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In thiswork, we study the nonlinear self-adjointness and conservation laws for a class ofwave equationswith a dissipative source.We
show that the equations are nonlinear self-adjoint. As a result, from the general theorem on conservation laws proved by Ibragimov
and the symmetry generators, we find some conservation laws for this kind of equations.

1. Introduction

There have been abundant literatures that have contributed to
the studies of Lie symmetry classification of various classes
of (1 + 1)-dimensional nonlinear wave equations and their
individual members. Probably, Barone et al. [1] were the first
to study the nonlinear wave equation 𝑢

𝑡𝑡
= 𝑢
𝑥𝑥

+ 𝐹(𝑢)

by means of symmetry method. Motivated by a number
of physical problems, Ames et al. [2] investigated group
properties of quasilinear 𝑢

𝑡𝑡
= [𝑓(𝑢)𝑢

𝑥
]
𝑥
. Later, Torrisi and

Valenti [3, 4], generalizing above equations, have investigated
the symmetries of the following equation:

𝑢
𝑡𝑡
= [𝑓 (𝑢) 𝑢

𝑥
+ 𝑔 (𝑥, 𝑢)]

𝑥
. (1)

Furthermore, classification results for the equation 𝑢
𝑡𝑡
+

𝐾(𝑢)𝑢
𝑡
= [𝐹(𝑢)𝑢

𝑥
]
𝑥
can be found in [5, 6]. An expanded form

of the latter equation

𝑢
𝑡𝑡
+ 𝐾 (𝑢) 𝑢

𝑡
= [𝐹(𝑢)𝑢

𝑥
]
𝑥
+ 𝐻 (𝑢) 𝑢

𝑥
(2)

was studied by Kingston and Sophocleous [7]. In the papers
mentioned above, many interesting results including Lie
point and nonlocal symmetries classification were systemati-
cally investigated.

In this paper, we consider a subclass of (2) with𝐾(𝑢) = 𝛼:

𝑢
𝑡𝑡
+ 𝛼𝑢
𝑡
− [𝑓 (𝑢) 𝑢

𝑥
+ 𝑔 (𝑢)]

𝑥
= 0, (3)

which is also viewed as a special case of (1) with an additional
dissipation, where 𝑓(𝑢) and 𝑔(𝑢) are arbitrary differentiable

functions, 𝑡 is the time coordinate, 𝑥 is the one-space coordi-
nate, and 𝛼 is a nonzero constant. Here, we will focus on the
nonlinear self-adjointness and conservation laws for (3).

For (3), we cannot find easily the variational structure so
it is inconvenient to apply the Noether theorem to construct
conservation laws straightforward for this equation. How-
ever, it is fortunate that Ibragimov recently proved a result on
conservation laws [8], which does not require the existence of
a Lagrangian. The Ibragimov theorem on conservation laws
provides an elegant way to establish local conservation laws
for the equations under consideration.

Since the seminal work of Ibragimov [8], more and more
works are dedicated to studying the self-adjointness and con-
servation laws for some equations in mathematical physics
and there are many new developments, including strict self-
adjointness [9–11], quasi-self-adjointness [12–15], weak self-
adjointness [16, 17], and nonlinear self-adjointness [18–21]
and some results which have been communicated in the
recent literature; for more references, see [21] and references
therein.

For the sake of completeness, we briefly present the nota-
tions, definition of nonlinear self-adjointness, and Ibragi-
mov’s theorem on conservation laws. Let 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)

be 𝑛 independent variables, 𝑢 = 𝑢(𝑥) a dependent variable,

𝑋 = 𝜉
𝑖 𝜕

𝜕𝑥
𝑖

+ 𝜂
𝜕

𝜕𝑢
(4)
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a symmetry of an equation

𝐹 (𝑥, 𝑢
(1)
, 𝑢
(2)
, . . . , 𝑢

(𝑠)
) = 0, (5)

