𝑚 =

𝜌

𝜌
. (25)

Thus, the domain of the transformed problem is as follows:

𝐷 = {(𝑥, 𝑦, 𝜏) ; 𝑥 ∈ R; 𝑦 < 𝑚𝑥; 0 < 𝜏 ≤ 𝑇} . (26)

In the following we will assume that 𝑚 = (𝜌/𝜌) ̸= 0, because
when𝑚 = 0, 𝜌 = 0 and variables 𝑆 and V are uncorrelated and
the cross-derivative term disappears in (3).

Note that after substitution of (21) the final condition (5)
of problem (3) takes the following form:

𝑊 (𝑥, 𝑦, 0) = max (𝑒
𝑥/𝜎𝜌

− 𝐸, 0) ; 𝑥 ∈ R, 𝑦 < 𝑚𝑥. (27)
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The boundary conditions (6), (9) of problem (3) are
transformed into the following Dirichlet conditions:

𝑊 (𝑥, 𝑦, 𝜏) → 0, as 𝑥 → −∞, (28)

𝑊 (𝑥, 𝑦, 𝜏) → 𝑒
𝑟𝜏+(𝑥/𝜎𝜌)

, as 𝑚𝑥 − 𝑦 → +∞, (29)

and the boundary condition (7) is transformed into the
following Neumann condition:

𝜎𝜌
𝜕𝑊

𝜕𝑥
(𝑥, 𝑦, 𝜏) + 𝜎𝜌

𝜕𝑊

𝜕𝑦
(𝑥, 𝑦, 𝜏) → 𝑒

𝑟𝜏+𝑥/𝜎𝜌
,

as 𝑥 → +∞.

(30)

Boundary condition (8) can be replaced with a more
practicable homogeneous Neumann condition:

𝜕𝑈

𝜕V
(𝑆, 0, 𝑡) = 0; (31)

see, for instance, [11, 13]. This boundary condition is trans-
formed into the condition

𝜕𝑊

𝜕𝑦
(𝑥, 𝑦, 𝜏) → 0, as 𝑚𝑥 − 𝑦 → 0

+
. (32)

Remark 1. In the next section, in order to introduce a
numerical scheme, we will need to determine a bounded
numerical domain.

Because of the transformation of the spatial variables (21),
a rectangle [𝑆1, 𝑆2]×[V1, V2] is transformed into the rhomboid
𝐴𝐵𝐶𝐷; see Figure 1, where the sides are described by the
following:

𝐴𝐷 = {(𝑥, 𝑦) ∈ R
2
; 𝑥 = 𝑎 = 𝜌𝜎 ln 𝑆

1
;

𝑦 = 𝑚𝑎 − V; V
1

≤ V ≤ V
2
} ,

𝐴𝐵 = {(𝑥, 𝑦) ∈ R
2
; 𝑎 ≤ 𝑥 ≤ 𝑏 = 𝜌𝜎 ln 𝑆

2
; 𝑦 = 𝑚𝑥 − V

2
} ,

𝐵𝐶 = {(𝑥, 𝑦) ∈ R
2
; 𝑥 = 𝑏; 𝑦 = 𝑚𝑏 − V; V

1
≤ V ≤ V

2
} ,

𝐶𝐷 = {(𝑥, 𝑦) ∈ R
2
; 𝑎 ≤ 𝑥 ≤ 𝑏; 𝑦 = 𝑚𝑥 − V1} .

(33)

Remark 2. For the case |𝜌| = 1, fully correlated variables 𝑆

and V, from (15), the discriminant Δ = 0, and (14) become
a parabolic PDE. Following the techniques for reduction to
canonical form, an appropriate substitution is 𝑥 = 𝑆; 𝑦 =

V − 𝜌𝜎 ln 𝑆 and the transformed equation takes the following
form:

𝜕𝑊

𝜕𝜏
=

1

2
V𝑥2

𝜕
2
𝑊

𝜕𝑥2
+ 𝑟𝑥

𝜕𝑊

𝜕𝑥

+ (𝜌𝜎 (
1

2
V − 𝑟) + 𝜅 (𝜃 − V))

𝜕𝑊

𝜕𝑦
,

(34)

where |𝜌| = 1 and V = 𝑦 + 𝜌𝜎 ln𝑥.

3. Numerical Scheme and Boundary Numerical
Domain Considerations

Dealing with numerical solutions using finite difference
schemes requires the selection of our numerical domain
and the transfer of the analytic boundary conditions of the
problem to the boundary conditions of the numerical domain
avoiding artificial behaviour of the numerical solution [22].
Unlike the classical stepsize discretizations, due to the trans-
formation (21) and Remark 1, we use a discretization of
the numerical domain where the stepsize discretizations are
related by the slope 𝑚 = (𝜌/𝜌) ̸= 0 appearing in (25). Thus,
we guarantee that the rhomboid boundary of our numerical
domain includes meshpoints of the discretization.

From [23, 24], a suitable bound for the underlying asset
variable 𝑆 is available and generally accepted. In an analogous
way, considering an admissible range of the variance V, we can
identify a convenient-bounded numerical domain [𝑆1, 𝑆

2
] ×

[V1, V2] in the 𝑆V plane.
In accordance with (33), let 𝑥𝑖 ∈ [𝑎, 𝑏], with 𝑥𝑖 = 𝑎 + 𝑖ℎ,

0 ≤ 𝑖 ≤ 𝑁𝑥, Δ𝑥 = ℎ = (𝑏 − 𝑎)/𝑁𝑥. Let 𝑁𝑦 = (V2 − V1)/𝑚ℎ and
𝑦𝑗 ∈ [𝑚𝑎 − V2, 𝑚𝑏 − V1] of the form

𝑦
0

= 𝑚𝑎 − V
2
; 𝑦

𝑗
= 𝑦
0

+ 𝑗𝑚ℎ; Δ𝑦 = 𝑚ℎ = 𝑚Δ𝑥.

