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There are obtained integral form and recurrence representations for some Fourier series and connected with themFavard constants.
The method is based on preliminary integration of Fourier series which permits to establish general recursion formulas for Favard
constants. This gives the opportunity for effective summation of infinite series and calculation of some classes of multiple singular
integrals by the Favard constants.

1. Introduction

The Fourier series and related with them Achieser-Krein-
Favard constants, often simply called Favard constants, have
significant theoretical and practical roles in many areas [1,
2]. These remarkable mathematical constants are introduced
firstly in the theory of Fourier series and approximations of
functions by trigonometric polynomials [3].

The classical definitions of Favard constants are given by
the infinite series [1, 4, 5]
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These constants find wide applications in the approxima-
tion theory for exact and asymptotic results on the approx-
imation of functions, and especially for the best approxi-
mations of trigonometric and other classes of functions in
different spaces and related inequalities [1, 5–14]. In partic-
ular, many important applications are concerned with the
approximation of Euler, cardinal, periodic, and other type of

splines [15–17]. It can be noted that Favard constants are con-
nected to approximations that are best in a pointwise sense
in comparison, for instance, with the Lebesgue constants
which are connected to approximations that are best in a
least-squares sense (Fourier series) [5]. The Favard constants
play also an important role in estimating optimal quadrature
and cubature formulas, calculation of singular integrals,
some classes of differential, integrodifferential and integral
equations [18–24], and in other areas.

Nevertheless widely used, as a whole, the properties of the
Favard constants have not been investigated well enough [14],
except for some particular cases.

Different methods for their calculation are given, for
instance, in [2, Ch. 5.2]. In general thesemethods are based on
the properties of the well-known constants and special func-
tions as gamma function Γ(𝑧), generalized Riemann zeta
function 𝜁(𝑧, 𝑎), the Bernoulli polynomials 𝐵

𝑛
(𝑥) and the

Bernoulli numbers 𝐵
𝑛
, and the Euler polynomials 𝐸

𝑛
(𝑥) and

the Euler numbers 𝐸
𝑛
, given by the following expressions [2]:
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From now on we will use the following notations:
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where the threemultiple singular integrals (4) contain exactly
𝑛 integral operations.

The main purpose of this paper is to establish new
recursive formulas for the Favard constants (1), including only
finite number of terms and recursive formulas for (2). They
will be further used to obtain new integral representations for
the previously stated objects, in particular for calculation of
the multiple singular integrals (4) and summation of series.

2. Recursive Representations for
𝐾
𝑟

and Some Fourier Series

We will prove the following.
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Proof. We will use the method of induction and preliminary
integration of appropriate Fourier series. Let us start by the
well-known expansion [2]
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If we put 𝑥 = 𝜋/2 in the same equality (12) and make a
little processing, we will arrive at the value𝐾
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/8.
On the other hand, after integration of both sides of (9),
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Going on the indicated procedure on the base of induc-
tion, we easily arrive at the recursive representations (7a) and
(7b) and complete the proof.

Remark 2. The scheme of this proof is valid for the most of
the other statements in this paper.

In connection with Theorem 1, we would like to note
another representation of𝐾

𝑟
(see, e.g., [25]). It can be written

in terms of Lerch transcendent [25], or as it is shown in [2,
Section 5.1.4]
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where the Bernoulli and Euler numbers are specified in (3).
Data for values of magnitudes of 𝐾

𝑟
using (7a) and (7b)

are shown in Table 1.
The equalities (10)–(13) outline a procedure for summing

up the numerical series 𝑇
2𝑠
, (𝑠 = 1, 2, 3, . . .) in (6). It leads to

the assertion.

Table 1: Exact and approximate values of the Favard constants 𝐾
𝑟
,

calculated by the recursive formulas (7a) and (7b) usingMathemat-
ica software package.

𝑟 Exact values of𝐾
𝑟

Approximate values of𝐾
𝑟

1 𝜋/2 1.5707963267948966192313216916
2 𝜋

2

/8 1.2337005501361698273543113749
3 𝜋

3

/24 1.2919281950124925073115131277
4 5𝜋

4

/384 1.2683475395052400681828168318
5 𝜋

5

/240 1.2750820199386727219280887918
6 61𝜋

6

/46080 1.2726723265645306132561498711
7 17𝜋

7

/40320 1.2734371248066831633864461900
8 277𝜋

8

/2064384 1.2731754806526058136347769671
9 31𝜋

9

/725760 1.2732612424724875463814366656
10 50521𝜋

10

/3715891200 1.2732323827293948495082797108
11 691𝜋

11

/159667200 1.2732419458721540967715077901
12 540553𝜋

12

/392398110720 1.2732387471572495304117396905

Corollary 3. The following recursive representation holds:
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where for 𝑠 = 1 by definition 𝑇
0
= 0.

It can be noted that the numbers 𝑇
2𝑠
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sented by the well known formula (see, e.g., [2, 5.1.2])
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2
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Corollary 4. The following recursive representation holds:
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In this connection we will note the explicit formula for
𝑄
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represented by the Bernoulli numbers (see [2, 5.2.1])
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It is easy to see that the constants𝐾
𝑟
satisfy the following
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1 = 𝐾
0
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2
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< ⋅ ⋅ ⋅ <

4

𝜋
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1
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𝐾
𝑟
= 4/𝜋.
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Theprocedure of getting the representations (11), (12), and
(16) with the help of (10) gives us an opportunity to lay down
the following.

Theorem 5. The following recursive representations hold:
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(𝑠 = 1, 2, 3, . . ., (0 ≤ 𝑥 ≤ 2𝜋), for 𝑠 = 1 by definition𝐷
0
(𝑥) = 1

and 𝑇
0
= 0, 0 < 𝑥 < 2𝜋).

At the same time both series in (26) have the well-known
representations [2, 5.4.2]
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∞

∑

𝑛=1

cos 𝑛𝑥
𝑛2𝑠

=
(−1)
𝑠−1

2 (2𝑠)!
(2𝜋)
2𝑠

𝐵
2𝑠
(
𝑥

2𝜋
)

(0 ≤ 𝑥 ≤ 2𝜋; 𝑠 = 1, 2, 3, . . .) .

(27)

The previously stated procedure for obtaining (26) can
now be applied on the strength of (22).This leads to the asser-
tion.

Theorem 6. The following recursive representations hold:
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(𝑠 = 1, 2, 3, . . ., (−𝜋 ≤ 𝑥 ≤ 𝜋); for 𝑠 = 1 by definition𝐷
0
(𝑥) = 1

and 𝑄
0
= 0, −𝜋 < 𝑥 < 𝜋).

