
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 702382, 3 pages
http://dx.doi.org/10.1155/2013/702382

Research Article
A Short Note on Nonlocal Transformations and First Integrals
for Certain Nonlinear Oscillator Equations

Emrullah YaGar

Uludag University, Faculty of Arts and Sciences, Department of Mathematics, P.O. Box 16059, Görükle, Bursa, Turkey

Correspondence should be addressed to Emrullah Yaşar; eyasar@uludag.edu.tr
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This short note presents a simple and effective application of the generalized Sundman transformations and the Jacobi lastmultiplier
approach for two nonlinear oscillator equations. We reobtain the first integrals with this method very easily. In addition, we also
compute the Sundman symmetries and Lagrangians.

1. Introduction and Preliminaries

Theproblemof integrability of ordinary differential equations
(ODEs) has been extensively studied. In [1], Guha et al.
proposed the generalized Sundman transformation (GST)
method for second-order nonlinearODEs.With thismethod,
one can obtain easily the first integrals of the given equation.
Another alternative method is the Jacobi last multiplier
(JLM) approach [2]. In this approach, one can construct the
Lagrangian of the given equation.Then using this Lagrangian
via Noether’s theorem, one finds the first integrals of the
given equation. We applied both methods to the following
two nonlinear oscillator equations:
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where 𝑘 and 𝛼 are arbitrary parameters. Bruzon et al. [3].
studied and obtained first integrals of the previous equations
by the nonlocal symmetry method. In this work, we reobtain
these first integrals without much more efforts by the meth-
ods of [1, 2].

Now, we present notation to be used and recall the
theoretical backgrounds that appear in [1, 2].

The Jacobi equation is given by
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There are a number of equations which belong to this
subclass. In this case, (5) is mapped to the equation
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where 𝑋󸀠 = 𝑑𝑋/𝑑𝑇. The form of GST which maps (5) to (6)
is as follows
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where 𝛽 is a constant. The latter is obviously a nonlocal
transformation. Note that a first integral for (6) is obviously
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It is well known that a Sundman symmetry for (3) is a
transformation of the form
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where𝑀 and 𝑁 are some differentiable functions such that
the transformation keeps (3) invariant. In other words, (3) is
transformed to
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Therefore, we have the following Sundman symmetry for (5):
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Now, we recall the JLM and Lagrangian for second-order
ODEs. Let us consider the following class of system:
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The JLM for (5) is given by
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It is necessary to point out that for (5) the JLM is indepen-
dent of 𝑥̇. It is well known that the relationship between
Lagrangian and the JLM has the following identity:
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Using (17) and (16), the Lagrangian of (5) has the form of
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2. Main Results

Firstly, we consider the nonlinear oscillator equation (1).
Comparison with the Jacobi equation (5) reveals that
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Hence, from (19), 𝜙(𝑥, 𝑡) = ln(1 + 𝑘𝑥2)−1. As a result
from (8) taking the positive square root, we find 𝐹(𝑥) =
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We aim to obtain the first integral of (1) using the transfor-
mations (20). Calculating the first derivative of𝑋(𝑇),

𝑑𝑋

𝑑𝑇

=

1

𝛽

(1 + 𝑘𝑥

2
)

−1/2

𝑥̇, (21)

and then substituting it to (9), we obtain the following first
integral:
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We note that (22) has exactly the same result which appeared
in [3].

To explore the first integral associated with nonlinear
oscillator of (2), repeating the procedure previously given, we
obtain the following Sundman transformation:
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Calculating the first derivative of𝑋(𝑇) and then substituting
it to (9), we obtain the following first integral:
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We note that (24) has exactly the same result which appeared
in [3]. Now, we try to find the Sundman symmetries of (1)
and (2). The Sundman symmetry for (1) being of the form
(10), we use (12). Consequently with 𝐹 and𝐺 given as in (20),
one finds that
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where 𝐴 is a constant of integration. Repeating (12) for (2)
with 𝐹 and 𝐺 given as in (23), one finds that
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where 𝐴 is a constant of integration. Now, we try to find the
Lagrangians of (1) and (2). Equation (1) can be considered as
the following system:
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We note that (28) has exactly the same result which
appeared in [4]. Repeating the procedure previously given,
we find the following Lagrangian for (2):
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