(35)

Once 𝑖 is fixed, the admissible values of 𝑗 so that (𝑥
𝑖
, 𝑦
𝑖
)

belongs to the rhomboid 𝐴𝐵𝐶𝐷 are given by the following:

𝑖 ≤ 𝑗 ≤ 𝑁
𝑦

+ 𝑖; 0 ≤ 𝑖 ≤ 𝑁
𝑥
. (36)

Note that with this discretization the boundary sides of the
rhomboid are partitioned in the following way:

𝑃 (𝐴𝐷) = {(𝑥
0
, 𝑦
𝑗
) ; 0 ≤ 𝑗 ≤ 𝑁

𝑦
} ,

𝑃 (𝐴𝐵) = {(𝑥
𝑖
, 𝑦
𝑖
) ; 0 ≤ 𝑖 ≤ 𝑁

𝑥
} ,

𝑃 (𝐵𝐶) = {(𝑥𝑁
𝑥

, 𝑦𝑗) ; 𝑁𝑥 ≤ 𝑗 ≤ 𝑁𝑥 + 𝑁𝑦} ,

𝑃 (𝐶𝐷) = {(𝑥𝑖, 𝑦𝑖+𝑁
𝑦

) ; 0 ≤ 𝑖 ≤ 𝑁𝑥} .

(37)

Thus, the rhomboid spatial domain together with its
boundary contains (𝑁

𝑥
+1)(𝑁

𝑦
+1)mesh points. See Figure 1.

For the time variable 𝜏, we consider the standard dis-
cretization

𝜏
𝑛

= 𝑘𝑛; 0 ≤ 𝑛 ≤ 𝑁𝜏; Δ𝜏 = 𝑘 =
𝑇

𝑁
𝜏

. (38)

Hence, the numerical domain Ω is defined by the follow-
ing:

Ω = {(𝑥
𝑖
, 𝑦
𝑗
, 𝜏
𝑛
) | 0 ≤ 𝑖 ≤ 𝑁

𝑥
; 𝑖 ≤ 𝑗 ≤ 𝑁

𝑦
+ 𝑖;

0 ≤ 𝑛 ≤ 𝑁
𝜏
} .

(39)

Note that because of (23) the value of V at the spatial
variables (𝑥

𝑖
, 𝑦
𝑗
) is as follows:

V
𝑖,𝑗

= 𝑚𝑥
𝑖
− 𝑦
𝑗
; 0 ≤ 𝑖 ≤ 𝑁

𝑥
; 𝑖 ≤ 𝑗 ≤ 𝑁

𝑦
+ 𝑖. (40)
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Figure 1: Rhomboid ABCD.

Using centered differences approximations for the spatial
partial derivatives of (22) and forward in time partial deriva-
tives, the numerical scheme for the internal mesh points of
the numerical domain takes the following form:

𝐹 (𝑤
𝑛

𝑖,𝑗
) =

𝑤
𝑛+1

𝑖,𝑗
− 𝑤
𝑛

𝑖,𝑗

𝑘
−

1

2
V
𝑖,𝑗

𝜎
2
𝜌
2

((Δ
𝑥
)
𝑛

𝑖,𝑗
+ (Δ
𝑦
)
𝑛

𝑖,𝑗
)

− 𝜎𝜌 (𝑟 −
1

2
V
𝑖,𝑗

) (∇
𝑥
)
𝑛

𝑖,𝑗

− [𝜎𝜌 (𝑟 −
1

2
V
𝑖,𝑗

) − 𝜅
𝑛

(𝜃
𝑛

− V
𝑖,𝑗

)] (∇
𝑦
)
𝑛

𝑖,𝑗
= 0,

(41)

where

1 ≤ 𝑖 ≤ 𝑁
𝑥

− 1;

𝑖 + 1 ≤ 𝑗 ≤ 𝑁
𝑦

+ 𝑖 − 1;

0 ≤ 𝑛 ≤ 𝑁
𝜏

− 1,

(42)

𝑤
𝑛

𝑖,𝑗
is the approximation of the exact solution𝑊(𝑥

𝑖
, 𝑦
𝑗
, 𝜏
𝑛
) of

(22) at the mesh point (𝑥𝑖, 𝑦𝑗, 𝜏
𝑛
) and operators Δ 𝑥, Δ 𝑦, ∇𝑥,

and ∇𝑦 are defined by the following:

(Δ
𝑥
)
𝑛

𝑖,𝑗
=

𝑤
𝑛

𝑖+1,𝑗
− 2𝑤
𝑛

𝑖,𝑗
+ 𝑤
𝑛

𝑖−1,𝑗

2ℎ2
1

;

(Δ
𝑦
)
𝑛

𝑖,𝑗
=

𝑤
𝑛

𝑖,𝑗+1
− 2𝑤
𝑛

𝑖,𝑗
+ 𝑤
𝑛

𝑖,𝑗−1

2ℎ2
2

;

(∇
𝑥
)
𝑛

𝑖,𝑗
=

𝑤
𝑛

𝑖+1,𝑗
− 𝑤
𝑛

𝑖−1,𝑗

2ℎ
1

;

(∇
𝑦
)
𝑛

𝑖,𝑗
=

𝑤
𝑛

𝑖,𝑗+1
− 𝑤
𝑛

𝑖,𝑗−1

2ℎ2

,

(43)

where ℎ
1
and ℎ

2
are the stepsize spatial variables related by

the following:

