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Let 𝐾 be a nonempty subset of a Hausdorff topological vector space 𝑋, and let 𝑓 be a real-valued continuous function on 𝑋. If for
each 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛, there exists 𝑘
0
∈ 𝐾 such that 𝐹

𝐾
(𝑥) = ∑

𝑛

𝑖=1
𝑓(𝑥
𝑖
− 𝑘
0
) = inf{∑𝑛

𝑖=1
𝑓(𝑥
𝑖
− 𝑘) : 𝑘 ∈ 𝐾}, then𝐾 is called

𝑓-simultaneously proximal and 𝑘
0
is called 𝑓-best simultaneous approximation for 𝑥 in 𝐾. In this paper, we study the problem

of 𝑓-simultaneous approximation for a vector subspace 𝐾 in 𝑋. Some other results regarding 𝑓-simultaneous approximation in
quotient space are presented.

1. Introduction

Let 𝐾 be a closed subset of a Hausdorff topological vector
space 𝑋 and 𝑓 a real-valued continuous function on 𝑋. For
𝑥 ∈ 𝑋, set 𝐹

𝐾
(𝑥) = inf

𝑘∈𝐾
𝑓(𝑥 − 𝑘). A point 𝑘

0
∈ 𝐾 is

called 𝑓-best approximation to 𝑥 in 𝐾 if 𝐹
𝐾
(𝑥) = 𝑓(𝑥 − 𝑘

0
).

The set 𝑃𝑓
𝐾
(𝑥) = {𝑘 ∈ 𝐾 : 𝐹

𝐾
(𝑥) = 𝑓(𝑥 − 𝜅)} deno-

tes the set of all 𝑓-best approximations to 𝑥 in 𝐾. Note
that this set may be empty. The set 𝐾 is said to be 𝑓-pro-
ximal (𝑓-Chebyshev) if for each 𝑥 ∈ 𝑋, 𝑃𝑓

𝐾
(𝑥) is nonempty

(singleton). The notion of 𝑓-best approximation in a vector
space 𝑋 was given by Breckner and Brosowski [1] and in
a Hausdorff topological space 𝑋 by Narang [2, 3]. For a
Hausdorff locally convex topological vector space and a
continuous sublinear functional 𝑓 on 𝑋, certain results on
best approximation relative to the functional 𝑓 were proved
in [1, 4]. By using the existence of elements of 𝑓-best
approximation, certain results on fixed points were proved by
Pai and Veermani in [5]. In addition, for a topological vector
space 𝑋 relative to upper semicontinuous functions, some
results on best approximation were proved by Haddadi and
Hamzenejad [6]. Moreover, Naidu [7] proved some results on
best simultaneous approximation related to 𝑓-nearest point
and topological vector space𝑋.

Analogous to the problem of simultaneous approxima-
tion [8], we introduce the concept of best 𝑓-simultaneous
approximation as follows.

Definition 1. Let 𝐾 be a non-empty subset of a Hausdorff
topological vector space 𝑋, and let 𝑓 be a real-valued
continuous function on 𝑋. A point 𝑘

0
∈ 𝐾 is called 𝑓-

best simultaneous approximation in 𝐾 if there exists 𝑥 =
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛 such that

𝐹
𝐾
(𝑥) = inf {

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘) : 𝑘 ∈ 𝐾} =

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) .

(1)

The set of all 𝑓-best simultaneous approximations to 𝑥 =
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛 in𝐾 is denoted by

𝑃
𝑓

𝐾
(𝑥) = {𝑘 ∈ 𝐾 : 𝐹

𝐾
(𝑥) =

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘)} . (2)

The set 𝐾 is called 𝑓-simultaneously proximal (𝑓-sim-
ultaneously Chebyshev) if for each 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛,

𝑃
𝑓

𝐾
(𝑥) ̸= 𝜙 (singleton). If 𝑛 = 1, simultaneous 𝑓-proximal is

precisely 𝑓-proximal.
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We remark that if 𝑓(𝑥) = ‖𝑥‖, then the concept of 𝑓-best
approximation is precisely the best approximation.

A set 𝐾 is said to be inf-compact at a point 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛 [5] if each minimizing sequence in 𝐾
(i.e.,∑𝑛

𝑖=1
𝑓(𝑥
𝑖
−𝑘
𝑛
) → 𝐹

𝐾
(𝑥)) has a convergent subsequence

in 𝐾. The set 𝐾 is called inf-compact if it is inf-compact at
each 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛.

It is easy to see that if 𝐾 is compact or inf-compact, then
𝐾 is 𝑓-simultaneously proximal.

In this paper, we introduce the concept of𝑓-simultaneous
approximation and study the existence and uniqueness
problem of 𝑓-simultaneous approximation of a subspace 𝐾
of a Hausdorff topological vector space 𝑋. Certain results
regarding 𝑓-simultaneous approximation in quotient spaces
are obtained by generalizing some of the results in [9].

