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We study the boundedness of all solutions for the following differential equation 𝑥


+ 𝑓(𝑥)𝑥


+ (𝐵 + 𝜀𝑒(𝑡))|𝑥|
𝛼−1

𝑥 = 𝑝(𝑡), where
𝑓(𝑥), 𝑝(𝑡) are odd functions, 𝑒(𝑡) is an even function, 𝑒(𝑡), 𝑝(𝑡) are smooth 1-periodic functions, 𝐵 is a nonzero constant, and 𝜀

is a small parameter. A sufficient and necessary condition for the boundedness of all solutions of the above equation is established.
Moreover, the existence of Aubry-Mather sets is obtained as well.

1. Introduction

It is well known that the longtime behavior for periodically
forced planar systems can be very intricate. For example,
there are equations having unbounded solutions but with
infinitely many zeros and with nearby unbounded solutions
having randomly prescribed number of zeros and also peri-
odic solutions; see [1]. In contrast to such unbounded phe-
nomenon Littlewood [2] suggested to study the boundedness
of all the solutions of the following differential equation:

�̈� + 𝑔 (𝑥) = ℎ (𝑡) (1)

in the following two cases:

(i) superlinear case: 𝑔(𝑥)/𝑥 → +∞ as 𝑥 → ±∞;
(ii) sublinear case: sgn(𝑥)⋅𝑔(𝑥) → +∞ and𝑔(𝑥)/𝑥 → 0

as 𝑥 → ±∞. Later, one calls this subject as Littlewood
boundedness problem.

The first result in superlinear case is obtained by Morris
[3], who showed that all solutions of

�̈� + 2𝑥
3

= 𝑒 (𝑡) (2)

are bounded, where 𝑒(𝑡) ∈ 𝐶
0. Later, a series results in super-

linear case were obtained by several authors, see [4–13] and
references therein. However, in general, it is harder to study

the Lagrange stability of sublinear systems since smoothness
of sublinear term is insufficient. There are only a few works
in sublinear case so far. In 1999, Küpper and You [14] proved
the first result in the study of the equation

�̈� + |𝑥|
𝛼−1

𝑥 = 𝑝 (𝑡) , (3)

where 0 < 𝛼 < 1 and 𝑝(𝑡) ∈ 𝐶
∞

(T). Later, Liu [15] proved the
same result for more general equation

�̈� + 𝑔 (𝑥) = 𝑒 (𝑡) , (4)

where 𝑔(𝑥) ∈ 𝐶
6 satisfying the sublinear condition (ii) and

some inequalities, and 𝑒(𝑡) ∈ 𝐶
5
(T). In 2004, Ortega and

Verzini [16] studied the boundedness of (4) in a special
case with the variational method. In 2009, Wang [17] gave a
sufficient and necessary condition for the boundedness of all
solutions for sublinear equation

�̈� + 𝑒 (𝑡) |𝑥|
𝛼−1

𝑥 = 𝑝 (𝑡) , (5)

where 𝑒(𝑡), 𝑝(𝑡) ∈ 𝐶
5
(T).

As is widely known, there is a deep similarity between
reversible and Hamiltonian dynamics. Many fundamental
results of the Hamiltonian systems possess reversible coun-
terparts. On boundedness problem for sublinear reversible
systems, the first results were obtained by Li [18], later, Yang
[19], in the study of a sublinear reversible systems

�̈� + 𝑓 (𝑥) �̇� + |𝑥|
𝛼−1

𝑥 = 𝑒 (𝑡) . (6)
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Recently,Wang [20] gave a sufficient and necessary condition
for the boundedness of all solutions of the differential eq-
uation

�̈� + 𝑓 (𝑥) 𝑔 (�̇�) + 𝛾|𝑥|
𝛼−1

𝑥 = 𝑝 (𝑡) (7)

with 0 < 𝛼 < 1, 𝛾 ̸= 0.
By the discussions about the sublinearHamiltonian equa-

tion (1.3) in [17] motivations, we will study the boundedness
of all solutions for a sublinear reversible system like

�̈� + 𝑓 (𝑥) �̇� + (𝐵 + 𝜀𝑒 (𝑡)) |𝑥|
𝛼−1

𝑥 = 𝑝 (𝑡) , (8)

where 𝐵 ̸= 0 and 0 < 𝛼 < 1. Furthermore, we also show that
(8) has solutions of Mather type. The results obtained in [18–
20] can be regarded as corollary of result of this paper.

Remark 1. Using the method of this paper we also can
consider the more general equation

�̈� + 𝑓 (𝑥) 𝑔 (�̇�) + (𝐵 + 𝜀𝑒 (𝑡)) |𝑥|
𝛼−1

𝑥 = 𝑝 (𝑡) (9)

provided of adding suitable conditions for 𝑔(𝑥). For conve-
nience, we only consider the case 𝑔(𝑥) ≡ 𝑥.

Remark 2. Adding the perturbation term 𝜀𝑒(𝑡)|𝑥|
𝛼−1

𝑥 will
lead to a new difficulty for estimating |𝑆(𝜃𝑇

0
)|
𝛼−1

𝐶(𝜃𝑇
0
)

appeared in (86). Fortunately, we can easily verify that
∫

1

0
|𝑆(𝜃𝑇

0
)|
𝛼−1

𝐶(𝜃𝑇
0
)𝑑𝜃 is bounded by a constant (see in the

proof of Lemma 12).

Throughout this paper, we denote two universal positive
constants without regarding their values by 𝑐 < 1 and 𝐶 ≥ 1,
and suppose that the following conditions hold:

(A1) 𝑓(𝑥) ∈ 𝐶
4
(R), 𝑝(𝑡) ∈ 𝐶

3
(T) and 𝑒(𝑡) ∈ 𝐶

3
(T), 𝑓(𝑥)

and 𝑝(𝑡) are odd, 𝑒(𝑡) is even, and 𝑒(𝑡), 𝑝(𝑡) are both
1-periodic functions, T = R/Z;

(A2) there is some positive constant 𝜇 such that the in-
equalities






𝑥
𝑖+1

𝑓
(𝑖)

(𝑥)






≤ 𝐶|𝑥|

𝛼/2−𝛽 (10)

are satisfied for 0 ≤ 𝑖 ≤ 4 and all |𝑥| ≥ 𝜇, where 0 <

𝛽 < 𝛼/2.

We decompose 𝑒(𝑡) as 𝑒(𝑡) = 𝑒+𝑒(𝑡), where 𝑒 is the average
of 𝑒(𝑡) and 𝑒(𝑡) has zero mean value.That is 𝑒 = ∫

1

0
𝑒(𝑠)𝑑𝑠 and

∫

1

0
𝑒(𝑠)𝑑𝑠 = 0. If we write that 𝐴 = 𝐵 + 𝜀𝑒, then it is easy to

see that 𝐴 and 𝐵 have the same sign when 0 < 𝜀 < 𝜀
∗ with

0 < 𝜀
∗

< |𝐵/𝑒|.
Now we state the main results of this paper.

Theorem 3. Assume that 𝐵 ̸= 0 and (A1)-(A2) hold. Then
there exists an 0 < 𝜀

∗∗
< 𝜀

∗ such that for any 0 < 𝜀 < 𝜀
∗∗,

every solution of (8) is bounded if and only if 𝐵 > 0.

Theorem 4. Under the conditions of Theorem 3, there is an
𝜀
0

> 0 such that, for any 𝜔 ∈ (𝑛, 𝑛 + 𝜀
0
), (8) has a solution

(𝑥
𝜔
(𝑡), 𝑥



𝜔
(𝑡)) of Mather type with rotation number 𝜔. More

precisely:

(i) if 𝜔 = 𝑝/𝑞 is rational, the solutions (𝑥
𝜔
(𝑡 + 𝑖), 𝑥



𝜔
(𝑡 +

𝑖)), 1 ≤ 𝑖 ≤ 𝑞 − 1, are periodic solutions of period q;
moreover, in this case

lim
𝜔→𝑛

min
𝑡∈R

(




𝑥
𝜔

(𝑡)




+






𝑥


𝜔
(𝑡)






) = +∞; (11)

(ii) if 𝜔 is irrational, the solution (𝑥
𝜔
(𝑡), 𝑥



𝜔
(𝑡)) is either a

usual quasi-periodic solution or a generalized one.

We recall that a solution is called generalized quasi-periodic
if the closed set

{𝑥 (𝑖) , 𝑥

(𝑖) , 𝑖 ∈ Z} (12)

is a Denjoys minimal set.

2. Reversible Systems
and Action-Angle Variables

In this section, we will assume that 𝐵 > 0 and 𝐴 > 0. Firstly,
we consider (8) which is equivalent to the following system:

�̇� = 𝑧 + 𝑃 (𝑡) ,

�̇� = −𝐴|𝑥|
𝛼−1

𝑥 − 𝜀𝑒 (𝑡) |𝑥|
𝛼−1

𝑥 − 𝑓 (𝑥) (𝑧 + 𝑃 (𝑡)) ,

(13)

where 𝑃(𝑡) = ∫

𝑡

0
𝑝(𝑠)𝑑𝑠. Then we can obtain that (13) is rever-

sible with respect to the transformation (𝑥, 𝑧) → (−𝑥, 𝑧) by
(A1).

Lemma5. There exists a𝐺-invariant diffeomorphism (𝑥, 𝑦)→

(𝑥, 𝑧) such that (13) is transformed into the following system:

�̇� = 𝑦 + 𝜀𝐸 (𝑡) |𝑥|
𝛼−1

𝑥 + 𝑃 (𝑡) ,

̇𝑦 = −𝐴|𝑥|
𝛼−1

𝑥

− [𝛼𝜀𝐸 (𝑡) |𝑥|
𝛼−1

+ 𝑓 (𝑥)] [𝑦 + 𝜀𝐸 (𝑡) |𝑥|
𝛼−1

𝑥 + 𝑃 (𝑡)] ,

(14)

where 𝐸(𝑡) = − ∫

𝑡

0
𝑒(𝑠)𝑑𝑠.

Proof. Introduce a transformation Ψ:

𝑥 = 𝑥, 𝑧 = 𝑦 + 𝑈 (𝑥, 𝑡) , (15)

where 𝑈(𝑥, 𝑡) will be determined later. Under this transfor-
mation, the system (13) is transformed into a new system as
follows:

�̇� = 𝑦 + 𝑈 (𝑥, 𝑡) + 𝑃 (𝑡) ,

̇𝑦 = −𝐴|𝑥|
𝛼−1

𝑥 − 𝜀𝑒 (𝑡) |𝑥|
𝛼−1

𝑥

− (𝑓 (𝑥) +

𝜕𝑈 (𝑥, 𝑡)

𝜕𝑥

) [𝑦 + 𝑈 (𝑥, 𝑡) + 𝑃 (𝑡)]

−

𝜕𝑈 (𝑥, 𝑡)

𝜕𝑡

.

(16)
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Now, we define the function 𝑈(𝑥, 𝑡) by

−𝜀𝑒 (𝑡) |𝑥|
𝛼−1

𝑥 −

𝜕𝑈 (𝑥, 𝑡)

𝜕𝑡

= 0. (17)

Since ∫

1

0
𝑒(𝑡)𝑑𝑡 = 0, so we can obtain 𝑈(𝑥, 𝑡) = 𝜀𝐸(𝑡)|𝑥|

𝛼−1
𝑥.

Then the new system can be expressed as in (14) by direct
computation.

It is easy to know that 𝑈(−𝑥, −𝑡) = 𝑈(𝑥, 𝑡) by (A1), then
we can obtain that the transformation Ψ is a 𝐺-invariant
diffeomorphism.

Let us consider the auxiliary system

�̇� = 𝑦,

̇𝑦 = −𝐴|𝑥|
𝛼−1

𝑥,

(18)

which is a time-independent Hamiltonian system with Ham-
iltonian

𝐻
0

(𝑥, 𝑦) =

𝑦
2

2

+

𝐴

𝛼 + 1

|𝑥|
𝛼+1

. (19)

It is easy to see that 𝐻
0
(𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ 𝑅

2
\ {0},

𝐻
0
(0, 0) = 0. Note that each level line 𝐻

0
(𝑥, 𝑦) = ℎ > 0 is

a close orbit of system (18), hence, all the solutions of (18) are
periodic with period tending to zero as ℎ tends to infinity.

Assume that (𝑆(𝑡), 𝐶(𝑡)) is the solution of (18) with initial
conditions (𝑆(0), 𝐶(0)) = (0, 1), and let𝑇

0
> 0 be theminimal

period. We can find that 𝑆(𝑡) and 𝐶(𝑡) satisfy

(i) 𝑆(𝑡) ∈ 𝐶
2
(𝑅), 𝐶(𝑡) ∈ 𝐶

1
(𝑅);

(ii) (𝑆(−𝑡), 𝐶(−𝑡)) = (−𝑆(𝑡), 𝐶(𝑡)), (𝑆(𝑡 + 𝑇
0
), 𝐶(𝑡 + 𝑇

0
)) =

(𝑆(𝑡), 𝐶(𝑡));

(iii) ̇𝑆(𝑡) = 𝐶(𝑡), �̇�(𝑡) = −𝐴|𝑆(𝑡)|
𝛼−1

𝑆(𝑡);

(iv) (1/2)𝐶
2
(𝑡) + (𝐴/(𝛼 + 1))|𝑆(𝑡)|

𝛼+1
= 1/2;

(v) 𝐶(𝑇
0
𝑡) = 0 ⇔ 𝑡(mod(1/4)) = 0;

(vi) (𝑆(𝑇
0
(1/2 − 𝑡)), 𝐶(𝑇

0
(1/2 − 𝑡))) = (𝑆(𝑇

0
𝑡), −C(𝑇

0
𝑡));

(vii) 𝑆(𝑇
0
𝑡) = 0 ⇔ 𝑡(mod(1/2)) = 0.

Then we introduce the transformation

Φ : R+
× T → R2

\ {0} ,

(𝜌, 𝜑) → (𝑥, 𝑦)

(20)

which is

𝑥 = 𝜌
𝑏
𝑆 (𝜑𝑇

0
) ,

𝑦 = 𝜌
1−𝑏

𝐶 (𝜑𝑇
0
) ,

(21)

where 𝑏 = 2/(3 + 𝛼). It is easy to see that 1/2 < 𝑏 < 2/3

by 0 < 𝛼 < 1. Since (𝑆(−𝑡), 𝐶(−𝑡)) = (−𝑆(𝑡), 𝐶(𝑡)), this
transformation is invariant with respect to the involutions
(𝜌, 𝜑) → (𝜌, −𝜑) and (𝑥, 𝑦) → (−𝑥, 𝑦), and we can find that

the mapping Φ is a generalized canonical transformation by
(iv). In fact,











𝜕 (𝑥, 𝑦)

𝜕 (𝜌, 𝜑)











=






𝐴𝑏𝑇

0





𝑆 (𝜑𝑇

0
)





𝛼+1

+ (1 − 𝑏) 𝑇
0
𝐶
2

(𝜑𝑇
0
)







=









(1 − 𝑏) 𝑇
0

−

𝛼 + 1

2

𝑏𝑇
0
𝐶
2

(𝜑𝑇
0
) + (1 − 𝑏) 𝑇

0
𝐶
2

(𝜑𝑇
0
)









= (1 − 𝑏) 𝑇
0
,

(

̇𝜌

�̇�

) = (

−𝑑𝑦
𝜑

𝑑𝑥
𝜑

𝑑𝑦
𝜌

−𝑑𝑥
𝜌

) (

�̇�

̇𝑦

) ,

(22)

where 𝑑 = ((1 − 𝑏)𝑇
0
)
−1.

Under the transformation Φ, the system (18) is trans-
formed into the simpler form

̇𝜌 = −

𝜕ℎ
0

𝜕𝜑

= 0, �̇� =

𝜕ℎ
0

𝜕𝜌

=

1

𝑇
0

⋅ 𝜌
1−2𝑏

, (23)

where ℎ
0
(𝜌) = ((2 − 2𝑏)𝑇

0
)
−1

⋅ 𝜌
2(1−𝑏).