ℎ
1

= ℎ = Δ𝑥; ℎ
2

= 𝑚ℎ
1

= 𝑚Δ𝑥, (44)

in our numerical domain Ω. In (41) time-dependent param-
eters are described by 𝜅

𝑛
= 𝜅(𝜏

𝑛
) and 𝜃

𝑛
= 𝜃(𝜏

𝑛
). Thus, for

the internal mesh points, the scheme (41) can be written in
an explicit five points stencil scheme, (see Figure 2):

𝑤
𝑛+1

𝑖,𝑗
= (1 −

𝑘

ℎ2
𝛼𝑖,𝑗) 𝑤

𝑛

𝑖,𝑗
+

𝑘

ℎ
(

𝜌
2

2ℎ
𝛼𝑖,𝑗 + 𝛽𝑖,𝑗) 𝑤

𝑛

𝑖+1,𝑗

+
𝑘

ℎ
(

𝜌
2

2ℎ
𝛼
𝑖,𝑗

− 𝛽
𝑖,𝑗

) 𝑤
𝑛

𝑖−1,𝑗

+
𝑘

ℎ
(

𝜌
2

2ℎ
𝛼𝑖,𝑗 + 𝛽𝑖,𝑗 − 𝛾

𝑛

𝑖,𝑗
) 𝑤
𝑛

𝑖,𝑗+1

+
𝑘

ℎ
(

𝜌
2

2ℎ
𝛼
𝑖,𝑗

− 𝛽
𝑖,𝑗

+ 𝛾
𝑛

𝑖,𝑗
) 𝑤
𝑛

𝑖,𝑗−1
,

1 ≤ 𝑖 ≤ 𝑁
𝑥

− 1;

𝑖 + 1 ≤ 𝑗 ≤ 𝑁𝑦 + 𝑖 − 1;

0 ≤ 𝑛 ≤ 𝑁
𝜏

− 1,

(45)

where

𝛼
𝑖,𝑗

=
𝜎
2

𝑚2
V
𝑖,𝑗

; 𝛽
𝑖,𝑗

=
𝜎𝜌 (𝑟 − (1/2) V𝑖,𝑗)

2
;

𝛾
𝑛

𝑖,𝑗
=

𝜅
𝑛

(𝜃
𝑛

− V
𝑖,𝑗

)

2𝑚
.

(46)

Finally, it remains translating the initial condition (27)
and the boundary conditions (28)–(32) of the transformed
problem (22), to the numerical domain.The initial condition
gives the following:

𝑤
0

𝑖,𝑗
= max (𝑒

𝑥
𝑖
/𝜎𝜌

− 𝐸, 0) , 0 ≤ 𝑖 ≤ 𝑁𝑥; 𝑖 ≤ 𝑗 ≤ 𝑁𝑦 + 𝑖.

(47)

The Dirichlet conditions (28)-(29) are translated to the
numerical boundary as follows

𝑤
𝑛

0,𝑗
= 0, 0 ≤ 𝑗 ≤ 𝑁

𝑦
− 1, 0 ≤ 𝑛 ≤ 𝑁

𝜏
, (48)

along the side 𝐴𝐷 of the rhomboid, and

𝑤
𝑛

𝑖,𝑖
= 𝑒
𝑟𝜏
𝑛

+𝑥
𝑖
/𝜎𝜌

, 1 ≤ 𝑖 ≤ 𝑁𝑥, (49)



6 Abstract and Applied Analysis

i − 1, j + 1 i + 1, j + 1

i − 1, j i, j i + 1, j

i − 1, j − 1 i, j − 1 i + 1, j − 1

i, j + 1

Figure 2: Five-point versus nine-point stencils.

along the side 𝐴𝐵 of the rhomboid. The Neumann boundary
conditions are translated by replacing the partial derivatives
values for the corresponding finite differences approxima-
tions values.

So, condition (32) takes the discretized backward form in
order to involve mesh points of the numerical domain:

𝑤
𝑛

𝑖,𝑁
𝑦
+𝑖

− 𝑤
𝑛

𝑖,𝑁
𝑦
+𝑖−1

𝑚ℎ
= 0, (50)

or

𝑤
𝑛

𝑖,𝑁
𝑦
+𝑖

= 𝑤
𝑛

𝑖,𝑁
𝑦
+𝑖−1

, 0 ≤ 𝑖 ≤ 𝑁𝑥. (51)

The Neumann boundary condition (30) related to the
numerical boundary 𝐵𝐶 of the rhomboid is regarded assum-
ing that option price has a linear behaviour for large values of
𝑆. Hence, second partial derivatives terms vanish in (14) and
taking into account the leading first partial derivative term of
(14) for large values of 𝑆, one gets the following:

𝜕𝑉

𝜕𝜏
(∞, V, 𝜏) = 𝑟𝑆

𝜕𝑉

𝜕𝑆
(∞, V, 𝜏) . (52)

From (52), the change of variables (21), and (30), it follows
that the boundary numerical condition for the 𝐵𝐶 side of the
rhomboid is as follows:

𝑤
𝑛+1

𝑁
𝑥
,𝑗

− 𝑤
𝑛

𝑁
𝑥
,𝑗

𝑘
= 𝑟𝑒
𝑛𝑟𝑘+𝑏/𝜎𝜌

, 𝑁𝑥 + 1 ≤ 𝑗 ≤ 𝑁𝑥 + 𝑁𝑦.
(53)

Summarizing, the numerical scheme is expressed by
(45) for the internal mesh points, together with the initial
condition (47) and the boundary conditions (48)–(51) and
(53).