Throughout this paper, 𝑋 is a Hausdorff topological
vector space and 𝑓 is a real-valued continuous function on
𝑋.

2. 𝑓-Simultaneous Approximation

In this section, we give some characterizations of 𝑓-proximal
sets in𝑋. We begin with the following definitions.

Definition 2. A function 𝑓 : 𝑋 → R is called absolutely
homogeneous if𝑓(𝛼𝑥) = |𝛼|𝑓(𝑥), for all 𝑥 ∈ 𝑋 and all 𝛼 ∈ R.

Definition 3. A subset 𝐾 of 𝑋 is called 𝑓-closed if for all
sequences {𝑘

𝑚
} of 𝐾 and for all 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛,
such that ∑𝑛

𝑖=1
𝑓(𝑥
𝑖
− 𝑘
𝑚
) → 0, we have 𝑥 ∈ 𝐾𝑛.

Definition 4. A subset𝐾 of𝑋 is called 𝑓-compact if for every
sequence {𝑘

𝑛
} in𝐾 there exist a subsequence {𝑘

𝑛𝑘
} of {𝑘

𝑛
} and

𝑘
0
∈ 𝐾 such that 𝑓(𝑘

𝑛𝑘
− 𝑘
0
) → 0.

Definition 5. For 𝑥, 𝑦 ∈ 𝑋, where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛

and 𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑋
𝑛, 𝑥 is said to be 𝑓-orthogonal to

𝑦 denoted by 𝑥⊥
𝑓
𝑦, if∑𝑛

𝑖=1
𝑓(𝑥
𝑖
) ≤ ∑
𝑛

𝑖=1
𝑓(𝑥
𝑖
+𝛼𝑦
𝑖
) for every

scalar 𝛼 ∈ R. Also, 𝑥 is said to be 𝑓-orthogonal to a set 𝐾 if
𝑥⊥
𝑓
𝑘, for all 𝑘 ∈ 𝐾.

Definition 6. We say that𝐾 is 𝑤-compact if every net {𝑘
𝛼
} in

𝐾 has a convergent subnet.

Theorem 7. Let 𝐾 be a subset of 𝑋. Then, one has the
following.

(1) 𝐹
𝐾+𝑦
(𝑥+𝑌) = 𝐹

𝐾
(𝑥), for all𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), where

𝑌 = (𝑦, 𝑦, . . . , 𝑦) ∈ 𝑋
𝑛.

(2) 𝑃𝑓
𝐾+𝑦
(𝑥 + 𝑌) = 𝑃

𝑓

𝐾
(𝑥) + 𝑦, for all 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
).

(3) 𝐾 is 𝑓-simultaneously proximal (𝑓-simultaneously
Chebyshev) if and only if 𝐾 + 𝑦 is 𝑓-simultaneously
proximal (𝑓-simultaneously Chebyshev) for every 𝑦 ∈
𝑋.
Moreover, if 𝑓 is absolutely homogeneous function,
then one has the following.

(4) 𝐹
𝛼𝐾
(𝛼𝑥) = |𝛼|𝐹

𝐾
(𝑥), for all 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛

and 𝛼 ∈ R.

(5) 𝑃𝑓
𝛼𝐾
(𝛼𝑥) = 𝛼𝑃

𝐹

𝐾
(𝑥), for all 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛

and 𝛼 ∈ R.
(6) 𝐾 is 𝑓-simultaneously proximal (𝑓-simultaneously

Chebyshev) if and only if 𝛼𝐾 is 𝑓-simultaneously
proximal (𝑓-simultaneously Chebyshev), 𝛼 ∈ R.

(7) If𝑓 is convex function and𝐾 is a convex set, then𝑃𝑓
𝐾
(𝑥)

is convex.

Proof. (1) Let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) and𝑌 = (𝑦, 𝑦, . . . , 𝑦) ∈ 𝑋𝑛.

Then

𝐹
𝐾+𝑦
(𝑥 + 𝑌) = inf

𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 ((𝑥
𝑖
+ 𝑦) − (𝜅 + 𝑦)) = 𝐹

𝐾
(𝑥) .

(3)

(2)The equation

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) = inf
𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 ((𝑥
𝑖
+ 𝑦) − (𝑘 + 𝑦))

= inf
𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘)

(4)

implies that 𝑘
0
+ 𝑦 ∈ 𝑃

𝑓

𝐾+𝑦
(𝑥 + 𝑌) if and only if 𝑘

0
∈ 𝑃
𝑓

𝐾
(𝑥).

Thus,

𝑃
𝑓

𝐾+𝑦
(𝑥 + 𝑌) = 𝑃

𝑓

𝐾
(𝑥) + 𝑦. (5)

(3)The proof follows immediately from part (2) above.
(4) Let 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛, 𝛼 ∈ R. Then,

𝐹
𝛼𝐾
(𝛼𝑥) = inf

𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝛼𝑥
𝑖
− 𝛼𝑘)

= |𝛼| inf
𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘) = |𝛼| 𝐹𝐾 (𝑥) .