The original system (13) is transformed into the system

𝑑𝜌

𝑑𝑡

= 𝑙
1

(𝜌, 𝜑) + 𝑙
2

(𝜌, 𝜑, 𝑡) + 𝜀𝑙
3

(𝜌, 𝜑, 𝑡)

+ 𝛼𝑇
0





𝑆 (𝜑𝑇

0
)





𝛼−1

𝐶 (𝜑𝑇
0
) 𝜀𝑙

4
(𝜌, 𝜑, 𝑡) ,

𝑑𝜑

𝑑𝑡

= ℎ


0
(𝜌) + ℎ

1
(𝜌, 𝜑) + ℎ

2
(𝜌, 𝜑, 𝑡) + 𝜀ℎ

3
(𝜌, 𝜑, 𝑡) ,

(24)

where

𝑙
1

(𝜌, 𝜑) = −𝑑𝑇
0
𝜌𝑓 (𝜌

𝑏
𝑆 (𝜑𝑇

0
)) 𝐶

2
(𝜑𝑇

0
)

=: −𝑑𝑥
𝜑
𝑓 (𝑥) 𝑦,

𝑙
2

(𝜌, 𝜑, 𝑡)

= −𝑑𝑇
0
𝜀𝜌

2−2𝑏
𝑓 (𝜌

𝑏
𝑆 (𝜑𝑇

0
))

×




𝑆 (𝜑𝑇

0
)





𝛼−1

𝑆 (𝜑𝑇
0
) 𝐶 (𝜑𝑇

0
) 𝐸 (𝑡)

+ 𝐴𝑑𝑇
0
𝜌
1−𝑏




𝑆 (𝜑𝑇

0
)





𝛼−1

𝑆 (𝜑𝑇
0
) 𝑃 (𝑡)

− 𝑑𝑇
0
𝜌
𝑏
𝑓 (𝜌

𝑏
𝑆 (𝜑𝑇

0
)) 𝐶 (𝜑𝑇

0
) 𝑃 (𝑡)

=: −𝑑𝜀𝑥
𝜑
|𝑥|

𝛼−1
𝑥𝑓 (𝑥) 𝐸 (𝑡) − 𝑑𝑦

𝜑
𝑃 (𝑡) − 𝑑𝑥

𝜑
𝑓 (𝑥) 𝑃 (𝑡) ,

𝑙
3

(𝜌, 𝜑, 𝑡) = 𝐴𝑑𝑇
0
𝜌
3−4𝑏




𝑆 (𝜑𝑇

0
)





2𝛼

𝐸 (𝑡)

=: −𝑑𝑦
𝜑
|𝑥|

𝛼−1
𝑥𝐸 (𝑡) ,

𝑙
4

(𝜌, 𝜑, 𝑡)

= −𝑑𝜌
3−4𝑏

𝐶 (𝜑𝑇
0
) 𝐸 (𝑡)

− 𝑑𝜀𝜌
4−6𝑏




𝑆 (𝜑𝑇

0
)





𝛼−1

𝑆 (𝜑𝑇
0
) 𝐸

2

(𝑡)

− 𝑑𝜌
2−3𝑏

𝑃 (𝑡) 𝐸 (𝑡) ,
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ℎ
1

(𝜌, 𝜑) = 𝑑𝑏𝑓 (𝜌
𝑏
𝑆 (𝜑𝑇

0
)) 𝐶 (𝜑𝑇

0
) 𝑆 (𝜑𝑇

0
) =: 𝑑𝑥

𝜌
𝑓 (𝑥) 𝑦,

ℎ
2

(𝜌, 𝜑, 𝑡)

= 𝑑𝑏𝜀𝜌
1−2𝑏

𝑓 (𝜌
𝑏
𝑆 (𝜑𝑇

0
))





𝑆 (𝜑𝑇

0
)





𝛼+1

𝐸 (𝑡)

+ 𝛼𝑑𝑏𝜀
2
𝜌
3−6𝑏




𝑆 (𝜑𝑇

0
)





2𝛼

𝐸
2

(𝑡)

+ 𝑑 (1 − 𝑏) 𝜌
−𝑏

𝐶 (𝜑𝑇
0
) 𝑃 (𝑡)

+ 𝑑𝑏𝜌
𝑏−1

𝑓 (𝜌
𝑏
𝑆 (𝜑𝑇

0
)) 𝑆 (𝜑𝑇

0
) 𝑃 (𝑡)

+ 𝛼𝑑𝑏𝜀𝜌
1−3𝑏




𝑆 (𝜑𝑇

0
)





𝛼−1

𝑆 (𝜑𝑇
0
) 𝐸 (𝑡) 𝑃 (𝑡)

=: 𝑑𝜀𝑥
𝜌
|𝑥|

𝛼−1
𝑥𝑓 (𝑥) 𝐸 (𝑡) + 𝛼𝑑𝜀

2
𝑥
𝜌
|𝑥|

2𝛼−2
𝑥𝐸

2

(𝑡)

+ 𝑑𝑦
𝜌
𝑃 (𝑡) + 𝑑𝑥

𝜌
𝑓 (𝑥) 𝑃 (𝑡) + 𝛼𝑑𝜀𝑥

𝜌
|𝑥|

𝛼−1
𝐸 (𝑡) 𝑃 (𝑡) ,

ℎ
3

(𝜌, 𝜑, 𝑡)

= 𝑑 (1 − 𝑏 + 𝛼𝑏) 𝜌
2−4𝑏




𝑆 (𝜑𝑇

0
)





𝛼−1

𝑆 (𝜑𝑇
0
) 𝐶 (𝜑𝑇

0
) 𝐸 (𝑡)

=: 𝑑𝑦
𝜌
|𝑥|

𝛼−1
𝑥𝐸 (𝑡) + 𝛼𝑑𝑥

𝜌
|𝑥|

𝛼−1
𝑦𝐸 (𝑡) .

(25)

Let

𝐿
2

(𝜌, 𝜑, 𝑡) = 𝑙
2

(𝜌, 𝜑, 𝑡) + 𝜀𝑙
3

(𝜌, 𝜑, 𝑡)

+ 𝛼𝑇
0





𝑆 (𝜑𝑇

0
)





𝛼−1

𝐶 (𝜑𝑇
0
) 𝜀𝑙

4
(𝜌, 𝜑, 𝑡) ,

𝐻
2

(𝜌, 𝜑, 𝑡) = ℎ
2

(𝜌, 𝜑, 𝑡) + 𝜀ℎ
3

(𝜌, 𝜑, 𝑡) .

(26)

Clearly, 𝑥 is odd in 𝜑 and 𝑦 is even in 𝜑 by the definitions of
𝑆(𝑡) and 𝐶(𝑡). Thus, by the evenness of 𝑃(𝑡) and the oddness
of 𝑓(𝑥) and 𝐸(𝑡) we have

𝑙
1

(𝜌, −𝜑) = −𝑙
1

(𝜌, 𝜑) , 𝐿
2

(𝜌, −𝜑, −𝑡) = −𝐿
2

(𝜌, 𝜑, 𝑡) ,

ℎ
1

(𝜌, −𝜑) = ℎ
1

(𝜌, 𝜑) , 𝐻
2

(𝜌, −𝜑, −𝑡) = 𝐻
2

(𝜌, 𝜑, 𝑡) .

(27)

This implies that system (24) is reversible with respect to the
involutions (𝜌, 𝜑) → (𝜌, −𝜑).

Lemma 6. For 0 ≤ 𝑘 + 𝑚 ≤ 4, the following inequalities hold:

(1) |(𝜕
𝑘
/𝜕𝜌

𝑘
)𝑙
1
(𝜌, 𝜑)| ≤ 𝐶𝜌

−𝑘+2−𝛾−(5/2)𝑏,
(2) |(𝜕

𝑘+𝑚
/𝜕𝜌

𝑘
𝜕𝑡

𝑚
)𝑙
2
(𝜌, 𝜑, 𝑡)| ≤ 𝐶𝜌

−𝑘+𝑎,
(3) |(𝜕

𝑘+𝑚
/𝜕𝜌

𝑘
𝜕𝑡

𝑚
)𝑙
3
(𝜌, 𝜑, 𝑡)| ≤ 𝐶𝜌

−𝑘+3−4𝑏,
(4) |(𝜕

𝑘+𝑚
/𝜕𝜌

𝑘
𝜕𝑡

𝑚
)𝑙
4
(𝜌, 𝜑, 𝑡)| ≤ 𝐶𝜌

−𝑘+3−4𝑏,
(5) |(𝜕

𝑘
/𝜕𝜌

𝑘
)ℎ

1
(𝜌, 𝜑)| ≤ 𝐶𝜌

−𝑘+1−𝛾−(5/2)𝑏,
(6) |(𝜕

𝑘+𝑚
/𝜕𝜌

𝑘
𝜕𝑡

𝑚
)ℎ

2
(𝜌, 𝜑, 𝑡)| ≤ 𝐶𝜌

−𝑘+𝜏,
(7) |(𝜕

𝑘+𝑚
/𝜕𝜌

𝑘
𝜕𝑡

𝑚
)ℎ

3
(𝜌, 𝜑, 𝑡)| ≤ 𝐶𝜌

−𝑘+2−4𝑏,

where 𝛾 = 𝛽𝑏, 𝑎 = max(3−(9/2)𝑏−𝛾, 1−𝑏), and 𝜏 = max(3−

6𝑏, −𝑏).

Proof. (1) It is easy to know that (𝜕
𝑘
/𝜕𝜌

𝑘
)𝑙
1
(𝜌, 𝜑) is a sum of

terms of the form

𝑑

𝜕
𝑖
1
𝑥
𝜑

𝜕𝜌
𝑖
1

⋅

𝜕
𝑖
2
𝑓 (𝑥)

𝜕𝜌
𝑖
2

⋅

𝜕
𝑖
3
𝑦

𝜕𝜌
𝑖
3

, 𝑖
1

+ 𝑖
2

+ 𝑖
3

= 𝑘, (28)

where 0 ≤ 𝑖
1
, 𝑖
2
, 𝑖
3

≤ 𝑘. Meanwhile, 𝜕
𝑖
2
𝑓(𝑥)/𝜕𝜌

𝑖
2 is a sum

terms of the form

𝑓
(𝑠)

(𝑥) ⋅

𝜕
𝑙
1
𝑥

𝜕𝜌
𝑙
1

𝜕
𝑙
2
𝑥

𝜕𝜌
𝑙
2

⋅ ⋅ ⋅

𝜕
𝑙
𝑠
𝑥

𝜕𝜌
𝑙
𝑠

, 0 ≤ 𝑠 ≤ 𝑖
2
, 𝑙

1
+ ⋅ ⋅ ⋅ + 𝑙

𝑠
= 𝑖

2
.

(29)

Hence, we obtain











𝜕
𝑘

𝜕𝜌
𝑘
𝑙
1

(𝜌, 𝜑)











≤ 𝐶






𝜌
−𝑖
1
𝑥 ⋅ 𝜌

−𝑖
2
𝑓 (𝑥) ⋅ 𝜌

−𝑖
3
𝑦







≤ 𝐶𝜌
−𝑘

⋅




𝑥 ⋅ 𝑓 (𝑥) ⋅ 𝑦





≤ 𝐶𝜌

−𝑘

|𝑥|
𝛼/2−𝛽 




𝑦






≤ 𝐶𝜌
−𝑘+2−𝛾−(5/2)𝑏

(30)

by the assumptions on𝑓(𝑥) and the definitions of 𝑥(𝜌, 𝜑) and
𝑦(𝜌, 𝜑).

(2) From the expression of 𝑙
2
(𝜌, 𝜑, 𝑡), we have













𝜕
𝑘+𝑚

(−𝑑𝜀𝑥
𝜑
|𝑥|

𝛼−1
𝑥𝑓 (𝑥) 𝐸 (𝑡))

𝜕𝜌
𝑘
𝜕𝑡

𝑚













≤ 𝐶













𝜕
𝑘

(−𝑑𝜀𝑥
𝜑
|𝑥|

𝛼−1
𝑥𝑓 (𝑥))

𝜕𝜌
𝑘


















𝐸
(𝑚)

(𝑡)







≤ 𝐶𝜀






𝜌
−𝑖
1
𝑥 ⋅ 𝜌

−𝑖
2
𝑓 (𝑥) ⋅ 𝜌

𝛼𝑏−𝑖
3






≤ 𝐶𝜀𝜌
−𝑘+𝛼𝑏 




𝑥 ⋅ 𝑓 (𝑥)






≤ 𝐶𝜀𝜌
−𝑘+3−𝛾−9𝑏/2

,













𝜕
𝑘+𝑚

(−𝑑𝑦
𝜑
𝑃 (𝑡))

𝜕𝜌
𝑘
𝜕𝑡

𝑚













≤ 𝐶













𝜕
𝑘

(𝑑𝑦
𝜑
)

𝜕𝜌
𝑘






















𝑑
𝑚

𝑃 (𝑡)

𝑑𝑡
𝑚










≤ 𝐶𝜌
−𝑘+1−𝑏

,













𝜕
𝑘+𝑚

(−𝑑𝑥
𝜑
𝑓 (𝑥) 𝑃 (𝑡))

𝜕𝜌
𝑘
𝜕𝑡

𝑚













≤ 𝐶













𝜕
𝑘

(−𝑑𝑥
𝜑
𝑓 (𝑥))

𝜕𝜌
𝑘






















𝑑
𝑚

𝑃 (𝑡)

𝑑𝑡
𝑚










≤ 𝐶𝜌
−𝑘+1−𝛾−3𝑏/2

.

(31)

We can find that










𝜕
𝑘+𝑚

𝜕𝜌
𝑘
𝜕𝑡

𝑚
𝑙
2

(𝜌, 𝜑, 𝑡)











≤ 𝐶𝜌
−𝑘+𝑎

, (32)

where 𝑎 = max(3 − 9𝑏/2 − 𝛾, 1 − 𝑏).
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(3) From the expression of 𝑙
3
(𝜌, 𝜑, 𝑡), we have













𝜕
𝑘+𝑚

(𝑑𝑦
𝜑
|𝑥|

𝛼−1
𝑥𝐸 (𝑡))

𝜕𝜌
𝑘
𝜕𝑡

𝑚













≤ 𝐶













𝜕
𝑘

(𝑑𝑦
𝜑
|𝑥|

𝛼−1
𝑥)

𝜕𝜌
𝑘






















𝑑
𝑚

(𝐸 (𝑡))

𝑑𝑡
𝑚










≤ 𝐶𝜌
−𝑘+3−4𝑏

.

(33)

(4) From the expression of 𝑙
4
(𝜌, 𝜑, 𝑡), we can obtain that












𝜕
𝑘+𝑚

𝑙
4

(𝜌, 𝜑, 𝑡)

𝜕𝜌
𝑘
𝜕𝑡

𝑚












≤ 𝐶













𝜕
𝑘

(−𝑑𝜌
3−4𝑏

𝐶 (𝜑𝑇
0
))

𝜕𝜌
𝑘






















𝑑
𝑚

(𝐸 (𝑡))

𝑑𝑡
𝑚










+ 𝐶













𝜕
𝑘

(−𝑑𝜌
2−3𝑏

)

𝜕𝜌
𝑘






















𝑑
𝑚

(𝑃 (𝑡) 𝐸 (𝑡))

𝑑𝑡
𝑚










+ 𝐶













𝜕
𝑘

(−𝑑𝜀𝜌
4−6𝑏



𝑆 (𝜑𝑇

0
)





𝛼−1

𝑆 (𝜑𝑇
0
))

𝜕𝜌
𝑘

























𝑑
𝑚

(𝐸
2

(𝑡))

𝑑𝑡
𝑚













≤ 𝐶𝜌
−𝑘+3−4𝑏

.