At the same time, both series in (28) have the well-known
representations [2, 5.4.2]

∞

∑
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𝑛
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=
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2𝜋
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∑
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𝑛
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By analogy with the previous, the procedure for obtaining
(9), (14), and (17) with the help of (8) leads us to the following.

Theorem 7. The following recursive representations hold:

∞

∑

V=0

sin [(2V + 1) 𝑥]
(2V + 1)2𝑠−1

=
𝜋(−1)

𝑠−1

4
[𝐷
2𝑠−2

(𝑥) +

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝐾
2𝑝−1

𝐷
2𝑠−2𝑝−1

(𝑥)] ,

∞

∑

V=0

cos [(2V + 1) 𝑥]
(2V + 1)2𝑠

=
𝜋(−1)

𝑠

4
[𝐷
2𝑠−1

(𝑥) +

𝑠

∑

𝑝=1

(−1)
𝑝

𝐾
2𝑝−1

𝐷
2𝑠−2𝑝

(𝑥)] ,

(30)

𝑠 = 1, 2, 3, . . . (0 ≤ 𝑥 ≤ 𝜋); for 𝑠 = 1 by definition 𝐷
0
(𝑥) =

1 (0 < 𝑥 < 𝜋).

At the same time, both series in (30) have the well-known
formulas [2, 5.4.6]

∞

∑

V=0

sin [(2V + 1) 𝑥]
(2V + 1)2𝑠+1

=
(−1)
𝑠

𝜋
2𝑠+1

4 (2𝑠)!
𝐸
2𝑠
(
𝑥

𝜋
)

(0 < 𝑥 < 𝜋; 𝑠 = 0, 1, 2, . . .) ,

∞

∑

V=0

cos [(2V + 1) 𝑥]
(2V + 1)2𝑠

=
(−1)
𝑠

𝜋
2𝑠

4 (2𝑠 − 1)!
𝐸
2𝑠−1

(
𝑥

𝜋
)

(0 ≤ 𝑥 ≤ 𝜋; 𝑠 = 1, 2, . . .) .

(31)

The same procedure applied on the base of the equality

4

𝜋

∞

∑

V=0

(−1)
V cos [(2V + 1) 𝑥]

2V + 1
= 1 (−

𝜋

2
< 𝑥 <

𝜋

2
) , (32)

gives us the next theorem.
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Theorem 8. The following recursive representations hold:
∞

∑

V=0

(−1)
V cos [(2V + 1) 𝑥]
(2V + 1)2𝑠−1

=
𝜋(−1)

𝑠−1

4
[𝐷
2𝑠−2

(𝑥) +

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝐾
2𝑝
𝐷
2𝑠−2𝑝−2

(𝑥)] ,

∞

∑

V=0

(−1)
V sin [(2V + 1) 𝑥]

(2V + 1)2𝑠

=
𝜋(−1)

𝑠−1

4
[𝐷
2𝑠−1

(𝑥) +

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝐾
2𝑝
𝐷
2𝑠−2𝑝−1

(𝑥)]

(33)

(𝑠 = 1, 2, 3, . . ., (−𝜋/2 ≤ 𝑥 ≤ 𝜋/2), for 𝑠 = 1: 𝐾
0
declines,

𝐷
0
(𝑥) = 1, (−𝜋/2 < 𝑥 < 𝜋/2)).

At the same time, both series in (33) have the well-known
representations ([2, 5.4.6])
∞

∑

V=0

(−1)
V cos [(2V + 1) 𝑥]
(2V + 1)2𝑠+1

=
(−1)
𝑠

𝜋
2𝑠+1

4 (2𝑠)!
𝐸
2𝑠
(
𝑥

𝜋
+
1

2
)

(−
𝜋

2
< 𝑥 <

𝜋

2
; 𝑠 = 0, 1, . . .) ,

∞

∑

V=0

(−1)
V sin [(2V + 1) 𝑥]

(2V + 1)2𝑠
=
(−1)
𝑠−1

𝜋
2𝑠

4 (2𝑠 − 1)!
𝐸
2𝑠−1

(
𝑥

𝜋
+
1

2
)

(−
𝜋

2
≤ 𝑥 ≤

𝜋

2
; 𝑠 = 1, 2, . . .) .

(34)

Meanwhile it is important to note that the number of
addends in our recurrence representations (26), (28), (30),
and (33) is two times less than the number of the addends
in the corresponding cited formulas from [2]. So our method
appears to be more economic and effective.

Moreover, one can get many other representations of the
constants 𝐾

𝑟
(𝑟 = 1, 2, 3, . . .) and numerical series 𝑄

2𝑠
(𝑠 =

1, 2, . . .) from Theorems 5–8 putting, in particular, 𝑥 = 𝜋/2

or 𝑥 = 𝜋. For completeness we will note the main results.
FromTheorem 5 for 𝑥 = 𝜋/2 and 𝑥 = 𝜋 immediately fol-

lows the following.

Corollary 9. For the Favard constants𝐾
𝑟
, the following recur-

sive representations hold:

𝐾
2𝑠−2

=
4

𝜋
{(−1)

𝑠

[
1

2
𝐷
2𝑠−1

(
𝜋

2
) −

𝜋

2
𝐷
2𝑠−2

(
𝜋

2
)]

+

𝑠−1

∑

𝑝=1

(−1)
𝑝+1

𝑇
2𝑠−2𝑝

𝐷
2𝑝−1

(
𝜋

2
)} ,

𝐾
2𝑠−1

=
2

𝜋
{(−1)

𝑠

[
1

2
𝐷
2𝑠
(𝜋) −

𝜋

2
𝐷
2𝑠−1

(𝜋)]

+

𝑠−1

∑

𝑝=1

(−1)
𝑝+1

𝑇
2𝑠−2𝑝

𝐷
2𝑝
(𝜋)} ,

(35)

(𝑠 = 1, 2, . . ., for 𝑠 = 1:𝐷
0
(𝑥) = 1, 𝑇

0
= 0).

For 𝑥 = 𝜋, one can get (20) too by replacing previously 𝑠
by 𝑠 + 1.

For 𝑥 = 𝜋/2, we obtain the next corollary.

Corollary 10. For numbers 𝑄
2𝑠
, the following recursive repre-

sentations hold:

𝑄
2𝑠
= 4
𝑠

{(−1)
𝑠−1

[
1

2
𝐷
2𝑠
(
𝜋

2
) −

𝜋

2
𝐷
2𝑠−1

(
𝜋

2
)]

+

𝑠−1

∑

𝑝=0

(−1)
𝑝

𝑇
2𝑠−2𝑝

𝐷
2𝑝
(
𝜋

2
)}

(36)

(𝑠 = 1, 2, . . ., for 𝑠 = 1:𝐷
0
(𝑥) = 1).

