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The theory of semipositone integral equations and semipositone ordinary differential equations has been emerging as an important
area of investigation in recent years, but the research on semipositone operators in abstract spaces is yet rare. By employing a well-
known fixed point index theorem and combining it with a translation substitution, we study the existence of positive fixed points
for a semipositone operator in ordered Banach space. Lastly, we apply the results to Hammerstein integral equations of polynomial
type.

1. Introduction

Existence of fixed points for positive operators have been
studied by many authors; see [1–9] and their references. The
theory of semipositone integral equations and semipositone
ordinary differential equations has been emerging as an
important area of investigation in recent years (see [10–17]).
But the research on semipositone operators in abstract spaces
are yet rare up to now.

Inspired by a number of semipositone problems for
integral equations and ordinary differential equations, we
study the existence of positive fixed points for semipositone
operators in ordered Banach spaces. Then the results are
applied to Hammerstein integral equations of polynomial
type.

Let 𝐸 be a real Banach space with the norm ‖ ⋅ ‖, 𝑃 a cone
of𝐸, and “≤” the partial ordering defined by𝑃, 𝜃 denoting the
zero element of 𝐸, 𝑃+ = 𝑃 \ {𝜃}, [𝑎, 𝑏] = {𝑥 ∈ 𝐸 | 𝑎 ≤ 𝑥 ≤ 𝑏}.

Recall that cone 𝑃 is said to be normal if there exists a
positive constant 𝑁 such that 𝜃 ≤ 𝑥 ≤ 𝑦 implies ‖ 𝑥 ‖≤

𝑁 ‖ 𝑦 ‖, the smallest 𝑁 is called the normal constant of
𝑃. An element 𝑧 ∈ 𝐸 is called the least upper bound (i.e.,
supremum) of set 𝐷 ⊂ 𝐸, if it satisfies two conditions: (i)
𝑥 ≤ 𝑧 for any 𝑥 ∈ 𝐷; (ii) 𝑥 ≤ 𝑦, 𝑥 ∈ 𝐷 implies 𝑧 ≤ 𝑦.
We denote the least upper bound of 𝐷 by sup𝐷, that is,
𝑧 = sup𝐷.

Definition 1. Cone 𝑃 ⊂ 𝐸 is said to be minihedral if sup{𝑥, 𝑦}
exists for each pair of elements 𝑥, 𝑦 ∈ 𝐸. For any 𝑥 in 𝐸 we
define 𝑥+ = sup{𝑥, 𝜃}.

Definition 2 (see [1, 3]). Let 𝐸
𝑖
be real Banach spaces, 𝑃

𝑖
cones

of 𝐸
𝑖
, 𝑖 = 1, 2, 𝑇 : 𝑃

1
→ 𝑃
2
, and 𝛼 ∈ 𝑅. Then we say 𝑇 is 𝛼-

convex if and only if 𝑇(𝑡𝑢) ≤ 𝑡
𝛼
𝑇𝑢 for all (𝑢, 𝑡) ∈ 𝑃

1
× (0, 1).

Definition 3. Let 𝐸
𝑖
be real Banach spaces, 𝑃

𝑖
cones of 𝐸

𝑖
, and

𝑖 = 1, 2. 𝑃
1
⊂ 𝐷 ⊂ 𝐸

1
, 𝑇 : 𝐷 → 𝐸

2
. 𝑇 is said to be

nondecreasing if 𝑥
1
≤ 𝑥
2
(𝑥
1
, 𝑥
2
∈ 𝐷) implies 𝑇𝑥

1
≤ 𝑇𝑥
2
;

𝑇 is said to be positive if 𝑇𝑥 ∈ 𝑃
2
for any 𝑥 ∈ 𝑃

1
; 𝑇 is said

to be semipositone if (i) there exists an element 𝑥
0
∈ 𝑃
1
such

that 𝐹(𝑥
0
) ∉ 𝑃
2
and (ii) there exists an element 𝑞 ∈ 𝐸

2
such

that 𝑇𝑥 + 𝑞 ∈ 𝑃
2
for any 𝑥 ∈ 𝑃

1
.