(34)

(5) From the definition of ℎ
1
(𝜌, 𝜑), we have











𝜕
𝑘

𝜕𝜌
𝑘
ℎ
1

(𝜌, 𝜑)











≤ 𝐶






𝜌
−𝑖
1
−1

𝑥 ⋅ 𝜌
−𝑖
2
𝑓 (𝑥) ⋅ 𝜌

−𝑖
3
𝑦







≤ 𝐶𝜌
−𝑘

⋅




𝑥 ⋅ 𝑓 (𝑥) ⋅ 𝑦





≤ 𝐶𝜌

−𝑘−1

|𝑥|
𝛼/2−𝛽 




𝑦






≤ 𝐶𝜌
−𝑘+1−𝛾−(5/2)𝑏

.

(35)

(6) From the definition of ℎ
2
(𝜌, 𝜑, 𝑡), we can obtain













𝜕
𝑘+𝑚

(𝑑𝜀𝑥
𝜌
|𝑥|

𝛼−1
𝑥𝑓 (𝑥) 𝐸 (𝑡))

𝜕𝜌
𝑘
𝜕𝑡

𝑚













≤ 𝐶













𝜕
𝑘

(𝑑𝑥
𝜌
|𝑥|

𝛼−1
𝑥𝑓 (𝑥))

𝜕𝜌
𝑘


















𝐸
(𝑚)

(𝑡)







≤ 𝐶𝜀






𝜌
−𝑖
1
−1

𝑥 ⋅ 𝜌
−𝑖
2
𝑓 (𝑥) ⋅ 𝜌

𝛼𝑏−𝑖
3






≤ 𝐶𝜀𝜌
−𝑘+𝛼𝑏−1 




𝑥 ⋅ 𝑓 (𝑥)






≤ 𝐶𝜀𝜌
−𝑘+2−𝛾−9𝑏/2

,













𝜕
𝑘+𝑚

(𝛼𝑑𝜀
2
𝑥
𝜌
|𝑥|

2𝛼−2
𝑥𝐸

2
(𝑡))

𝜕𝜌
𝑘
𝜕𝑡

𝑚













≤ 𝐶













𝜕
𝑘

(𝛼𝑑𝜀
2
𝑥
𝜌
|𝑥|

2𝛼−2
𝑥)

𝜕𝜌
𝑘

























𝑑
𝑚

(𝐸
2

(𝑡))

𝑑𝑡
𝑚













≤ 𝐶𝜀𝜌
−𝑘+3−6𝑏

,













𝜕
𝑘+𝑚

(−𝑑𝑦
𝜌
𝑃 (𝑡))

𝜕𝜌
𝑘
𝜕𝑡

𝑚













≤ 𝐶













𝜕
𝑘

(𝑑𝑦
𝜌
)

𝜕𝜌
𝑘






















𝑑
𝑚

𝑃 (𝑡)

𝑑𝑡
𝑚










≤ 𝐶𝜌
−𝑘−𝑏

,













𝜕
𝑘+𝑚

(𝑑𝑥
𝜌
𝑓 (𝑥) 𝑃 (𝑡))

𝜕𝜌
𝑘
𝜕𝑡

𝑚













≤ 𝐶













𝜕
𝑘

(−𝑑𝑥
𝜌
𝑓 (𝑥))

𝜕𝜌
𝑘






















𝑑
𝑚

𝑃 (𝑡)

𝑑𝑡
𝑚










≤ 𝐶𝜌
−𝑘−𝛾−3𝑏/2

,













𝜕
𝑘+𝑚

(𝛼𝑑𝜀𝑥
𝜌
|𝑥|

𝛼−1
𝐸 (𝑡) 𝑃 (𝑡))

𝜕𝜌
𝑘
𝜕𝑡

𝑚













≤ 𝐶













𝜕
𝑘

(𝛼𝑑𝜀
2
𝑥
𝜌
|𝑥|

2𝛼−2
𝑥)

𝜕𝜌
𝑘






















𝑑
𝑚

(𝐸 (𝑡) 𝑃 (𝑡))

𝑑𝑡
𝑚










≤ 𝐶𝜀𝜌
−𝑘+1−3𝑏

.

(36)

Hence, we can know that











𝜕
𝑘+𝑚

𝜕𝜌
𝑘
𝜕𝑡

𝑚
ℎ
2

(𝜌, 𝜑, 𝑡)











≤ 𝐶𝜌
−𝑘+𝜏

, (37)

where 𝜏 = max(3 − 6𝑏, −𝑏).
(7) From the expression of ℎ

3
(𝜌, 𝜑, 𝑡), we have











𝜕
𝑘+𝑚

𝜕𝜌
𝑘
𝜕𝑡

𝑚
ℎ
3

(𝜌, 𝜑, 𝑡)











≤













𝜕
𝑘+𝑚

(𝑑 (1 − 𝑏 + 𝛼𝑏) 𝜌
2−4𝑏



𝑆 (𝜑𝑇

0
)





𝛼−1

𝑆 (𝜑𝑇
0
) 𝐶 (𝜑𝑇

0
) 𝐸 (𝑡))

𝜕𝜌
𝑘
𝜕𝑡

𝑚













≤ 𝐶













𝜕
𝑘

(𝑑 (1 − 𝑏 + 𝛼𝑏) 𝜌
2−4𝑏



𝑆 (𝜑𝑇

0
)





𝛼−1

𝑆 (𝜑𝑇
0
) 𝐶 (𝜑𝑇

0
))

𝜕𝜌
𝑘













×










𝑑
𝑚

(𝐸 (𝑡))

𝑑𝑡
𝑚










≤ 𝐶𝜌
−𝑘+2−4𝑏

.

(38)

For 𝜆
0

> 0, we define the domain

A
𝜆
0

= {(𝜆, 𝜑, 𝑡) : 𝜆 ≥ 𝜆
0
, (𝜑, 𝑡) ∈ T

2
} . (39)

Lemma 7. There exists a 𝐺-invariant diffeomorphism Ψ
1
:

𝜌 = 𝐼 + 𝑈
1

(𝐼, 𝜃) , 𝜑 = 𝜃 (40)

such thatA
𝐼
+ ⊂ Ψ

1
(A

𝐼
0

) ⊂ A
𝐼
−

for some 𝐼
−

< 𝐼
0

< 𝐼
+
. Under

this transformation, (24) is transformed into the system

𝑑𝐼

𝑑𝑡

=
̃
𝑙
1

(𝐼, 𝜃) +
̃
𝑙
2

(𝐼, 𝜃, 𝑡) + 𝜀
̃
𝑙
3

(𝐼, 𝜃, 𝑡)

+ 𝛼𝑇
0





𝑆 (𝜃𝑇

0
)





𝛼−1

𝐶 (𝜃𝑇
0
) 𝜀

̃
𝑙
4

(𝐼, 𝜃, 𝑡) ,

𝑑𝜃

𝑑𝑡

= ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃) +
̃
ℎ
2

(𝐼, 𝜃, 𝑡) + 𝜀
̃
ℎ
3

(𝐼, 𝜃, 𝑡) ,

(41)
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where

̃
𝑙
1

(𝐼, 𝜃) =

𝜕𝑉
1

(𝜌, 𝜑)

𝜕𝜌

⋅ 𝑙
1

(𝜌, 𝜑) +

𝜕𝑉
1

(𝜌, 𝜑)

𝜕𝜑

⋅ ℎ
1

(𝜌, 𝜑) ,

̃
𝑙
2

(𝐼, 𝜃, 𝑡) = 𝑙
2

(𝜌, 𝜑, 𝑡)

+

𝜕𝑉
1

(𝜌, 𝜑)

𝜕𝜌

⋅ (𝑙
2

(𝜌, 𝜑, 𝑡) + 𝜀𝑙
3

(𝜌, 𝜑, 𝑡))

+

𝜕𝑉
1

(𝜌, 𝜑)

𝜕𝜑

⋅ (ℎ
2

(𝜌, 𝜑, 𝑡) + 𝜀ℎ
3

(𝜌, 𝜑, 𝑡))

+ 𝜀 (𝑙
3

(𝜌, 𝜑, 𝑡) − 𝑙
3

(𝐼, 𝜃, 𝑡)) ,

̃
𝑙
3

(𝐼, 𝜃, 𝑡) = 𝑙
3

(𝐼, 𝜃, 𝑡) ,

̃
𝑙
4

(𝐼, 𝜃, 𝑡) = 𝑙
4

(𝜌, 𝜑, 𝑡) +

𝜕𝑉
1

(𝜌, 𝜑)

𝜕𝜌

⋅ 𝑙
4

(𝜌, 𝜑, 𝑡) ,

̃
ℎ
1

(𝐼, 𝜃) = ℎ


0
(𝜌) − ℎ



0
(𝐼) + ℎ

1
(𝜌, 𝜑) ,

̃
ℎ
2

(𝐼, 𝜃, 𝑡) = ℎ
2

(𝜌, 𝜑, 𝑡) + 𝜀 (ℎ
3

(𝜌, 𝜑, 𝑡) − ℎ
3

(𝐼, 𝜃, 𝑡)) ,

̃
ℎ
3

(𝐼, 𝜃, 𝑡) = ℎ
3

(𝐼, 𝜃, 𝑡) ,

(42)

with

𝑉
1

(𝜌, 𝜑) = − ∫

𝜑

0

𝑙
1

(𝜌, 𝑠)

ℎ


0
(𝜌)

𝑑𝑠. (43)

Proof. Define a transformation Φ
1
by

Φ
1

: 𝐼 = 𝜌 + 𝑉
1

(𝜌, 𝜑) , 𝜃 = 𝜑. (44)

By

𝑙
1

(𝜌, −𝜑) = −𝑙
1

(𝜌, 𝜑) ,











𝜕
𝑘

𝜕𝜌
𝑘
𝑙
1

(𝜌, 𝜑)











≤ 𝐶𝜌
−𝑘+2−𝛾−(5/2)𝑏

, 0 ≤ 𝑘 ≤ 4,

(45)

we get

𝑉
1

(𝜌, −𝜑) = 𝑉
1

(𝜌, 𝜑) , (46)










𝜕
𝑘

𝜕𝜌
𝑘
𝑉
1

(𝜌, 𝜑)











≤ 𝐶𝜌
−𝑘+1−𝛾−𝑏/2

. (47)

Let Ψ
1

= Φ
−1

1
: 𝜌 = 𝐼 + 𝑈

1
(𝐼, 𝜃), 𝜑 = 𝜃. The system (24) is

transformed into (41).

Lemma 8. For 𝐼 large enough, the following conclusions hold:

(i) |𝜕
𝑘
𝑈
1
(𝐼, 𝜃)/𝜕𝐼

𝑘
| ≤ 𝐶𝐼

−𝑘+1−𝛾−𝑏/2,
(ii) 𝑈

1
(𝐼, −𝜃) = 𝑈

1
(𝐼, 𝜃).

Proof. In view of

𝐼 = 𝜌 + 𝑉
1

(𝜌, 𝜑) , 𝜌 = 𝐼 + 𝑈
1

(𝐼, 𝜃) , (48)

we obtain

𝑈
1

(𝐼, 𝜃) = −𝑉
1

(𝐼 + 𝑈
1

(𝐼, 𝜃) , 𝜃) . (49)

By |(𝜕
𝑘
/𝜕𝜌

𝑘
)𝑉

1
(𝜌, 𝜑)| ≤ 𝐶𝜌

−𝑘+1−𝛾−𝑏/2, we have |(𝜕/𝜕𝜌)𝑉
1
(𝜌,

𝜑)| ≤ 𝐶𝜌
−𝛾−𝑏/2

≤ 1/2 for 𝜌 large enough. Hence, 𝑈
1
is

uniquely determined by the contraction mapping principle.
Moreover, 𝑈

1
(⋅, 𝜃) ∈ 𝐶

∞
(A

𝐼
0

), for some 𝐼
0

> 0, as a
consequence of the implicit function theorem and

𝐼
−(1−𝛾−𝑏/2) 




𝑈
1

(𝐼, 𝜃)




≤ 𝐶. (50)

Above all, if 𝑘 = 1, from (47) and (49), we get









𝜕𝑈
1

𝜕𝐼










=










𝜕𝑉
1
/𝜕𝜌

1 + 𝜕𝑉
1
/𝜕𝜌










≤

∞

∑

𝑛=0

(𝐶𝜌
−1+1−𝛾−𝑏/2

)

𝑛+1

≤ 𝐶 ⋅ 𝜌
−1+1−𝛾−𝑏/2

= 𝐶 ⋅ 𝐼
−1+1−𝛾−𝑏/2

(1 +

𝑈
1

𝐼

)

−1+1−𝛾−𝑏/2

≤ 𝐶 ⋅ 𝐼
−1+1−𝛾−𝑏/2

.

(51)

We note that

𝜕
𝑘
𝑈
1

(𝐼, 𝜃)

𝜕𝐼
𝑘

=

𝜕
𝑘
𝑉
1

(𝐼 + 𝑈
1

(𝐼, 𝜃) , 𝜃)

𝜕𝐼
𝑘

, (52)

and the right side hand is sum of the term

𝜕
𝑠
𝑉
1

𝜕𝜌
𝑠

⋅

𝜕
𝑘
1
(𝐼 + 𝑈

1
)

𝜕𝐼
𝑘
1

⋅ ⋅ ⋅

𝜕
𝑘
𝑠
(𝐼 + 𝑈

1
)

𝜕𝐼
𝑘
𝑠

, (53)

where 1 ≤ 𝑠 ≤ 𝑘, 𝑘
1

+ ⋅ ⋅ ⋅ + 𝑘
𝑠

= 𝑘, 𝑘
𝑖

≥ 1 (for 1 ≤

𝑖 ≤ 𝑠). The highest order term in 𝑈
1
is the one with

𝑠 = 1, namely, (𝜕𝑉
1
/𝜕𝜌) ⋅ (𝜕

𝑘
(𝐼 + 𝑈

1
)/𝜕𝐼

𝑘
). We move the

part (𝜕𝑉
1
/𝜕𝜌) ⋅ (𝜕

𝑘
𝑈
1
/𝜕𝐼

𝑘
) to the left hand side of (52).

Since |(𝜕/𝜕𝜌)𝑉
1
(𝜌, 𝜑)| ≤ 1/2 for 𝜌 large enough, this also

provides immediately a bound on 𝜕
𝑘
𝑈
1
(𝐼, 𝜃)/𝜕𝐼

𝑘. The rest
part |(𝜕𝑉

1
/𝜕𝜌) ⋅ (𝜕

𝑘
𝐼/𝜕𝐼

𝑘
)| ≤ 𝐶𝐼

−𝑘+1−𝛾−𝑏/2.
Now, we proceed inductively by assuming that for 𝑗 ≤ 𝑘−

1 the estimates










𝜕
𝑗
𝑈
1

(𝐼, 𝜃)

𝜕𝐼
𝑗











≤ 𝐶𝐼
−𝑗+1−𝛾−𝑏/2 (54)

hold and we wish to conclude that the same estimate holds
for 𝑗 = 𝑘.

Indeed, if 𝑠 ≥ 2, we have











𝜕
𝑠
𝑉
1

𝜕𝜌
𝑠

⋅

𝜕
𝑘
1
(𝐼 + 𝑈

1
)

𝜕𝐼
𝑘
1

⋅ ⋅ ⋅

𝜕
𝑘
𝑠
(𝐼 + 𝑈

1
)

𝜕𝐼
𝑘
𝑠












≤ 𝐶 ⋅ (𝐼 + 𝑈
1
)
−𝑠+1−𝛾−𝑏/2

⋅ 𝐼
−𝑘
1
+1

⋅ ⋅ ⋅ 𝐼
−𝑘
𝑠
+1

≤ 𝐶 ⋅ 𝐼
−𝑘+1−𝛾−𝑏/2

(55)

by










𝜕
𝑗
(𝐼 + 𝑈

1
(𝐼, 𝜃))

𝜕𝐼
𝑗











≤ 𝐶𝐼
−𝑗+1

, 1 ≤ 𝑗 ≤ 𝑘 − 1. (56)

This proves (i) of Lemma 8.
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Now we check (ii). In fact, since

𝑈
1

(𝐼, 𝜃) = −𝑉
1

(𝐼 + 𝑈
1

(𝐼, 𝜃) , 𝜃) ,

𝑈
1

(𝐼, −𝜃) = −𝑉
1

(𝐼 + 𝑈
1

(𝐼, −𝜃) , 𝜃) ,

(57)

we have





𝑈
1

(𝐼, 𝜃) − 𝑈
1

(𝐼, −𝜃)




≤ sup

𝐼≥𝐼
0










𝜕𝑉
1

𝜕𝜌














𝑈
1

(𝐼, 𝜃) − 𝑈
1

(𝐼, −𝜃)




.