𝐹
∗
(𝑥, 𝑢
(1)
, V
(1)
, . . . , 𝑢

(𝑠)
, V
(𝑠)
) :=

𝛿L

𝛿𝑢
= 0 (6)

the adjoint equation to (5), where L = V𝐹 is called formal
Lagrangian, V = V(𝑥) is a new dependent variable, and

𝛿

𝛿𝑢
=

𝜕

𝜕𝑢
+

𝑠

∑
𝑚=1

(−1)
𝑚
𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑚

𝜕

𝜕𝑢
𝑖
1
⋅⋅⋅𝑖
𝑚

(7)

denotes the Euler-Lagrange operator.
Now, let us state the definition of nonlinear self-adjoint-

ness for a equation.

Definition 1. Equation (5) is said to be nonlinearly self-adjoint
if the equation obtained from the adjoint equation (6) by the
substitution V = 𝜙(𝑥, 𝑢) with a certain function 𝜙(𝑥, 𝑢) ̸= 0 is
identical with the original equation (5); in other words, the
following equations hold:

𝐹
∗
|V=𝜙 = 𝜆 (𝑥, 𝑢, 𝑢

(1)
, . . .) 𝐹 (8)

for some differential function 𝜆 = 𝜆(𝑥, 𝑢, 𝑢
(1)
, . . .).

Particularly, if (8) holds for a certain function 𝜙 such that
𝜙
𝑢

̸= 0 and 𝜙
𝑥
𝑖

̸= 0 for some 𝑥
𝑖
, (5) is calledweak self-adjoint; if

(8) holds for a certain function 𝜙 such that 𝜙 = 𝜙(𝑢) ̸= 𝑢 and
𝜙
(𝑢) ̸= 0, then (5) is called quasi-self-adjoint; if (8) holds for
𝜙 = 𝑢, then (5) is called (strictly) self-adjoint.

In the following, we recall the “new conservation theo-
rem” given by Ibragimov in [8]. We will find conservation
laws for (3) by this theorem.

Theorem 2. Any Lie point, Lie-Bäcklund, and nonlocal sym-
metry

𝑋 = 𝜉
𝑖 𝜕

𝜕𝑥
𝑖

+ 𝜂
𝜕

𝜕𝑢
(9)

of (5) provides a conservation law 𝐷
𝑖
(𝐶𝑖) = 0 for the system

comprising (5) and its adjoint equation (6). The conserved vec-
tor is given by

𝐶
𝑖
= 𝜉
𝑖
L +𝑊[

𝜕L

𝜕𝑢
𝑖

− 𝐷
𝑗
(
𝜕L

𝜕𝑢
𝑖𝑗

) + 𝐷
𝑘
𝐷
𝑗
(
𝜕L

𝜕𝑢
𝑖𝑗𝑘

)

−𝐷
𝑙
𝐷
𝑘
𝐷
𝑗
(
𝜕L

𝜕𝑢
𝑖𝑗𝑘𝑙

) + ⋅ ⋅ ⋅ ]

+ 𝐷
𝑗
(𝑊) [

𝜕L

𝜕𝑢
𝑖𝑗

− 𝐷
𝑘
(
𝜕L

𝜕𝑢
𝑖𝑗𝑘

) + ⋅ ⋅ ⋅ ]

+ 𝐷
𝑘
𝐷
𝑗
(𝑊) [

𝜕L

𝜕𝑢
𝑖𝑗𝑘

− 𝐷
𝑙
(
𝜕L

𝜕𝑢
𝑖𝑗𝑘𝑙

) + ⋅ ⋅ ⋅ ] + ⋅ ⋅ ⋅ ,

(10)

where𝑊 = 𝜂 − 𝜉𝑗𝑢
𝑗
is the Lie characteristic function andL =

V𝐹 is the formal Lagrangian.

The paper is organized as the follows. In Section 2, we
discuss the nonlinear self-adjointness of (3). In Section 3, we
establish conservation laws for some particular cases of (3)
usingTheorem 2.