In order to prove the main results, we need the following
lemma which is obtained in [18].

Lemma4. Let𝐸 be a real Banach space andΩ a bounded open
subset of 𝐸, with 𝜃 ∈ Ω, and 𝐴 : Ω ∩ 𝑄 → 𝑄 is a completely
continuous operator, where 𝑄 is a cone in 𝐸.

(i) Suppose that 𝐴𝑢 ̸= 𝜇𝑢, for all 𝑢 ∈ 𝜕Ω ∩ 𝑄, 𝜇 ≥ 1, then
the fixed point index 𝑖(𝐴,Ω ∩ 𝑄,𝑄) = 1.

(ii) Suppose that𝐴𝑢 ≰ 𝑢, for all 𝑢 ∈ 𝜕Ω∩𝑄, then 𝑖(𝐴,Ω∩

𝑄,𝑄) = 0.
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The research on ordered Banach spaces, cones, fixed point
index, and the above lemma can be seen in [18, 19].

2. Main Results and Their Proofs

Theorem 5. Let 𝐸
𝑖
be Banach space, 𝑃

𝑖
⊂ 𝐸
𝑖
cones, and 𝑖 =

1, 2. Suppose that operator 𝐴 : 𝐸
1
→ 𝐸
2
can be expressed as

𝐴 = 𝐵𝐹, where the cone 𝑃
𝑖
and the operator 𝐹 and 𝐵 satisfy the

following conditions:

(H1) when 𝑃
1
is normal and minihedral, 𝑃

2
is normal;

(H2) when 𝐹 : 𝐸
1
→ 𝐸
2
is continuous, there exist 𝑔 ∈ 𝑃

+

2
,

𝑞 ∈ 𝐸
2
, a nondecreasing 𝛼-convex operator 𝐺 : 𝑃

1
→

𝑃
2
, (𝛼 > 1), and a bounded functional 𝐻 : 𝑃

1
→

[0, +∞) such that

𝐺𝑢 ≤ 𝐹𝑢 + 𝑞 ≤ 𝐻 (𝑢) 𝑔, ∀𝑢 ∈ 𝑃
1
; (1)

(H3) when 𝐵 : 𝐸
2
→ 𝐸
1
is linear completely continuous,

there exists 𝑒 ∈ 𝑃+
1
such that

𝐵𝑥 ≥ ‖𝐵𝑥‖ 𝑒 ∀𝑥 ∈ 𝑃
2
; 𝐺𝑒 > 𝜃; (2)

(H4) when there exists a positive number 𝑟
0
such that

𝜃 < 𝐵𝑞 < 𝑟
0
𝑒, ℎ (𝑟

0
𝑁)

𝐵𝑔
 <

𝑟
0

𝑁
, (3)

with ℎ(𝑡) = max
𝑢∈𝑃
1
,‖𝑢‖≤𝑡

𝐻(𝑢), 𝑁 is the normal
constant of 𝑃

1
. Then 𝐴 has a fixed point 𝑤 ∈ 𝑃

+

1
.

Proof. For 𝑞 in (H2) and 𝑒 in (H3), we define that

𝑥
0
= 𝐵𝑞, 𝑃

𝑒
= {𝑢 ∈ 𝑃

1
| 𝑢 ≥ ‖𝑢‖ 𝑒} , (4)

𝐾𝑢 = 𝐵 (𝐹 ([𝑢 − 𝑥
0
]
+

) + 𝑞) , ∀𝑢 ∈ 𝑃
1
. (5)

Clearly, 𝑃
𝑒
⊂ 𝑃
1
is a normal cone of 𝐸

1
. Since the cone 𝑃

1
is

minihedral, [𝑢−𝑥
0
]
+ makes sense. By (H4) and (4), we know

that

𝑥
0
< 𝑟
0
𝑒 ≤

𝑦

𝑦


𝑟
0
, ∀𝑦 ∈ 𝑃

+

𝑒
. (6)