(58)

From (47), we have |(𝜕/𝜕𝜌)𝑉
1
(𝜌, 𝜑)| ≤ 1/2 for 𝐼 ≥ 𝐼

0
suf-

ficiently large and therefore we obtain 𝑈
1
(𝐼, 𝜃) = 𝑈

1
(𝐼, −𝜃).

By the estimates in Lemma 6, we can prove the following
inequalities.

Lemma 9. For 0 ≤ 𝑘 + 𝑚 ≤ 4, the following inequalities hold:

(1) |(𝜕
𝑘
/𝜕𝐼

𝑘
)
̃
𝑙
1
(𝐼, 𝜃)| ≤ 𝐶𝐼

−𝑘+2−2𝛾−3𝑏,

(2) |(𝜕
𝑘+𝑚

/𝜕𝐼
𝑘
𝜕𝑡

𝑚
)
̃
𝑙
2
(𝐼, 𝜃, 𝑡)| ≤ 𝐶𝐼

−𝑘+𝑎,

(3) |(𝜕
𝑘+𝑚

/𝜕𝐼
𝑘
𝜕𝑡

𝑚
)
̃
𝑙
3
(𝐼, 𝜃, 𝑡)| ≤ 𝐶𝐼

−𝑘+3−4𝑏,

(4) |(𝜕
𝑘+𝑚

/𝜕𝐼
𝑘
𝜕𝑡

𝑚
)
̃
𝑙
4
(𝐼, 𝜃, 𝑡)| ≤ 𝐶𝐼

−𝑘+3−4𝑏,

(5) |(𝜕
𝑘
/𝜕𝐼

𝑘
)
̃
ℎ
1
(𝐼, 𝜃)| ≤ 𝐶𝐼

−𝑘+1−𝛾−(5/2)𝑏,

(6) |(𝜕
𝑘+𝑚

/𝜕𝐼
𝑘
𝜕𝑡

𝑚
)
̃
ℎ
2
(𝐼, 𝜃, 𝑡)| ≤ 𝐶𝐼

−𝑘+𝜏,

(7) |(𝜕
𝑘+𝑚

/𝜕𝐼
𝑘
𝜕𝑡

𝑚
)
̃
ℎ
3
(𝐼, 𝜃, 𝑡)| ≤ 𝐶𝐼

−𝑘+2−4𝑏.

Proof. (1) From the estimates (1) and (5) of Lemmas 6 and 8,
it follows that










𝜕
𝑘

𝜕𝐼
𝑘

̃
𝑙
1

(𝐼, 𝜃)











≤











𝜕
𝑘

𝜕𝐼
𝑘

(

𝜕𝑉
1

(𝜌, 𝜑)

𝜕𝜌

⋅ 𝑙
1

(𝜌, 𝜑))











+











𝜕
𝑘

𝜕𝐼
𝑘

(

𝜕𝑉
1

(𝜌, 𝜑)

𝜕𝜑

⋅ ℎ
1

(𝜌, 𝜑))











≤ 𝐶 ∑

𝑖1+𝑖2=𝑘











𝜕
𝑖1+1

𝑉
1

(𝜌, 𝜑)

𝜕𝐼
𝑖1𝜕𝜌





















𝜕
𝑖2

𝑙
1

𝜕𝐼
𝑖2











+ 𝐶 ∑

𝑖1+𝑖2+𝑖3=𝑘

𝜕
𝑖1

𝜌
2𝑏−1

𝜕𝐼
𝑖1











𝜕
𝑖2

𝑙
1

𝜕𝐼
𝑖2





















𝜕
𝑖3

ℎ
1

𝜕𝐼
𝑖3











≤ 𝐶 ∑

𝑖1+𝑖2=𝑘

( ∑

𝜏1+⋅⋅⋅+𝜏𝑠=𝑖1











𝜕
𝑠+1

𝑉
1

(𝜌, 𝜑)

𝜕𝜌
𝑠+1

𝜕
𝜏1

(𝐼 + 𝑈
1
)

𝜕𝐼
𝜏1

⋅ ⋅ ⋅

𝜕
𝜏𝑠

(𝐼 + 𝑈
1
)

𝜕𝐼
𝜏𝑠











)

×











𝜕
𝑖2

𝑙
1

𝜕𝐼
𝑖2











+ 𝐶 ∑

𝑖1+𝑖2+𝑖3=𝑘

( ∑

𝜏1+⋅⋅⋅+𝜏𝑠=𝑖1











𝜕
𝑠
𝜌
2𝑏−1

𝜕𝜌
𝑠

𝜕
𝜏1

(𝐼 + 𝑈
1
)

𝜕𝐼
𝜏1

⋅ ⋅ ⋅

𝜕
𝜏𝑠

(𝐼 + 𝑈
1
)

𝜕𝐼
𝜏𝑠











)

×











𝜕
𝑖2

𝑙
1

𝜕𝐼
𝑖2

𝜕
𝑖3

ℎ
1

𝜕𝐼
𝑖3











≤ 𝐶𝜌
−𝑘+2−2𝛾−3𝑏

≤ 𝐶𝐼
−𝑘+2−2𝛾−3𝑏

.

(59)

(2) Since
̃
𝑙
2

(𝐼, 𝜃, 𝑡) = 𝑙
2

(𝜌, 𝜑, 𝑡)

+

𝜕𝑉
1

(𝜌, 𝜑)

𝜕𝜌

⋅ (𝑙
2

(𝜌, 𝜑, 𝑡) + 𝜀𝑙
3

(𝜌, 𝜑, 𝑡))

+

𝜕𝑉
1

(𝜌, 𝜑)

𝜕𝜑

⋅ (ℎ
2

(𝜌, 𝜑, 𝑡) + 𝜀ℎ
3

(𝜌, 𝜑, 𝑡))

+ 𝜀 (𝑙
3

(𝜌, 𝜑, 𝑡) − 𝑙
3

(𝐼, 𝜃, 𝑡)) ,

(60)

we can prove that










𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
(

𝜕𝑉
1

(𝜌, 𝜑)

𝜕𝜌

⋅ (𝑙
2

(𝜌, 𝜑, 𝑡) + 𝜀𝑙
3

(𝜌, 𝜑, 𝑡)))











≤ 𝐶𝐼
−𝑘+𝑎

,











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
(

𝜕𝑉
1

(𝜌, 𝜑)

𝜕𝜑

⋅ (ℎ
2

(𝜌, 𝜑, 𝑡) + 𝜀ℎ
3

(𝜌, 𝜑, 𝑡)))











≤ 𝐶𝐼
−𝑘+𝑎

,











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
𝑙
2

(𝜌, 𝜑, 𝑡)











≤ 𝐼
−𝑘+𝑎

.

(61)

Their proofs are similar to the proofs in (1).
Next, we check the last part of ̃

𝑙
2
(𝐼, 𝜃, 𝑡). We get











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
(𝑙
3

(𝜌, 𝜑, 𝑡) − 𝑙
3

(𝐼, 𝜃, 𝑡))











=











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
(∫

1

0

𝜕𝑙
3

𝜕𝜌

(𝐼 + 𝑠𝑈
1

(𝐼, 𝜃) , 𝜃, 𝑡) ⋅ 𝑈
1

(𝐼, 𝜃) 𝑑𝑠)











≤ ∫

1

0

∑

𝑖
1
+𝑖
2
=𝑘











𝜕
𝑖
1
+𝑚

𝜕𝐼
𝑖
1𝜕𝑡

𝑚
(

𝜕𝑙
3

(𝐼 + 𝑠𝑈
1
, 𝜃, 𝑡)

𝜕𝜌

)





















𝜕
𝑖
2
𝑈
1

𝜕𝐼
𝑖
2











𝑑𝑠

≤ 𝐶 ∫

1

0

∑

𝑖
1
+𝑖
2
=𝑘

(𝐼 + 𝑈
1
)
−𝑖
1
+2−4𝑏

𝐼
−𝑖
2
+1−𝛾−𝑏/2

𝑑𝑠

≤ 𝐶𝐼
−𝑘+3−𝛾−(9/2)𝑏

≤ 𝐶𝐼
−𝑘+𝑎

,

(62)

by the estimate in Lemma 6 and the definition of 𝑎.
(3) It is clearly by (3) in Lemma 6.
(4) It is clearly by (4) in Lemmas 6 and 8.
(5) We have that

̃
ℎ
1

(𝐼, 𝜃) = ℎ


0
(𝜌) − ℎ



0
(𝐼) + ℎ

1
(𝜌, 𝜑) ,











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
(ℎ



0
(𝜌) − ℎ



0
(𝐼))











≤











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
(∫

1

0

𝑑
2
ℎ
0

(𝐼 + 𝑠𝑈
1
)

𝑑𝜌
2

𝑈
1

(𝐼, 𝜃) 𝑑𝑠)











≤ 𝐶𝐼
−𝑘−2𝑏+1−𝛾−𝑏/2

≤ 𝐶𝐼
−𝑘+1−𝛾−5𝑏/2

.

(63)
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From the last inequalities and (5) in Lemma 6, we obtain










𝜕
𝑘

𝜕𝐼
𝑘

̃
ℎ
1

(𝐼, 𝜃)











≤ 𝐶𝐼
−𝑘+1−𝛾−(5/2)𝑏

. (64)

(6) Since
̃
ℎ
2

(𝐼, 𝜃, 𝑡) = ℎ
2

(𝜌, 𝜑, 𝑡) + 𝜀 (ℎ
3

(𝜌, 𝜑, 𝑡) − ℎ
3

(𝐼, 𝜃, 𝑡)) ,











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
ℎ
2

(𝜌, 𝜑, 𝑡)











≤ 𝐶𝐼
−𝑘+𝜏

,

(65)
we just have to prove that











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
(ℎ

3
(𝜌, 𝜑, 𝑡) − ℎ

3
(𝐼, 𝜃, 𝑡))











≤ 𝐶𝐼
−𝑘+𝜏

. (66)

In fact,










𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
(ℎ

3
(𝜌, 𝜑, 𝑡) − ℎ

3
(𝐼, 𝜃, 𝑡))











=











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
(∫

1

0

𝜕ℎ
3

𝜕𝜌

(𝐼 + 𝑠𝑈
1

(𝐼, 𝜃) , 𝜃, 𝑡) ⋅ 𝑈
1

(𝐼, 𝜃) 𝑑𝑠)











≤ ∫

1

0

∑

𝑖
1
+𝑖
2
=𝑘











𝜕
𝑖
1
+𝑚

𝜕𝐼
𝑖
1𝜕𝑡

𝑚
(

𝜕ℎ
3

(𝐼 + 𝑠𝑈
1
, 𝜃, 𝑡)

𝜕𝜌

)





















𝜕
𝑖
2
𝑈
1

𝜕𝐼
𝑖
2











𝑑𝑠

≤ 𝐶 ∫

1

0

∑

𝑖
1
+𝑖
2
=𝑘

(𝐼 + 𝑈
1
)
−𝑖
1
+1−4𝑏

𝐼
−𝑖
2
+1−𝛾−𝑏/2

𝑑𝑠

≤ 𝐶𝐼
−𝑘+2−𝛾−(9/2)𝑏

≤ 𝐶𝐼
−𝑘+𝜏

,

(67)
so we have proved (6).

(7) We have










𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚

̃
ℎ
3

(𝐼, 𝜃, 𝑡)











≤ 𝐶𝐼
−𝑘+2−4𝑏

, (68)

by (7) in Lemma 6.

3. The Proof of Boundedness

In this section, all the solutions of (8) which are bounded
will be proved via the KAM theory for reversible systems
developed by Sevryuk [21] or Moser [22, 23] if 𝐵 > 0.

We define the functions 𝜂
0
, 𝜂

1
, 𝜂

2
, 𝜂

3
, 𝜉

1
, 𝜉

2
, and 𝜉

3
as

𝜂
0

(𝐼) =

1

ℎ


0
(𝐼)

,

𝜂
1

(𝐼, 𝜃) = −

̃
ℎ
1

(𝐼, 𝜃)

ℎ


0
(𝐼) (ℎ



0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃))

,

𝜂
2

(𝐼, 𝜃, 𝑡)

= − (
̃
ℎ
2

(𝐼, 𝜃, 𝑡))

× ((ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃))

× (ℎ


0
(𝐼)+

̃
ℎ
1

(𝐼, 𝜃)+
̃
ℎ
2

(𝐼, 𝜃, 𝑡)+𝜀
̃
ℎ
3

(𝐼, 𝜃, 𝑡)))

−1

,

𝜂
3

(𝐼, 𝜃, 𝑡)

= − (
̃
ℎ
3

(𝐼, 𝜃, 𝑡))

× ((ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃))

× (ℎ


0
(𝐼)+

̃
ℎ
1

(𝐼, 𝜃)+
̃
ℎ
2

(𝐼, 𝜃, 𝑡)+𝜀
̃
ℎ
3

(𝐼, 𝜃, 𝑡)))

−1

,

𝜉
1

(𝐼, 𝜃, 𝑡) = (
̃
𝑙
1

(𝐼, 𝜃)+
̃
𝑙
2

(𝐼, 𝜃, 𝑡))

⋅ (𝜂
0

(𝐼)+𝜂
1

(𝐼, 𝜃)+𝜂
2

(𝐼, 𝜃, 𝑡)+𝜀𝜂
3

(𝐼, 𝜃, 𝑡)) ,

𝜉
2

(𝐼, 𝜃, 𝑡) =
̃
𝑙
3

(𝐼, 𝜃, 𝑡)

⋅ (𝜂
0

(𝐼) + 𝜂
1

(𝐼, 𝜃) + 𝜂
2

(𝐼, 𝜃, 𝑡) + 𝜀𝜂
3

(𝐼, 𝜃, 𝑡)) ,

𝜉
3

(𝐼, 𝜃, 𝑡) =
̃
𝑙
4

(𝐼, 𝜃, 𝑡)

⋅ (𝜂
0

(𝐼)+𝜂
1

(𝐼, 𝜃)+𝜂
2

(𝐼, 𝜃, 𝑡)+𝜀𝜂
3

(𝐼, 𝜃, 𝑡)) .

(69)

Then system (41) is equivalent to the following system:

𝑑𝑡

𝑑𝜃

= 𝜂
0

(𝐼) + 𝜂
1

(𝐼, 𝜃) + 𝜂
2

(𝐼, 𝜃, 𝑡) + 𝜀𝜂
3

(𝐼, 𝜃, 𝑡) ,

𝑑𝐼

𝑑𝜃

= 𝜉
1

(𝐼, 𝜃, 𝑡) + 𝜀𝜉
2

(𝐼, 𝜃, 𝑡)

+ 𝛼𝑇
0





𝑆 (𝜃𝑇

0
)





𝛼−1

𝐶 (𝜃𝑇
0
) 𝜀𝜉

3
(𝐼, 𝜃, 𝑡) .

(70)

In addition, one can verify that system (70) is reversible
with respect to involution 𝐺 : (𝑡, 𝐼) → (−𝑡, 𝐼).

Then some estimates on the functions 𝜂
𝑖

(𝑖 = 0, 1, 2, 3)

and 𝜉
𝑖

(𝑖 = 1, 2, 3) are given.

