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The new iterative method with a powerful algorithm is developed for the solution of linear and nonlinear ordinary and partial
differential equations of fractional order as well. The analysis is accompanied by numerical examples where this method, in solving
them, is used without linearization or small perturbation which confirm the power, accuracy, and simplicity of the given method
compared with some of the other methods.

1. Introduction

Considerable attention has been devoted to the study of
the fractional calculus during the past three decades and its
numerous applications in the area of physics and engineering.
The applications of fractional calculus used in many fields
such as electrical networks, control theory of dynamical
systems, probability and statistics, electrochemistry, chemical
physics, optics, and signal processing can be successfully
modelled by linear or nonlinear fractional differential equa-
tions.

So far there have been several fundamental works on the
fractional derivative and fractional differential equations [1–
3]. These works are to be considered as an introduction to
the theory of fractional derivative and fractional differential
equations and provide a systematic understanding of the
fractional calculus such as the existence and uniqueness
[4, 5]. Recently, many other researchers have paid attention
to existence result of solution of the initial value problem
and boundary problem for fractional differential equations
[4–6].

Finding approximate or exact solutions of fractional dif-
ferential equations is an important task. Except for a limited
number of these equations, we have difficulty in finding
their analytical solutions.Therefore, there have been attempts
to develop new methods for obtaining analytical solutions

which reasonably approximate the exact solutions. Several
such techniques have drawn special attention, such as Ado-
main’s decomposition method [7], homotopy perturbation
method [8–10], homotopy analysis method [11, 12], varia-
tional iteration method [13–17], Chebyshev spectral method
[18, 19], and new iterative method [20–22]. Among them,
the new iterative method provides an effective procedure for
explicit and numerical solutions of a wide and general class
of differential systems representing real physical problems.
The new iterative method is more superior than the other
nonlinear methods, such as the perturbation methods where
this method does not depend on small parameters, such that
it can find wide application in nonlinear problems without
linearization or small perturbation.

The motivation of this paper is to extend the application
of the new iterative method proposed by Daftardar-Gejji
and Jafari [20–22] to solve linear and nonlinear ordinary
and partial differential equations of fractional order. This
motivation is based on the importance of these equations
and their applications in various subjects in physical branches
[10, 11, 14, 23–25].

There are several definitions of a fractional derivative of
order 𝛼 > 0 [3, 26].The twomost commonly used definitions
are Riemann-Liouville and Caputo. Each definition uses
Riemann-Liouville fractional integration and derivative of
whole order. The difference between the two definitions
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is in the order of evaluation. Riemann-Liouville fractional
integration of order 𝛼 is defined as

𝐼
𝛼

𝑓(𝑥) =

1

Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝜉)
𝛼−1

𝑓 (𝜉) 𝑑𝜉, 𝛼 > 0, 𝑥 > 0.

(1)

Thenext two equations defineRiemann-Liouville andCaputo
fractional derivatives of order 𝛼, respectively, as

𝐷
𝛼

𝑓(𝑥) =

𝑑
𝑚

𝑑𝑥
𝑚
(𝐼
𝑚−𝛼

𝑓(𝑥)) , (2a)

𝐷
𝛼

∗
𝑓(𝑥) = 𝐼

𝑚−𝛼

(

𝑑
𝑚

𝑑𝑥
𝑚
𝑓(𝑥)) , (2b)

where𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ 𝑁.
Caputo fractional derivative first computes an ordinary

derivative followed by a fractional integral to achieve the
desired order of fractional derivative. Riemann-Liouville
fractional derivative is computed in the reverse order. There-
fore, Caputo fractional derivative allows traditional initial
and boundary conditions to be included in the formulation
of the problem.

From properties of𝐷𝛼
∗
and 𝐼𝛼, it is important to note that

𝐷
𝛼

∗
𝑥
𝛽

=

Γ (𝛽 + 1) 𝑥
𝛽−𝛼

Γ (𝛽 + 1 − 𝛼)

, 𝛽 ≥ 𝛼, (3a)

where𝐷𝛼
∗
is Caputo derivative operator of order 𝛼,

𝐼
𝛼

𝑥
𝛽

=

Γ (𝛽 + 1) 𝑥
𝛽+𝛼

Γ (𝛽 + 1 + 𝛼)

. (3b)

2. Basic Idea of New Iterative Method

For the basic idea of the new iterative method, we consider
the following general functional equation [20–22]:

𝑢 (𝑥) = 𝑓(𝑥) + 𝑁 (𝑢 (𝑥)) , (4)

where 𝑁 is a nonlinear operator from a Banach space 𝐵 →
𝐵 and 𝑓 is a known function. We have been looking for a
solution of (4) having the series form

𝑢 (𝑥) =

∞

∑

𝑖=0

𝑢
𝑖
(𝑥) . (5)

The nonlinear operator𝑁 can be decomposed as

𝑁(

∞

∑

𝑖=0

𝑢
𝑖
) = 𝑁(𝑢

0
)

+

∞

∑

𝑖=1

{

{

{

𝑁(

𝑖

∑

𝑗=0

𝑢
𝑗
) −𝑁(

𝑖−1

∑

𝑗=0

𝑢
𝑗
)

}

}

}

.