Similarly, from Theorem 6 for 𝑥 = 𝜋/2 and 𝑥 = 𝜋, we
obtain, respectively, the following.

Corollary 11. For the Favard constants𝐾
𝑟
, the following recur-

sive representations hold:

𝐾
2𝑠−2

=
4

𝜋
{
(−1)
𝑠−1

2
𝐷
2𝑠−1

(
𝜋

2
)

+

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝑄
2𝑠−2𝑝

𝐷
2𝑝−1

(
𝜋

2
)} ,

𝐾
2𝑠−1

=
2

𝜋
{
(−1)
𝑠−1

2
𝐷
2𝑠
(𝜋)

+

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝑄
2𝑠−2𝑝

𝐷
2𝑝
(𝜋)} ,

(37)

where 𝑠 = 1, 2, . . ., and for 𝑠 = 1:𝐷
0
(𝑥) = 1, 𝑄

0
= 0.

For 𝑥 = 𝜋, one can get (23) too by replacing previously 𝑠
by 𝑠 + 1.

For 𝑥 = 𝜋/2 from Theorem 6, (the second formula in
(28)), we will have also the next analogous corollary.

Corollary 12. For numbers 𝑄
2𝑠
, the following recursive repre-

sentations hold:

𝑄
2𝑠
=

4
𝑠

4𝑠 − 1
{
(−1)
𝑠

2
𝐷
2𝑠
(
𝜋

2
)

+

𝑠−1

∑

𝑝=1

(−1)
𝑝+1

𝑄
2𝑠−2𝑝

𝐷
2𝑝
(
𝜋

2
)} ,

(38)

(𝑠 = 1, 2, . . ., for 𝑠 = 1:𝐷
0
(𝑥) = 1, 𝑄

0
= 0).

By the same manner from Theorem 7 for 𝑥 = 𝜋 and
𝑥 = 𝜋/2, we obtain, respectively, the formulas for 𝐾

𝑟
(𝑟 =

1, 2, 3, . . .) different from these inTheorem 1.
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Corollary 13. For the Favard constants 𝐾
2𝑠−3

and 𝐾
2𝑠−1

, the
following recursive representations hold:

𝐾
2𝑠−3

=
(−1)
𝑠

𝜋
{𝐷
2𝑠−2

(𝜋) +

𝑠−2

∑

𝑝=1

(−1)
𝑝

𝐾
2𝑝−1

𝐷
2𝑠−2𝑝−1

(𝜋)} ,

(39)

(𝑠 = 2, 3, . . ., for 𝑠 = 2, 𝐾
1
𝐷
1
(𝜋) must be canceled) and

𝐾
2𝑠−1

= (−1)
𝑠−1

{𝐷
2𝑠−1

(
𝜋

2
) +

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝐾
2𝑝−1

𝐷
2𝑠−2𝑝

(
𝜋

2
)} ,

(40)

(𝑠 = 1, 2, 3, . . ., for 𝑠 = 1, 𝐾
1
𝐷
0
(𝜋/2)must be canceled).

The remaining cases for 𝑥 = 𝜋/2 and 𝑥 = 𝜋 immediately
lead toTheorem 1 after replacing 𝑠 by 𝑠 + 1.

From Theorem 8 for 𝑥 = 𝜋/2, one can get, respectively,
other representations for 𝐾

𝑟
(𝑟 = 1, 2, 3, . . .), different from

these inTheorem 1.

Corollary 14. For the Favard constants 𝐾
𝑟
, the following re-

cursive representations hold:

𝐾
2𝑠−2

= (−1)
𝑠

{𝐷
2𝑠−2

(
𝜋

2
) +

𝑠−2

∑

𝑝=1

(−1)
𝑝

𝐾
2𝑝
𝐷
2𝑠−2𝑝−2

(
𝜋

2
)} ,

𝐾
2𝑠−1

= (−1)
𝑠−1

{𝐷
2𝑠−1

(
𝜋

2
) +

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝐾
2𝑝
𝐷
2𝑠−2𝑝−1

(
𝜋

2
)} ,

(41)

where 𝑠 = 1, 2, 3, . . . , for 𝑠 = 1: 𝐷
0
(𝜋/2) = −1, and for 𝑠 = 2:

𝐾
2
𝐷
0
(𝜋/2) must be canceled.

Corollary 15. From the difference 𝑇
2𝑠
−𝑄
2𝑠
= (𝜋/2)𝐾

2𝑠−1
(𝑠 =

1, 2, . . .) and after replacing 𝑠 by 𝑠+1 in the obtained expression,
one gets the following formula:

𝐾
2𝑠+1

=
(−1)
𝑠

𝜋
𝐷
2𝑠+2

(𝜋) +

𝑠

∑

𝑝=1

(−1)
𝑝+1

𝜋
2𝑝

(2𝑝 + 1)!
𝐾
2𝑠−2𝑝+1

(𝑠 = 0, 1, . . .) .

(42)

This is somewhat better than the corresponding formula in
Theorem 1, because (2𝑠 + 1)! > 2(2𝑠)! for 𝑠 = 1, 2, . . ..

3. Recursive Representations for
𝐾̃
𝑟

and Some Fourier Series

Here we will get down to the integral representation and
recursive formulas for the constants 𝐾̃

𝑟
, defined in (2). As

one can see they are closely linked with the approximation
of the conjugate classes of functions obtained on the base
of the Hilbert transform [1, 26]. First of all let us note their
representations easily obtained by means of special functions

in (3) as it is shown in [2, 5.1.4] for the Catalan constant as
follows:

𝐾̃
𝑟
=

{{{{{{{{{{

{{{{{{{{{{

{

4

𝜋
(1 − 2

−(2𝑠+1)

) 𝜁 (2𝑠 + 1) , 𝑟=2𝑠, 𝑠 = 1, 2, 3, . . . ,

2
2−4𝑠

𝜋
(𝜁 (2𝑠,

1

4
)−𝜁 (2𝑠,

3

4
))

=
2

𝜋Γ (2𝑠)
∫

∞

0

𝑡
2𝑠−1

ch 𝑡
𝑑𝑡, 𝑟=2𝑠−1, 𝑠=1, 2, 3, . . . .

(43)

In the beginning we will prove the following assertion.