(6)

(5) If 𝛼 = 0, then we are done. If 𝛼 ̸= 0 and 𝑘
0
∈ 𝑃
𝑓

𝛼𝐾
(𝛼𝑥),

then 𝑘
0
∈ 𝛼𝐾 and

𝑛

∑

𝑖=1

𝑓 (𝛼𝑥
𝑖
− 𝑘
0
) = inf
𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝛼𝑥
𝑖
− 𝛼𝑘) . (7)

This implies that

𝑛

∑

𝑖=1

𝑓(𝑥
𝑖
−
1

𝛼
𝑘
0
) = 𝐹
𝐾
(𝑥) , (8)

which implies that (1/𝛼)𝑘
0
∈ 𝑃
𝑓

𝐾
(𝑥).

(6)The proof follows immediately from part (5) above.
(7) Let 𝑘

1
, 𝑘
2
∈ 𝑃
𝑓

𝐾
(𝑥). Since𝐾 is convex, then 𝜆𝑘

1
− (1 −

𝜆)𝑘
2
∈ 𝐾. We must show that 𝜆𝑘

1
− (1−𝜆)𝑘

2
∈ 𝑃
𝑓

𝐾
(𝑥); that is,

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− (𝜆𝑘

1
− (1 − 𝜆) 𝑘

2
)) = inf
𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘) . (9)
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So,
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− (𝜆𝑘

1
− (1 − 𝜆) 𝑘

2
))

=

𝑛

∑

𝑖=1

𝑓 (𝜆 (𝑥
𝑖
− 𝑘
1
) + (1 − 𝜆) (𝑥

𝑖
− 𝑘
2
))

= 𝜆

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
1
) + (1 − 𝜆)

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
2
)

= 𝜆𝐹
𝐾
(𝑥) + (1 − 𝜆) 𝐹

𝐾
(𝑥)

= 𝐹
𝐾
(𝑥) =

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘) ,

(10)

which implies that 𝑃𝑓
𝐾
(𝑥) is convex.

Example 8. Let𝑋 = R2 and𝐾 = {(𝑥
1
, 𝑥
2
) ∈ R2 : 𝑥2

1
+𝑥
2

2
≤ 4},

and let 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2. If 𝑧 = ((0, 0), (0, 1)) ∈ 𝑋2, then one
can show that 𝐹

𝐾
(𝑧) = 𝑓(0, 1/2) = −1/4.

Theorem 9. Let 𝑓 be an absolutely homogeneous real-valued
function on 𝑋 and𝑀 a vector subspace of𝑋. Then,

(1) 𝐹
𝑀
(𝛼𝑥) = |𝛼|𝐹

𝑀
(𝑥), for all 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛,
𝛼 ∈ R − {0};

(2) 𝑃𝑓
𝑀
(𝛼𝑥) = 𝛼𝑃

𝑓

𝑀
(𝑥), for all 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛,
𝛼 ∈ R − {0}.

Proof. (1) Let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
). Then,

𝐹
𝑀
(𝛼𝑥) = inf

𝑚∈𝑀

𝑛

∑

𝑖=1

𝑓 (𝛼𝑥
𝑖
− 𝑚)

= |𝛼| inf
𝑚

∈𝑀

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑚

) = |𝛼| 𝐹𝑀 (𝑥) .

(11)

(2) Let𝑚
0
∈ 𝑃
𝑓

𝑀
(𝛼𝑥). Then,

𝑛

∑

𝑖=1

𝑓 (𝛼𝑥
𝑖
− 𝑚
0
) = inf
𝑚∈𝑀

𝑛

∑

𝑖=1

𝑓 (𝛼𝑥
𝑖
− 𝑚) (12)

if and only if

𝑛

∑

𝑖=1

𝑓(𝑥
𝑖
−
1

𝛼
𝑚
0
) = inf
𝑚

∈𝑀

𝑛

∑ 𝑓(𝑥
𝑖
− 𝑚

) = 𝐹
𝑀
(𝑥) , (13)

for all 𝛼 ∈ R − {0}, which implies that (1/𝛼)𝑚
0
∈ 𝑃
𝑓

𝑀
(𝑥), so,

𝑚
0
∈ 𝛼𝑃
𝑓

𝑀
(𝑥).

Theorem 10. Let 𝑓 be a positive real-valued function on 𝑋
such that 𝑥 = 0 if and only if 𝑓(𝑥) = 0. Then, if 𝐾 is 𝑓-
simultaneously proximal, then 𝐾 is 𝑓-closed.

Proof . Since 𝑓 is a positive function, then ∑𝑛
𝑖=1
𝑓(𝑥
𝑖
) ≥ 0 for

all 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛. Let {𝑘

𝑚
} be a sequence of𝐾 and

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛, such that ∑𝑛
𝑖=1
𝑓(𝑥
𝑖
− 𝑘
𝑚
) → 0.