(6)

From (5) and (6), (4) is equivalent to

∞

∑

𝑖=0

𝑢
𝑖
= 𝑓 + 𝑁 (𝑢

0
)

+

∞

∑

𝑖=1

{

{

{

𝑁(

𝑖

∑

𝑗=0

𝑢
𝑗
) −𝑁(

𝑖−1

∑

𝑗=0

𝑢
𝑗
)

}

}

}

.

(7)

We define the following recurrence relation:

𝑢
0
= 𝑓,

𝑢
1
= 𝑁 (𝑢

0
) ,

𝑢
𝑛+1
= 𝑁 (𝑢

0
+ 𝑢
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑛
)

− 𝑁 (𝑢
0
+ 𝑢
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑛−1
) , 𝑛 = 1, 2, . . . .

(8)

Then,

(𝑢
1
+ 𝑢
2
+ ⋅ ⋅ ⋅ + 𝑢

𝑛+1
)

= 𝑁 (𝑢
0
+ 𝑢
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑛
) , 𝑛 = 1, 2, . . . ,

𝑢 =

∞

∑

𝑖=0

𝑢
𝑖
= 𝑓 + 𝑁(

∞

∑

𝑖=0

𝑢
𝑖
) .

(9)

If ‖𝑁(𝑥) − 𝑁(𝑦)‖ < 𝑘 ‖𝑥 − 𝑦‖, 0 < 𝑘 < 1, then





𝑢
𝑛+1






=




𝑁 (𝑢
0
+ ⋅ ⋅ ⋅ + 𝑢

𝑛
) − 𝑁 (𝑢

0
+ ⋅ ⋅ ⋅ + 𝑢

𝑛−1
)





≤ 𝑘




𝑢
𝑛





≤ ⋅ ⋅ ⋅ ≤ 𝑘

𝑛+1 



𝑢
0





, 𝑛 = 0, 1, 2, . . . ,

(10)

and the series ∑∞
𝑖=0
𝑢
𝑖
absolutely and uniformly converges to

a solution of (4) [27], which is unique, in view of the Banach
fixed point theorem [28].The n-term approximate solution of
(4) and (5) is given by 𝑢(𝑥) = ∑𝑛−1

𝑖=0
𝑢
𝑖
.

2.1. Convergence of the Method. Now we analyze the conver-
gence of the new iterative method for solving any general
functional equation (4). Let 𝑒 = 𝑢∗ − 𝑢, where 𝑢∗ is the exact
solution, 𝑢 is the approximate solution, and 𝑒 is the error in
the solution of (4); obviously 𝑒 satisfies (4), that is,

𝑒 (𝑥) = 𝑓 (𝑥) + 𝑁 (𝑒 (𝑥)) (11)

and the recurrence relation (8) becomes

𝑒
0
= 𝑓,

𝑒
1
= 𝑁 (𝑒

0
) ,

𝑒
𝑛+1
= 𝑁 (𝑒

0
+ 𝑒
1
+ ⋅ ⋅ ⋅ + 𝑒

𝑛
)

− 𝑁 (𝑒
0
+ 𝑒
1
+ ⋅ ⋅ ⋅ + 𝑒

𝑛−1
) , 𝑛 = 1, 2, . . . .

(12)
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If ‖𝑁(𝑥) − 𝑁(𝑦)‖ ≤ 𝑘 ‖𝑥 − 𝑦‖, 0 < 𝑘 < 1, then

𝑒
0
= 𝑓,





𝑒
1





=




𝑁 (𝑒
0
)




≤ 𝑘




𝑒
0





,





𝑒
2





=




𝑁 (𝑒
0
+ 𝑒
1
) − 𝑁 (𝑒

0
)





≤ 𝑘




𝑒
1





≤ 𝑘
2 



𝑒
0





,





𝑒
3





=




𝑁 (𝑒
0
+ 𝑒
1
+ 𝑒
2
) − 𝑁 (𝑒

0
+ 𝑒
1
)





≤ 𝑘




𝑒
2





≤ 𝑘
3 



𝑒
0





,

...




𝑒
𝑛+1





=




𝑁 (𝑒
0
+ ⋅ ⋅ ⋅ + 𝑒

𝑛
) − 𝑁 (𝑒

0
+ ⋅ ⋅ ⋅ + 𝑒

𝑛−1
)





≤ 𝑘




𝑒
𝑛





≤ 𝑘
𝑛+1 



𝑒
0





, 𝑛 = 0, 1, 2, . . . .