Lemma 10. The following inequalities hold:

(1) 𝑐𝐼
2𝑏−1

≤ |𝜂
0
(𝐼)| ≤ 𝐶𝐼

2𝑏−1,

(2) |(𝜕
𝑘
/𝜕𝐼

𝑘
)𝜂

1
(𝐼, 𝜃)| ≤ 𝐶𝐼

−𝑘−1−𝛾+3𝑏/2,

(3) |(𝜕
𝑘+𝑚

/𝜕𝐼
𝑘
𝜕𝑡

𝑚
)𝜂

2
(𝐼, 𝜃, 𝑡)| ≤ 𝐶𝐼

−𝑘+𝜏+4𝑏−2,

(4) |(𝜕
𝑘+𝑚

/𝜕𝐼
𝑘
𝜕𝑡

𝑚
)𝜂

3
(𝐼, 𝜃, 𝑡)| ≤ 𝐶𝐼

−𝑘,

(5) |(𝜕
𝑘+𝑚

/𝜕𝐼
𝑘
𝜕𝑡

𝑚
)𝜉

1
(𝐼, 𝜃, 𝑡)| ≤ 𝐶𝐼

−𝑘+𝑎+2𝑏−1,

(6) |(𝜕
𝑘+𝑚

/𝜕𝐼
𝑘
𝜕𝑡

𝑚
)𝜉

2
(𝐼, 𝜃, 𝑡)| ≤ 𝐶𝐼

−𝑘+2−2𝑏,

(7) |(𝜕
𝑘+𝑚

/𝜕𝐼
𝑘
𝜕𝑡

𝑚
)𝜉

3
(𝐼, 𝜃, 𝑡)| ≤ 𝐶𝐼

−𝑘+2−2𝑏, for 0 ≤ 𝑘+𝑚 ≤

4.

Proof. (1) It is clear.
(2) Note that 1 − 2𝑏 > 1 − 𝛾 − 2𝑏/5, and







̃
ℎ
1

(𝐼, 𝜃)






≤ 𝐶𝐼

1−𝛾−(5/2)𝑏
, (71)
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it follows that





ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃)






≥












ℎ


0
(𝐼)






−







̃
ℎ
1

(𝐼, 𝜃)













≥






ℎ


0
(𝐼)






−







̃
ℎ
1

(𝐼, 𝜃)







≥

1

𝑇
0

𝐼
1−2𝑏

− 𝐶𝐼
1−𝛾−(5/2)𝑏

≥ 𝑐𝐼
1−2𝑏

(72)

as 𝐼 ≫ 1.
Moreover, we also have










𝜕
𝑙

𝜕𝐼
𝑙
(ℎ



0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃))











≤











𝜕
𝑙

𝜕𝐼
𝑙
ℎ


0
(𝐼)











+











𝜕
𝑙

𝜕𝐼
𝑙

̃
ℎ
1

(𝐼, 𝜃)











≤ 𝐶𝐼
−𝑙+1−2𝑏

+ 𝐶𝐼
−𝑙+1−𝛾−(2/5)𝑏

≤ 𝐶𝐼
−𝑙+1−2𝑏

.

(73)

So











𝜕
𝑖

𝜕𝐼
𝑖
(

1

ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃)

)












≤ 𝐶 ∑

𝑙
1
+⋅⋅⋅+𝑙
𝑠
=𝑖














(−1)
𝑠
𝑠!

(ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃))

𝑠+1














×











𝜕
𝑙
1

𝜕𝐼
𝑙
1

(ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃))











⋅ ⋅ ⋅











𝜕
𝑙
𝑠

𝜕𝐼
𝑙
𝑠

(ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃))











≤ 𝐶 ∑

𝑙
1
+⋅⋅⋅+𝑙
𝑠
=𝑖

𝐼
(2𝑏−1)(𝑠+1)

⋅ 𝐼
−𝑖+(1−2𝑏)𝑠

≤ 𝐶𝐼
−𝑖+2𝑏−1

.

(74)

From (72) and (74), it is easy to see that










𝜕
𝑘

𝜕𝐼
𝑘
𝜂
1

(𝐼, 𝜃)











=













𝜕
𝑘

𝜕𝐼
𝑘

(

̃
ℎ
1

(𝐼, 𝜃)

ℎ


0
(𝐼) (ℎ



0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃))

)













≤ 𝐶 ∑

𝑖
1
+𝑖
2
+𝑖
3
=𝑘











𝜕
𝑖
1

𝜕𝐼
𝑖
1

̃
ℎ
1

(𝐼, 𝜃)











⋅











𝜕
𝑖
2

𝜕𝐼
𝑖
2

(

1

ℎ


0
(𝐼)

)











⋅












𝜕
𝑖
3

𝜕𝐼
𝑖
3

(

1

ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃)

)












≤ 𝐶 ∑

𝑖
1
+𝑖
2
+𝑖
3
=𝑘

𝐼
−𝑖
1
+1−𝛾−(2/5)𝑏

𝐼
−𝑖
2
−1+2𝑏

𝐼
−𝑖
3
−1+2𝑏

≤ 𝐶𝐼
−𝑘−1−𝛾+(3/2)𝑏

.

(75)

(3) We have










𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚

̃
ℎ
2

(𝐼, 𝜃, 𝑡)











≤ 𝐶𝐼
−𝑘+𝜏

,











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚

̃
ℎ
3

(𝐼, 𝜃, 𝑡)











≤ 𝐶𝐼
−𝑘+2−4𝑏

.

(76)

By (72), 1 − 2𝑏 > 𝜏 (𝜏 = max(3 − 6𝑏, −𝑏)) and 1 − 2𝑏 > 2 − 4𝑏,
we have






ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃) +
̃
ℎ
2

(𝐼, 𝜃, 𝑡) + 𝜀
̃
ℎ
3

(𝐼, 𝜃, 𝑡)







≥












ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃)






−







̃
ℎ
2

(𝐼, 𝜃, 𝑡) + 𝜀
̃
ℎ
3

(𝐼, 𝜃, 𝑡)













≥






ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃)






−







̃
ℎ
2

(𝐼, 𝜃, 𝑡)






− 𝜀







̃
ℎ
3

(𝐼, 𝜃, 𝑡)







≥ 𝑐𝐼
1−2𝑏

− 𝐶𝐼
𝜏

− 𝐶𝜀𝐼
2−4𝑏

≥ 𝑐𝐼
1−2𝑏

,

(77)
for 𝐼 ≫ 1.

Let ℎ


0
(𝐼) +

̃
ℎ
1
(𝐼, 𝜃) +

̃
ℎ
2
(𝐼, 𝜃, 𝑡) + 𝜀

̃
ℎ
3
(𝐼, 𝜃, 𝑡) = 𝐻(𝐼, 𝜃, 𝑡).

We find that













𝜕
𝑙

𝜕𝑡
𝑙
(

1

(ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃) +
̃
ℎ
2

(𝐼, 𝜃, 𝑡) + 𝜀
̃
ℎ
3

(𝐼, 𝜃, 𝑡))

𝑠+1
)














≤ 𝐶 ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑟
=𝑙











(−1)
𝑟
𝑟!

(𝐻 (𝐼, 𝜃, 𝑡))
𝑠+1+𝑟





















𝜕
𝑖
1

𝜕𝑡
𝑖
1

(𝐻 (𝐼, 𝜃, 𝑡))











⋅ ⋅ ⋅











𝜕
𝑖
𝑟

𝜕𝑡
𝑖
𝑟

(𝐻 (𝐼, 𝜃, 𝑡))











≤ 𝐶 ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑟
=𝑙

𝐼
(2𝑏−1)(𝑠+1+𝑟)

⋅ 𝜀
𝑟
𝐼
(2−4𝑏)𝑟

≤ 𝐶𝐼
(2𝑏−1)(𝑠+1)

,

(78)
so












𝜕
𝑘+𝑙

𝜕𝐼
𝑘
𝜕𝑡

𝑙
(

1

ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃) +
̃
ℎ
2

(𝐼, 𝜃, 𝑡) + 𝜀
̃
ℎ
3

(𝐼, 𝜃, 𝑡)

)












≤ 𝐶













𝜕
𝑙

𝜕𝑡
𝑙
( ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=𝑘

(−1)
𝑠
𝑠!

(𝐻 (𝐼, 𝜃, 𝑡))
𝑠+1

⋅

𝜕
𝑖
1

𝜕𝐼
𝑖
1

(𝐻 (𝐼, 𝜃, 𝑡))

⋅ ⋅ ⋅

𝜕
𝑖
𝑠

𝜕𝐼
𝑖
𝑠

(𝐻 (𝐼, 𝜃, 𝑡)))











≤ 𝐶 ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=𝑘

∑

𝑗
0
+𝑗
1
+⋅⋅⋅+𝑗

𝑠
=𝑙











𝜕
𝑗
0

𝜕𝑡
𝑗
0

(−1)
𝑠
𝑠!

(𝐻 (𝐼, 𝜃, 𝑡))
𝑠+1











×











𝜕
𝑖
1
+𝑗
1

𝜕𝐼
𝑖
1𝜕𝑡

𝑗
1

(𝐻 (𝐼, 𝜃, 𝑡))











⋅ ⋅ ⋅











𝜕
𝑖
𝑠
+𝑗
𝑠

𝜕𝐼
𝑖
𝑠𝜕𝑡

𝑗
𝑠

(𝐻 (𝐼, 𝜃, 𝑡))











≤ 𝐶 ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=𝑘

𝐼
(2𝑏−1)(𝑠+1)

⋅ 𝐼
−(𝑖
1
+⋅⋅⋅+𝑖
𝑠
)−(1−2𝑏)𝑠

≤ 𝐶𝐼
−𝑘+(2𝑏−1)

.

(79)
When𝑚 = 0, the proof of (3) is similar to the proof of (2).
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When 𝑚 > 0, then










𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
𝜂
2

(𝐼, 𝜃, 𝑡)











=













𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
(

̃
ℎ
2

(𝐼, 𝜃, 𝑡)

(ℎ


0
(𝐼)+

̃
ℎ
1

(𝐼, 𝜃)) (ℎ


0
(𝐼)+

̃
ℎ
1
+

̃
ℎ
2
+𝜀

̃
ℎ
3
)

)













≤ 𝐶













𝜕
𝑚

𝜕𝑡
𝑚

( ∑

𝑖
1
+𝑖
2
+𝑖
3
=𝑘

𝜕
𝑖
1

𝜕𝐼
𝑖
1

̃
ℎ
2

⋅

𝜕
𝑖
2

𝜕𝐼
𝑖
2

(

1

ℎ


0
(𝐼) +

̃
ℎ
1

)

⋅

𝜕
𝑖
3

𝜕𝐼
𝑖
3

(

1

ℎ


0
(𝐼) +

̃
ℎ
1

+
̃
ℎ
2

+ 𝜀
̃
ℎ
3

))












≤ 𝐶 ∑

𝑖
1
+𝑖
2
+𝑖
3
=𝑘

∑

𝑙
1
+𝑙
2
=𝑚











𝜕
𝑖
1
+𝑙
1̃
ℎ
2

(𝐼, 𝜃, 𝑡)

𝜕𝐼
𝑖
1𝜕𝑡

𝑙
1











⋅












𝜕
𝑖
2

𝜕𝐼
𝑖
2

(

1

ℎ


0
(𝐼) +

̃
ℎ
1

(𝐼, 𝜃)

)












⋅












𝜕
𝑖
3
+𝑙
2

𝜕𝐼
𝑖
3𝜕𝑡

𝑙
2

(

1

ℎ


0
(𝐼) +

̃
ℎ
1

+
̃
ℎ
2

+ 𝜀
̃
ℎ
3

)












≤ 𝐶 ∑

𝑖
1
+𝑖
2
+𝑖
3
=𝑘

𝐼
−𝑖
1
+𝜏

𝐼
−𝑖
2
+2𝑏−1

𝐼
−𝑖
3
+2𝑏−1

≤ 𝐶𝐼
−𝑘+𝜏+4𝑏−2

.

(80)
(4) The proof of (4) is similar to the proof of (3).
(5) Let 𝜂

0
(𝐼) + 𝜂

1
(𝐼, 𝜃) + 𝜂

2
(𝐼, 𝜃, 𝑡) + 𝜀𝜂

3
(𝐼, 𝜃, 𝑡) = 𝜂(𝐼, 𝜃, 𝑡).

By using the estimates on the functions ̃
𝑙
𝑖

(𝑖 = 1, 2) and
𝜂
𝑗

(𝑗 = 0, 1, 2, 3), it follows that










𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
𝜉
1

(𝐼, 𝜃, 𝑡)











≤ 𝐶













𝜕
𝑚

𝜕𝑡
𝑚

( ∑

𝑘1+𝑘2=𝑘

𝜕
𝑘1

(
̃
𝑙
1

(𝐼, 𝜃) +
̃
𝑙
2

(𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘1

⋅

𝜕
𝑘2

(𝜂 (𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘2

)













≤ 𝐶 ∑

𝑘1+𝑘2=𝑘












𝜕
𝑘1̃

𝑙
1

(𝐼, 𝜃)

𝜕𝐼
𝑘1

⋅

𝜕
𝑘2+𝑚

(𝜂
2

(𝐼, 𝜃, 𝑡) + 𝜀𝜂
3

(𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘2𝜕𝑡

𝑚












+ 𝐶 ∑

𝑙𝑘+𝑘2=𝑘

∑

𝑚1+𝑚2=𝑚












𝜕
𝑘1+𝑚1̃

𝑙
2

(𝐼, 𝜃, 𝑡)

𝜕𝐼
𝑘1𝜕𝑡

𝑚1

⋅

𝜕
𝑘2+𝑚2

(𝜂 (𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘2𝜕𝑡

𝑚2












≤ 𝐶𝐼
−𝑘1+2−𝛾−(5/2)𝑏

⋅ (𝐼
−𝑘2+𝜏+4𝑏−2

+ 𝜀𝐼
−𝑘2

) + 𝐶𝐼
−𝑘1+𝑎

⋅ 𝐼
−𝑘2+2𝑏−1

≤ 𝐶𝐼
−𝑘+𝑎+2𝑏−1

,

(81)

when 𝑚 ̸= 0.
When 𝑚 = 0, then











𝜕
𝑘

𝜕𝐼
𝑘
𝜉
1

(𝐼, 𝜃, 𝑡)











≤ 𝐶 ∑

𝑘
1
+𝑘
2
=𝑘













𝜕
𝑘
1
(
̃
𝑙
1

(𝐼, 𝜃) +
̃
𝑙
2

(𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘
1

⋅

𝜕
𝑘
2
(𝜂 (𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘
2













≤ 𝐶 (𝐼
−𝑘
1
+2−𝛾−(5/2)𝑏

+ 𝐼
−𝑘
1
+𝑎

) ⋅ 𝐼
−𝑘
2
+2𝑏−1

≤ 𝐶𝐼
−𝑘+𝑎+2𝑏−1

,

(82)
by 𝑎 > 2 − 𝛾 − 5𝑏/2.

(6) By using the estimates on the functions ̃
𝑙
3
and 𝜂

𝑖
(𝑖 =

0, 1, 2, 3), it follows that











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
𝜉
2

(𝐼, 𝜃, 𝑡)











≤ 𝐶













𝜕
𝑚

𝜕𝑡
𝑚

( ∑

𝑘
1
+𝑘
2
=𝑘

𝜕
𝑘
1
(
̃
𝑙
3

(𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘
1

⋅

𝜕
𝑘
2
(𝜂 (𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘
2

)













≤ 𝐶 ∑

𝑙
𝑘
+𝑘
2
=𝑘

∑

𝑚
1
+𝑚
2
=𝑚












𝜕
𝑘
1
+𝑚
1̃
𝑙
3

(𝐼, 𝜃, 𝑡)

𝜕𝐼
𝑘
1𝜕𝑡

𝑚
1

⋅

𝜕
𝑘
2
+𝑚
2
(𝜂 (𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘
2𝜕𝑡

𝑚
2












≤ 𝐶𝐼
−𝑘
1
+3−4𝑏

⋅ 𝐼
−𝑘
2
+2𝑏−1

≤ 𝐶𝐼
−𝑘+2−2𝑏

.