4. Consistency

Let 𝐹(𝑤
𝑛

𝑖,𝑗
) = 0 be the approximating difference equation

(41). In accordance with [25, page 100], the scheme (41) is
consistent with (22) if

𝑇
𝑛

𝑖,𝑗
(𝑊) = 𝐹 (𝑊

𝑛

𝑖,𝑗
) − 𝐿 (𝑊

𝑛

𝑖,𝑗
) → 0,

as ℎ
1

= Δ𝑥 → 0, ℎ
2

= Δ𝑦 → 0, 𝑘 = Δ𝜏 → 0,

(54)

where 𝑊
𝑛

𝑖,𝑗
denotes the theoretical solution of (22) evaluated

at (𝑥𝑖, 𝑦𝑗, 𝜏
𝑛
) and 𝐿 is the operator:

𝐿 (𝑊) =
𝜕𝑊

𝜕𝜏
−

1

2
𝜌
2
𝜎
2V(

𝜕
2
𝑊

𝜕𝑥2
+

𝜕
2
𝑊

𝜕𝑦2
) − 𝜌𝜎 (𝑟 −

1

2
V)

𝜕𝑊

𝜕𝑥

− (𝜌𝜎 (𝑟 −
1

2
V) − 𝜅 (𝜃 − V))

𝜕𝑊

𝜕𝑦
.

(55)

Assuming that𝑊 is four times continuously differentiable
with respect to 𝑥 and 𝑦 and twice with respect to 𝜏, and using
Taylor expansion about (𝑥

𝑖
, 𝑦
𝑗
, 𝜏
𝑛
) it follows that

𝑊
𝑛+1

𝑖,𝑗
− 𝑊
𝑛

𝑖,𝑗

𝑘
=

𝜕𝑊

𝜕𝜏
(𝑥
𝑖
, 𝑦
𝑗
, 𝜏
𝑛
) + 𝑘𝐸

𝑛

𝑖,𝑗
(1) , (56)

where

𝐸
𝑛

𝑖,𝑗
(1) =

1

2

𝜕
2
𝑊

𝜕𝜏2
(𝑥
𝑖
, 𝑦
𝑗
, 𝜏
𝑛
) , 𝑛𝑘 < 𝛿 < (𝑛 + 1) 𝑘, (57)


𝐸
𝑛

𝑖,𝑗
(1)


≤

1

2


𝐷
𝑛

𝑖,𝑗
(1)

max
≡

1

2
max{



𝜕
2
𝑊

𝜕𝜏2
(𝑥𝑖, 𝑦𝑗, 𝜏)



;

𝑛𝑘 ≤ 𝜏 ≤ (𝑛+1) 𝑘} .

(58)

With respect to the approximations of the spatial partial
derivatives, let us denote

(Δ
𝑥
)
𝑛

𝑖,𝑗
=

𝜕
2
𝑊

𝜕𝑥2
(𝑥
𝑖
, 𝑦
𝑗
, 𝜏
𝑛
) + ℎ
2

1
𝐸
𝑛

𝑖,𝑗
(2) , (59)

where

𝐸
𝑛

𝑖,𝑗
(2) =

1

12

𝜕
4
𝑊

𝜕𝑥4
(𝜉
1
, 𝑦
𝑗
, 𝜏
𝑛
) ; 𝑥

𝑖
− ℎ
1

< 𝜉
1

< 𝑥
𝑖
+ ℎ
1
,

(60)


𝐸
𝑛

𝑖,𝑗
(2)


≤

1

12


𝐷
𝑛

𝑗
(2)

max

≡
1

12
max{



𝜕
4
𝑊

𝜕𝑥4
(𝑥, 𝑦
𝑗
, 𝜏
𝑛
)



; 𝑎 ≤ 𝑥 ≤ 𝑏} .

(61)

Analogously

(∇
𝑥
)
𝑛

𝑖,𝑗
=

𝜕𝑊

𝜕𝑥
(𝑥𝑖, 𝑦𝑗, 𝜏

𝑛
) + ℎ
2

1
𝐸
𝑛

𝑖,𝑗
(3) , (62)

where

𝐸
𝑛

𝑖,𝑗
(3) =

1

6

𝜕
3
𝑊

𝜕𝑥3
(𝜉
2
, 𝑦
𝑗
, 𝜏
𝑛
) ; 𝑥

𝑖
− ℎ
1

< 𝜉
2

< 𝑥
𝑖
+ ℎ
1
,

(63)


𝐸
𝑛

𝑖,𝑗
(3)


≤

1

6


𝐷
𝑛

𝑗
(3)

max

≡
1

6
max{



𝜕
3
𝑊

𝜕𝑥3
(𝑥, 𝑦𝑗, 𝜏

𝑛
)



; 𝑎 ≤ 𝑥 ≤ 𝑏} .

(64)
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Otherwise,

(Δ
𝑦
)
𝑛

𝑖,𝑗
=

𝜕
2
𝑊

𝜕𝑦2
(𝑥
𝑖
, 𝑦
𝑗
, 𝜏
𝑛
) + ℎ
2

2
𝐸
𝑛

𝑖,𝑗
(4) , (65)

where

𝐸
𝑛

𝑖,𝑗
(4) =

1

12

𝜕
4
𝑊

𝜕𝑦4
(𝑥
𝑖
, 𝜉
3
, 𝜏
𝑛
) ; 𝑦

𝑗
− ℎ
2

< 𝜉
3

< 𝑦
𝑗

+ ℎ
2
,

(66)


𝐸
𝑛

𝑖,𝑗
(4)


≤

1

12

𝐷
𝑛

𝑖
(4)

max

≡
1

12
max{



𝜕
4
𝑊

𝜕𝑦4
(𝑥
𝑖
, 𝑦, 𝜏
𝑛
)



;

−V
2 + 𝑚𝑥𝑖 < 𝑦 < −V1 + 𝑚𝑥𝑖 } .