Theorem 16. For the constants 𝐾̃
𝑟
(𝑟 = 1, 2, . . .), the following

recursive representations hold:

𝐾̃
2𝑠−1

=
2(−1)
𝑠

𝜋
𝐴
2𝑠−1

(
𝜋

2
) +

𝑠−1

∑

𝑝=1

𝐾̃
2𝑠−2𝑝

(−1)
𝑝−1

(2𝑝 − 1)!
(
𝜋

2
)

2𝑝−1

,

𝐾̃
2𝑠
=
2(−1)
𝑠

𝜋
𝐴
2𝑠
(
𝜋

2
) +

𝑠−1

∑

𝑝=1

𝐾̃
2𝑠−2𝑝

(−1)
𝑝−1

(2𝑝)!
(
𝜋

2
)

2𝑝

(𝑠 = 1, 2, 3, . . . ; 𝐾̃
0

def
= 0) .

(44)

Proof. The proof of this theorem is based on induction again.
However, for completeness we must give somewhat more
detailed considerations at first steps, which underline further
discussions.

Let us start by the well-known Fourier expansions (see,
e.g., [2, 5.4])

∞

∑

V=0

sin [(2V + 1) 𝑥]
(2V + 1)2

= −
1

2
𝐴
1
(𝑥) (0 ≤ 𝑥 ≤ 𝜋) ,

∞

∑

𝑛=1

sin 𝑛𝑥
𝑛2

= −𝐵
1
(𝑥) (0 ≤ 𝑥 ≤ 2𝜋) .

(45)

For 𝑥 = 𝜋/2, the first equality gives us immediately (𝜋/
4)𝐾̃
1
= −(1/2)𝐴

1
(𝜋/2). At the same time, the second equality

in (45) leads to (𝜋/4)𝐾̃
1
= −𝐵
1
(𝜋/2). Sowe obtain the integral

representation of 𝐾̃
1
in the form

𝐾̃
1
= −

4

𝜋
𝐵
1
(
𝜋

2
) = −

2

𝜋
𝐴
1
(
𝜋

2
) = 1.166243616123275 ⋅ ⋅ ⋅ .

(46)

We have another integral representation of the same con-
stant 𝐾̃

1
in our paper [8].

Further by integration of both sides of the first equality in
(45), we get
∞

∑

V=0

cos [(2V + 1) 𝑥]
(2V + 1)3

=
1

2
𝐴
2
(𝑥) +

𝜋

4
𝐾̃
2

(0 ≤ 𝑥 ≤ 𝜋) ,

(47)
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from where for 𝑥 = 𝜋/2 and 𝑥 = 𝜋 we have simultaneously
0 = (1/2)𝐴

2
(𝜋/2) + (𝜋/4)𝐾̃

2
and −(𝜋/4)𝐾̃

2
= (1/2)𝐴

2
(𝜋) +

(𝜋/4)𝐾̃
2
, and consequently

𝐾̃
2
= −

2

𝜋
𝐴
2
(
𝜋

2
) = −

1

𝜋
𝐴
2
(𝜋) . (48)

Then, after the integration of both sides of the second
equality in (45), we obtain

∞

∑

𝑛=1

cos 𝑛𝑥
𝑛3

= 𝐵
2
(𝑥) + 𝑇

3
(0 ≤ 𝑥 ≤ 2𝜋) , (49)

from where for 𝑥 = 𝜋 we have (𝜋/2)𝐾̃
2
= −𝐵
2
(𝜋) . If we cor-

respond this with (48), we find

𝐾̃
2
= −

2

𝜋
𝐵
2
(𝜋) = −

2

𝜋
𝐴
2
(
𝜋

2
)

= −
1

𝜋
𝐴
2
(𝜋) = 1.339193086109090 ⋅ ⋅ ⋅ .

(50)

In order to obtain the integral representation of 𝐾̃
3
, we

must, at first, integrate the both sides of (47) as

∞

∑

V=0

sin [(2V + 1) 𝑥]
(2V + 1)4

=
1

2
𝐴
3
(𝑥) +

𝜋

4
𝐾̃
2
𝐷
1
(𝑥) (0 ≤ 𝑥 ≤ 𝜋) .

(51)

Next it remains to put 𝑥 = 𝜋/2 as

𝐾̃
3
=
2

𝜋
𝐴
3
(
𝜋

2
) +

𝜋

2
𝐾̃
2
=
2

𝜋
𝐴
3
(
𝜋

2
) − 𝐴

2
(
𝜋

2
) . (52)

As another integral representation of 𝐾̃
3
, we can get after

integration of both sides of (49)

∞

∑

𝑛=1

sin 𝑛𝑥
𝑛4

= 𝐵
3
(𝑥) + 𝑇

3
𝐷
1
(𝑥) (0 ≤ 𝑥 ≤ 2𝜋) . (53)

On one hand, for 𝑥 = 𝜋, (53) gives

𝑇
3
= −

1

𝜋
𝐵
3
(𝜋) = 1.20205690 ⋅ ⋅ ⋅ . (54)

On the other hand, the same equality (53) for 𝑥 = 𝜋/2

gives∑∞V=0 sin[(2V+1)𝜋/2]/(2V+1)
4

= 𝐵
3
(𝜋/2)− (1/2)𝐵

3
(𝜋).

Then

𝐾̃
3
=
4

𝜋
𝐵
3
(
𝜋

2
) −

2

𝜋
𝐵
3
(𝜋) =

2

𝜋
𝐴
3
(
𝜋

2
) − 𝐴

2
(
𝜋

2
)

= 1.259163310827165 ⋅ ⋅ ⋅ .

(55)

For the constant 𝐾̃
4
there are also different ways to receive

its integral representations. One of them is based on the
integration of both sides of (53) as

−

∞

∑

𝑛=1

cos 𝑛𝑥
𝑛5

+ 𝑇
5
= 𝐵
4
(𝑥) + 𝑇

3
𝐷
2
(𝑥) (0 ≤ 𝑥 ≤ 2𝜋) .

(56)

For 𝑥 = 𝜋, (56) gives (𝜋/2)𝐾̃
4
= 𝐵
4
(𝜋)+(𝜋

2

/2)𝑇
3
. Admit-

ting (54) we will have

𝐾̃
4
=
2

𝜋
𝐵
4
(𝜋) − 𝐵

3
(𝜋) = 1.278999378416936 ⋅ ⋅ ⋅ .

(57)

Another integral representation of 𝐾̃
4
can be obtained by

integration of both sides of (51) as

−

∞

∑

V=0

cos [(2V + 1) 𝑥]
(2V + 1)5

+
𝜋

4
𝐾̃
4
=
1

2
𝐴
4
(𝑥) +

𝜋

4
𝐾̃
2
𝐷
2
(𝑥)

(0 ≤ 𝑥 ≤ 𝜋) .