2. Nonlinear Self-Adjointness of (3)
In this section, we determine the nonlinearly self-adjoint
subclasses of (3). Let

𝐹 = 𝑢
𝑡𝑡
+ 𝛼𝑢
𝑡
− 𝑓
𝑢
(𝑢) 𝑢
2

𝑥
− 𝑓 (𝑢) 𝑢

𝑥𝑥
− 𝑔
𝑢
(𝑢) 𝑢
𝑥
; (11)

then we have the following formal Lagrangian for (3):

L = V (𝑢
𝑡𝑡
+ 𝛼𝑢
𝑡
− 𝑓
𝑢
𝑢
2

𝑥
− 𝑓𝑢
𝑥𝑥
− 𝑔
𝑢
𝑢
𝑥
) . (12)

Computing the variational derivative of this formal Lagrang-
ian
𝛿L

𝛿𝑢
=
𝜕L

𝜕𝑢
− 𝐷
𝑡

𝜕L

𝜕𝑢
𝑡

− 𝐷
𝑥

𝜕L

𝜕𝑢
𝑥

+ 𝐷
2

𝑡

𝜕L

𝜕𝑢
𝑡𝑡

+ 𝐷
2

𝑥

𝜕L

𝜕𝑢
𝑥𝑥

, (13)

we obtain the adjoint equation of (3):

𝐹
∗
= −𝛼V

𝑡
+ V
𝑡𝑡
− 𝑓V
𝑥𝑥
+ 𝑔
𝑢
V
𝑥
= 0. (14)

Assume that𝐹∗|V=ℎ(𝑡,𝑥,𝑢) = 𝜆𝐹, for a certain function 𝜆, where
𝐹 is given by (11); then we have

ℎ
𝑢
𝑢
𝑡𝑡
+ ℎ
𝑢𝑢
𝑢
2

𝑡
+ (2ℎ
𝑡𝑢
− 𝛼ℎ
𝑢
) 𝑢
𝑡
− 𝑓ℎ
𝑢
𝑢
𝑥𝑥
− 𝑓ℎ
𝑢𝑢
𝑢
2

𝑥

+ (𝑔
𝑢
ℎ
𝑢
− 2𝑓ℎ

𝑥𝑢
) 𝑢
𝑥
+ ℎ
𝑡𝑡
− 𝛼𝑢
𝑡
− 𝑓ℎ
𝑥𝑥
+ 𝑔
𝑢
ℎ
𝑥

= 𝜆 (𝑢
𝑡𝑡
+ 𝛼𝑢
𝑡
− 𝑓
𝑢
𝑢
2

𝑥
− 𝑓𝑢
𝑥𝑥
− 𝑔
𝑢
𝑢
𝑥
) .

(15)

The comparison of the coefficients of 𝑢
𝑡𝑡
, 𝑢2
𝑡
, 𝑢2
𝑥
, 𝑢
𝑡
, and 𝑢

𝑥
in

both sides of (15) yields

𝜆 = ℎ
𝑢
, (16)

ℎ
𝑢𝑢
= 0, (17)

𝜆𝑓
𝑢
= 𝑓ℎ
𝑢𝑢
, (18)

𝜆𝛼 = 2ℎ
𝑡𝑢
− 𝛼ℎ
𝑢
, (19)

𝜆𝑔
𝑢
= 2𝑓ℎ

𝑥𝑢
+ 𝑔
𝑢
ℎ
𝑢
; (20)

thus, (15) is reduced as

ℎ
𝑡𝑡
− 𝛼ℎ
𝑡
− 𝑓ℎ
𝑥𝑥
+ 𝑔
𝑢
ℎ
𝑥
= 0. (21)

It follows from (17) and (18) that

𝜆𝑓
𝑢
= 0. (22)

Equation (22) splits into the following two cases.

Case 1 (𝜆 = 0). In this case, from (16) we get that ℎ
𝑢
= 0; thus,

(16)–(20) are all satisfied. Noting that ℎ does not depend on
the function 𝑢, 𝑓 and 𝑔 are two functions of 𝑢, so from (21)
we obtain that

ℎ
𝑡𝑡
− 𝛼ℎ
𝑡
= 0, −𝑓ℎ

𝑥𝑥
+ 𝑔
𝑢
ℎ
𝑥
= 0. (23)



Abstract and Applied Analysis 3

Table 1: Nonlinear self-adjointness of (3).