(67)

Let us write

(∇
𝑦
)
𝑛

𝑖,𝑗
=

𝜕𝑊

𝜕𝑦
(𝑥
𝑖
, 𝑦
𝑗
, 𝜏
𝑛
) + ℎ
2

2
𝐸
𝑛

𝑖,𝑗
(5) , (68)

where

𝐸
𝑛

𝑖,𝑗
(5) =

1

6

𝜕
3
𝑊

𝜕𝑦3
(𝑥𝑖, 𝜉
4
, 𝜏
𝑛
) , 𝑦

𝑗
− ℎ
2

< 𝜉
4

< 𝑦
𝑗

+ ℎ
2
,

(69)


𝐸
𝑛

𝑖,𝑗
(5)


≤

1

6

𝐷
𝑛

𝑖
(5)

max

≡
1

6
max{



𝜕
3
𝑊

𝜕𝑦3
(𝑥
𝑖
, 𝑦, 𝜏
𝑛
)



;

−V
2

+ 𝑚𝑥
𝑖
< 𝑦 < −V

1
+ 𝑚𝑥
𝑖
} .

(70)

From (56), (59), (62), (65), and (68), the local truncation
error 𝑇

𝑛

𝑖,𝑗
(𝑊) takes the following form:

𝑇
𝑛

𝑖,𝑗
(𝑊) = 𝐹 (𝑊

𝑛

𝑖,𝑗
) − 𝐿 (𝑊

𝑛

𝑖,𝑗
)

= 𝑘𝐸
𝑛

𝑖,𝑗
(1) −

1

2
V𝑖,𝑗𝜎
2
𝜌
2

(ℎ
2

1
𝐸
𝑛

𝑖,𝑗
(2) + ℎ

2

2
𝐸
𝑛

𝑖,𝑗
(4))

− (𝑟 −
1

2
V
𝑖,𝑗

) 𝜎𝜌 (ℎ
2

1
𝐸
𝑛

𝑖,𝑗
(3))

− {(𝑟 −
1

2
V
𝑖,𝑗

) 𝜎𝜌 − 𝜅
𝑛

(𝜃
𝑛

− V
𝑖,𝑗

)} ℎ
2
𝐸
𝑛

𝑖,𝑗
(5) .

(71)

From (58), (61), (64), (67), (70), and (71), one gets the
following:

𝑇
𝑛

𝑖,𝑗
(𝑊)



≤
𝑘

2


𝐷
𝑛

𝑖,𝑗
(1)

max

+
ℎ
2

1

6
{

1

4
V
2
𝜎
2
𝜌
2

𝐷
𝑛

𝑗
(2)

max
+


𝑟 −

1

2
V
𝑖,𝑗


𝜎𝜌


𝐷
𝑛

𝑗
(3)

max
}

+
ℎ
2

2

6
{

1

4
V2𝜎
2
𝜌
2𝐷
𝑛

𝑖
(4)

max

+ (


𝑟 −

1

2
V
𝑖,𝑗


𝜎𝜌 + 𝜅

𝑛 
𝜃
𝑛

− V
𝑖,𝑗


)

𝐷
𝑛

𝑖
(5)

max}

= 𝑂 (𝑘) + 𝑂 (ℎ
2

1
) + 𝑂 (ℎ

2

2
) .

(72)

Summarizing, the following result has been established.

Theorem 3. Assuming that the exact solution 𝑊 of (22)
admits four times continuous partial derivatives with respect
to the spatial variables 𝑥 and 𝑦 and twice continuous partial
derivatives with respect to 𝜏, the scheme (41) is consistent with
(22) and the local truncation error behaves

𝑇
𝑛

𝑖,𝑗
(𝑊) = 𝑂 (𝑘) + 𝑂 (ℎ

2

1
) + 𝑂 (ℎ

2

2
) ,

as Δ𝜏 = 𝑘 → 0, Δ𝑥 = ℎ
1

→ 0, Δ𝑦 = ℎ
2

→ 0.

(73)

5. Positivity and Stability

We begin this section showing that under suitable relation-
ship between the stepsize discretizations, the coefficients of
scheme (45) are nonnegative. This fact together with the
positivity of the boundary values will guarantee the positivity
of the values of the solution in all time steps at every spatial
mesh point.

Let us start considering the first coefficient of the right-
hand side of (45). Note that 1 − (𝑘/ℎ

2
)𝛼
𝑖,𝑗

≥ 0 is equivalent to
the following condition:

𝛼
𝑖,𝑗

≤
ℎ
2

𝑘
. (74)

Now, from (45) and taking into account that V
1

≤ V
𝑖,𝑗

≤ V
2
,

it follows that

0 ≤
𝑘

ℎ2
𝛼
𝑖,𝑗

≤
𝑘

ℎ2
V
2

𝜎
2

𝑚2
; 𝛼
𝑖,𝑗

≤
V
2𝜎
2

𝑚2
. (75)

Hence, (74) holds if

𝑘

ℎ2
≤

𝑚
2

V
2
𝜎2

. (76)

Note that the simultaneous nonnegativity of coefficients
(𝜌
2
/2ℎ)𝛼

𝑖,𝑗
+ 𝛽
𝑖,𝑗

and (𝜌
2
/2ℎ)𝛼

𝑖,𝑗
− 𝛽
𝑖,𝑗

is equivalent to the
condition


𝛽
𝑖,𝑗


≤

𝜌
2

2ℎ
𝛼
𝑖,𝑗

. (77)
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From (46), condition (77) is equivalent to

𝑟 −

1

2
V
𝑖,𝑗


≤

𝜎𝜌

ℎ
V
𝑖,𝑗

. (78)