(13)

Thus 𝑒
𝑛+1
→ 0 as 𝑛 → ∞, which proves the convergence of

the new iterative method for solving the general functional
equation (4). For more details, you can see [29].

3. Suitable Algorithm

In this section, we introduce a suitable algorithm for solv-
ing nonlinear partial differential equations using the new
iterative method. Consider the following nonlinear partial
differential equation of arbitrary order:

𝐷
𝛼

∗𝑡
𝑢 (𝑥, 𝑡) = 𝐴 (𝑢, 𝜕𝑢) + 𝐵 (𝑥, 𝑡) ,

𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ 𝑁,

(14a)

𝜕
𝑘

𝜕𝑡
𝑘

𝑢 (𝑥, 0) = ℎ
𝑘
(𝑥) , 𝑘 = 0, 1, . . . , 𝑚 − 1, (14b)

where 𝐴 is a nonlinear function of 𝑢 and 𝜕𝑢 (partial
derivatives of 𝑢 with respect to 𝑥 and 𝑡) and 𝐵 is the source
function. In view of the new iterativemethod, the initial value
problem (14a) and (14b) is equivalent to the integral equation

𝑢 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

ℎ
𝑘
(𝑥)

𝑡
𝑘

𝑘!

+ 𝐼
𝛼

𝑡
𝐵 + 𝐼
𝛼

𝑡
𝐴 = 𝑓 + 𝑁 (𝑢) , (15)

where

𝑓 =

𝑚−1

∑

𝑘=0

ℎ
𝑘
(𝑥)

𝑡
𝑘

𝑘!

+ 𝐼
𝛼

𝑡
𝐵, (16a)

𝑁(𝑢) = 𝐼
𝛼

𝑡
𝐴. (16b)

Remark 1. When the general functional equation (4) is linear,
the recurrence relation (8) can be simplified in the form

𝑢
0
= 𝑓,

𝑢
𝑛+1
= 𝑁 (𝑢

𝑛
) , 𝑛 = 0, 1, 2, . . . .

(17)

Proof. From the properties of integration and by using (8)
and (16b), we have

𝑢
𝑛+1
= 𝑁 (𝑢

0
+ ⋅ ⋅ ⋅ + 𝑢

𝑛−1
+ 𝑢
𝑛
)

− 𝑁 (𝑢
0
+ ⋅ ⋅ ⋅ + 𝑢

𝑛−1
)

= 𝐼
𝛼

𝑡
[𝑢
0
+ ⋅ ⋅ ⋅ + 𝑢

𝑛−1
+ 𝑢
𝑛
]

− 𝐼
𝛼

𝑡
[𝑢
0
+ ⋅ ⋅ ⋅ + 𝑢

𝑛−1
]

= 𝐼
𝛼

𝑡
[𝑢
0
] + ⋅ ⋅ ⋅ + 𝐼

𝛼

𝑡
[𝑢
𝑛−1
]

+ 𝐼
𝛼

𝑡
[𝑢
𝑛
] − 𝐼
𝛼

𝑡
[𝑢
0
] − 𝐼
𝛼

𝑡
[𝑢
𝑛−1
]

= 𝐼
𝛼

𝑡
[𝑢
𝑛
] = 𝑁 (𝑢

𝑛
) , 𝑛 = 0, 1, 2, . . . .

(18)

Therefore, we get the solution of (15) by employing the
recurrence relation (8) or (17).

4. Applications

To illustrate the effectiveness of the proposedmethod, several
test examples are carried out in this section.

Example 2. In this example, we consider the following initial
value problem in the case of the inhomogeneous Bagely-
Torvik equation [23, 24]:

𝐷
2

∗𝑥
𝑢 (𝑥) + 𝐷

1.5

∗𝑥
𝑢 (𝑥) + 𝑢 (𝑥) = 𝑔 (𝑥) ,

𝑢 (0) = 1, 𝑢


(0) = 1, 𝑥 ∈ [0, 𝐿] ,

(19)

where 𝑔(𝑥) = 1 + 𝑥. The exact solution of this problem is
𝑢(𝑥) = 1 + 𝑥.