(58)

For 𝑥 = 𝜋/2 and 𝑥 = 𝜋, we get, respectively,

𝐾̃
4
=
2

𝜋
𝐴
4
(
𝜋

2
) −

𝜋

4
𝐴
2
(
𝜋

2
) =

2

𝜋
𝐴
4
(
𝜋

2
) +

𝜋
2

8
𝐾̃
2

=
1

𝜋
𝐴
4
(𝜋) +

𝜋
2

4
𝐾̃
2
.

(59)

Further after integration of both sides of (56), we get

−

∞

∑

V=0

sin 𝑛𝑥
𝑛6

+ 𝑇
5
𝐷
1
(𝑥) = 𝐵

5
(𝑥) + 𝑇

3
𝐷
3
(𝑥) (0 ≤ 𝑥 ≤ 2𝜋) .

(60)

On one hand, if we put here 𝑥 = 𝜋 and admit (54), we will
have

𝑇
5
=
1

𝜋
𝐵
5
(𝜋) +

𝜋
2

3!
𝑇
3
=
1

𝜋
𝐵
5
(𝜋) −

𝜋

6
𝐵
3
(𝜋)

= 1.03692776 ⋅ ⋅ ⋅ .

(61)

On the other hand, the same formula (60) for 𝑥 = 𝜋/2

gives us −(𝜋/4)𝐾̃
5
+ (𝜋/2)𝑇

5
= 𝐵
5
(𝜋/2) + (𝜋

3

/2
3

3!)𝑇
3
. Then

admitting (54) and (61), we obtain

𝐾̃
5
= −

𝜋

4
𝐵
5
(
𝜋

2
) +

2

𝜋
𝐵
5
(𝜋) −

𝜋

4
𝐵
3
(𝜋)

= 1.271565517671139 ⋅ ⋅ ⋅ .

(62)

Next, in order to receive another integral representation
of 𝐾̃
5
, we must integrate both sides of (58). So we will have

−

∞

∑

V=0

sin [(2V + 1) 𝑥]
(2V + 1)6

+
𝜋

4
𝐾̃
4
𝐷
1
(𝑥) =

1

2
𝐴
2
(𝑥) +

𝜋

4
𝐾̃
2
𝐷
3
(𝑥)

(0 ≤ 𝑥 ≤ 𝜋) .

(63)

Putting 𝑥 = 𝜋/2, here, we get

𝐾̃
5
= −

2

𝜋
𝐴
5
(
𝜋

2
) +

𝜋

2
𝐾̃
4
−
𝜋
3

233!
𝐾̃
2

= −
2

𝜋
𝐴
5
(
𝜋

2
) + 𝐴

4
(
𝜋

2
) −

𝜋
2

22 ⋅ 3
𝐴
2
(
𝜋

2
) .

(64)

Now after this preparatory work, we can go on the indi-
cated procedure which leads us to the general recursive rep-
resentations (43) and so complete the proof.
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The previously stated procedure gives us the opportunity
to obtain recursive formulas for the multiple integrals𝐴

𝑟
, 𝐵
𝑟
,

and 𝐶
𝑟
in (4) for a given 𝑥.

First of all we will note that on the base of induction and
with the help of the first formula in (45), (47), (51), (58), and
(63), we can lay down the following.

Theorem 17. For themultiple singular integrals𝐴
𝑟
, the follow-

ing recursive representations hold:

𝐴
2𝑠−1

(𝑥) = 2(−1)
𝑠

∞

∑

V=0

sin [(2V + 1) 𝑥]
(2V + 1)2𝑠

+
𝜋

2

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝐾̃
2𝑝
𝐷
2𝑠−2𝑝−1

(𝑥) ,

𝐴
2𝑠
(𝑥) = − 2(−1)

𝑠

∞

∑

V=0

cos [(2V + 1) 𝑥]
(2V + 1)2𝑠+1

+
𝜋

2

𝑠

∑

𝑝=1

(−1)
𝑝

𝐾̃
2𝑝
𝐷
2𝑠−2𝑝

(𝑥) ,

(65)

𝑠 = 1, 2, 3, . . . (0 ≤ 𝑥 ≤ 𝜋), 𝐷
0
= 1, for 𝑠 = 0:𝐴

0
(𝑥) =

ln(tan(𝑥/2)) (0 < 𝑥 < 𝜋), and 𝐾̃
0
= 0, where

∞

∑

V=0

sin [(2V + 1) 𝑥]
(2V + 1)2𝑠

=
1

2
{

∞

∑

𝑛=1

sin 𝑛𝑥
𝑛2𝑠

−

∞

∑

𝑛=1

(−1)
𝑛
sin 𝑛𝑥
𝑛2𝑠

}

=
1

Γ (2𝑠)
∫

∞

0

𝑡
2𝑠−1

𝑒
𝑡

(𝑒
2𝑡

+ 1) sin𝑥

(𝑒2𝑡 + 1)
2

− 4𝑒2𝑡cos2𝑥
𝑑𝑡,

∞

∑

V=0

cos [(2V + 1) 𝑥]
(2V + 1)2𝑠+1

=
1

2
{

∞

∑

𝑛=1

cos 𝑛𝑥
𝑛2𝑠+1

−

∞

∑

𝑛=1

(−1)
𝑛
cos 𝑛𝑥
𝑛2𝑠+1

}

=
1

Γ (2𝑠+1)
∫

∞

0

𝑡
2𝑠

𝑒
𝑡

(𝑒
2𝑡

− 1) cos𝑥

(𝑒2𝑡+1)
2

−4𝑒2𝑡cos2𝑥
𝑑𝑡.

(66)

By analogy with the previous and by means of the second
formula in (45), (49), (53), (56), and (60), one can get the
following.

Theorem 18. For the multiple singular integrals 𝐵
𝑟
, the follow-

ing recursive representations hold:

𝐵
2𝑠−1

(𝑥)

= (−1)
𝑠

{

∞

∑

𝑛=1

sin 𝑛𝑥
𝑛2𝑠

+

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝑇
2𝑠−2𝑝+1

𝐷
2𝑝−1

(𝑥)} ,

𝐵
2𝑠−2

(𝑥)

= (−1)
𝑠

{

∞

∑

𝑛=1

cos 𝑛𝑥
𝑛2𝑠−1

+

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝑇
2𝑠−2𝑝+1

𝐷
2𝑝−2

(𝑥)} ,

(67)

𝑠 = 1, 2, 3, . . . (0 ≤ 𝑥 ≤ 2𝜋), 𝐷
0
= 1, for 𝑠 = 1:𝑇

1
𝐷
𝑘
(𝑘 = 0, 1)

declines, by definition 𝐵
0
(𝑥) = ln(2 sin(𝑥/2)) (0 < 𝑥 < 2𝜋),

where (see [2])
∞

∑

𝑛=1

sin 𝑛𝑥
𝑛2𝑠

=
1

Γ (2𝑠)
∫

∞

0

𝑡
2𝑠−1

𝑒
𝑡 sin𝑥

1 − 2𝑒𝑡 cos𝑥 + 𝑒2𝑡
𝑑𝑡

(𝑥 ̸= 0, 𝑠 = 1, 2, 3, . . .) ,

∞

∑

𝑛=1

cos 𝑛𝑥
𝑛2𝑠−1

=
1

Γ (2𝑠 − 1)
∫

∞

0

𝑡
2𝑠−2

(𝑒
𝑡 cos𝑥 − 1)

1 − 2𝑒𝑡 cos𝑥 + 𝑒2𝑡
𝑑𝑡

(𝑥 ̸= 0, 𝑠 = 1, 2, 3, . . .) .