From the condition (H3) and (4), we know that 𝑥
0
∈ 𝑃
𝑒
⊂

𝑃
1
, and hence 𝑢 − 𝑥

0
≤ 𝑢 and

𝜃 ≤ [𝑢 − 𝑥
0
]
+

≤ 𝑢, ∀𝑢 ∈ 𝑃
1
. (7)

By (7), we have [𝑢 − 𝑥
0
]
+

∈ 𝑃
1
, using (H2) we know that

𝐹 ([𝑢 − 𝑥
0
]
+

) + 𝑞 ≥ 𝐺 ([𝑢 − 𝑥
0
]
+

) , ∀𝑢 ∈ 𝑃
+

1
. (8)

That is, 𝐹([𝑢 − 𝑥
0
]
+

) + 𝑞 ∈ 𝑃
2
. This and (2) and (5) imply

𝐾𝑢 ∈ 𝑃
𝑒
, for all 𝑢 ∈ 𝑃

1
. Hence,

𝐾(𝑃
𝑒
) ⊂ 𝑃
𝑒
. (9)

Suppose that 𝐷 is a bounded set of 𝑃
𝑒
, 𝐿 is a positive

number satisfying ‖ 𝑢 ‖≤ 𝐿, for all 𝑢 ∈ 𝐷. By (7) and
normality of 𝑃

1
, we obtain that


[𝑢 − 𝑥

0
]
+

≤ 𝑁 ‖𝑢‖ ≤ 𝑁𝐿, ∀𝑢 ∈ 𝐷. (10)

Therefore, (H2) implies that 𝐹([𝑢 − 𝑥
0
]
+

) ∈ [−𝑞, ℎ(𝑁𝐿)𝑔],
𝑢 ∈ 𝐷. Since 𝑃

2
is normal, the order interval [−𝑞, ℎ(𝑁𝐿)𝑔]

is a bounded set of 𝐸
2
; therefore, {𝐹([𝑢 − 𝑥

0
]
+

) | 𝑢 ∈ 𝐷} is
a bounded set of 𝐸

2
. This together with (9), continuity of 𝐹,

and the completely continuity of 𝐵, we obtain that 𝐾map 𝑃
𝑒

into 𝑃
𝑒
and is completely continuous.

For the 𝑟
0
in (H4), we let Ω

𝑟
0

= {𝑢 ∈ 𝐸
1
|‖ 𝑢 ‖< 𝑟

0
}. By

(7) we know that

[𝑢 − 𝑥

0
]
+

≤ 𝑁 ‖𝑢‖ ≤ 𝑟
0
𝑁, ∀𝑢 ∈ Ω

𝑟
0

∩ 𝑃
𝑒
. (11)

Therefore, from (H2) we obtain that

𝐹 ([𝑢 − 𝑥
0
]
+

) + 𝑞 ≤ 𝐻([𝑢 − 𝑥
0
]
+

) 𝑔 ≤ ℎ (𝑟
0
𝑁)𝑔,

∀𝑢 ∈ Ω
𝑟
0

∩ 𝑃
𝑒
,

(12)

where ℎ(𝑡) is as in (H4).
We prove that

𝐾𝑢 ̸= 𝜇𝑢, ∀𝑢 ∈ 𝜕Ω
𝑟
0

∩ 𝑃
𝑒
, 𝜇 ≥ 1. (13)

Assume there exist 𝜇
0
∈ (0, 1] and 𝑧

0
∈ 𝜕Ω
𝑟
0

∩ 𝑃
𝑒
, such that

𝑧
0
= 𝜇
0
𝐾𝑧
0
. Using (12) we have

𝐾𝑧
0
= 𝐵 (𝐹 ([𝑧

0
− 𝑥
0
]
+

) + 𝑞) ≤ ℎ (𝑟
0
𝑁) 𝐵𝑔, (14)

hence

𝑟
0
=
𝑧0

 =
𝜇0𝐾𝑧0

 ≤
𝐾𝑧0

 ≤ 𝑁ℎ (𝑟
0
𝑁)