Note that if 𝑟 = (1/2)V
𝑖,𝑗
, condition (78) holds true. If

𝑟 ̸= (1/2)V
𝑖,𝑗
, then let us write (78) in the following form:

ℎ ≤
𝜎𝜌V
𝑖,𝑗


𝑟 − (1/2) V𝑖,𝑗



. (79)

As the minimum of real function 𝑔(𝑧) = 𝜎𝜌𝑧/|𝑟 − (1/2)𝑧| in
the interval 0 < 𝑧

1
≤ 𝑧 ≤ 𝑧

2
is given by

min {𝑔 (𝑧) : 𝑧
1

≤ 𝑧 ≤ 𝑧
2
} = min{

𝜎𝜌𝑧
𝑖

𝑟 − (1/2) 𝑧
𝑖



; 𝑖 = 1, 2}

(80)

then from (80), condition (79) holds true if

ℎ ≤ ℎ
𝑎

= min
𝑠=1,2

{
2𝜎𝜌V
𝑠

2𝑟 − V
𝑠



} . (81)

Note that the simultaneous nonnegativity of coefficients
(𝜌
2
/2ℎ)𝛼

𝑖,𝑗
+ 𝛽
𝑖,𝑗

− 𝛾
𝑛

𝑖,𝑗
and (𝜌

2
/2ℎ)𝛼

𝑖,𝑗
− 𝛽
𝑖,𝑗

+ 𝛾
𝑛

𝑖,𝑗
is equivalent

to the condition


𝛽
𝑖,𝑗

− 𝛾
𝑛

𝑖,𝑗


≤

𝜌
2

2ℎ
𝛼
𝑖,𝑗

. (82)

For the sake of clarity, let us introduce the following:

𝐴 (𝜏
𝑛
) = 𝜎𝑟 −

𝜅
𝑛
𝜃
𝑛

𝜌
; 𝐵 (𝜏

𝑛
) =

𝜎

2
−

𝜅
𝑛

𝜌
. (83)

From (46) and (83), condition (82) can be written in the
following form:


𝐴 (𝜏
𝑛
) − 𝐵 (𝜏

𝑛
) V
𝑖,𝑗


≤

𝜎
2
𝜌V
𝑖,𝑗

ℎ𝑚2
. (84)

Note that if 𝐴(𝜏
𝑛
) = 𝐵(𝜏

𝑛
)V
𝑖,𝑗
, then (84) holds true. If

𝐴(𝜏
𝑛
) ̸= 𝐵(𝜏

𝑛
)V
𝑖,𝑗
, then (84) is equivalent to

ℎ ≤
𝜎
2
𝜌V
𝑖,𝑗


𝐴 (𝜏𝑛) − 𝐵 (𝜏𝑛) V𝑖,𝑗


𝑚2

. (85)

As the continuous positive function

𝐺 (𝜏, 𝑧) = |𝐴 (𝜏) − 𝐵 (𝜏) 𝑧|

=


𝜎𝑟 −

𝜅 (𝜏) 𝜃 (𝜏)

𝜌
− (

𝜎

2
−

𝜅 (𝜏)

𝜌
) 𝑧



(86)

is bounded, in the compact [0, 𝑇] × [V
1
, V
2
], thus

max {𝐺 (𝜏, 𝑧) ; (𝜏, 𝑧) ∈ [0, 𝑇] × [V1, V2]} = 𝐶 > 0. (87)

From (85) and (87), condition (85) holds true if

ℎ ≤ ℎ𝑏 =
𝜎
2
𝜌V
1

𝑚2𝐶
. (88)

Summarizing, the following result has been established.

Lemma 4. Let ℎ
𝑎
, ℎ
𝑏
be defined by (81) and (88), respectively,

and let ℎ
0

= min{ℎ
𝑎
, ℎ
𝑏
}. Then, for ℎ < ℎ

0
and 𝑘 satisfying

(76), all the coefficients of scheme (45) are nonnegative.

The nonnegativity of the coefficients of scheme (45) is
not sufficient to guarantee the positivity of the constructed
numerical solution due to the influence on the values at the
boundaries of the numerical domain. From (47)–(51), (53),
and Lemma 4 it is easy to show the positivity of 𝑤

𝑛

𝑖,𝑗
in all the

boundaries of the rhomboid for all 𝑛. Hence, the following
result has been established.

Theorem 5. Let (𝑥𝑖, 𝑦𝑗, 𝜏
𝑛
) be a mesh point in the domain

described by Ω (39) with 𝑎 ≤ 𝑥
𝑖

≤ 𝑏, V
1

≤ 𝑚𝑥
𝑖
− 𝑦
𝑗

≤ V
2
. Let

𝑤
𝑛

𝑖𝑗
be the numerical approximation of 𝑊(𝑥𝑖, 𝑦𝑗, 𝜏

𝑛
) given by

(45) together with the initial condition (47) and the boundary
conditions (48)–(51) and (53). Assume that ℎ < ℎ

0
, where ℎ

0
is

given by Lemma 4, and 𝑘 satisfying (76), then 𝑤
𝑛

𝑖,𝑗
≥ 0 for all

𝑛, 𝑖, 𝑗.

The next result is a local discrete maximum principle that
guarantees the boundedness of the numerical solution at the
internal mesh points of the domain and that will be used
below to prove the stability of the scheme.