By applying the technique described in Sections 2 and
3, the initial value problem (19) is equivalent to the integral
equation

𝑢 (𝑥) = 1 + 𝑥 +

𝑥
2

2

+

𝑥
3

6

− 𝐼
2

𝑥
[𝐷
1.5

∗𝑥
𝑢 (𝑥) + 𝑢 (𝑥)] . (20)

Let 𝑁(𝑢) = −𝐼2
𝑥
[𝐷
1.5

∗𝑥
𝑢(𝑥) + 𝑢(𝑥)]. In view of recurrence

relation (17), we have the following first approximations:

𝑢
0
(𝑥) = 1 + 𝑥 +

𝑥
2

2

+

𝑥
3

6

,

𝑢
1
(𝑥) = 𝑁 (𝑢

0
) = −

8𝑥
2.5

15√𝜋

−

16𝑥
3.5

105√𝜋

−

𝑥
2

2

−

𝑥
3

6

−

𝑥
4

24

−

𝑥
5

120

,

𝑢
2
(𝑥) = 𝑁 (𝑢

1
) =

8𝑥
2.5

15√𝜋

+

16𝑥
3.5

105√𝜋

+

64𝑥
4.5

945√𝜋

+

128𝑥
5.5

10395√𝜋

+

𝑥
3

6

+

𝑥
4

12

+

𝑥
5

120

+

𝑥
6

720

+

𝑥
7

5040

,

(21)
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Figure 1: Plots of the approximate solution and the exact solution
for (19).

and so on. In the samemanner the rest of components can be
obtained. The 6-term approximate solution for (19) is

𝑢 (𝑥) =

5

∑

𝑖=0

𝑢
𝑖

= 1 + 𝑥 −

𝑥
6

144

−

5𝑥
7

5040

−

𝑥
9

36288

−

𝑥
10

362880

−

𝑥
12

479001600

−

𝑥
13

6227020800

−

32𝑥
4.5

945√𝜋

−

64𝑥
5.5

10395√𝜋

−

512𝑥
7.5

405405√𝜋

−

1024𝑥
8.5

6891885√𝜋

−

512𝑥
10.5

687465529√𝜋

−

128𝑥
11.5

1976463395√𝜋

.

(22)

Remark 3. In Example 2. we have used the recurrence rela-
tion (17). If we used the recurrence relation (8) in place of
(17), we obtain the same result.

In Figure 1, we have plotted the 6-term approximate
solution with the corresponding exact solution for (19). It is
remarkable to note that the two solutions are almost equal.

Comparing these obtained results with those obtained by
new Jacobi operational matrix in [23, 24], we can confirm the
simplicity and accuracy of the given method.

Example 4. Consider the following fractional Riccati equa-
tion [10]:

𝐷
𝛼

∗𝑥
𝑢 (𝑥) + 𝑢

2

(𝑥) = 1, 𝑢 (0) = 0, 𝑥 > 0, 0 < 𝛼 ≤ 1. (23)

The exact solution when 𝛼 = 1 is 𝑢(𝑥) = (𝑒2𝑥 − 1)/(𝑒2𝑥 + 1).

By applying the technique described in Sections 2 and
3, the initial value problem (23) is equivalent to the integral
equation

𝑢 (𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)

− 𝐼
𝛼

𝑥
[𝑢
2

(𝑥)] . (24)

Let𝑁(𝑢) = −𝐼𝛼
𝑥
[𝑢
2

(𝑥)]. In view of recurrence relation (8),
we have the following first approximations:

𝑢
0
(𝑥) =

𝑥
𝛼

Γ (1 + 𝛼)

,

𝑢
1
(𝑥) = 𝑁 (𝑢

0
) = −

Γ (1 + 2𝛼) 𝑥
3𝛼

Γ (1 + 3𝛼) Γ(1 + 𝛼)
2
,

𝑢
2
(𝑥) = 𝑁 (𝑢

0
+ 𝑢
1
) − 𝑁 (𝑢

0
)

=

2Γ (1 + 2𝛼) Γ (1 + 4𝛼) 𝑥
5𝛼

Γ (1 + 3𝛼) Γ (1 + 5𝛼) Γ(1 + 𝛼)
3

−

Γ(1 + 2𝛼)
2

Γ (1 + 6𝛼) 𝑥
7𝛼

Γ(1 + 3𝛼)
2

Γ (1 + 7𝛼) Γ(1 + 𝛼)
4
,

(25)

and so on. The 4-term approximate solution for (23) is

𝑢 (𝑥) =

3

∑

𝑖=0

𝑢
𝑖

=

𝑥
𝛼

Γ (1 + 𝛼)

−

Γ (1 + 2𝛼) 𝑥
3𝛼

Γ (1 + 3𝛼) Γ(1 + 𝛼)
2

+

2Γ (1 + 2𝛼) Γ (1 + 4𝛼) 𝑥
5𝛼

Γ (1 + 3𝛼) Γ (1 + 5𝛼) Γ(1 + 𝛼)
3

−

Γ(1 + 2𝛼)
2

Γ (1 + 6𝛼) 𝑥
7𝛼

Γ(1 + 3𝛼)
2

Γ (1 + 7𝛼) Γ(1 + 𝛼)
4

−

4Γ (1 + 2𝛼) Γ (1 + 4𝛼) Γ (1 + 6𝛼) 𝑥
7𝛼

Γ (1 + 3𝛼) Γ (1 + 5𝛼) Γ (1 + 7𝛼) Γ(1 + 𝛼)
4

+

4Γ(1 + 2𝛼)
2

Γ (1 + 4𝛼)