𝐵𝑔
 (15)

which contradicts the condition (3), thus (13) holds. By
Lemma 4 we know

𝑖 (𝐾,Ω
𝑟
0

∩ 𝑃
𝑒
, 𝑃
𝑒
) = 1. (16)

Take𝑚
0
> 0 such that𝑚

0
< 1/𝑟
0
, and set

𝑅 > max{2𝑟
0
, (𝑚
0

𝐵𝑞
)
−1

,
𝑟
0

1 − 𝑚
0
𝑟
0

,

𝑁
1/(𝛼−1)

((𝑚
0

𝐵𝑞
)
𝛼

‖𝐵𝐺𝑒‖)
−1/(𝛼−1)

} ,

(17)

where 𝑟
0
as in (3), 𝑁 is the normal constant of 𝑃

1
. In the

following, we prove

𝑢 ̸≥ 𝐾𝑢, ∀𝑢 ∈ 𝜕Ω
𝑅
∩ 𝑃
𝑒
. (18)

Assume there exists 𝑦
1
∈ 𝜕Ω
𝑅
∩ 𝑃
𝑒
such that 𝑦

1
≥ 𝐾𝑦
1
. Using

(6), we have𝑥
0
< (𝑦
1
/ ‖ 𝑦
1
‖)𝑟
0
= (𝑦
1
/𝑅)𝑟
0
, thus it is obtained

that

𝑦
1
>
𝑅

𝑟
0

𝑥
0
, 𝑦

1
− 𝑥
0
∈ 𝑃
+

1
, (19)
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by (17). From (17) we know 𝑅 > 𝑟
0
/(1 − 𝑚

0
𝑟
0
), thus (𝑅 −

𝑟
0
)/𝑟
0
≥ 𝑚
0
𝑅. This and (H3), (4), and (19) imply

[𝑦
1
− 𝑥
0
]
+

= 𝑦
1
− 𝑥
0
> (

𝑅

𝑟
0

− 1)𝐵𝑞

≥ 𝑚
0
𝑅𝐵𝑞 ≥ 𝑚

0
𝑅
𝐵𝑞

 𝑒.

(20)

By 𝛼-convexity of 𝐺 we know

𝐺 (𝑠𝑢) ≥ 𝑠
𝛼

𝐺 (𝑢) , ∀𝑢 ∈ 𝑃
1
, 𝑠 > 1. (21)

By (17) we know𝑚
0
𝑅 ‖ 𝐵𝑞 ‖> 1, hence (20) and (21) imply

𝐺([𝑦
1
− 𝑥
0
]
+

) ≥ 𝐺 (𝑚
0
𝑅

𝐵𝑞
 𝑒) ≥ (𝑚

0
𝑅
𝐵𝑞

)
𝛼

𝐺𝑒. (22)

This together with (5) and the condition (H2) imply

𝑦
1
≥ 𝐾𝑦
1
= 𝐵 (𝐹 ([𝑦

1
− 𝑥
0
]
+

) + 𝑞)

≥ 𝐵 (𝐺 ([𝑦
1
− 𝑥
0
]
+

)) ≥ (𝑚
0
𝑅
𝐵𝑞

)
𝛼

𝐵𝐺𝑒.

(23)

This and (23) imply

𝑁𝑅 = 𝑁
𝑦1

 ≥ (𝑚
0
𝑅
𝐵𝑞

)
𝛼

‖𝐵𝐺𝑒‖

= 𝑅
𝛼

(𝑚
0

𝐵𝑞
)
𝛼

‖𝐵𝐺𝑒‖ ,

(24)

therefore,

𝑁
1/(𝛼−1)

((𝑚
0

𝐵𝑞
)
𝛼

‖𝐵𝐺𝑒‖)
−1/(𝛼−1)

≥ 𝑅, (25)

which contradicts (17), thus (18) holds. Using Lemma 4 we
have

𝑖 (𝐾,Ω
𝑅
∩ 𝑃
𝑒
, 𝑃
𝑒
) = 0. (26)