(68)

As similar representations of 𝐶
𝑟
(𝑥), one can get on the

base of the expansion (see [2, 5.4.2])
∞

∑

𝑛=1

(−1)
𝑛
cos 𝑛𝑥
𝑛

= − ln(2 cos(𝑥
2
)) (−𝜋 < 𝑥 < 𝜋) ,

𝑄
1
= − ln 2.

(69)

Theorem19. For themultiple singular integrals 𝐶
𝑟
, the follow-

ing recursive representations hold:

𝐶
2𝑠−1

(𝑥)

= (−1)
𝑠

{

∞

∑

𝑛=1

(−1)
𝑛
sin 𝑛𝑥
𝑛2𝑠

+

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝑄
2𝑠−2𝑝+1

𝐷
2𝑝−1

(𝑥)},

𝐶
2𝑠−2

(𝑥)

= (−1)
𝑠

{

∞

∑

𝑛=1

(−1)
𝑛
cos 𝑛𝑥
𝑛2𝑠−1

+

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝑄
2𝑠−2𝑝+1

𝐷
2𝑝−2

(𝑥)},

(70)

𝑠 = 1, 2, 3, . . . (−𝜋 ≤ 𝑥 ≤ 𝜋), for 𝑠 = 1:𝐶
0
(𝑥) = ln (2 cos(𝑥/

2)) (−𝜋 < 𝑥 < 𝜋), 𝑄
1
𝐷
𝑘
(𝑘 = 0, 1) declines, where (see [2])

∞

∑

𝑛=1

(−1)
𝑛
sin 𝑛𝑥
𝑛2𝑠

=
−1

Γ (2𝑠)
∫

∞

0

𝑡
2𝑠−1

𝑒
𝑡 sin𝑥

1 + 2𝑒𝑡 cos𝑥 + 𝑒2𝑡
𝑑𝑡

(𝑠 = 1, 2, 3, . . .) ,

∞

∑

𝑛=1

(−1)
𝑛
cos 𝑛𝑥
𝑛2𝑠−1

=
−1

Γ (2𝑠 − 1)
∫

∞

0

𝑡
2𝑠−2

(𝑒
𝑡 cos𝑥 + 1)

1 + 2𝑒𝑡 cos𝑥 + 𝑒2𝑡
𝑑𝑡

(𝑠 = 1, 2, . . .) .

(71)

By analogy with the previous, if we start from the expan-
sion [2, 5.4.6]
∞

∑

V=0

(−1)
V sin [(2V + 1) 𝑥]

2V + 1
=
−1

2
ln(tan(𝜋

4
−
𝑥

2
))

(−
𝜋

2
< 𝑥 <

𝜋

2
) ,

(72)

we can obtain the next theorem.
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Theorem 20. The following recursive formulas hold:

∫

𝜋/2−𝑥

0

𝐴
2𝑠−1

(𝑢) 𝑑𝑢 = − 2(−1)
𝑠

∞

∑

V=0

(−1)
V sin [(2V + 1) 𝑥]
(2V + 1)2𝑠+1

+
𝜋

2

𝑠

∑

𝑝=1

(−1)
𝑝

𝐾̃
2𝑝
𝐷
2𝑠−2𝑝

(
𝜋

2
− 𝑥) ,

∫

𝜋/2−𝑥

0

𝐴
2𝑠−2

(𝑢) 𝑑𝑢 = 2(−1)
𝑠

∞

∑

V=0

(−1)
V cos [(2V + 1) 𝑥]

(2V + 1)2𝑠

−
𝜋

2

𝑠−1

∑

𝑝=1

(−1)
𝑝

𝐾̃
2𝑝
𝐷
2𝑠−2𝑝−1

(
𝜋

2
− 𝑥) ,

(73)

𝑠 = 1, 2, 3, . . . (−𝜋/2 ≤ 𝑥 ≤ 𝜋/2), 𝐷
0
(𝑥) = 1, for 𝑠 = 1:

𝐴
0
(𝑢) = ln tan(𝑢/2) (−𝜋/2 < 𝑢 < 𝜋/2), where

∞

∑

V=0

(−1)
V sin [(2V + 1) 𝑥]
(2V + 1)2𝑠+1

=
1

Γ (2𝑠 + 1)
∫

∞

0

𝑡
2𝑠

𝑒
𝑡

(𝑒
2𝑡

− 1) sin𝑥

(𝑒2𝑡 + 1)
2

− 4𝑒2𝑡sin2𝑥
𝑑𝑡

(𝑠 = 1, 2, . . .) ,

∞

∑

V=0

(−1)
V cos [(2V + 1) 𝑥]

(2V + 1)2𝑠

=
1

Γ (2𝑠)
∫

∞

0

𝑡
2𝑠−1

𝑒
𝑡

(𝑒
2𝑡

+ 1) cos𝑥

(𝑒2𝑡 + 1)
2

− 4𝑒2𝑡sin2𝑥
𝑑𝑡

(𝑠 = 1, 2, . . .) .

(74)

The proof of this theorem requires to take integration
from 𝜋/2 to 𝑥 and then to make the substitution 𝑡 = 𝜋/2 − 𝑥.

From Table 2 one can see that𝐴
𝑟
(𝑥) = 𝐵

𝑟
(𝑥)−𝐶

𝑟
(𝑥) (0 ≤

𝑥 ≤ 𝜋), 𝑟 = 1, 2, . . .. The constants 𝐾̃
𝑟
satisfy the following

inequalities [1]:

1 < 𝐾̃
1
< 𝐾̃
3
< 𝐾̃
5
< ⋅ ⋅ ⋅ <

4

𝜋
< ⋅ ⋅ ⋅ < 𝐾̃

6
< 𝐾̃
4
< 𝐾̃
2
<
𝜋

2
.

(75)

Remark 21. The equalities (49), (53), (56), and (60) outline a
procedure for summing up the numerical series 𝑇

2𝑠+1
(𝑠 =

1, 2, . . .) in (2). It leads us to the following.