𝑓 𝑔 V
Self-

adjointness
∀(𝑓
𝑢

̸= 0) ∀ 𝐶
1
+ 𝐶
2
𝑒𝛼𝑡 Nonlinear

∀(𝑓
𝑢

̸= 0) 𝐶
5

(𝐶
1
+ 𝐶
2
𝑒𝛼𝑡)(𝐶

3
+ 𝐶
4
𝑥) Nonlinear

∀(𝑓
𝑢

̸= 0) 𝐶
5
∫𝑓(𝑢)𝑑𝑢

𝐶
1
+ 𝐶
2
𝑒𝛼𝑡

+(𝐶
3
+ 𝐶
4
𝑒
𝛼𝑡
)𝑒
𝑥/𝐶5

Nonlinear

𝐶
0
( ̸= 0) 𝐶

1
+ 𝐶
2
𝑢 𝐶

1
𝑒
(𝐶2/𝐶0)𝑥+𝛼𝑡𝑢 + 𝑏(𝑡, 𝑥) Weak

𝛼 is a nonzero constant; 𝑏(𝑡, 𝑥) satisfies (27).

Equation (23) can be satisfied by taking some appropriate
function ℎ = ℎ(𝑡, 𝑥). Therefore, we can take V = ℎ(𝑥, 𝑡) ̸= 0

such that 𝐹∗|V=ℎ(𝑡,𝑥,𝑢) = 𝜆𝐹 holds. Thus, (3) is nonlinear self-
adjoint in this case.

Case 2 (𝑓
𝑢
= 0). That is, 𝑓 is a constant with respect to 𝑢;

without loss of generality, we set 𝑓 = 𝐶
0

̸= 0. From (17), we
assume that

ℎ (𝑡, 𝑥, 𝑢) = 𝑎 (𝑡, 𝑥) 𝑢 + 𝑏 (𝑡, 𝑥) . (24)

Taking into account (16) and (19), we have 𝑎
𝑡
(𝑡, 𝑥) = 𝛼𝑎(𝑡, 𝑥);

thus, 𝑎(𝑡, 𝑥) = 𝑘(𝑥)𝑒𝛼𝑡. From (20), we deduce that

𝑔
𝑢
(𝑢) =

𝐶
0
𝑘 (𝑥)

𝑘 (𝑥)
, (25)

which implies that 𝑔(𝑢) = 𝐶
2
𝑢 + 𝐶

1
is a linear function of

𝑢 and 𝑘(𝑥) = 𝐶
1
𝑒(𝐶2/𝐶0)𝑥, where 𝐶

2
and 𝐶

1
are constants.

Hence, we have

ℎ (𝑡, 𝑥, 𝑢) = 𝐶
1
𝑒
(𝐶
2
/𝐶
0
)𝑥+𝛼𝑡

𝑢 + 𝑏 (𝑡, 𝑥) . (26)

Substituting (26) into (22) and using the original equation
(3), we derive that 𝑏(𝑡, 𝑥) satisfies

𝑏
𝑡𝑡
− 𝛼𝑏
𝑡
− 𝐶
0
𝑏
𝑥𝑥
+ 𝐶
2
𝑏
𝑥
= 0, (27)

which is easy to be solved.
In this case,𝑓(𝑢) = 𝐶

0
is a constant, 𝑔(𝑢) = 𝐶

2
𝑢+𝐶
1
, and

𝜆 = ℎ
𝑢
= 𝐶
1
𝑒(𝐶2/𝐶0)𝑥+𝛼𝑡; therefore, (3) is a weak self-adjoint.