This implies that

𝐹
𝐾
(𝑥) = inf

𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘) ≤

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
𝑚
) → 0. (14)

Since 𝐾 is 𝑓-simultaneously proximal, then there exists 𝑘
0
∈

𝐾 such that

𝐹
𝐾
(𝑥) =

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) = 0. (15)

Hence, for all 𝑖 = 1, 2, . . . , 𝑛, 𝑓(𝑥
𝑖
− 𝑘
0
) = 0. Using the

assumption it follows that𝑥
𝑖
−𝑘
0
= 0, and, hence,𝑥

𝑖
= 𝑘
0
∈ 𝐾.

Consequently, 𝑥 ∈ 𝐾𝑛 and𝐾 is 𝑓-closed.

Theorem 11. Let𝑋 be a topological vector space and𝐾 a vector
subspace of 𝑋. Suppose that 𝑓 is continuous function and 𝐾 is
𝑤-compact; then, 𝐾 is 𝑓-simultaneously proximal.

Proof. Let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛. Since

𝐹
𝐾
(𝑥) = inf

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘) , where 𝑘 ∈ 𝐾, (16)

then, for any constant 𝛼, there exists {𝑘
𝛼
} such that

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
𝛼
) ≤

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘) +

1

𝛼
. (17)

But𝐾 is𝑤-compact; then, there exists a subnet {𝑘
𝛼𝛽
} such

that 𝑘
𝛼𝛽
→ 𝑘
0
. Thus,

𝑥
𝑖
− 𝑘
𝛼𝛽
→ 𝑥
𝑖
− 𝑘
0
, ∀𝑖 = 1, 2, . . . , 𝑛. (18)

Since 𝑓 is continuous, then
𝑛

∑

𝑖=1

𝑓(𝑥
𝑖
− 𝑘
𝛼𝛽
) ≤

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘) +

1

𝛼
. (19)

Also,
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) = lim inf

𝑛

∑

𝑖=1

𝑓(𝑥
𝑖
− 𝑘
𝛼𝛽
)

≤

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘) .

(20)

Hence, 𝑘
0
∈ 𝑃
𝑓

𝐾
(𝑥).

For a subset 𝐾 of𝑋, let us define 𝐾
𝐹
to be such that

𝐾
𝐹
= {𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛
: 𝐹
𝐾
(𝑥) =

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
)} .

(21)

Example 12. Consider 𝑋 = (R2)2 and 𝐾 = {((𝑥
1
, 𝑦
1
), (𝑥
2
,

𝑦
2
)) : 𝑥

𝑖
= 𝑦
𝑖
, for all 𝑖 = 1, 2}. Let 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2; then,

one can see that

𝐾
𝐹
= {((𝑥

1
, −𝑥
1
) , (𝑥
2
, −𝑥
2
))} . (22)
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Using the previous definition of 𝐾
𝐹
, we prove the fol-

lowing theorem characterizing 𝑓-simultaneously proximal
subspaces.

Theorem 13. Let 𝐾 be a vector subspace of 𝑋. Then, 𝐾 is 𝑓-
simultaneously proximal in 𝑋 if and only if 𝑋𝑛 = 𝐷

𝑘
+ 𝐾
𝐹
,

where𝐷
𝐾
= {(𝑘, 𝑘, . . . , 𝑘) : 𝑘 ∈ 𝐾}.

Proof. Suppose that 𝑋𝑛 = 𝐷
𝑘
+ 𝐾
𝐹
. Then, for 𝑥 = (𝑥

1
, 𝑥
2
,

. . . , 𝑥
𝑛
) ∈ 𝑋

𝑛, there exists 𝑘
1
= (𝑘
0
, 𝑘
0
, . . . , 𝑘

0
) ∈ 𝐷

𝐾
and

𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝐾
𝐹
such that 𝑥 = 𝑦+𝑘

1
. Hence, 𝑥−𝑘

1
=

𝑦 ∈ 𝐾
𝐹
, and

𝐹
𝐾
(𝑦) = 𝐹

𝐾
(𝑥 − 𝑘

1
) =

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) , (23)

and so

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) = inf
𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
− 𝑘)

= inf
𝑘

∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘

) = 𝐹
𝐾
(𝑥) .

(24)

So,𝐾 is 𝑓-simultaneously proximal.
Conversely, suppose that𝐾 is 𝑓-simultaneously proximal

and 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛. Then, there exists 𝑘

0
∈ 𝐾 such

that

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) = inf
𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘)

= inf
𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− (𝑘

+ 𝑘
0
)) ,

(25)

where 𝑘 = 𝑘 + 𝑘
0
. If 𝑘
1
= (𝑘
0
, 𝑘
0
, . . . , 𝑘

0
) ∈ 𝐷
𝐾
, then

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) = 𝐹
𝐾
(𝑥 − 𝑘

1
) , (26)

which implies that 𝑥 − 𝑘
1
= 𝑘
2
∈ 𝐾
𝐹
and𝑋𝑛 = 𝐷

𝑘
+ 𝐾
𝐹
.