Corollary 22. The following recursive representation holds:

𝑇
2𝑠+1

=
(−1)
𝑠

𝜋
𝐵
2𝑠+1

(𝜋) +

𝑠−1

∑

𝑝=1

(−1)
𝑝+1

𝜋
2𝑝

(2𝑝 + 1)!
𝑇
2𝑠−2𝑝+1

,

(76)

𝑠 = 1, 2, . . . for 𝑠 = 1 the term (𝜋
2

/6) 𝑇
1
declines.

For comparisonwewill note also the well-known formula
[2, 5.1.2]

𝑇
2𝑠+1

= 𝜁 (2𝑠 + 1) =
1

Γ (2𝑠 + 1)
∫

∞

0

𝑡
2𝑠

𝑒𝑡 − 1
𝑑𝑡

=
−1

(2𝑠)!
Ψ
(2𝑠)

(1) (𝑠 = 1, 2, . . .) .

(77)

The same procedure based on induction and preliminary
multiple integration of both sides of (69) leads us to the next.

Corollary 23. The following recursive representation holds:

𝑄
2𝑠+1

=
(−1)
𝑠

𝜋
𝐶
2𝑠+1

(𝜋) +

𝑠−1

∑

𝑝=1

(−1)
𝑝+1

𝜋
2𝑝

(2𝑝 + 1)!
𝑄
2𝑠−2𝑝+1

,

(78)

𝑠 = 1, 2, . . ., for 𝑠 = 1 the term (𝜋
2

/6) 𝑄
1
declines.

As in previous, let us give the alternate formula [2, 5.1.3]

𝑄
2𝑠+1

= (2
−2𝑠

− 1) 𝜁 (2𝑠 + 1) =
−1

Γ (2𝑠 + 1)
∫

∞

0

𝑡
2𝑠

𝑒𝑡 + 1
𝑑𝑡

(𝑠 = 1, 2, . . .) .

(79)

At the end we would like to note also that one can get
many other representations (through multiple integrals) of
the constants 𝐾̃

𝑟
(𝑟 = 1, 2, . . .) fromTheorems 17–20 setting,

in particular, 𝑥 = 𝜋/2 or 𝑥 = 𝜋, as it is made for the constants
𝐾
𝑟
.
From the difference 𝑇

2𝑠+1
− 𝑄
2𝑠+1

= (𝜋/2) 𝐾̃
2𝑠
(𝑠 = 1, 2,

. . .), one can get the following formula:

𝐾̃
2𝑠
=
2(−1)
𝑠

𝜋2
𝐴
2𝑠+1

(𝜋) +

𝑠−1

∑

𝑝=1

(−1)
𝑝+1

𝜋
2𝑝

(2𝑝 + 1)!
𝐾̃
2𝑠−2𝑝

(𝑠 = 1, 2, . . .) ,

(80)

which is somewhat inferior to the similar recursion formula
inTheorem 16 because (2𝑠−1)! ≤ 22𝑠−2(2𝑠−2)! for 𝑠 = 1, 2, . . . .

As an exception we will give the inverse formula of (80)
as

𝐴
2𝑠+1

(𝜋) = (−1)
𝑠

𝑠

∑

𝑝=1

(−1)
𝑝+1

𝜋
2𝑝

2 (2𝑝 − 1)!
𝐾̃
2𝑠−2𝑝+2

(𝑠 = 1, 2, . . .) .

(81)

If we, by definition, lay 𝐾̃
0
= 0, then the equality (80) is

valid for 𝑠 = 0 too.

4. Some Notes on Numerical and Computer
Implementations of the Derived Formulas

We will consider some aspects of numerical and symbolic
calculations of the Favard constants𝐾

𝑟
, singular integrals (4),

and summation of series.
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Table 2: Calculated values of the magnitudes 𝐴
𝑟
(𝑥), 𝐵

𝑟
(𝑥), and 𝐶

𝑟
(𝑥) for 𝑥 = 𝜋/2, 𝜋, by using formulas (65), (67), and (70), respectively.

𝑟 𝐴
𝑟
(𝜋/2) 𝐵

𝑟
(𝜋/2) 𝐶

𝑟
(𝜋/2)

0 0.346573590279972654709 0.34657359027997265471
1 −1.831931188354438030 −0.91596559417721901505 0.91596559417721901506
2 −2.103599580529289999 −1.31474973783080624966 0.78884984269848374979
3 −1.326437390660483389 −0.89924201634043412749 0.42719537432004926159
4 −0.586164434174921923 −0.41567176475313624651 0.17049266942178567636
5 −0.200415775434410589 −0.14636851588819525831 0.05404725954621533063
6 −0.055999130148030908 −0.04177075772178286763 0.01422837242624804042
7 −0.013242890305882861 −0.01003832077074076074 0.00320456953514210000
8 −0.002716221784223860 −0.00208540018388810697 0.00063082160033575329
9 −0.000492033289602442 −0.00038173093475665008 0.00011030235484579206
10 −0.000079824623761109 −0.00006247448634651347 0.00001735013741459518
11 −0.000011727851308441 −0.00000924763886476940 0.00000248021244367167
12 −0.000001574609462951 −0.00000124968150024699 0.00000032492796270360
r 𝐴

𝑟
(𝜋) 𝐵

𝑟
(𝜋) 𝐶

𝑟
(𝜋)

0 0.693147180559945309417
1 0 0 0
2 −4.2071991610585799989 −2.10359958052928999945 2.10359958052928999945
3 −6.6086529882853881226 −3.77637313616307892720 2.83227985212230919540
4 −6.3627527878802461560 −3.92286552530160912232 2.43988726257863703368
5 −4.5591894893017946564 −2.95428020294335768590 1.60490928635843697049
6 −2.6255391709472096141 −1.76271265891422894113 0.86282651203298067295
7 −1.2684915655900274347 −0.87472015815662857450 0.39377140743339886016
8 −0.5287656648068309189 −0.37237211738940254175 0.15639354741742837714
9 −0.1940031559506448617 −0.13897143291435930434 0.05503172303628555739
10 −0.0635985732918145806 −0.04620733330628432785 0.01739123998553025277
11 −0.0188489390019113804 −0.01385968931040814707 0.00498924969150323336
12 −0.0050985327885974909 −0.00378779048977775268 0.00131074229881973820

Let us take only the first𝑚−1,𝑚 ≤ 𝑠+1 terms in the final
sums in the right-hand side of the formulas (7a) and (7b) and
denote the remaining truncation sums by

𝑆
1,𝑚

=

𝑠

∑

𝑗=𝑚

(−1)
𝑗−1

𝜋
𝑗𝑝

(2𝑗)!
𝐾
2𝑠−2𝑗+1

,

𝑆
2,𝑚

=

𝑠

∑

𝑗=𝑚

(−1)
𝑗−1

(2𝑗 − 1)!
(
𝜋

2
)

2𝑗−1

𝐾
2𝑠−2𝑗+1

,

(82)

respectively.