By (16) and (26) and additivity of fixed point indexes we
know that

𝑖 (𝐾, (Ω
𝑅
\ Ω
𝑟
0

)⋂𝑃
𝑒
, 𝑃
𝑒
) = −1. (27)

Thus,𝐾 has a fixed point 𝑧 on (Ω
𝑅
\ Ω
𝑟
0

)⋂𝑃
𝑒
. Hence,

𝑧 = 𝐵 (𝐹 ([𝑧 − 𝑥
0
]
+

) + 𝑞) , 𝑧 ∈ 𝑃
𝑒
, 𝑟
0
≤ ‖𝑧‖ ≤ 𝑅. (28)

Let 𝑤 = 𝑧 − 𝑥
0
. From (6) and ‖ 𝑧 ‖≥ 𝑟

0
we know 𝑥

0
<

(𝑧/ ‖ 𝑧 ‖)𝑟
0
≤ 𝑧, then [𝑧 − 𝑥

0
]
+

= 𝑤 ∈ 𝑃
+

1
. This together with

(4) and (28) imply 𝑤 = 𝑧 − 𝑥
0
= 𝐵𝐹(𝑤) = 𝐴(𝑤), so that 𝑤 is

a positive fixed point of 𝐴.

3. Corollary and Applications

FromTheorem 5 we obtain the following corollary.

Corollary 6. Suppose that conditions (H1), (H2), and (H3)
hold, and in addition assume the following.

(H5) For any 𝑥 ∈ 𝑃
+

2
, there exists a positive number 𝐿

𝑥
such

that 𝐵𝑥 ≤ 𝐿
𝑥
𝑒.

Then there exists a small enough 𝜆∗ > 0 such that 𝑢 = 𝜆𝐴𝑢 has
a positive solution for any 𝜆 ∈ (0, 𝜆∗).

Proof. For any fixed 𝑟
0
> 0, by (H5), we can all take 𝜆 = 𝜆(𝑟

0
),

such that

𝜆𝐵𝑞 < 𝑟
0
𝑒, 𝜆ℎ (𝑟

0
𝑁)

𝐵𝑔
 <

𝑟
0

𝑁
, ∀𝜆 ∈ (0, 𝜆) , (29)

hence (H4) holds. We take that

𝐹
∗

(𝑡, 𝑢) = 𝜆𝐹 (𝑡, 𝑢) , 𝐺
∗

(𝑢) = 𝜆𝐺 (𝑢) ,

𝑞
∗

(𝑡) = 𝜆𝑞 (𝑡) , 𝑔
∗

(𝑡) = 𝜆𝑔 (𝑡) .

(30)

Then for 𝜆𝐴 = 𝐵(𝜆𝐹), the conditions in Theorem 5 are
satisfied. Thus, 𝜆𝐴 has a positive fixed point, that is, 𝑢 = 𝜆𝐴

has a positive solution, and the proof is complete.

We consider the integral equation

𝑢 (𝑥) = ∫
𝐺

𝑘 (𝑥, 𝑦)(

𝑚

∑

𝑖=1

𝑎
𝑖
(𝑦) 𝑢(𝑦)

𝛼
𝑖

+ 𝑞 (𝑦)

× (𝑢(𝑦)
𝛾

− 𝑢(𝑦)
𝛿

− 𝑤
0
))𝑑𝑦,

(31)

where 𝐺 is a bounded closed domain in 𝑅𝑛 and 𝛼
𝑖
≥ 0, 𝑎

𝑖
(𝑥),

𝑞(𝑥) ∈ 𝐿(𝐺, [0,∞)), 𝑖 = 1, 2, . . . , 𝑚, 𝑘(𝑥, 𝑦) is nonnegative
continuous on 𝐺 × 𝐺.