Proposition 14. Let 𝑋 be a topological vector space and 𝐾𝑓-
simultaneous proximal subset of𝑋. Then,

(1) 𝑘
0
∈ 𝑃
𝑓

𝐾
(𝑥) if and only if 𝑥 − 𝑘

0
∈ 𝐾
𝐹
;

(2) if 𝑓 is symmetric (i.e., 𝑓(−𝑥) = 𝑓(𝑥) for all 𝑥 ∈ 𝑋),
then 𝑥 ∈ 𝐾

𝐹
if and only if −𝑥 ∈ 𝐾

𝐹
;

(3) if 𝑥⊥
𝐹
𝐾, then 𝑥 ∈ 𝐾

𝐹
, where 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
);

(4) if 𝑥 ∈ 𝐾
𝐹
and 𝛼𝐾 = 𝐾, then 𝑥⊥

𝐹
𝐾, where 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
).

Proof. (1) Let 𝑘
0
∈ 𝑃
𝑓

𝐾
(𝑥) if and only if ∑𝑛

𝑖=1
𝑓(𝑥
𝑖
− 𝑘
0
) =

inf{∑𝑛
𝑖=1
𝑓(𝑥
𝑖
− 𝑘) : 𝑘 ∈ 𝐾}.

Thus,
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
)

= inf {
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
+ 𝑘
0
− 𝑘) : 𝑘 ∈ 𝐾}

= inf {
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
− 𝑘

) : 𝑘

∈ 𝐾} ,

(27)

which implies that 𝑥 − 𝑘
0
∈ 𝐾
𝐹
.

(2) Let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝐾

𝐹
. Since 𝑓 is symmetric,

then
𝑛

∑

𝑖=1

𝑓 (−𝑥
𝑖
) =

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
)

= inf {
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘) : 𝑘 ∈ 𝐾}

= inf {
𝑛

∑

𝑖=1

𝑓 (− (−𝑥
𝑖
+ 𝑘)) : −𝑘 ∈ 𝐾}

= inf {
𝑛

∑

𝑖=1

𝑓 (−𝑥
𝑖
+ 𝑘) : −𝑘 ∈ 𝐾} .

(28)

Hence, ∑𝑛
𝑖=1
𝑓(−𝑥
𝑖
) = inf{∑𝑛

𝑖=1
𝑓(−𝑥
𝑖
+ 𝑘) : −𝑘 ∈ 𝐾},

which implies that

−𝑥 = (−𝑥
1
, −𝑥
2
, . . . , −𝑥

𝑛
) ∈ 𝐾
𝐹
. (29)

(3) Let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
). Since 𝑥⊥

𝐹
𝐾, then

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
) ≤

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
+ 𝛼𝑘) ∀𝛼 ∈ R, 𝑘 ∈ 𝐾.

=

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− (−𝛼𝑘)) ∀𝛼 ∈ R, 𝑘 ∈ 𝐾.

=

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘

) , 𝑘


∈ 𝐾.

(30)

So,
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
) ≤

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘

) , 𝑘


∈ 𝐾. (31)

Hence, 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝐾
𝐹
.

(4) Let 𝑥 ∈ 𝐾
𝐹
and 𝛼𝐾 = 𝐾. Then,

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
) = inf
𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘)

= inf
𝛼𝑘∈𝐾

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝛼𝑘) , since 𝛼𝐾 = 𝐾,

= inf
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
+ (−𝛼𝑘)) , ∀𝑘 ∈ 𝐾.

(32)
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Thus,
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
) ≤

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
+ 𝛼

𝑘) , ∀𝛼


∈ R, ∀𝑘 ∈ 𝐾. (33)

Hence, 𝑥⊥
𝐹
𝐾.

Theorem 15. Let 𝐾 be a vector subspace of 𝑋. If 𝜋(𝐾
𝐹
) =

𝑋
𝑛
/𝐷
𝐾
, then 𝐾 is 𝑓-simultaneously proximal, where 𝜋 is the

canonical map 𝑥 → 𝑥 + 𝐷
𝑘
.

Proof. Let 𝜋(𝐾
𝐹
) = 𝑋

𝑛
/𝐷
𝐾
and 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛.
Then, 𝑥+𝐷

𝐾
= 𝑦+𝐷

𝐾
for some 𝑦 ∈ 𝐾

𝐹
. Hence, 𝑥−𝑦 = 𝑘

0
for

some 𝑘
0
∈ 𝐷
𝐾
. Thus, 𝑥 = 𝑦 + 𝑘

0
∈ 𝐾
𝐹
+ 𝐷
𝑘
. Therefore, 𝐾

𝐹
+

𝐷
𝑘
= 𝑋
𝑛. By Theorem 15, 𝐾 is 𝑓-simultaneously proximal.