(83)

(7) By using the estimates on the functions ̃
𝑙
4
and 𝜂

𝑖
(𝑖 =

0, 1, 2, 3), it follows that











𝜕
𝑘+𝑚

𝜕𝐼
𝑘
𝜕𝑡

𝑚
𝜉
3

(𝐼, 𝜃, 𝑡)











≤ 𝐶













𝜕
𝑚

𝜕𝑡
𝑚

( ∑

𝑘
1
+𝑘
2
=𝑘

𝜕
𝑘
1
(
̃
𝑙
4

(𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘
1

⋅

𝜕
𝑘
2
(𝜂 (𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘
2

)













≤ 𝐶 ∑

𝑙
𝑘
+𝑘
2
=𝑘

∑

𝑚
1
+𝑚
2
=𝑚












𝜕
𝑘
1
+𝑚
1̃
𝑙
4

(𝐼, 𝜃, 𝑡)

𝜕𝐼
𝑘
1𝜕𝑡

𝑚
1

⋅

𝜕
𝑘
2
+𝑚
2
(𝜂 (𝐼, 𝜃, 𝑡))

𝜕𝐼
𝑘
2𝜕𝑡

𝑚
2












≤ 𝐶𝐼
−𝑘
1
+3−4𝑏

⋅ 𝐼
−𝑘
2
+2𝑏−1

≤ 𝐶𝐼
−𝑘+2−2𝑏

.

(84)

Let 𝑡 = 𝑡, 𝜃 = 𝜃, 𝑟 = 𝜂
0
(𝐼) and

𝐹
0

(𝑟, 𝜃) = 𝜂
1

(𝐼 (𝑟) , 𝜃) ,

𝐹
1

(𝑟, 𝜃, 𝑡) = 𝜂
2

(𝐼 (𝑟) , 𝜃, 𝑡) + 𝜀𝜂
3

(𝐼 (𝑟) , 𝜃, 𝑡) ,

𝐹
2

(𝑟, 𝜃, 𝑡) = 𝜂


0
(𝐼 (𝑟)) ⋅ (𝜉

1
(𝐼 (𝑟) , 𝜃, 𝑡) + 𝜀𝜉

2
(𝐼 (𝑟) , 𝜃, 𝑡)) ,

𝐹
3

(𝑟, 𝜃, 𝑡) = 𝜀𝜂


0
(𝐼 (𝑟)) ⋅ 𝜉

3
(𝐼 (𝑟) , 𝜃, 𝑡) ,

(85)

where 𝐼(𝑟) is the inverse function of 𝑟 = 𝜂
0
(𝐼).

Then system (70) is transformed into the following form:

𝑑𝑡

𝑑𝜃

= 𝑟 + 𝐹
0

(𝑟, 𝜃) + 𝐹
1

(𝑟, 𝜃, 𝑡) ,

𝑑𝑟

𝑑𝜃

= 𝐹
2

(𝑟, 𝜃, 𝑡) + 𝛼𝑇
0





𝑆 (𝜃𝑇

0
)





𝛼−1

𝐶 (𝜃𝑇
0
) ⋅ 𝐹

3
(𝑟, 𝜃, 𝑡) .

(86)

Moreover, one can verify that system (86) is reversible with
respect to involution 𝐺 : (𝑡, 𝑟) → (−𝑡, 𝑟).
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It is easy to see that 𝐼 ≫ 1 if and only if 𝑟 ≫ 1, and the
solutions of system (86) do exist on 0 ≤ 𝜃 ≤ 1 when 𝑟(0) =

𝑟 ≫ 1.
By using the estimates on 𝜂

𝑖
and 𝜉

𝑖
(𝑖 = 1, 2, 3) in

Lemma 10, the following inequalities can be proved.

Lemma 11. For 0 ≤ 𝑘 + 𝑚 ≤ 4 and 𝑟 ≫ 1, the following
inequalities hold:

(1) |(𝜕
𝑘
/𝜕𝑟

𝑘
)𝐹

0
(𝑟, 𝜃)| ≤ 𝐶𝑟

−𝑘−(1+𝛾−3𝑏/2)/(2𝑏−1),

(2) |(𝜕
𝑘+𝑚

/𝜕𝑟
𝑘
𝜕𝑡

𝑚
)𝐹

1
(𝑟, 𝜃, 𝑡)| ≤ 𝐶(𝑟

−𝑘+(𝜏+4𝑏−2)/(2𝑏−1)
+

𝜀𝑟
−𝑘

),

(3) |(𝜕
𝑘+𝑚

/𝜕𝑟
𝑘
𝜕𝑡

𝑚
)𝐹

2
(𝑟, 𝜃, 𝑡)| ≤ 𝐶(𝑟

−𝑘+(𝑎+4𝑏−3)/(2𝑏−1)
+

𝜀𝑟
−𝑘

),

(4) |(𝜕
𝑘+𝑚

/𝜕𝑟
𝑘
𝜕𝑡

𝑚
)𝐹

3
(𝑟, 𝜃, 𝑡)| ≤ 𝐶𝜀𝑟

−𝑘.

Proof. Above all, we know that 𝑟 = 𝜂
0
(𝐼) = 𝑇

0
𝐼
2𝑏−1, so we can

get 𝐼 = ((1/𝑇
0
)𝑟)

1/(2𝑏−1). Then we have











𝑑
𝑗
𝐼

𝑑𝑟
𝑗











≤ 𝐶𝑟
−𝑗+1/(2𝑏−1)

,











𝑑
𝑗
𝜂


0
(𝐼 (𝑟))

𝑑𝑟
𝑗











≤ 𝐶













𝑑
𝑗
(𝑟

1−1/(2𝑏−1)
)

𝑑𝑟
𝑗













≤ 𝐶𝑟
−𝑗+(2𝑏−2)/(2𝑏−1)

.

(87)

(1) We have that











𝜕
𝑘
𝐹
0

(𝑟, 𝜃)

𝜕𝑟
𝑘











≤ ∑

𝑘
1
+⋅⋅⋅+𝑘

𝑠
=𝑘










𝜕
𝑠
𝜂
1

(𝐼, 𝜃)

𝜕𝐼
𝑠










⋅











𝑑
𝑘
1
𝐼

𝑑𝑟
𝑘
1











⋅ ⋅ ⋅











𝑑
𝑘
𝑠
𝐼

𝑑𝑟
𝑘
𝑠











≤ 𝐶𝐼
−𝑠−1−𝛾+(3/2)𝑏

𝑟
−𝑘+(1/(2𝑏−1))𝑠

≤ 𝐶𝑟
−𝑠(1/(2𝑏−1))−(1+𝛾−(3/2)𝑏)/(2𝑏−1)

𝑟
−𝑘+(1/(2𝑏−1))𝑠

≤ 𝐶𝑟
−𝑘−(1+𝛾−(3/2)𝑏)/(2𝑏−1)

.

(88)

(2) We have that











𝜕
𝑘+𝑚

𝐹
1

(𝑟, 𝜃, 𝑡)

𝜕𝑟
𝑘
𝜕𝑡

𝑚











≤ 𝐶 ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=𝑘











𝜕
𝑠+𝑚

𝜂
2

(𝐼, 𝜃, 𝑡)

𝜕𝐼
𝑠
𝜕𝑡

𝑚

𝑑
𝑖
1
𝐼

𝑑𝑟
𝑖
1

⋅ ⋅ ⋅

𝑑
𝑖
𝑠
𝐼

𝑑𝑟
𝑖
𝑠











+ 𝐶𝜀 ∑

𝑗
1
+⋅⋅⋅+𝑗]=𝑘











𝜕
]+𝑚

𝜂
3

(𝐼, 𝜃, 𝑡)

𝜕𝐼
]
𝜕𝑡

𝑚

𝑑
𝑗
1
𝐼

𝑑𝑟
𝑗
1

⋅ ⋅ ⋅

𝑑
𝑗]

𝐼

𝑑𝑟
𝑗]











≤ 𝐶 (𝑟
−𝑘+((𝜏+4𝑏−2)/(2𝑏−1))

+ 𝜀𝑟
−𝑘

) .

(89)

(3) We have that










𝜕
𝑘+𝑚

𝐹
2

(𝑟, 𝜃, 𝑡)

𝜕𝑟
𝑘
𝜕𝑡

𝑚











≤













∑

𝑘
1
+𝑘
2
=𝑘

𝑑
𝑘
1
𝜂


0
(𝐼 (𝑟))

𝑑𝑟
𝑘
1

⋅ (

𝜕
𝑘
2
+𝑚

𝜉
1

(𝐼 (𝑟) , 𝜃, 𝑡)

𝜕𝑟
𝑘
2𝜕𝑡

𝑚
+ 𝜀

𝜕
𝑘
2
+𝑚

𝜉
2

(𝐼 (𝑟) , 𝜃, 𝑡)

𝜕𝑟
𝑘
2𝜕𝑡

𝑚
)











≤ 𝐶 ∑

𝑘
1
+𝑘
2
=𝑘

𝑟
−𝑘
1
+(2𝑏−2)/(2𝑏−1)

× ( ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=𝑘
2

𝜕
𝑠+𝑚

𝜉
1

(𝐼, 𝜃, 𝑡)

𝜕𝐼
𝑠
𝜕𝑡

𝑚

𝑑
𝑖
1
𝐼

𝑑𝑟
𝑖
1

⋅ ⋅ ⋅

𝑑
𝑖
𝑠
𝐼

𝑑𝑟
𝑖
𝑠

+𝜀 ∑

𝑗
1
+⋅⋅⋅+𝑗]=𝑘2

𝜕
]+𝑚

𝜉
2

(𝐼, 𝜃, 𝑡)

𝜕𝐼
]
𝜕𝑡

𝑚

𝑑
𝑗
1
𝐼

𝑑𝑟
𝑗
1

⋅ ⋅ ⋅

𝑑
𝑗]

𝐼

𝑑𝑟
𝑗]

)

≤ 𝐶𝑟
−𝑘
1
+(2𝑏−2)/(2𝑏−1)

𝑟
(1/(2𝑏−1))(−𝑠+𝑎+2𝑏−1)

𝑟
−𝑘
1
+(1/(2𝑏−1))𝑠

+ 𝐶𝜀𝑟
−𝑘
1
+(2𝑏−2)/(2𝑏−1)

𝑟
(1/(2𝑏−1))(−]+2−2𝑏)

𝑟
−𝑘
1
+(1/(2𝑏−1))]

≤ 𝐶𝑟
−𝑘+(𝑎+4𝑏−3)/(2𝑏−1)

+ 𝐶𝜀𝑟
−𝑘

.

(90)

(4) We have that










𝜕
𝑘+𝑚

𝐹
3

(𝑟, 𝜃, 𝑡)

𝜕𝑟
𝑘
𝜕𝑡

𝑚











≤ 𝜀













∑

𝑘
1
+𝑘
2
=𝑘

𝑑
𝑘
1
𝜂


0
(𝐼 (𝑟))

𝑑𝑟
𝑘
1

⋅ (

𝜕
𝑘
2
+𝑚

𝜉
3

(𝐼 (𝑟) , 𝜃, 𝑡)

𝜕𝑟
𝑘
2𝜕𝑡

𝑚
)













≤ 𝐶𝜀 ∑

𝑘
1
+𝑘
2
=𝑘

𝑟
−𝑘
1
+(2𝑏−2)/(2𝑏−1)

× ( ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=𝑘
2

𝜕
𝑠+𝑚

𝜉
3

(𝐼, 𝜃, 𝑡)

𝜕𝐼
𝑠
𝜕𝑡

𝑚

𝑑
𝑖
1
𝐼

𝑑𝑟
𝑖
1

⋅ ⋅ ⋅

𝑑
𝑖
𝑠
𝐼

𝑑𝑟
𝑖
𝑠

)

≤ 𝐶𝜀𝑟
−𝑘

.

(91)

Lemma 12. The time 1 map Φ
1 of the flow Φ

𝜃 of the system
(86) is of the form

Φ
1

: 𝑟
1

= 𝑟 + 𝑄
2

(𝑟, 𝑡) , 𝑡
1

= 𝑡 + �̂� (𝑟) + 𝑄
1

(𝑟, t) ,

(92)

where �̂�(𝑟) = 𝑟 + ∫

1

0
𝐹
0
(𝑟, 𝜃)𝑑𝜃. And there exists a 𝜇

0
> 0 such

that, for 0 ≤ 𝑘+𝑚 ≤ 4, sufficiently large 𝑟 and sufficiently small
𝜀,











𝜕
𝑘+𝑚

𝜕𝑟
𝑘
𝜕𝑡

𝑚
𝑄

𝑖
(𝑟, 𝑡)











≤ 𝐶𝑟
−𝜇
0

+ 𝜀, 𝑖 = 1, 2 (93)
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hold. Moreover, the map Φ
1 is reversible with respect to the

involution 𝐺 : (𝑡, 𝑟) → (−𝑡, 𝑟).

Proof. Since

∫

1

0

𝛼𝑇
0





𝑆 (𝜃𝑇

0
)





𝛼−1 



𝐶 (𝜃𝑇

0
)




𝑑𝜃

= lim
𝜖→0
+

∫

1/4

𝜖

𝛼𝑇
0





𝑆 (𝜃𝑇

0
)





𝛼−1

𝐶 (𝜃𝑇
0
) 𝑑𝜃

− lim
𝜖→0
+

∫

1/2−𝜖

1/4

𝛼𝑇
0





𝑆 (𝜃𝑇

0
)





𝛼−1

𝐶 (𝜃𝑇
0
) 𝑑𝜃

− lim
𝜖→0
+

∫

3/4

1/2+𝜖

𝛼𝑇
0





𝑆 (𝜃𝑇

0
)





𝛼−1

𝐶 (𝜃𝑇
0
) 𝑑𝜃

+ lim
𝜖→0
+

∫

1−𝜖

3/4

𝛼𝑇
0





𝑆 (𝜃𝑇

0
)





𝛼−1

𝐶 (𝜃𝑇
0
) 𝑑𝜃

=










𝑆 (

𝑇
0

4

)










𝛼−1

𝑆 (

𝑇
0

4

) − lim
𝜖→0
+





𝑆 (𝜖𝑇

0
)





𝛼−1

𝑆 (𝜖𝑇
0
)

− [ lim
𝜖→0
+









𝑆 ((

1

2

− 𝜖) 𝑇
0
)









𝛼−1

𝑆 ((

1

2

− 𝜖) 𝑇
0
)

−










𝑆 (

𝑇
0

4

)










𝛼−1

𝑆 (

𝑇
0

4

) ]

− [










𝑆 (

3𝑇
0

4

)










𝛼−1

𝑆 (

3𝑇
0

4

)

− lim
𝜖→0
+









𝑆 ((

1

2

+ 𝜖) 𝑇
0
)









𝛼−1

𝑆 ((

1

2

+ 𝜖) 𝑇
0
)]

+ [ lim
𝜖→0
+





𝑆 ((1 − 𝜖) 𝑇

0
)





𝛼−1

𝑆 ((1 − 𝜖) 𝑇
0
)

−










𝑆 (

3𝑇
0

4

)










𝛼−1

𝑆 (

3𝑇
0

4

)]

= 4










𝑆 (

𝑇
0

4

)










𝛼−1

𝑆 (

𝑇
0

4

) = 4,

(94)

then we get ∫

1

0
𝛼𝑇

0
|𝑆(𝜃𝑇

0
)|
𝛼−1

|𝐶(𝜃𝑇
0
)|𝑑𝜃 is bounded.

Let 𝛼𝑇
0
|𝑆(𝜐𝑇

0
)|
𝛼−1

𝐶(𝜐𝑇
0
) = 𝑆

1
(𝜐). Set (𝑟(𝜃), 𝑡(𝜃)) =

Φ
𝜃
(𝑟, 𝑡) with Φ

0
= 𝑖𝑑 for the flow:

𝑡 (𝜃) = 𝑡 + 𝑟𝜃 + 𝐷
1

(𝑟, 𝑡, 𝜃) , 𝑟 (𝜃) = 𝑟 + 𝐷
2

(𝑟, 𝑡, 𝜃) .