Theorem 7. Suppose that among 𝛼
𝑖
(𝑖 = 1, 2, . . . , 𝑚) there

exists 𝛼
𝑖
0

> 1 such that inf
𝑥∈𝐺

𝑎
𝑖
0

(𝑥) > 0, and there exist
nontrivial nonnegative functions 𝑎(𝑥), 𝑏(𝑥) ∈ 𝐶(𝐺), and a
positive number 𝑐, 𝛾, 𝛿, 𝑤

0
such that

𝑐𝑎 (𝑥) 𝑏 (𝑦) ≤ 𝑘 (𝑥, 𝑦) ≤ 𝑎 (𝑥) ,

𝑘 (𝑥, 𝑦) ≤ 𝑏 (𝑦) , ∀𝑥, 𝑦 ∈ 𝐺,

(32)

𝛾 > 𝛿 > 0, 0 < 𝑤
0
≤ 1 + min

𝑡∈[0,1]

{𝑡
𝛾

− 𝑡
𝛿

} , (33)

∫
𝐺

𝑞 (𝑦) 𝑑𝑦 < 𝑐,

∫
𝐺

𝑏 (𝑦) ⋅max(
𝑚

∑

𝑖=1

𝑎
𝑖
(𝑦) , 𝑞 (𝑦))𝑑𝑦 <

1

2 − 𝑤
0

.

(34)

Then (31) has a nontrivial nonnegative solution in 𝐶(𝐺).

Proof. Let the Banach space 𝐸
1
= 𝐶(𝐺) with the sup norm

‖ ⋅ ‖,

𝑃
1
= {𝑢 ∈ 𝐸

1
| 𝑢 (𝑥) ≥ 0, ∀𝑥 ∈ 𝐺} , (35)

𝐸
2
= 𝐿 (𝐺) , 𝑃

2
= {𝑢 ∈ 𝐸

2
| 𝑢 (𝑥) ≥ 0, ∀𝑥 ∈ 𝐺} , (36)

𝑒 = 𝑐𝑎 (𝑥) , 𝑞 = 𝑞 (𝑥) ,

𝑔 (𝑥) = max{𝑞 (𝑥) ,
𝑚

∑

𝑖=1

𝑎
𝑖
(𝑥)} ,

(37)
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𝐺𝑢 = 𝑎
𝑖
0
(𝑥) 𝑢(𝑥)

𝛼
𝑖0 , ∀𝑢 (𝑥) ∈ 𝑃

1
, (38)

𝐹𝑢 =

𝑚

∑

𝑖=1

𝑎
𝑖
(𝑥) 𝑢(𝑥)

𝛼
𝑖 + 𝑞 (𝑥) (𝑢(𝑥)

𝛾

− 𝑢(𝑥)
𝛿

− 𝑤
0
) ,

∀𝑢 (𝑥) ∈ 𝑃
1
,

(39)

𝐽𝑢 (𝑥) = {
𝑢(𝑥)
𝛼

, if 𝑢 (𝑥) ≤ 1,

𝑢(𝑥)
𝛽

, if 𝑢 (𝑥) > 1,
, ∀𝑢 (𝑥) ∈ 𝑃

1
, (40)

with 𝛼 = min
1≤𝑖≤𝑛

{𝛼
𝑖
}, 𝛽 = max

1≤𝑖≤𝑛
{𝛼
𝑖
},

𝐻(𝑢) =

𝐽𝑢 (𝑥) + 𝑢(𝑥)

𝛾

− 𝑢(𝑥)
𝛿

− 𝑤
0
+ 1

𝐶
, ∀𝑢 (𝑥) ∈ 𝑃

1
,

(41)

𝐵𝑢 = ∫
𝐺

𝑘 (𝑥, 𝑦) 𝑢 (𝑦) 𝑑𝑦, 𝑟
0
= 1. (42)

Then 𝑃
1
⊂ 𝐸
1
is normal minihedral, the normal constant

𝑁 = 1, 𝑒 ∈ 𝑃
+

1
. 𝑃
2
is a cone of 𝐸

2
, 𝑞, 𝑔 ∈ 𝑃

+

2
. 𝐺 : 𝑃

1
→ 𝑃
2
is

nondecreasing 𝛼
𝑖
0

-convex operator, and𝐺𝑒 > 𝜃.𝐹 : 𝑃
1
→ 𝐸
2

is continuous; ℎ : 𝑃
1
→ [0, +∞).