Lemma6. Let (𝑖, 𝑗) be spatial internal mesh point with 1 ≤ 𝑖 ≤

𝑁
𝑥

− 1; 𝑖 + 1 ≤ 𝑗 ≤ 𝑁
𝑦

+ 𝑖 − 1 and let 𝑆
𝑛

𝑖,𝑗
be the pentaset

𝑆
𝑛

𝑖,𝑗
= {𝑤
𝑛

𝑖,𝑗
; 𝑤
𝑛

𝑖−1,𝑗
; 𝑤
𝑛

𝑖+1,𝑗
; 𝑤
𝑛

𝑖,𝑗−1
; 𝑤
𝑛

𝑖,𝑗+1
} . (89)

Then under conditions of Lemma 4, it follows that

min 𝑆
𝑛

𝑖,𝑗
≤ 𝑤
𝑛+1

𝑖,𝑗
≤ max 𝑆

𝑛

𝑖,𝑗
, (90)

for 0 ≤ 𝑛 ≤ 𝑁
𝜏 − 1.

Proof. From (45), Lemma 4, and using that 𝜌
2

+ 𝜌
2

= 1 and
that the sum of all the five coefficients of the right-hand side
of (45) is one, the result is established.

We conclude this section by introducing a concept of
stability for the numerical solution of scheme (45), (47)–(51),
(53). Let {𝑤

𝑛

𝑖,𝑗
} be the numerical solution of scheme (45),

(47)–(51), (53) and consider the matrix 𝑤
𝑛 in R(𝑁𝑦+1) × (𝑁𝑥+1)

defined by

𝑤
𝑛

= [𝑤
𝑛

𝑖,𝑗
]
𝑖≤𝑗≤𝑁

𝑦
+𝑖, 0≤𝑖≤𝑁

𝑥

, 0 ≤ 𝑛 ≤ 𝑁
𝜏
, (91)

whose entries are the values of the numerical solution of the
scheme for a fixed temporal step 𝑛.

Definition 7. With previous notation, we say that the solution
{𝑤
𝑛

𝑖,𝑗
} of the scheme (45), (47)–(51), (53) is ‖ ⋅ ‖

1
-stable, if for

small enough values of ℎ
1

= ℎ = Δ𝑥, ℎ
2

= 𝑚Δ𝑥 and 𝑘 = Δ𝜏,
there is a constant 𝑀, independent of 𝑛, ℎ, and 𝑘, such that

𝑤
𝑛1 ≤ 𝑀


𝑤
01

, (92)

for all 𝑛 such that 0 ≤ 𝑛 ≤ 𝑁
𝜏
, with 𝑘𝑁

𝜏
= 𝑇.
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Note that under conditions of Theorem 5, the entries of
matrix 𝑤

𝑛 are nonnegative and let us denote

𝑤
𝑛 = max {𝑤

𝑛

𝑖,𝑗
0 ≤ 𝑖 ≤ 𝑁

𝑥
, 𝑖 ≤ 𝑗 ≤ 𝑁

𝑦
+ 𝑖} . (93)

Now, we show using induction principle that there exists
a number sequence {𝑄

𝑛
}
0≤𝑛≤𝑁

𝜏

so that

𝑤
𝑛 ≤ 𝑄

𝑛
. (94)

Let us denote

𝛽 = 𝑒
𝑏/𝜎𝜌

, (95)

and for 𝑛 = 0, let us take 𝑄
0

= 𝛽; then from the initial
condition (47) one gets the following:


𝑤
0

≤ 𝑄
0
. (96)

If 𝑛 = 1, for the internalmesh points, fromLemma 6, one gets
the following:

0 ≤ 𝑤
1

𝑖,𝑗
≤ 𝑄
0
; 1 ≤ 𝑖 ≤ 𝑁

𝑥
− 1, 𝑖 + 1 ≤ 𝑗 ≤ 𝑁

𝑦
+ 𝑖 − 1.

(97)

From (48)–(51), and (53) and Theorem 5, since 𝑒
𝑟𝑘

> 1 + 𝑘𝑟

for 𝑘𝑟 > 0, it follows that

0 ≤ 𝑤
1

𝑖,𝑗
≤ max {𝛽 + 𝑘𝑟𝛽, 𝛽𝑒

𝑟𝑘
} = 𝛽𝑒

𝑟𝑘
,

0 ≤ 𝑖 ≤ 𝑁
𝑥
, 𝑖 ≤ 𝑗 ≤ 𝑁

𝑦
+ 𝑖.

(98)

Hence, taking 𝑄
1

= 𝛽𝑒
𝑟𝑘, it follows that


𝑤
1

≤ 𝑄
1
. (99)

Let

𝑄
𝑛

= 𝛽𝑒
𝑛𝑟𝑘

, 𝑛 ≥ 1, (100)

and assume the induction hypothesis
𝑤
𝑛 ≤ 𝑄

𝑛
. (101)

From Lemma 6,Theorem 5, and (48)–(51), and (53), one gets
the following:

0 ≤ 𝑤
𝑛+1

𝑖,𝑗
≤ max {𝛽𝑒

𝑛𝑟𝑘
+ 𝑘𝑟𝛽𝑒

𝑛𝑟𝑘
, 𝛽𝑒
(𝑛+1)𝑟𝑘

}

= 𝛽𝑒
𝑛𝑟𝑘max {1 + 𝑘𝑟, 𝑒

𝑟𝑘
} = 𝛽𝑒

(𝑛+1)𝑟𝑘
= 𝑄
𝑛+1

.