Theorem 24. For 𝑚 ≥ 2 and any 𝑠 > 𝑚, the following esti-
mates for the truncation errors (82) hold:

󵄨󵄨󵄨󵄨𝑆1,𝑚
󵄨󵄨󵄨󵄨 = 𝑂(

𝜋
2𝑚

(2𝑚)!
) ,

󵄨󵄨󵄨󵄨𝑆2,𝑚
󵄨󵄨󵄨󵄨 = 𝑂((

𝜋

2
)

2𝑚−1
1

(2𝑚 − 1)!
) ,

(83)

where Landau big𝑂 notation is used. For the Landau notation
see [27].

Proof. By means of the inequalities (25), it is easy to obtain

󵄨󵄨󵄨󵄨𝑆1,𝑚
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

∑

𝑗=𝑚

(−1)
𝑗−1

𝜋
𝑗𝑝

(2𝑗)!
𝐾
2𝑠−2𝑗+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜋

2

𝑠

∑

𝑗=𝑚

𝜋
2𝑗

(2𝑗)!
=
𝜋

2

𝜋
2𝑚

(2𝑚)!

× (1 +
𝜋
2

(2𝑚 + 1) (2𝑚 + 2)
+ ⋅ ⋅ ⋅ +

𝜋
2𝑠−2𝑚

(2𝑚 + 1) ⋅ ⋅ ⋅ (2𝑠)
)

≤
𝜋
2𝑚+1

2 (2𝑚)!
(1 +

10

5.6
+
10
2

52.62
+ ⋅ ⋅ ⋅ )

≤
𝜋
2𝑚+1

2 (2𝑚)!
(1 +

1

3
+
1

32
+ ⋅ ⋅ ⋅ )

=
𝜋
2𝑚+1

2 (2𝑚)!

3

2
≤
3𝜋
2𝑚

(2𝑚)!
.

(84)
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m = 12; Array [K, m]; K
1
=
𝜋

2
; d [n

−
, x
−
] :=

xn

n!

For [s = 1, s ≤ m/2, s + + ,

K
2s+1 =

1

2
((−1)

sd [2s + 1, 𝜋] +
s

∑

p=1

K
2s+1−2p

(−1)
p−1
𝜋
2p

(2p)!
);

K
2s = (−1)

sd [2s,
𝜋

2
] +

s

∑

p=1

K
2s+1−2p

(−1)
p−1
(
𝜋

2
)

2p−1

(2p − 1)!
;

]

For [s = 1, s ≤ m, s ++, Print [Ks, " ", N[Ks, 30]]];

Algorithm 1:Mathematica code for exact symbolic and approximate computation with optional 30 digits accuracy of the Favard constants
by recursive representations (7a) and (7b).

Consequently, |𝑆
1,𝑚
| = 𝑂(𝜋

2𝑚

/(2𝑚)!). In the sameway for
the second truncation sum, we have

󵄨󵄨󵄨󵄨𝑆2,𝑚
󵄨󵄨󵄨󵄨 ≤ 2(

𝜋

2
)

2𝑚−1
1

(2𝑚 − 1)!
,

so 󵄨󵄨󵄨󵄨𝑆2,𝑚
󵄨󵄨󵄨󵄨 = 𝑂((

𝜋

2
)

2𝑚−1
1

(2𝑚 − 1)!
) .

(85)

By the details of the proof it follows that the obtained
representations did not depend on 𝑠, for any 𝑚 < 𝑠. The a
priori estimates (83) can be used for calculation of 𝐾

𝑟
with a

given numerical precision 𝜀 in order to decrease the number
of addends in the sums for larger 𝑠 at the condition𝑚 < 𝑠.

Remark 25. The error estimates, similar to (83), can be estab-
lished for other recurrence representations in this paper too.

In Algorithm 1, we provide the simplest Mathematica
code for exact symbolic and numerical calculation with
optional 30 digits accuracy of the Favard constants 𝐾

𝑟
for

𝑟 = 1, 2, 3, . . . , 𝑚, based on recursive representations (7a) and
(7b) for a given arbitrary integer𝑚 > 0. The obtained results
are given in Table 1. We have to note that this code is not the
most economic. It can be seen that the thrifty code will take
about 2𝑚2 + 8𝑚 or 𝑂(𝑚2) arithmetic operations in (7a) and
(7b).

The basic advantage of using formulas (7a) and (7b) is that
they contain only finite number of terms (i.e., finite number of
arithmetic operations) in comparisonwith the initial formula
𝐾
𝑟
= (4/𝜋)∑

∞

]=0((−1)
](𝑟+1)

/(2] + 1)
𝑟+1

) (𝑟 = 0, 1, 2, . . .),
which needs the calculation of the slowly convergent infinite
sum. It must be also mentioned that inMathematica,Maple,
and other powerful mathematical software packages, the
Favard constants are represented by sums of Zeta and related
functions, which are calculated by the use of Euler-Maclaurin
summation and functional equations. Near the critical strip
they also use the Riemann-Siegel formula (see, e.g., [28,
A.9.4]).

Finally, we will note that the direct numerical integration
in (4) is very difficult. This way a big opportunity is given

by Theorems 17, 18, and 19 (formulas (65), (67) and (70))
for effective numerical calculation of the classes of multiple
singular integrals 𝐴

𝑟
(𝑥), 𝐵

𝑟
(𝑥) and 𝐶

𝑟
(𝑥) for any 𝑥. Their

computation is reduced to find the finite number of the
Favard constants 𝐾̃V for all V ≤ 𝑟 and the calculation of one
additional numerical sum. Numerical values for some of the
singular integrals are presented in Table 2.

5. Concluding Remarks

As it became clear, there are many different ways and well-
developed computer programs at present, for calculation of
the significant constants inmathematics (in particular Favard
constants) and for summation of important numerical series.
Most of them are based on using of generalized functions as
one can see in [2–5].Nonetheless, we hope that our previously
stated approach through integration of Fourier series appears
to be more convenient and has its theoretical and practical
meanings in the scope of applications, in particular for
computing of the pointed special types of multiple singular
integrals. The basic result with respect to multiple integrals
reduces their calculation to finite number of numerical sums.
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[18] L. A. Apăıcheva, “Optimal quadrature and cubature formulas
for singular integrals with Hilbert kernels,” Izvestiya Vysshikh
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