It is known easily that

−1 < min
𝑡∈[0,1]

{𝑡
𝛾

− 𝑡
𝛿

} ≤ 𝑡
𝛾

− 𝑡
𝛿

< 0, 𝑡 ∈ (0, 1) , (43)

thus 𝑤
0
exits in (33) and

𝑡
𝛾

− 𝑡
𝛿

− 𝑤
0
≤ −𝑤
0
, 𝑡 ∈ [0, 1] . (44)

By (33), (43), and 𝛾 > 𝛿 we have

𝑢(𝑥)
𝛾

− 𝑢(𝑥)
𝛿

− 𝑤
0
≥ 𝑢(𝑥)

𝛾

− 𝑢(𝑥)
𝛿

− 1 − min
𝑡∈[0,1]

{𝑡
𝛾

− 𝑡
𝛿

}

≥ −1, ∀𝑢 (𝑥) ∈ 𝑃
+

1
,

(45)

therefore

𝑢(𝑥)
𝛾

− 𝑢(𝑥)
𝛿

− 𝑤
0
+ 1 ≥ 0, ∀𝑢 (𝑥) ∈ 𝑃

+

1
. (46)

From (33), (39), and (44) we know easily that there exists 𝑢
0
∈

𝑃
1
such that 𝐹𝑢 ∉ 𝑃

2
. From (37)–(46), we obtain that

𝐺𝑢 ≤ 𝐹𝑢+𝑞 =

𝑚

∑

𝑖=1

𝑎
𝑖
(𝑥) 𝑢(𝑥)

𝛼
𝑖+𝑞 (𝑥) (𝑢(𝑥)

𝛾

−𝑢(𝑥)
𝛿

−𝑤
0
+1)

≤ ((𝐽𝑢) (𝑥) + 𝑢(𝑥)
𝛾

− 𝑢(𝑥)
𝛿

− 𝑤
0
+ 1) 𝑔 (𝑥)

≤ 𝐻 (𝑢) 𝑔 (𝑥) , ∀𝑥 ∈ 𝐺, 𝑢 ∈ 𝑃
+

1
.

(47)

Equations (32) and (42) imply that ‖ 𝐵𝑢 ‖≤ ∫
𝐺
𝑏(𝑦)𝑢(𝑦)𝑑𝑦,

and hence

𝐵𝑢 ≥ 𝑐𝑎 (𝑥) ∫
𝐺

𝑏 (𝑦) 𝑢 (𝑦) 𝑑𝑦 ≥ ‖𝐵𝑢‖ 𝑒, ∀𝑢 ∈ 𝑃
1
. (48)

By (42), (32), (34), and (37), we obtain that

𝐵𝑞 ≤ 𝑎 (𝑥) ∫
𝐺

𝑞 (𝑦) 𝑑𝑦 < 𝑐𝑎 (𝑥) = 𝑟
0
𝑒. (49)

By (41) we have ℎ(𝑟
0
𝑁) = ℎ(1) = max

‖𝑢‖≤1
{𝐻(𝑢)} = 2 − 𝑤

0
.

This and (34) and (42) get that

𝐵𝑔 = ∫
𝐺

𝑘 (𝑥, 𝑦) 𝑔 (𝑦) 𝑑𝑦

≤ ∫
𝐺

𝑏 (𝑦) 𝑔 (𝑦) 𝑑𝑦 <
1

2 − 𝑤
0

=
𝑟
0

ℎ (𝑟
0
𝑁)

.

(50)

From (35) and (36) we know that (H1) is satisfied. By (47)
and (48) we obtain that (H2) and (H3) are satisfied. Equations
(49) and (50) imply that (H4) is satisfied. Therefore, using
Theorem 5, the integral equation (31) has a positive solution
in 𝐶(𝐺).
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