Here, we omit the tedious calculations to obtain the
solutions of (23) and (27). In Table 1, we summarize the
classification of nonlinear self-adjointness of (3) with the
conditions that 𝑓(𝑢) and 𝑔(𝑢) should satisfy. In what follows,
the symbol for all means that the corresponding function has
no restrictions and 𝑐

𝑖
(1 ≤ 𝑖 ≤ 5) are arbitrary constants.

Thus, we have demonstrated the following statement.

Theorem 3. Let 𝛼 be a nonzero constant, 𝑓(𝑢) an arbitrary
function of 𝑢, and the adjoint equation of (3) given by (14);
then (3) is nonlinear self-adjointness with the substitution V and
function 𝑔(𝑢) given in Table 1.

3. Symmetries and Conservation Laws

In this section, we will apply Theorem 2 to construct some
conservation laws for (3). First, we show the Lie classical

Table 2: Symmetries of (3) for some special choices of 𝑓 and 𝑔.

𝑓 𝑔 Symmetries

𝑢
−2 ln 𝑢 𝑋

3
= 𝑥

𝜕

𝜕𝑥
− 𝑢

𝜕

𝜕𝑢

𝑢𝑛 (𝑛 ̸= 0) 1 𝑋
3
= 𝑥

𝜕

𝜕𝑥
+
2𝑢

𝑛

𝜕

𝜕𝑢

1 𝑢

𝑋
3
= 𝑢

𝜕

𝜕𝑢
,

𝑋
4
= 𝑡

𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑡
−
1

2
(𝑡 + 𝛼𝑥)𝑢

𝜕

𝜕𝑢

1 1 𝑋
3
= 𝑢

𝜕

𝜕𝑢
,𝑋
4
= 𝑡

𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑡
−
1

2
𝛼𝑥𝑢

𝜕

𝜕𝑢

symmetries for (3) for some special choice of 𝑓 and 𝑔. Then
applying formula in Theorem 2 to the formal Lagrangian
(12), and to the symmetries 𝑋

𝑖
and eliminating V by the

substitution V given in Table 1, we obtain the conservation law

𝐷
𝑡
(𝐶
𝑡
) + 𝐷
𝑥
(𝐶
𝑥
) = 0. (28)

3.1. Lie Symmetries. Now, let us show the Lie classical sym-
metries for (3). Based on Lie group theory [22], we assume
that a Lie point symmetry of (3) is a vector field

𝑋 = 𝜉 (𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑥
+ 𝜙 (𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑡
+ 𝜂 (𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑢
(29)

on R+ × R × R such that 𝑋(2)𝐹 = 0 when 𝐹 = 0, and taking
into account (3), the operator𝑋(2) is given as follows:

𝑋
(2)

= 𝜉
𝜕

𝜕𝑥
+ 𝜙

𝜕

𝜕𝑡
+ 𝜂

𝜕

𝜕𝑢
+ 𝜂
(1)

𝑥

𝜕

𝜕𝑢
𝑥

+ 𝜂
(1)

𝑡

𝜕

𝜕𝑢
𝑡

+ 𝜂
(2)

𝑥𝑥

𝜕

𝜕𝑢
𝑥𝑥

+ 𝜂
(2)

𝑡𝑡

𝜕

𝜕𝑢
𝑡𝑡

,

(30)

where

𝜂
(1)

𝑥
= 𝐷
𝑥
𝜂 − (𝐷

𝑥
𝜉) 𝑢
𝑥
− (𝐷
𝑥
𝜙) 𝑢
𝑡
,

𝜂
(1)

𝑡
= 𝐷
𝑡
𝜂 − (𝐷

𝑡
𝜉) 𝑢
𝑥
− (𝐷
𝑡
𝜙) 𝑢
𝑡
,

𝜂
(2)

𝑥𝑥
= 𝐷
𝑥
(𝜂
(1)

𝑥
) − (𝐷

𝑥
𝜉) 𝑢
𝑥𝑥
− (𝐷
𝑥
𝜙) 𝑢
𝑥𝑡
,

𝜂
(2)

𝑡𝑡
= 𝐷
𝑡
(𝜂
(1)

𝑡
) − (𝐷

𝑡
𝜉) 𝑢
𝑥𝑡
− (𝐷
𝑡
𝜙) 𝑢
𝑡𝑡
.