(95)

Since

Φ
𝜃

= Φ
0

+ ∫

𝜃

0

𝑋 ⋅ Φ
𝜐
𝑑𝜐, (96)

where 𝑋 denotes the vector field of the system (86), we
have

𝑡 (𝜃) = 𝑡

+ ∫

𝜃

0

[𝑟 (𝜐) + 𝐹
0

(𝑟 (𝜐) , 𝜐) + 𝐹
1

(𝑟 (𝜐) , 𝜐, 𝑡 (𝜐))] 𝑑𝜐

= 𝑡 + 𝑟𝜃

+ ∫

𝜃

0

[𝐷
2

(𝑟, 𝑡, 𝜐) + 𝐹
0

(𝑟 + 𝐷
2
, 𝜐)

+𝐹
1

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)] 𝑑𝜐

= 𝑡 + 𝑟𝜃 + 𝐷
1

(𝑟, 𝑡, 𝜃) ,

𝑟 (𝜃) = 𝑟

+ ∫

𝜃

0

[𝐹
2

(𝑟 (𝜐) , 𝜐, 𝑡 (𝜐))

+𝑆
1

(𝜐) 𝐹
3

(𝑟 (𝜐) , 𝜐, 𝑡 (𝜐))] 𝑑𝜐

= 𝑟

+ ∫

𝜃

0

[𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

+𝑆
1

(𝜐) 𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)] 𝑑𝜐

= 𝑟 + 𝐷
2

(𝑟, 𝑡, 𝜃) ,

(97)

which is equivalent to the following equations for 𝐷
1
and

𝐷
2
:

𝐷
1

(𝑟, 𝑡, 𝜃) = ∫

𝜃

0

[𝐷
2

(𝑟, 𝑡, 𝜐) + 𝐹
0

(𝑟 + 𝐷
2
, 𝜐)

+𝐹
1

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)] 𝑑𝜐,

𝐷
2

(𝑟, 𝑡, 𝜃) = ∫

𝜃

0

[𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

+𝑆
1

(𝜐) 𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)] 𝑑𝜐.

(98)

Let 𝐷(𝑟, 𝑡, 𝜃) = (𝐷
1
(𝑟, 𝑡, 𝜃), 𝐷

2
(𝑟, 𝑡, 𝜃)), |𝐷

1
(𝑟, 𝑡, 𝜃)| =

sup(𝑟,𝑡,𝜃)∈
(𝑅
+
×T×(0,1])

|𝐷
1
(𝑟, 𝑡, 𝜃)|. Define ‖𝐷‖ =: |𝐷

1
|/3 + 2|𝐷

1
|/3, and

𝑇(𝐷) =: (𝑇
1
(𝐷), 𝑇

2
(𝐷)), where

𝑇
1

(𝐷) = ∫

𝜃

0

[𝐷
2

(𝑟, 𝑡, 𝜐) + 𝐹
0

(𝑟 + 𝐷
2
, 𝜐)

+𝐹
1

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)] 𝑑𝜐,

𝑇
2

(𝐷) = ∫

𝜃

0

[𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

+𝑆
1

(𝜐) 𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)] 𝑑𝜐.

(99)
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Next, we will prove that 𝑇 is a contraction map. From the
definition of 𝑇(𝐷), we have






𝑇
1
𝐷 − 𝑇

1
𝐷







=











∫

𝜃

0

[𝐷
2

− 𝐷
2

+ 𝐹
0

(𝑟 + 𝐷
2
, 𝜐) − 𝐹

0
(𝑟 + 𝐷

2
)

+ 𝐹
1

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

−𝐹
1

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)] 𝑑𝜐











≤






𝐷

2
− 𝐷

2







+ ∫

1

0













𝜕𝐹
0

(𝑟 + 𝑠 (𝐷
2

− 𝐷
2
) , 𝜐)

𝜕𝑟













⋅






𝐷

2
− 𝐷

2






𝑑𝑠

+ ∫

1

0













𝜕𝐹
1

(𝑟 + 𝑠 (𝐷
2

− 𝐷
2
) , 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑟













⋅






𝐷

2
− 𝐷

2






𝑑𝑠

+ ∫

1

0













𝜕𝐹
1

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝑠 (𝐷

1
− 𝐷

1
))

𝜕𝑡













⋅






𝐷

1
− 𝐷

1






𝑑𝑠

≤

6

5






𝐷

2
− 𝐷

2






+

1

4






𝐷

1
− 𝐷

1






,






𝑇
2
𝐷 − 𝑇

2
𝐷







= ∫

𝜃

0

[𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

− 𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

+ 𝑆
1

(𝜐) 𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

−𝑆
1

(𝜐) 𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)] 𝑑𝜐

≤ ∫

1

0













𝜕𝐹
2

(𝑟 + 𝑠 (𝐷
2

− 𝐷
2
) , 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑟













⋅






𝐷

2
− 𝐷

2






𝑑𝑠

+ ∫

1

0













𝜕𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝑠 (𝐷

1
− 𝐷

1
))

𝜕𝑡













⋅






𝐷

1
− 𝐷

1






𝑑𝑠

+ ∫

1

0





𝑆
1

(𝜐)




𝑑𝜐

⋅ ∫

1

0













𝜕𝐹
3

(𝑟 + 𝑠 (𝐷
2

− 𝐷
2
) , 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑟













⋅






𝐷

2
− 𝐷

2






𝑑𝑠

+ ∫

1

0





𝑆
1

(𝜐)




𝑑𝜐

⋅ ∫

1

0













𝜕𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝑠 (𝐷

1
− 𝐷

1
))

𝜕𝑡













⋅






𝐷

1
− 𝐷

1






𝑑𝑠

≤

3

20






𝐷

2
− 𝐷

2






+

1

8






𝐷

1
− 𝐷

1






,

(100)

by Lemma 11 and the boundedness of ∫

1

0
|𝑆

1
(𝜐)|𝑑𝜐. Then we

have






𝑇 (𝐷) − 𝑇 (𝐷)







=

1

3






𝑇
1

(𝐷) − 𝑇
1

(𝐷)






+

2

3






𝑇
2

(𝐷) − 𝑇
2

(𝐷)







≤

1

3

× (

6

5






𝐷

2
− 𝐷

2






+

1

4






𝐷

1
− 𝐷

1






)

+

2

3

× (

3

20






𝐷

2
− 𝐷

2






+

1

8






𝐷

1
− 𝐷

1






)

=

1

6






𝐷

1
− 𝐷

1






+

1

2






𝐷

2
− 𝐷

2







≤

3

4

× (

1

3






𝐷

1
− 𝐷

1






+

2

3






𝐷

2
− 𝐷

2






)

≤

3

4






𝐷 − 𝐷







,

(101)

by the definition of the norm ‖ ⋅ ‖.
Using the contraction principle, one verifies easily that

for 𝑟 ≥ 𝑟
0
, (98) has a unique solution in the space {|𝐷

1
| ≤

1, |𝐷
2
| ≤ 1}. Moreover, 𝐷

1
and 𝐷

2
are smooth.

Next, we will estimate 𝑄
1
(𝑟, 𝑡) and 𝑄

2
(𝑟, 𝑡) as follows:

𝑄
1

(𝑟, 𝑡) = 𝐷
1

(𝑟, 𝑡, 1) − ∫

1

0

𝐹
0

(𝑟, 𝜐) 𝑑𝜐

= ∫

1

0

[𝐷
2

(𝑟, 𝑡, 𝜐)

+ ∫

1

0

𝜕𝐹
0

(𝑟 + 𝑠𝐷
2
, 𝜐)

𝜕𝑟

⋅ 𝐷
2
𝑑𝑠

+𝐹
1

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
) ] 𝑑𝜐,

𝑄
2

(𝑟, 𝑡) = 𝐷
2

(𝑟, 𝑡, 1)

= ∫

1

0

[𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

+𝑆
1

(𝜐) 𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)] 𝑑𝜐.

(102)
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In order to prove (93), we just need to prove that










𝜕
𝑘+𝑚

𝜕𝑟
𝑘
𝜕𝑡

𝑚
𝐷

𝑖
(𝑟, 𝑡, 𝜃)











≤ 𝐶𝑟
−𝜇
0

+ 𝐶𝜀, 𝑖 = 1, 2 (103)

hold for 𝑘 + 𝑚 ≤ 4.
(1) When 𝑘 + 𝑚 = 0,





𝐷

2
(𝑟, 𝑡, 𝜃)






≤ ∫

𝜃

0

(




𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)





+




𝑆
1

(𝜐)









𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)




) 𝑑𝜐

≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) + ∫

1

0





𝑆
1

(𝜐)




𝑑𝜐 ⋅ (𝐶𝜀) ≤ 𝐶 (𝑟

−𝜇
0

+ 𝜀) ,





𝐷

1
(𝑟, 𝑡, 𝜃)






≤




𝐷

2
(𝑟, 𝑡, 𝜃)






+ ∫

𝜃

0

(




𝐹
0

(𝑟 + 𝐷
2
, 𝜐)





+





𝐹
1

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)




) 𝑑𝜐,

≤




𝐷

2
(𝑟, 𝑡, 𝜐)





+ ∫

𝜃

0

(𝐶𝑟
−𝜇
0

+ 𝐶𝑟
−𝜇
0

+ 𝐶𝜀) 𝑑𝜐

≤




𝐷

2
(𝑟, 𝑡, 𝜃)





+ 𝐶 (𝑟

−𝜇
0

+ 𝜀) ≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ,

(104)

where 𝜇
0

= min((1 + 𝛾 − 3𝑏/2)/(2𝑏 − 1), (2 − 4𝑏 − 𝜏)/(2𝑏 −

1), (3 − 4𝑏 − 𝑎)/(2𝑏 − 1)).
(2) When 𝑚 = 0 and 𝑘 ̸= 0, we check the case when 𝑘 = 1

firstly









𝜕𝐷
2

(𝑟, 𝑡, 𝜃)

𝜕𝑟










≤ ∫

𝜃

0











𝜕𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑟











⋅ (1 +










𝜕𝐷
2

(𝑟, 𝑡, 𝜐)

𝜕𝑟










) 𝑑𝜐

+ ∫

𝜃

0











𝜕𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑡











⋅ (1 +










𝜕𝐷
1

(𝑟, 𝑡, 𝜐)

𝜕𝑟










) 𝑑𝜐

+ ∫

1

0





𝑆
1

(𝜐)




𝑑𝜐 ⋅ ∫

𝜃

0











𝜕𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑟











⋅ (1 +










𝜕𝐷
2

(𝑟, 𝑡, 𝜐)

𝜕𝑟










) 𝑑𝜐

+ ∫

1

0





𝑆
1

(𝜐)




𝑑𝜐 ⋅ ∫

𝜃

0











𝜕𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑡











⋅ (1 +










𝜕𝐷
1

(𝑟, 𝑡, 𝜐)

𝜕𝑟










) 𝑑𝜐

≤ 𝐶𝑟
−1

(𝑟
−𝜇
0

+ 𝜀) ⋅ (1 +










𝜕𝐷
2

(𝑟, 𝑡, 𝜐)

𝜕𝑟










)

+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ⋅ (1 +










𝜕𝐷
1

(𝑟, 𝑡, 𝜐)

𝜕𝑟










) ,










𝜕𝐷
1

(𝑟, 𝑡, 𝜃)

𝜕𝑟










≤










𝜕𝐷
2

(𝑟, 𝑡, 𝜃)

𝜕𝑟










+ ∫

𝜃

0











𝜕𝐹
0

(𝑟 + 𝐷
2
, 𝜐)

𝜕𝑟











⋅ (1 +










𝜕𝐷
2

(𝑟, 𝑡, 𝜐)

𝜕𝑟










) 𝑑𝜐

+ ∫

𝜃

0











𝜕𝐹
1

(𝑟+𝐷
2
, 𝜐, 𝑡+𝑟𝜐+𝐷

1
)

𝜕𝑟











⋅ (1+










𝜕𝐷
2

(𝑟, 𝑡, 𝜐)

𝜕𝑟










) 𝑑𝜐

+ ∫

𝜃

0











𝜕𝐹
1

(𝑟+ 𝐷
2
, 𝜐, 𝑡+𝑟𝜐+𝐷

1
)

𝜕𝑡











⋅ (1+










𝜕𝐷
1

(𝑟, 𝑡, 𝜐)

𝜕𝑟










) 𝑑𝜐

≤










𝜕𝐷
2

(𝑟, 𝑡, 𝜃)

𝜕𝑟










+𝐶𝑟
−1

(𝑟
−𝜇
0
+𝜀) ⋅ (1+










𝜕𝐷
2

(𝑟, 𝑡, 𝜐)

𝜕𝑟










)

+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ⋅ (1 +










𝜕𝐷
1

(𝑟, 𝑡, 𝜐)

𝜕𝑟










) .

(105)

Hence,









𝜕𝐷
1

(𝑟, 𝑡, 𝜃)

𝜕𝑟










≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ,










𝜕𝐷
2

(𝑟, 𝑡, 𝜃)

𝜕𝑟










≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) .

(106)

Now, we proceed inductively by assuming that for 𝑗 < 𝑘 − 1

the estimates










𝜕
𝑗
𝐷

1
(𝑟, 𝑡, 𝜃)

𝜕𝑟
𝑗











≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ,











𝜕
𝑗
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟
𝑗











≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ,

(107)

hold and we wish to conclude that the same estimate holds
for 𝑗 = 𝑘











𝜕
𝑘
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟
𝑘











≤ ∫

𝜃

0











𝜕𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑟











⋅











𝜕
𝑘
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟
𝑘











𝑑𝜐

+ ∫

𝜃

0











𝜕𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑡











⋅











𝜕
𝑘
𝐷

1
(𝑟, 𝑡, 𝜐)

𝜕𝑟
𝑘











𝑑𝜐

+ 𝐶 (𝑟
−𝜇
0

+ 𝜀)

⋅ ∑

𝑘
1
+𝑘
2
=𝑘

∑

𝑖1+⋅⋅⋅+𝑖𝑠=𝑘1

𝑗1+⋅⋅⋅+𝑗]=𝑘2











𝜕
𝑖
1
(𝑟 + 𝐷

2
)

𝜕𝑟
𝑖
1











⋅ ⋅ ⋅











𝜕
𝑖
𝑠
(𝑟 + 𝐷

2
)

𝜕𝑟
𝑖
𝑠











×











𝜕
𝑗
1
(𝑟 + 𝐷

1
)

𝜕𝑟
𝑗
1











⋅ ⋅ ⋅











𝜕
𝑗]

(𝑟 + 𝐷
1
)

𝜕𝑟
𝑗]
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+ ∫

1

0





𝑆
1

(𝜐)




𝑑𝜐

⋅ ∫

𝜃

0











𝜕𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑟











⋅











𝜕
𝑘
𝐷

2
(𝑟, 𝑡, 𝜐)

𝜕𝑟
𝑘











𝑑𝜐

+ ∫

1

0





𝑆
1

(𝜐)




𝑑𝜐

⋅ ∫

𝜃

0











𝜕𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑡











⋅











𝜕
𝑘
𝐷

1
(𝑟, 𝑡, 𝜐)

𝜕𝑟
𝑘











𝑑𝜐

+ 𝐶 (𝑟
−𝜇
0

+ 𝜀)

⋅ ∑

𝑘
1
+𝑘
2
=𝑘

∑

𝑖1+⋅⋅⋅+𝑖𝑠=𝑘1

𝑗1+⋅⋅⋅+𝑗]=𝑘2











𝜕
𝑖
1
(𝑟 + 𝐷

2
)

𝜕𝑟
𝑖
1











⋅ ⋅ ⋅











𝜕
𝑖
𝑠
(𝑟 + 𝐷

2
)

𝜕𝑟
𝑖
𝑠











×











𝜕
𝑗
1
(𝑟 + 𝐷

1
)

𝜕𝑟
𝑗
1











⋅ ⋅ ⋅











𝜕
𝑗]

(𝑟 + 𝐷
1
)

𝜕𝑟
𝑗]