Γ(1 + 3𝛼)
2

Γ (1 + 5𝛼)

⋅

Γ (1 + 8𝛼) 𝑥
9𝛼

Γ (1 + 9𝛼) Γ(1 + 𝛼)
5

+

2Γ(1 + 2𝛼)
2

Γ (1 + 6𝛼) Γ (1 + 8𝛼) 𝑥
9𝛼

Γ(1 + 3𝛼)
2

Γ (1 + 7𝛼) Γ (1 + 9𝛼) Γ(1 + 𝛼)
5

−

4Γ(1 + 2𝛼)
2

Γ(1 + 4𝛼)
2

Γ (1 + 10𝛼) 𝑥
11𝛼

Γ(1 + 3𝛼)
2

Γ(1 + 5𝛼)
2

Γ (1 + 11𝛼) Γ(1 + 𝛼)
6

−

2Γ(1 + 2𝛼)
3

Γ(1 + 3𝛼)
3

Γ (1 + 7𝛼)

⋅

Γ (1 + 6𝛼) Γ (1 + 10𝛼) 𝑥
11𝛼

Γ (1 + 11𝛼) Γ(1 + 𝛼)
6
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+

4Γ(1 + 2𝛼)
3

Γ (1 + 4𝛼) Γ (1 + 6𝛼)

Γ(1 + 3𝛼)
3

Γ (1 + 5𝛼) Γ (1 + 7𝛼)

⋅

Γ (1 + 12𝛼) 𝑥
13𝛼

Γ (1 + 13𝛼) Γ(1 + 𝛼)
7

−

Γ(1 + 2𝛼)
4

Γ(1 + 6𝛼)
2

Γ (1 + 14𝛼) 𝑥
15𝛼

Γ (1 + 3𝛼)
4

Γ(1 + 7𝛼)
2

Γ (1 + 15𝛼) Γ(1 + 𝛼)
8
.

(26)

In Figure 2, we have plotted the 4-term approximate solu-
tion for (23) for different values of 𝛼 with the corresponding
exact solution. It is remarkable to note that the approximate
solution, in case 𝛼 = 1, and the exact solution are almost
equal (continuous curve) whenever the approximate solu-
tion, in cases 𝛼 = 0.9, 0.8, is of high agreement with the exact
solution (dashed and dotted curves, resp.).

Comparing the obtained results with those obtained by
homotopy analysis method, in case ℎ = −1, in [10], we can
confirm the simplicity and accuracy of the given method.

Example 5. Consider the following initial value problemwith
fractional order [23, 24]:

𝐷
3

∗𝑥
𝑢 (𝑥) + 𝐷

2.5

∗𝑥
𝑢 (𝑥) + 𝑢

2

(𝑥) = 𝑥
4

,

𝑢 (0) = 𝑢


(0) = 0, 𝑢


(0) = 2.

(27)

The exact solution for this problem is 𝑢(𝑥) = 𝑥2.
As in Example 4, the initial value problem (27) is equiva-

lent to the integral equation

𝑢 (𝑥) = 𝑥
2

+

𝑥
7

210

− 𝐼
3

𝑥
[𝐷
2.5

∗𝑥
𝑢 (𝑥) + 𝑢

2

(𝑥)] . (28)

Let𝑁(𝑢) = −𝐼3
𝑥
[𝐷
2.5

∗𝑥
𝑢(𝑥) + 𝑢

2

(𝑥)]. In view of recurrence
relation (8), we have the following first approximations:

𝑢
0
(𝑥) = 𝑥

2

+

𝑥
7

210

,

𝑢
1
(𝑥) = 𝑁 (𝑢

0
) =

−129024𝑥
7.5

42567525√𝜋

−

𝑥
7

210

−

𝑥
12

138600

−

𝑥
17

179928000

,

𝑢
2
(𝑥) = 𝑁 (𝑢

0
+ 𝑢
1
) − 𝑁 (𝑢

0
)

= 1.71008
−3

𝑥
7.5

+ 5.95252
−4

𝑥
8

+ 7.21501
−6

𝑥
12

+ 4.28636
−6

𝑥
12.5

+ 9.09455
−9

𝑥
17

+ 1.31911
−9

𝑥
17.5

− 5.97301
−10

𝑥
18

+ 1.20298
−12

𝑥
22

− 2.48834
−12

𝑥
22.5

− 2.96617
−15

𝑥
27

− 1.02289
−15

𝑥
27.5

− 2.69485
−18

𝑥
32

− 6.62568
−28

𝑥
37

,

(29)

𝑢
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0.6

0.5

0.4

0.3
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0.1

𝑥

0 0.2 0.4 0.6 0.8 1

Figure 2: Plots of the approximate solution for different values of 𝛼
and the exact solution for (23).