(31)

The condition𝑋(2)𝐹 = 0, when 𝐹 = 0, will yield determining
equations. Solving these determining equations, we can
obtain the symmetries of (3). For𝑓(𝑢) and 𝑔(𝑢) arbitrary, the
symmetries that are admitted by (3) are

𝑋
1
=

𝜕

𝜕𝑥
, 𝑋

2
=

𝜕

𝜕𝑡
. (32)

For some special choices of the functions 𝑓(𝑢) and 𝑔(𝑢), here
we omit the details of routine calculations and present the
symmetries (besides 𝑋

1
and 𝑋

2
) that are admitted by (3) in

Table 2.
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Table 3: Conservation laws of (3) for some special choices of 𝑓 and 𝑔 (𝑛 ̸= 0).

𝑓 𝑔 Symmetries Conserved vector with substitution V

𝐶𝑡 = (V
𝑡
− 𝛼V)(𝑢 + 𝑥𝑢

𝑥
) − V(𝑢

𝑡
+ 𝑥𝑢
𝑥𝑡
)

1

𝑢2
ln 𝑢 𝑥

𝜕

𝜕𝑥
− 𝑢

𝜕

𝜕𝑢
𝐶𝑥 = 𝑥V𝑢

𝑡𝑡
+ 𝛼𝑥V𝑢

𝑡
+ V

V = 𝐶
1
+ 𝐶
2
𝑒𝛼𝑡

𝐶𝑡 = (
2

𝑛
𝑢 − 𝑥𝑢

𝑥
) (𝛼V − V

𝑡
) + V (

2

𝑛
𝑢
𝑡
− 𝑥𝑢
𝑥𝑡
)

𝑢𝑛 1 𝑥
𝜕

𝜕𝑥
+
2𝑢

𝑛

𝜕

𝜕𝑢
𝐶𝑥 = 𝑥 (V𝑢

𝑡𝑡
+ 𝛼V𝑢

𝑡
− 𝑢𝑛𝑢

𝑥
V
𝑥
) +

2

𝑛
𝑢𝑛+1V
𝑥
− (1 +

2

𝑛
) V𝑢𝑛𝑢

𝑥

V = (𝐶
1
+ 𝐶
2
𝑒𝛼𝑡) (𝐶

3
+ 𝐶
4
𝑥)

1 𝑢 𝑡
𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑡
−
(𝑡 + 𝛼𝑥)𝑢

2

𝜕

𝜕𝑢

𝐶
𝑡
= −V [(1 + 𝑥 + 𝛼𝑡) 𝑢

𝑥
+
1

2
(𝑡 + 𝛼𝑥) 𝑢

𝑡
+
1

2
(1 + 𝛼𝑡 + 𝛼

2
𝑥) 𝑢

+ 𝑡𝑢
𝑥𝑡
+ 𝑥𝑢
𝑥𝑥
] + V
𝑡
[
1

2
(𝑡 + 𝛼𝑥) 𝑢 + 𝑥𝑢

𝑡
+ 𝑡𝑢
𝑥
]

𝐶𝑥 = V [(1 + 𝑥 + 𝛼𝑡)𝑢
𝑡
+
1

2
(𝑡 + 𝛼𝑥)𝑢

𝑥
+
1

2
(𝑡 + 𝛼 + 𝛼𝑥)𝑢

+ 𝑡𝑢
𝑡𝑡
+ 𝑥𝑢
𝑥𝑡
] − V
𝑥
[
1

2
(𝑡 + 𝛼𝑥) 𝑢 + 𝑥𝑢

𝑡
+ 𝑡𝑢
𝑥
]

V = 𝐶
1
+ 𝐶
2
𝑒𝛼𝑡 + (𝐶

3
+ 𝐶
4
𝑒𝛼𝑡)𝑒𝑥 or 𝑏(𝑡, 𝑥)