3. 𝑓-Simultaneous Approximation in
Quotient Space

Definition 16. Let 𝐾 and 𝑀 be two vector subspaces of 𝑋
such that 𝑀 is closed and 𝑀 ⊂ 𝐾. Suppose that 𝑓 is a
positive real-valued function defined on 𝑋. Then, a function
𝑓 : (𝑋/𝑀)

𝑛
→ R can be defined as follows:

𝑓 (𝑥
1
+𝑀, 𝑥

2
+𝑀, . . . , 𝑥

𝑛
+𝑀)

= inf {
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
+ 𝑦) : 𝑦 ∈ 𝑀}

(34)

for each (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛.

Theorem 17. Let 𝐾 and 𝑀 be two vector subspaces of 𝑋
such that 𝑀 ⊂ 𝐾. If 𝑘

0
is a point of 𝑓-best simultaneous

approximation to (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) in𝐾, then 𝑘

0
+𝑀 is an𝑓-best

simultaneous approximation to (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) + 𝑀 in 𝐾/𝑀.

Proof. Suppose that 𝑘
0
+ 𝑀 is not 𝑓-best simultaneous

approximation to (𝑥
1
+𝑀, 𝑥

2
+𝑀, . . . , 𝑥

𝑛
+𝑀) in𝐾/𝑀.Then,

𝑓 ((𝑥
𝑖
− 𝑘
0
+𝑀)
𝑛

𝑖=1
) ≰ 𝑓 ((𝑥

𝑖
− 𝑘 +𝑀)

𝑛

𝑖=1
) (35)

for at least 𝑘 ∈ 𝐾, say 𝑘
1
∈ 𝐾, such that

𝑓 ((𝑥
𝑖
− 𝑘
1
+𝑀)
𝑛

𝑖=1
) < 𝑓 ((𝑥

𝑖
− 𝑘
0
+𝑀)
𝑛

𝑖=1
) . (36)

Since

𝑓 ((𝑥
𝑖
− 𝑘
0
+𝑀)
𝑛

𝑖=1
) = inf {

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
+ 𝑦) : 𝑦 ∈ 𝑀}

≤

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) ,

(37)

we have

𝑓 ((𝑥
𝑖
− 𝑘
1
+𝑀)
𝑛

𝑖=1
) <

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) . (38)

Thus, for some𝑚
0
∈ 𝑀, we have

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
1
+ 𝑚
0
) <

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) , (39)

so,

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− (𝑘
1
− 𝑚
0
)) <

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
) . (40)

Since𝑀 ⊂ 𝐾 implies that 𝑘
1
− 𝑚
0
∈ 𝐾, therefore, 𝑘

0
is not

𝑓-best simultaneous approximation to (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) in 𝐾,

which is a contradiction.

Corollary 18. Let𝐾 and𝑀 be two vector subspaces of𝑋 such
that 𝑀 ⊂ 𝐾. Then, if 𝐾 is 𝑓-simultaneously proximal in 𝑋,
then 𝐾/𝑀 is 𝑓-simultaneously proximal in𝑋/𝑀.

Proof. If 𝐾 is 𝑓-simultaneously proximal in 𝑋, then there
exists at least 𝑘

0
∈ 𝐾 such that 𝑘

0
is 𝑓-best simul-

taneous approximation to (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) in 𝐾. Thus by

Theorem 11, 𝑘
0
+𝑀 is an 𝑓-best simultaneous approximation

to (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) +𝑀 in𝐾/𝑀, so,𝐾/𝑀 is 𝑓-simultaneously

proximal in𝑋/𝑀.

Theorem 19. Let 𝐾 and𝑀 be two vector subspaces of 𝑋 such
that 𝑀 ⊂ 𝐾. If 𝑀 is 𝑓-simultaneously proximal in 𝑋 and
𝐾/𝑀 is 𝑓-simultaneously proximal in 𝑋/𝑀, then 𝐾 is 𝑓-
simultaneously proximal in 𝑋.

Proof. Since 𝐾/𝑀 is 𝑓-simultaneously proximal in 𝑋/𝑀,
then there exists 𝑘

0
∈ 𝐾 such that 𝑘

0
+ 𝑀 is 𝑓-best

simultaneous approximation to (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) + 𝑀 from

𝐾/𝑀, so,

𝑓 ((𝑥
𝑖
− 𝑘
0
+𝑀)
𝑛

𝑖=1
) ≤ 𝑓 ((𝑥

𝑖
− 𝑘 +𝑀)

𝑛

𝑖=1
) , ∀𝑘 ∈ 𝐾,

⇓

𝑓 ((𝑥
𝑖
− 𝑘
0
+𝑀)
𝑛

𝑖=1
) = inf
𝑚∈𝑀

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
+ 𝑚)

≤ inf
𝑚∈𝑀

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘 + 𝑚) ,

(41)

for all 𝑘 ∈ 𝐾. Note that

inf
𝑚∈𝑀

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
+ 𝑚)

= 𝐹
𝑀
(𝑥
1
− 𝑘
0
, 𝑥
2
− 𝑘
0
, . . . , 𝑥

𝑛
− 𝑘
0
)

≤ 𝐹
𝑀
(𝑥
1
− 𝑘, 𝑥

2
− 𝑘, . . . , 𝑥

𝑛
− 𝑘) .