𝑢

1

0.8

0.6

0.4

0.2

𝑥

0.2 0.4 0.6 0.8 1

Figure 3: Plots of the approximate solution and the exact solution
for (27).

and so on. The 4-term approximate solution and the corre-
sponding exact solution for (27) are plotted in Figure 3. It is
remarkable to note that the two solutions are almost equal.

Comparing these obtained results with those obtained by
new Jacobi operational matrix in [23, 24], we can confirm the
simplicity and accuracy of the given method.

Example 6. Consider the following fractional order wave
equation in 2-dimensional space [14]:

𝐷
𝛼

∗𝑡
𝑢 (𝑥, 𝑦, 𝑡) + 𝑐 (𝑢

𝑥
+ 𝑢
𝑦
) = 0,

𝑢 (𝑥, 𝑦, 0) = sin [𝜋 (
𝑥 + 𝑦

𝑙

)] , 0 < 𝛼 ≤ 1.

(30)

The exact solution for this problem when 𝛼 = 1 is

𝑢 (𝑥, 𝑦, 𝑡) = sin [𝜋 (
𝑥 + 𝑦 − 2𝑐𝑡

𝑙

)] . (31)

The initial value problem (30) is equivalent to the integral
equation

𝑢 (𝑥, 𝑦, 𝑡) = sin [𝜋 (
𝑥 + 𝑦

𝑙

)] − 𝐼
𝛼

𝑡
[𝑐 (𝑢
𝑥
+ 𝑢
𝑦
)] . (32)
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Let𝑁(𝑢) = −𝐼𝛼
𝑡
[𝑐(𝑢
𝑥
+𝑢
𝑦
)]. In view of recurrence relation

(17), we have the following first approximations:

𝑢
0
(𝑥, 𝑦, 𝑡) = sin [𝜋 (

𝑥 + 𝑦

𝑙

)] ,

𝑢
1
(𝑥, 𝑦, 𝑡) =

−1

Γ (1 + 𝛼)

(

2𝑐𝜋𝑡
𝛼

𝑙

) ⋅ cos [𝜋 (
𝑥 + 𝑦

𝑙

)] ,

𝑢
2
(𝑥, 𝑦, 𝑡) =

−1

Γ (1 + 2𝛼)

(

2𝑐𝜋𝑡
𝛼

𝑙

)

2

⋅ sin [𝜋 (
𝑥 + 𝑦

𝑙

)] ,

𝑢
3
(𝑥, 𝑦, 𝑡) =

1

Γ (1 + 3𝛼)

(

2𝑐𝜋𝑡
𝛼

𝑙

)

3

⋅ cos [𝜋 (
𝑥 + 𝑦

𝑙

)] ,

(33)

and so on. The n-term approximate solution for (30) is

𝑢 (𝑥, 𝑦, 𝑡) =

𝑛−1

∑

𝑖=0

𝑢
𝑖

= sin [𝜋 (
𝑥 + 𝑦

𝑙

)]

× [1 −

1

Γ (1 + 2𝛼)

(

2𝑐𝜋𝑡
𝛼

𝑙

)

2

+

1

Γ (1 + 4𝛼)

(

2𝑐𝜋𝑡
𝛼

𝑙

)

4

−

1

Γ (1 + 6𝛼)

(

2𝑐𝜋𝑡
𝛼

𝑙

)

6

+ ⋅ ⋅ ⋅ ]

− cos [𝜋 (
𝑥 + 𝑦

𝑙

)]

× [

1

Γ (1 + 𝛼)

(

2𝑐𝜋𝑡
𝛼

𝑙

)

−

1

Γ (1 + 3𝛼)

(

2𝑐𝜋𝑡
𝛼

𝑙

)

3

+

1

Γ (1 + 5𝛼)

(

2𝑐𝜋𝑡
𝛼

𝑙

)

5

−

1

Γ (1 + 7𝛼)

(

2𝑐𝜋𝑡
𝛼

𝑙

)

7

+ ⋅ ⋅ ⋅ ] .

(34)

In closed form this gives:

𝑢 (𝑥, 𝑦, 𝑡) = sin [𝜋 (
𝑥 + 𝑦

𝑙

)]

⋅ cos(2𝑐𝜋𝑡
𝛼

𝑙

)

− cos [𝜋 (
𝑥 + 𝑦

𝑙

)] ,

sin(2𝑐𝜋𝑡
𝛼

𝑙

) = sin [𝜋(
𝑥 + 𝑦 − 2𝑐𝑡

𝛼

𝑙

)]

(35)

which is the exact solution for the given problem. When 𝛼 =
1, the above n-term approximate solution for (30) becomes

𝑢 (𝑥, 𝑦, 𝑡) =

𝑛−1

∑

𝑖=0

𝑢
𝑖

= sin [𝜋 (
𝑥 + 𝑦

𝑙

)]

× [1 −

1

2!