1 1 𝑡
𝜕

𝜕𝑥
+ 𝑥

𝜕

𝜕𝑡
−
𝛼𝑥𝑢

2

𝜕

𝜕𝑢

𝐶𝑡 = −V(
𝛼

2
𝑥𝑢
𝑡
+ 𝑥𝑢
𝑥𝑥
+
𝛼
2

2
𝑥𝑢 + 𝛼𝑡𝑢

𝑥
+ 𝑢
𝑥
+ 𝑡𝑢
𝑥𝑡
)

+V
𝑡
(𝑥𝑢
𝑡
+ 𝑡𝑢
𝑥
+
𝛼

2
𝑥𝑢)

𝐶
𝑥
= V (

𝛼

2
𝑥𝑢
𝑥
+ 𝑡𝑢
𝑡𝑡
+
𝛼

2
𝑢 + 𝛼𝑡𝑢

𝑡
+ 𝑢
𝑡
+ 𝑥𝑢
𝑥𝑡
)

−V
𝑥
(𝑥𝑢
𝑡
+ 𝑡𝑢
𝑥
+
𝛼

2
𝑥𝑢)

V = (𝐶
1
+ 𝐶
2
𝑒𝛼𝑡)(𝐶

3
+ 𝐶
4
𝑥) or 𝐶

1
𝑒𝛼𝑡𝑢 + 𝑏(𝑡, 𝑥)

3.2. Conservation Laws. For the symmetries 𝑋, from the
formula (10) in Theorem 2, we can obtain readily some
conservation laws for (3). For example, we take 𝑓(𝑢) = 𝑢−2

and 𝑔(𝑢) = ln 𝑢; let us construct the conserved vector corre-
sponding to the time translation group with the generator

𝑋
2
=

𝜕

𝜕𝑡
. (33)

For this operator, we have 𝜉𝑡 = 1, 𝜉𝑥 = 0, 𝜂 = 0, and𝑊 = −𝑢
𝑡
.

In this case, (3) is nonlinear self-adjoint and becomes

𝐹 = 𝑢
𝑡𝑡
+ 𝛼𝑢
𝑡
+ 2𝑢
−3
𝑢
2

𝑥
− 𝑢
−2
𝑢
𝑥𝑥
− 𝑢
−1
𝑢
𝑥
. (34)

The formal Lagrangian is

L = V (𝑢
𝑡𝑡
+ 𝛼𝑢
𝑡
+ 2𝑢
−3
𝑢
2

𝑥
− 𝑢
−2
𝑢
𝑥𝑥
− 𝑢
−1
𝑢
𝑥
) , (35)

and the adjoint equation of (34) is

L
∗
= V
𝑡𝑡
− 𝛼V
𝑡
− 𝑢
−2
V
𝑥𝑥
+ 𝑢
−1
V
𝑥
. (36)

Therefore, we obtain the following conserved vector:

𝐶
𝑡
= L +𝑊(

𝜕L

𝜕𝑢
𝑡

− 𝐷
𝑡

𝜕L

𝜕𝑢
𝑡𝑡

) + (𝐷
𝑡
𝑊)

𝜕L

𝜕𝑢
𝑡𝑡

= V (𝑢
𝑡𝑡
+ 𝛼𝑢
𝑡
+ 2𝑢
−3
𝑢
2

𝑥
− 𝑢
−2
𝑢
𝑥𝑥
− 𝑢
−1
𝑢
𝑥
)

− 𝑢
𝑡
(𝛼V − V

𝑡
) − 𝑢
𝑡𝑡
V

= 2V𝑢
2

𝑥
𝑢
−3
− V𝑢
𝑥𝑥
𝑢
−2
− V𝑢
𝑥
𝑢
−1
+ 𝑢
𝑡
V
𝑡
,

𝐶
𝑥
= 𝑊(

𝜕L

𝜕𝑢
𝑥

− 𝐷
𝑥

𝜕L

𝜕𝑢
𝑥𝑥

) + (𝐷
𝑥
𝑊)

𝜕L

𝜕𝑢
𝑥𝑥

= 𝑢
−1
𝑢
𝑡
(V − 2𝑢

−2
V𝑢
𝑥
− 𝑢
−1
V
𝑥
) + 𝑢
−2
V𝑢
𝑥𝑡
,

(37)

where V satisfies (36). The reckoning shows that the vector
(37) satisfies the conservation equation (28).