(42)
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Since𝑀 is 𝑓-simultaneously proximal in𝑋, then there exists
𝑚
0
∈ 𝑀 such that

𝐹
𝑀
(𝑥
1
− 𝑘
0
, 𝑥
2
− 𝑘
0
, . . . , 𝑥

𝑛
− 𝑘
0
)

=

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘
0
− 𝑚
0
)

≤

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− 𝑘 − 𝑚) ,

(43)

for all𝑚 ∈ 𝑀 and 𝑘 ∈ 𝐾. So,
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− (𝑘
0
+ 𝑚
0
)) ≤

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− (𝑘 + 𝑚)) , (44)

for all𝑚 ∈ 𝑀 and 𝑘 ∈ 𝐾. Hence,
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− (𝑘
0
+ 𝑚
0
))

= inf {
𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− (𝑘 + 𝑚)) : 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾} .

(45)

So, 𝑘
0
+ 𝑚
0
is an 𝑓-best simultaneous approximation to

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) from 𝐾 and 𝐾 is 𝑓-simultaneously proximal

in𝑋.

Theorem 20. Let 𝐾 and 𝑀 be two vector subspaces of 𝑋
such that 𝑀 ⊂ 𝐾. If 𝑀 is 𝑓-simultaneously proximal in 𝑋
and 𝐾 is 𝑓-simultaneously Chebyshev in 𝑋, then 𝐾/𝑀 is 𝑓-
simultaneously Chebyshev in𝑋/𝑀.

Proof. Suppose not, then there exists (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) + 𝑀 ∈

𝑋/𝑀, and 𝑘
1
+𝑀, 𝑘

2
+𝑀 ∈ 𝑃

𝑓

𝐾/𝑀
((𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) +𝑀) such

that 𝑘
1
+ 𝑀 ̸= 𝑘

2
+ 𝑀. Thus, 𝑘

1
− 𝑘
2
∉ 𝑀. Since 𝑀 is 𝑓-

simultaneously proximal in𝑋, then

𝑃
𝑓

𝑀
(𝑥
1
− 𝑘
1
, 𝑥
2
− 𝑘
1
, . . . , 𝑥

𝑛
− 𝑘
1
) ̸= 𝜙,

𝑃
𝑓

𝑀
(𝑥
1
− 𝑘
2
, 𝑥
2
− 𝑘
2
, . . . , 𝑥

𝑛
− 𝑘
2
) ̸= 𝜙.

(46)

Let𝑚
1
∈ 𝑃
𝑓

𝑀
(𝑥
1
− 𝑘
1
, 𝑥
2
− 𝑘
1
, . . . , 𝑥

𝑛
− 𝑘
1
) and𝑚

2
∈ 𝑃
𝑓

𝑀
(𝑥
1
−

𝑘
2
, 𝑥
2
− 𝑘
2
, . . . , 𝑥

𝑛
− 𝑘
2
). By Theorem 13, 𝑘

1
+ 𝑚
1
and 𝑘

2
+

𝑚
2
are 𝑓-best simultaneous approximation to (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)

from 𝐾. Since 𝐾 is 𝑓-simultaneously Chebyshev in 𝑋, then
𝑘
1
+𝑚
1
= 𝑘
2
+𝑚
2
, and, hence, 𝑘

1
−𝑘
2
= 𝑚
1
−𝑚
2
∈ 𝑀, which

is a contradiction.

Theorem 21. Let 𝐾 and 𝑀 be two vector subspaces of a
topological vector space𝑋. If𝑀 is𝑓-simultaneously Chebyshev
in𝑋, then the following assertions are equivalent:

(i) 𝐾/𝑀 is 𝑓-simultaneously Chebyshev in𝑋/𝑀;
(ii) 𝐾 +𝑀 is simultaneously Chebyshev in 𝑋.

Proof. (i ⇒ ii) By hypothesis, (𝐾 + 𝑀)/𝑀 = 𝐾/𝑀 is
𝑓-simultaneous Chebyshev. Assume that 𝐾 + 𝑀 is not

𝑓-simultaneous Chebyshev in 𝑋. Then, there exists 𝑥 =
(𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛 which has two distinct𝑓-best simultaneous

approximations, say ℓ
0
and ℓ
1
∈ 𝐾+𝑀. Thus, we have ℓ

0
and

ℓ
1
∈ 𝑃
𝑓

𝐾+𝑀
(𝑥). Since𝑀 ⊆ 𝐾 + 𝑀, we have that ℓ

0
+ 𝑀 and

ℓ
1
+ 𝑀 ∈ 𝑃

𝑓

(𝐾+𝑀)/𝑀
(𝑥 + 𝑀) = 𝑃

𝑓

𝐾/𝑀
(𝑥 + 𝑀). By hypothesis,

𝐾/𝑀 is 𝑓-simultaneous Chebyshev, and so ℓ
0
+𝑀 = ℓ

1
+𝑀.