(

2𝑐𝜋𝑡

𝑙

)

2

+

1

4!

(

2𝑐𝜋𝑡

𝑙

)

4

−

1

6!

(

2𝑐𝜋𝑡

𝑙

)

6

+ ⋅ ⋅ ⋅ ]

− cos [𝜋 (
𝑥 + 𝑦

𝑙

)]

× [(

2𝑐𝜋𝑡

𝑙

) −

1

3!

(

2𝑐𝜋𝑡

𝑙

)

3

+

1

5!

(

2𝑐𝜋𝑡

𝑙

)

5

−

1

7!

(

2𝑐𝜋𝑡

𝑙

)

7

+ ⋅ ⋅ ⋅ ] .

(36)

In closed form, this gives

𝑢 (𝑥, 𝑦, 𝑡) = sin [𝜋 (
𝑥 + 𝑦

𝑙

)]

⋅ cos(2𝑐𝜋𝑡
𝑙

) − cos [𝜋 (
𝑥 + 𝑦

𝑙

)] ,

sin(2𝑐𝜋𝑡
𝑙

) = sin [𝜋 (
𝑥 + 𝑦 − 2𝑐𝑡

𝑙

)] ,

(37)

which is the same result obtained by variational iteration
method in [14].

Example 7. Consider the following fractional order heat
equation in 2-dimensional space [11]:

𝐷
𝛽

∗𝑡
𝑢 (𝑥, 𝑦, 𝑡) = 𝛼 (𝑢

𝑥𝑥
+ 𝑢
𝑦𝑦
) ,

𝑢 (𝑥, 𝑦, 0) = 𝑐 [sin(𝜋𝑥
𝑙

) + sin(
𝜋𝑦

𝑙

)] , 0 < 𝛽 ≤ 1.

(38)

The exact solution for this problem when 𝛽 = 1 is

𝑢 (𝑥, 𝑦, 𝑡) = 𝑐𝑒
−𝛼𝜋
2
𝑡/𝑙
2

[sin(𝜋𝑥
𝑙

) + sin(
𝜋𝑦

𝑙

)] . (39)

The initial value problem (38) is equivalent to the integral
equation

𝑢 (𝑥, 𝑦, 𝑡) = 𝑐 [sin(𝜋𝑥
𝑙

) + sin(
𝜋𝑦

𝑙

)] + 𝐼
𝛽

𝑡
[𝛼 (𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
)] .

(40)
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Let 𝑁(𝑢) = 𝐼
𝛽

𝑡
[𝛼(𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
)]. In view of recurrence

relation (17), we have the following first approximations:

𝑢
0
(𝑥, 𝑦, 𝑡) = 𝑐 [sin(𝜋𝑥

𝑙

) + sin(
𝜋𝑦

𝑙

)] ,

𝑢
1
(𝑥, 𝑦, 𝑡) =

−𝑐

Γ (1 + 𝛽)

(

𝛼𝜋
2

𝑡
𝛽

𝑙
2
)

× [sin(𝜋𝑥
𝑙

) + sin(
𝜋𝑦

𝑙

)] ,

𝑢
2
(𝑥, 𝑦, 𝑡) =

𝑐

Γ (1 + 2𝛽)

(

𝛼𝜋
2

𝑡
𝛽

𝑙
2
)

2

× [sin(𝜋𝑥
𝑙

) + sin(
𝜋𝑦

𝑙

)] ,

𝑢
3
(𝑥, 𝑦, 𝑡) =

−𝑐

Γ (1 + 3𝛽)

(

𝛼𝜋
2

𝑡
𝛽

𝑙
2
)

3

× [sin(𝜋𝑥
𝑙

) + sin(
𝜋𝑦

𝑙

)] ,

(41)

and so on. The n-term approximate solution for (38) is

𝑢 (𝑥, 𝑦, 𝑡) =

𝑛−1

∑

𝑖=0

𝑢
𝑖

= 𝑐 [sin(𝜋𝑥
𝑙

) + sin(
𝜋𝑦

𝑙

)]

× [1 −

1

Γ (1 + 𝛽)

(

𝛼𝜋
2

𝑡
𝛽

𝑙
2
)

+

1

Γ (1 + 2𝛽)

(

𝛼𝜋
2

𝑡
𝛽

𝑙
2
)

2

−

1

Γ (1 + 3𝛽)

(

𝛼𝜋
2

𝑡
𝛽

𝑙
2
)

3

+ ⋅ ⋅ ⋅ ] .