(102)

Thus, (100)-(101) holds true for 𝑛 + 1. Note that 0 ≤ 𝑛 ≤

𝑁
𝜏
, 𝑘 = 𝑇/𝑁

𝜏
, and using (100)-(101) one gets the following:

𝑤
𝑛 ≤ 𝛽𝑒

𝑛𝑟𝑘
≤ 𝛽𝑒
𝑁
𝜏
𝑟𝑘

= 𝛽𝑒
𝑟𝑇

. (103)

Let 𝑞 be the positive number, 0 < 𝑞 < 1, defined by 𝑞 =

1 − 𝐸𝑒
−𝑏/𝜎𝜌. Note that from (47) and definition of ‖ ⋅ ‖

1
one

gets the following:

𝑤
01

= (𝑁
𝑦

+ 1) (𝑒
−𝑏/𝜎𝜌

− 𝐸) = 𝑞𝛽 (104)
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Figure 3: Error of numerical solution.

and from (103),

𝑤
𝑛1 ≤ (𝑁𝑦 + 1) 𝛽𝑒

𝑟𝑇
. (105)

Finally, from (104)-(105)

𝑤
𝑛1 ≤

𝑒
𝑟𝑇

𝑞


𝑤
01

. (106)

Summarizing, the following result has been established.

Theorem 8. Consider the schemes (45), (47)–(51), (53) in the
numerical domain Ω defined by (39) where 𝑥

0
= 𝑎, 𝑥

𝑁
𝑥

= 𝑏,
and 𝑦

𝑗
∈ [𝑚𝑎 − V

2
, 𝑚𝑏 − V

1
], 𝜏
𝑛

∈ [0, 𝑇]. Let ℎ
0
be defined by

Lemma 4 and suppose that ℎ = Δ𝑥 < ℎ
0
and 𝑘 = Δ𝜏 is small

enough so that condition (76) is satisfied. Then the scheme is
‖ ⋅ ‖
1
-stable and

𝑤
𝑛1 ≤

𝑒
𝑟𝑇

𝑞


𝑤
01

, 1 ≤ 𝑛 ≤ 𝑁
𝜏
. (107)

6. Examples and Simulations

In this section, we illustrate the good properties of the
proposed numerical scheme. Firstly, we consider an example
where the closed form solution is available.

Example 1. Consider the European call option for the Heston
model (3).

𝐸 = 100; 𝑇 = 1 year; 𝑟 = 0.01; 𝜅 = 2; 𝜃 = 0.01; 𝜎 = 0.1;
𝜌 = 0.5, V1 = 0.4, and V2 = 0.9.

The difference between the closed form solution 𝑈 and
the numerical solution 𝑢 is shown in Figure 3, by respecting
the stability condition (76) and Lemma 4.

The following example shows the variation of the absolute
and relative error of the numerical solution in light of the
stability and positivity conditions hold at the strike for a given
variance for different values of the stepsize discretizations ℎ

and 𝑘, respectively.
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Figure 5: Numerical solution in 3𝐷.

Table 1: Errors and convergence rates.

𝑘 = 0.015 𝑘 = 0.0075

ℎ 0.1 0.05 0.1 0.05
|𝑈 − 𝑢| 0.06056 0.01594 0.03079 0.00797
Convergence
rate 1.93 1.95

Relative
error 2.3 × 10

−3
1.7907 × 10

−4
1.2 × 10

−3
8.9537 × 10

−5

Example 2. Consider the European call option for theHeston
mode (3) with data of Example 1 at 𝑆 = 𝐸 = 100, V = 0.5.
Table 1 shows the behaviour of the error with parameters
ℎ and 𝑘. Notice that the numerical solution exhibits the
expected second order convergence rate in space. Analo-
gously, for fixed ℎ = 0.1 one gets convergence time rate of
0.97. For ℎ = 0.05 the rate is 1.
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Figure 6: A time-dependent case.

In the next example, we illustrate the fact that if we do not
respect the stability condition, the numerical results are bad
and unreliable.

Example 3. Consider the problem of Example 1 at V = 0.9

with ℎ = 0.0082, 𝑘 = 0.0065, not verifying the stability
condition (76). Figure 4 shows that spurious oscillations of
the numerical solution appear when the stability condition is
broken.

The next example shows the dependence of the option
price on both the underlying asset and the variance.

Example 4. Consider the European call option for theHeston
model with data.

𝐸 = 100; 𝑇 = 1 year; 𝑟 = 0.01; 𝜅 = 2; 𝜃 = 0.01; 𝜎 =

0.1; 𝜌 = 0.4 and V
1

= 0.2, V
2

= 0.9. Figure 5 shows the
numerical solution in 3D.

Finally, in the next example, we show the numerical result
of a situation with time dependent mean reversion rate 𝜅(𝜏)

and long run variance 𝜃(𝜏).

Example 5. Consider the European call option for theHeston
model with data: 𝐸 = 100; 𝑇 = 1 year; 𝑟 = 0.01; 𝜎 = 0.1;
𝜌 = 0.4 and V

1
= 0.4, V

2
= 0.9 with time-dependent

parameters 𝜅(𝜏) = 1.5 + 𝜏; 𝜃(𝜏) = 0.005(1 + 2𝜏). Figure 6
shows the numerical results in this time-dependent case for
V = 0.9.
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[13] B. Düring and M. Fournié, “High-order compact finite differ-
ence scheme for option pricing in stochastic volatility models,”
Journal of Computational andAppliedMathematics, vol. 236, no.
17, pp. 4462–4473, 2012.

[14] D. J. Duffy, Finite Difference Methods in Financial Engineering:
A Partial Differential Equation Approach, vol. 312, JohnWiley &
Sons, Chichester, UK, 2006.

[15] K. J. Hout and S. Foulon, “ADI finite difference schemes
for option pricing in the Heston model with correlation,”
International Journal of Numerical Analysis and Modeling, vol.
7, no. 2, pp. 303–320, 2010.

[16] R. Zvan, P. A. Forsyth, and K. R. Vetzal, “Negative coefficients in
two-factor 25 option pricing models,” Journal of Computational
Finance, vol. 7, no. 1, pp. 37–73, 2003.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns
Hopkins University Press, London, UK, 3rd edition, 1996.
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