Then, there exists𝑚
0
∈ 𝑀 \ {0} such that ℓ

1
= ℓ
0
+ 𝑚
0
. Thus,

we conclude that

𝑛

∑

𝑖=1

𝑓 ((𝑥
𝑖
− ℓ
0
) − 𝑚
0
)

=

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− ℓ
1
)

= inf
𝑚∈𝑀

{

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
− (ℓ
0
+ 𝑚))}

≤ {

𝑛

∑

𝑖=1

𝑓 ((𝑥
𝑖
− ℓ
0
) − 𝑚)} , ∀𝑚 ∈ 𝑀

= 𝐹
𝑀
(𝑥 − ℓ

0
) .

(47)

So, 𝑚
0
and 0 are 𝑓-best simultaneous approximations to

𝑥−ℓ
0
from𝑀. Hence,𝑀 is not𝑓-simultaneously Chebyshev.

This is a contradiction.
(ii ⇒ i) Assume that (i) does not hold. Then, there exists

𝑥 + 𝑀 ∈ 𝐾/𝑀 which has two distinct 𝑓-best simultaneous
approximations, say 𝑘 +𝑀 and 𝑘 +𝑀 ∈ 𝐾/𝑀; thus, 𝑘 − 𝑘 ∉
𝑀. Since𝑀 is 𝑓-simultaneously proximal, so there exist 𝑓-
best simultaneous approximations𝑚 and𝑚 to𝑥−𝑘 and𝑥−𝑘

from𝑀, respectively. Therefore, we have𝑚 ∈ 𝑃𝑓
𝑀
(𝑥 − 𝑘) and

𝑚

∈ 𝑃
𝑓

𝑀
(𝑥 − 𝑘


). Since𝑀 ⊆ 𝐾 + 𝑀, 𝑘 + 𝑀 and 𝑘 + 𝑀 ∈

𝑃
𝑓

𝐾/𝑀
(𝑥 + 𝑀) = 𝑃

𝑓

(𝐾+𝑀)/𝑀
(𝑥 + 𝑀), so 𝑘 + 𝑚 and 𝑘 + 𝑚 ∈

𝑃
𝑓

𝐾+𝑀
(𝑥). But 𝐾 + 𝑀 is 𝑓-simultaneously Chebyshev. Thus

we get 𝑘 + 𝑚 = 𝑘 + 𝑚, and therefore 𝑘 − 𝑘 ∈ 𝑀. This is a
contradiction.

Definition 22. A subset 𝐾 of 𝑋 is called 𝑓-quasisimultane-
ously Chebyshev if 𝑃𝑓

𝐾
(𝑥) is non-empty and 𝑓-compact set in

𝑋, for all 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋
𝑛.

Theorem 23. Let 𝑓 be a positive function, 𝑀 an 𝑓-simu-
ltaneously proximal vector subspace of𝑋, and K𝑓-quasisimul-
taneously Chebyshev of 𝑋 such that 𝑀 ⊂ 𝐾. Then, 𝐾/𝑀 is
𝑓-quasi-simultaneously Chebyshev in𝑋𝑛/𝑀.

Proof. Since 𝐾 is 𝑓-simultaneously proximal in 𝑋, then by
Corollary 12, 𝐾/𝑀 is 𝑓-simultaneously proximal in 𝑋/𝑀.
Let 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑋

𝑛 and (𝑘
𝑛
+ 𝑀) a sequence in

𝑃
𝑓

𝐾/𝑀
(𝑥 + 𝑀). For every 𝑛, there exists 𝑚

𝑛
∈ 𝑀 such that

𝑘
𝑛
+ 𝑚
𝑛
= 𝑘


𝑛
∈ 𝑃
𝑓

𝐾
(𝑥). But since𝑀 is a vector subspace, we

have

𝑘


𝑛
+𝑀 = 𝑘

𝑛
+ 𝑚
𝑛
+𝑀 = 𝑘

𝑛
+𝑀. (48)
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Since 𝐾 is 𝑓-quasi-simultaneously Chebyshev of 𝑋, the
sequence {𝑘

𝑛
} has a subsequence {𝑘

𝑛𝑖
} which is 𝑓-convergent

to 𝑘
0
∈ 𝑃
𝑓

𝐾
(𝑥), meaning that

𝑓 (𝑘
𝑛𝑖
− 𝑘
0
) → 0. (49)

But

𝑓 (𝑘
𝑛𝑖
− 𝑘
0
+𝑀) ≤ 𝑓 (𝑘

𝑛𝑖
− 𝑘
0
) → 0. (50)

Hence,

𝑓 (𝑘
𝑛𝑖
− 𝑘
0
+𝑀) → 0. (51)

Consequently, 𝑃𝑓
𝐾/𝑀
(𝑥 + 𝑀) is 𝑓-compact and 𝐾/𝑀

is 𝑓-quasi-simultaneously Chebyshev. This completes the
proof.
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