≤ 𝐶𝑟
−1

(𝑟
−𝜇
0

+ 𝜀) ⋅











𝜕
𝑘
𝐷

2
(𝑟, 𝑡, 𝜐)

𝜕𝑟
𝑘











+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ⋅











𝜕
𝑘
𝐷

1
(𝑟, 𝑡, 𝜐)

𝜕𝑟
𝑘











+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ,











𝜕
𝑘
𝐷

1
(𝑟, 𝑡, 𝜃)

𝜕𝑟
𝑘











≤











𝜕
𝑘
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟
𝑘











+ ∫

𝜃

0











𝜕𝐹
0

(𝑟 + 𝐷
2
, 𝜐)

𝜕𝑟











⋅











𝜕
𝑘
𝐷

2
(𝑟, 𝑡, 𝜐)

𝜕𝑟
𝑘











𝑑𝜐

+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ⋅ ∑

𝑖
1
+⋅⋅⋅+𝑖
𝑠
=𝑘











𝜕
𝑖
1
(𝑟 + 𝐷

2
)

𝜕𝑟
𝑖
1











⋅ ⋅ ⋅











𝜕
𝑖
𝑠
(𝑟 + 𝐷

2
)

𝜕𝑟
𝑖
𝑠











+ ∫

𝜃

0











𝜕𝐹
1

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑟











⋅











𝜕
𝑘
𝐷

2
(𝑟, 𝑡, 𝜐)

𝜕𝑟
𝑘











𝑑𝜐

+ ∫

𝜃

0











𝜕𝐹
1

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑡











⋅











𝜕
𝑘
𝐷

1
(𝑟, 𝑡, 𝜐)

𝜕𝑟
𝑘











𝑑𝜐

+ 𝐶 (𝑟
−𝜇
0

+ 𝜀)

⋅ ∑

𝑘
1
+𝑘
2
=𝑘

∑

𝑖1+⋅⋅⋅+𝑖𝑠=𝑘1

𝑗1+⋅⋅⋅+𝑗]=𝑘2











𝜕
𝑖
1
(𝑟 + 𝐷

2
)

𝜕𝑟
𝑖
1











⋅ ⋅ ⋅











𝜕
𝑖
𝑠
(𝑟 + 𝐷

2
)

𝜕𝑟
𝑖
𝑠











×











𝜕
𝑗
1
(𝑟 + 𝐷

1
)

𝜕𝑟
𝑗
1











⋅ ⋅ ⋅











𝜕
𝑗]

(𝑟 + 𝐷
1
)

𝜕𝑟
𝑗]











≤











𝜕
𝑘
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟
𝑘











+ 𝐶𝑟
−1

(𝑟
−𝜇
0

+ 𝜀) ⋅











𝜕
𝑘
𝐷

2
(𝑟, 𝑡, 𝜐)

𝜕𝑟
𝑘











+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ⋅











𝜕
𝑘
𝐷

1
(𝑟, 𝑡, 𝜐)

𝜕𝑟
𝑘











+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ,

(108)

where 𝑠 + ] ≤ 2. Hence,










𝜕
𝑘
𝐷

1
(𝑟, 𝑡, 𝜃)

𝜕𝑟
𝑘











≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ,











𝜕
𝑘
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟
𝑘











≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) .

(109)

(3) We can prove that









𝜕
𝑚

𝐷
1

(𝑟, 𝑡, 𝜃)

𝜕𝑡
𝑚










≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ,










𝜕
𝑚

𝐷
2

(𝑟, 𝑡, 𝜃)

𝜕𝑡
𝑚










≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀)

(110)

similarly to (2) when 𝑚 ̸= 0.
(4) we have that











𝜕
2
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











≤ ∫

𝜃

0











𝜕𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑟











⋅











𝜕
2
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











𝑑𝜐

+ ∫

𝜃

0











𝜕𝐹
2

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑡











⋅











𝜕
2
𝐷

1
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











𝑑𝜐

+ 𝐶 (𝑟
−𝜇
0

+ 𝜀)

⋅ (

𝜕𝐷
2

(𝑟, 𝑡, 𝜃)

𝜕𝑟

+

𝜕𝐷
1

(𝑟, 𝑡, 𝜃)

𝜕𝑡

+

𝜕𝐷
1

(𝑟, 𝑡, 𝜃)

𝜕𝑟

+

𝜕𝐷
2

(𝑟, 𝑡, 𝜃)

𝜕𝑡

+ 1)

+ ∫

1

0





𝑆
1

(𝜐)




𝑑𝜐

⋅ ∫

𝜃

0











𝜕𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑟











⋅











𝜕
2
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











𝑑𝜐

+ ∫

1

0





𝑆
1

(𝜐)




𝑑𝜐

⋅ ∫

𝜃

0











𝜕𝐹
3

(𝑟 + 𝐷
2
, 𝜐, 𝑡 + 𝑟𝜐 + 𝐷

1
)

𝜕𝑡











⋅











𝜕
2
𝐷

1
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











𝑑𝜐

≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ⋅











𝜕
2
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ⋅











𝜕
2
𝐷

1
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ,











𝜕
2
𝐷

1
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











≤











𝜕
2
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ⋅











𝜕
2
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ⋅











𝜕
2
𝐷

1
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











+ 𝐶 (𝑟
−𝜇
0

+ 𝜀) .

(111)
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Hence,











𝜕
2
𝐷

1
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) ,











𝜕
2
𝐷

2
(𝑟, 𝑡, 𝜃)

𝜕𝑟𝜕𝑡











≤ 𝐶 (𝑟
−𝜇
0

+ 𝜀) .

(112)

(5) We can prove (103) similarly to (4) for the left 𝑘 + 𝑚 ≤

4.

Proof of Boundedness. FromTheorem 1.1 in [21]we can seeΦ
1

possesses a sequence of invariant circles tending to infinity.
So, in the original system (13), there exists a corresponding
sequence of invariant tori in phase space (𝑥, �̇�, 𝑡) ∈ R2

× T .
Then any solution of system (13) is bounded because it must
stay within one of those tori.

4. The Proof of Unboundedness

In this section, we will prove that all solutions of (8) are
unbounded if 𝐵 < 0. In this case, 𝐴 < 0.

Consider (8) which is equivalent to the following system:

�̇� = 𝑦,

̇𝑦 = −𝐴|𝑥|
𝛼−1

𝑥 − 𝑓 (𝑥) 𝑦 − 𝜀𝑒 (𝑡) |𝑥|
𝛼−1

𝑥 + 𝑝 (𝑡) .

(113)

Replacing (18) by an “auxiliary” system

�̇� = 𝑦,

̇𝑦 = 𝐴|𝑥|
𝛼−1

𝑥.

(114)

Under the transformation (21), the system (113) is trans-
formed into the form

𝑑𝜌

𝑑𝑡

= −

1

2 − 2𝑏

𝜌
2(1−𝑏)

𝑔

(𝜑) +

̂
ℎ
1

(𝜌, 𝜑, 𝑡) ,

𝑑𝜑

𝑑𝑡

= 𝜌
1−2𝑏

𝑔 (𝜑) + 𝑔
1

(𝜌, 𝜑, 𝑡) ,

(115)

where

𝑔 (𝜑) = (1 − 𝑏) 𝑑 + 2𝑏𝑑𝐴




𝑆 (𝜑𝑇

0
)





𝛼+1

,

̂
ℎ
1

(𝜌, 𝜑, 𝑡) = −𝑇
0
𝑑𝜌𝑓 (𝜌

𝑏
𝑆 (𝜑𝑇

0
)) 𝑆


(𝜑𝑇

0
) 𝐶 (𝜑𝑇

0
)

− 𝑇
0
𝑑𝜀𝜌

2−2𝑏



𝑆 (𝜑𝑇

0
)





𝛼−1

𝑆 (𝜑𝑇
0
) 𝑆


(𝜑𝑇

0
) 𝑒 (𝑡)

+ 𝑇
0
𝑑𝜌

𝑏
𝑆

(𝜑𝑇

0
) 𝑝 (𝑡) ,

𝑔
1

(𝜌, 𝜑, 𝑡) = 𝑏𝑑𝑓 (𝜌
𝑏
𝑆 (𝜑𝑇

0
)) 𝑆 (𝜑𝑇

0
) 𝐶 (𝜑𝑇

0
)

+ 𝑏𝑑𝜀𝜌
1−2𝑏




𝑆 (𝜑𝑇

0
)





𝛼+1

𝑒 (𝑡)

− 𝑏𝑑𝜌
𝑏−1

𝑆 (𝜑𝑇
0
) 𝑝 (𝑡) .

(116)

Thus, the system (115) can be written in the form

𝑑𝜌

𝑑𝑡

= −

1

2 (1 − 𝑏)

𝑔

(𝜑) 𝜌

2(1−𝑏)
+ 𝑂 (𝜀𝜌

2(1−𝑏)
) ,

𝑑𝜑

𝑑𝑡

= 𝜌
1−2𝑏

𝑔 (𝜑) + 𝑂 (𝜀𝜌
1−2𝑏

) .

(117)

From the equality

1

2

𝐶
2

(𝑡) +

−𝐴

𝛼 + 1

|𝑆 (𝑡)|
𝛼+1

=

1

2

, ∀𝑡 ∈ R, (118)

it follows that

0 ≤




𝑆 (𝜑𝑇

0
)





𝛼+1

≤ −

𝛼 + 1

2𝐴

. (119)

Hence, the function 𝑔(𝜑) is 𝐶
1, 1-periodic and change the

sign. Since |𝑆(𝑇
0

− 𝜑𝑇
0
)| = |𝑆(𝜑𝑇

0
)| for any 𝜑 ∈ [0, 1], there

exists 𝜑
1

∈ (0, 1/2) such that





𝑆 (𝑇

0
− 𝜑

1
𝑇
0
)





𝛼+1

=




𝑆 (𝜑

1
𝑇
0
)





𝛼+1

= −

𝛼 + 1

4𝐴

. (120)

That is, 𝑔(𝜑
1
) = 𝑔(1 − 𝜑

1
) = 0. In view of

𝑆 (𝑇
0

− 𝜑𝑇
0
) = −𝑆 (𝜑𝑇

0
) , 𝐶 (𝑇

0
− 𝜑𝑇

0
) = 𝐶 (𝜑𝑇

0
) ,

(121)

we find

𝑔

(𝜑

1
) ⋅ 𝑔


(1 − 𝜑

1
)

= −(𝛼 + 1)
2
(2𝑏𝑑𝐴𝑇

0
)
2



𝑆 (𝜑

1
𝑇
0
)





2(𝛼−1)

𝑆
2

(𝜑
1
𝑇
0
) 𝐶

2
(𝜑

1
𝑇
0
)

< 0.

(122)

Hence, we obtain that 𝑔

(𝜑

1
) or 𝑔


(1 − 𝜑

1
) is negative. This

proves that there exists a 𝜑
∗ such that 𝑔(𝜑

∗
) = 0 and 𝑔


(𝜑

∗
) <

0. Therefore, there are 𝜐 > 0 and 𝛿
0

> 0 such that 𝑔

(𝜑) < −𝛿

0

for 𝜑 ∈ [𝜑
∗

− 𝜐, 𝜑
∗

+ 𝜐] and 𝑔(𝜑) > 0 for 𝜑 ∈ (𝜑
∗

− 𝜐, 𝜑
∗
),

𝑔(𝜑) < 0 for 𝜑 ∈ (𝜑
∗
, 𝜑

∗
+ 𝜐). Let

K
𝐽,𝜐

= {(𝜌, 𝜑) ∈ R
+

× T : 𝜌 > 𝐽, 𝜑 ∈ [𝜑
∗

− 𝜐, 𝜑
∗

+ 𝜐]} .

(123)

Then, if 𝐽 is sufficiently large, on the setK
𝐽,𝜐
, we have

−

1

2 (1 − 𝑏)

𝑔

(𝜑) 𝜌

2(1−𝑏)
+ 𝑂 (𝜀𝜌

2(1−𝑏)
) >

𝛿
0

2

⋅ 𝜌
2(1−𝑏)

,

(124)

𝜌
1−2𝑏

𝑔 (𝜑) + 𝑂 (𝜀𝜌
1−2𝑏

) > 0,

for 𝜌 ≥ 𝐽, 𝜑 ∈ [𝜑
∗

− 𝜐, 𝜑
∗

−

𝜐

2

] ,

𝜌
1−2𝑏

𝑔 (𝜑) + 𝑂 (𝜀𝜌
1−2𝑏

) < 0,

for 𝜌 ≥ 𝐽, 𝜑 ∈ [𝜑
∗

+

𝜐

2

, 𝜑
∗

+ 𝜐] .

(125)
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From (117) and (124) we obtain, for 𝑡 ≥ 0,

𝜌 (𝑡, 𝜌
0
, 𝜑

0
)

= 𝜌
0

+ ∫

𝑡

0

(−

1

2 (1 − 𝑏)

𝑔

(𝜑) 𝜌

2(1−𝑏)
+ 𝑂 (𝜀𝜌

2(1−𝑏)
)) 𝑑𝑡

> 𝜌
0

+ ∫

𝑡

0

𝛿
0

2

⋅ 𝜌
2(1−𝑏)

𝑑𝑡 ≥ 𝜌
0

> 𝐽.

(126)

Moreover, for 𝜌(𝑡, 𝜌
0
, 𝜑

0
) > 𝐽 and𝜑(𝑡, 𝜌

0
, 𝜑

0
) ∈ [𝜑

∗
−𝜐, 𝜑

∗
−𝜐/

2] ∪ [𝜑
∗

+ 𝜐/2, 𝜑
∗

+ 𝜐], we have

𝜌
1−2𝑏

𝑔 (𝜑) + 𝑂 (𝜀𝜌
1−2𝑏

)

= 𝜌
1−2𝑏

𝑔

(𝜑) (𝜑 − 𝜑

∗
) + 𝑂 (𝜀𝜌

1−2𝑏
)

< −

𝛿
0

2

(𝜑 − 𝜑
∗
) 𝜌

1−2𝑏
.

(127)

From (126) and (127), it follows that any solution (𝜌(𝑡, 𝜌
0
,

𝜑
0
), 𝜑(𝑡, 𝜌

0
, 𝜑

0
)) of (115) with the initial condition (𝜌(0, 𝜌

0
,

𝜑
0
), 𝜑(0, 𝜌

0
, 𝜑

0
)) = (𝜌

0
, 𝜑

0
) ∈ K

𝐽,𝜐
always stays in K

𝐽,𝜐
and

satisfies 𝜌(𝑡, 𝜌
0
, 𝜑

0
) > 𝛿𝑡 + 𝜌(0) with 𝛿 = 𝛿

3−2𝑏

0
/2, for all 𝑡 ≥ 0.

The proof of Theorem 3 is completed.

5. The Proof of Theorem 4

In this section, we will proveTheorem 4 by using the abstract
result on the existence of quasi-periodic solutions proved
in [24] in the context Aubry-Mather theory for reversible
systems. We only need to show that the Poincaré map (92)
has the monotone property; that is,

𝜕𝑡
1

𝜕𝑟

(𝑟, 𝑡) > 0. (128)

We can get that










𝜕𝐹
0

(𝑟, 𝜃)

𝜕𝑟










≤ 𝐶𝑟
−1−(1+𝛾−3𝑏/2)/(2𝑏−1) (129)

by Lemma 11, and









𝜕𝑄
2

(𝑟, 𝑡)

𝜕𝑟










≤ 𝑟
−𝜇
0

+ 𝜀 (130)

by Lemma 12. Then we have

𝜕𝑡
1

𝜕𝑟

(𝑟, 𝑡) = 1 + ∫

1

0

𝜕𝐹
0

𝜕𝑟

𝑑𝜃 +

𝜕𝑄
2

𝜕𝑟

→ 𝑐
0
, as 𝑟 → +∞,

(131)

where 𝑐
0

≥ 1 − 𝜀. Therefore, we have

𝜕𝑡
1

𝜕𝑟

(𝑟, 𝑡) > 0 (132)

as 𝑟 ≫ 1 and 𝜀 ≪ 1. This proves the validity of (128).
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