In this case, since (3) is nonlinear self-adjoint, from
Table 1 we take V = 𝐶

1
+ 𝐶
2
𝑒𝛼𝑡. So, the conserved vector is

simplified as follows:

𝐶
𝑡
= 2V𝑢

2

𝑥
𝑢
−3
− V𝑢
𝑥𝑥
𝑢
−2
− V𝑢
𝑥
𝑢
−1
+ 𝑢
𝑡
V
𝑡
,

𝐶
𝑥
= 𝑢
−1
𝑢
𝑡
V (1 − 2𝑢

−2
𝑢
𝑥
) + 𝑢
−2
V𝑢
𝑥𝑡
.

(38)
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Particularly, if setting V = 1, we have

𝐶
𝑡
= −𝑢
𝑥
𝑢
−1
− 𝐷
𝑥
(𝑢
−2
𝑢
𝑥
) , 𝐶

𝑥
= 𝑢
−1
𝑢
𝑡
+ 𝐷
𝑡
(𝑢
−2
𝑢
𝑥
) .

(39)

Thus, the conserved vector can be reduced to the form

𝐶
𝑡
= −𝑢
𝑥
𝑢
−1
, 𝐶

𝑥
= 𝑢
−1
𝑢
𝑡
. (40)

If setting V = 𝑒𝛼𝑡, then the conserved vector (37) is simplified
as

𝐶
𝑡
= 𝛼𝑒
𝛼𝑡
𝑢
𝑡
− 𝐷
𝑥
[𝑒
𝛼𝑡
(𝑢
−2
𝑢
𝑥
+ ln 𝑢)] ,

𝐶
𝑥
= −𝛼𝑒

𝛼𝑡
(𝑢
−2
𝑢
𝑥
+ ln 𝑢) + 𝐷

𝑡
[𝑒
𝛼𝑡
(𝑢
−2
𝑢
𝑥
+ ln 𝑢)] ;

(41)

therefore, it can be reduced as

𝐶
𝑡
= 𝛼𝑒
𝛼𝑡
𝑢
𝑡
, 𝐶

𝑥
= −𝛼𝑒

𝛼𝑡
(𝑢
−2
𝑢
𝑥
+ ln 𝑢) . (42)

In what follows, we omit the tedious calculations and list
only the conservation laws of (3) for some special choices of
functions 𝑓(𝑢) and 𝑔(𝑢) in Table 3.

In Table 3, the function 𝑏(𝑡, 𝑥) satisfies (27), V and the
symmetry are taken from Tables 1 and 2, respectively. The
reckoning shows that the vector listed in Table 3 satisfies the
conservation equation (28) with corresponding substitution
V. In the same way above, we can simplify the conserved
vector using corresponding substitution V.

4. Conclusions

Recently, the new outstanding concepts of nonlinear self-
adjoint equations, containing quasi-self-adjoint and weak
self-adjoint equations, which extend the self-adjointness to
a more generalized meaning, have been introduced in order
to find formal Lagrangians of differential equations without
variational structure. Using these concepts and the general
theorem on conservation laws that is, developed recently [8],
nonlinear self-adjointness and conservation laws for (3) for
different classes of 𝑓(𝑢) and 𝑔(𝑢) have been discussed. These
conservation laws may be useful in mathematical analysis as
they provide basic conserved quantity for obtaining various
estimates for smooth solutions and defining suitable norms
for weak solutions. Furthermore, it could make the construc-
tion of the bi-Hamiltonian form easier.
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nonlinear wave equations,” Journal of Physics A, vol. 43, no. 44,
Article ID 442001, 2010.

[14] N. H. Ibragimov, M. Torrisi, and R. Tracinà, “Self-adjointness
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