(42)

When 𝛽 = 1, The n-term approximate solution for (38)
becomes

𝑢 (𝑥, 𝑦, 𝑡) =

𝑛−1

∑

𝑖=0

𝑢
𝑖

= 𝑐 [sin(𝜋𝑥
𝑙

) + sin(
𝜋𝑦

𝑙

)]

× [1 −

1

1!

(

𝛼𝜋
2

𝑡

𝑙
2
) +

1

2!

(

𝛼𝜋
2

𝑡

𝑙
2
)

2

−

1

3!

(

𝛼𝜋
2

𝑡

𝑙
2
)

3

+ ⋅ ⋅ ⋅ ] .

(43)

In closed form, this gives

𝑢 (𝑥, 𝑦, 𝑡) = 𝑐𝑒
−𝛼𝜋
2
𝑡/𝑙
2

[sin(𝜋𝑥
𝑙

) + sin(
𝜋𝑦

𝑙

)] (44)

which is the exact solution for the given problem.

The obtained results in this example are the same as these
obtained in [11] by the homotopy perturbation method, in
case 𝛽 = 1, but with the simplicity of the given method.

Example 8. In this last example, we consider the following
fractional order nonlinear wave equation [25]:

𝐷
𝛼

∗𝑥
𝑢 (𝑥, 𝑡) − 𝑢𝑢

𝑡𝑡
=

𝑥
2−𝛼

Γ (3 − 𝛼)

−

(𝑥
2

+ 𝑡
2

)

2

,

𝑢 (0, 𝑡) =

𝑡
2

2

, 𝑢
𝑥
(0, 𝑡) = 0, 1 < 𝛼 ≤ 2.

(45)

The exact solution for this problemwhen𝛼 = 2 is𝑢(𝑥, 𝑡) =
(1/2)(𝑥

2

+ 𝑡
2

) where 0 ≤ 𝑥, 𝑡 ≤ 1.
The initial value problem (45) is equivalent to the integral

equation

𝑢 (𝑥, 𝑡) =

1

2

(𝑥
2

+ 𝑡
2

) −

𝑥
2+𝛼

Γ (3 + 𝛼)

−

𝑡
2

𝑥
𝛼

2Γ (1 + 𝛼)

+ 𝐼
𝛼

𝑥
[𝑢𝑢
𝑡𝑡
] .

(46)

Let 𝑁(𝑢) = 𝐼𝛼
𝑥
[𝑢𝑢
𝑡𝑡
]. In view of recurrence relation (8),

we have

𝑢
0
(𝑥, 𝑡) =

1

2

(𝑥
2

+ 𝑡
2

)

−

𝑥
2+𝛼

Γ (3 + 𝛼)

−

𝑡
2

𝑥
𝛼

2Γ (1 + 𝛼)

,

𝑢
1
(𝑥, 𝑡) =

𝑥
2+𝛼

Γ (3 + 𝛼)

−

𝑥
2+2𝛼

Γ (3 + 2𝛼)

−

Γ (3 + 𝛼) 𝑥
2+2𝛼

2Γ (1 + 𝛼) Γ (3 + 2𝛼)

+

Γ (3 + 2𝛼) 𝑥
2+3𝛼

Γ (1 + 𝛼) Γ (3 + 𝛼) Γ (3 + 3𝛼)

+ 𝑡
2

(

𝑥
𝛼

2Γ (1 + 𝛼)

−

𝑥
2𝛼

Γ (1 + 2𝛼)

+

Γ (1 + 2𝛼) 𝑥
3𝛼

2Γ(1 + 𝛼)
2

Γ (1 + 3𝛼)

) ,

(47)

and so on. The 3-term approximate solution and the corre-
sponding exact solution for (45) are plotted in Figure 4(a), in
case 𝑡 = 1/2, for 𝛼 = 1.8, 1.9, 2., in Figure 4(b), in case 𝑡 = 1,
for 𝛼 = 1.8, 1.9, 2., and in Figure 4(c), in case 𝛼 = 2. It is
remarkable to note that in the first two figures all the solutions
are almost equal.

Comparing these results with those obtained by the
modification homotopy perturbation method in [25], we can
confirm the accuracy and simplicity of the given method.

5. Conclusion

In this paper, the new iterative method with suitable algo-
rithm is successfully used to solve linear and nonlinear
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Figure 4: (a) Plots of the approximate solution for different values of 𝛼 and the exact solution, in case 𝑡 = 1/2; for (45). (b) Plots of the
approximate solution for different values of 𝛼 and the exact solution, in case 𝑡 = 1; for (45). (c) Plots of the approximate solution, in case 𝛼 = 2
for (45).

ordinary and partial differential equations with fractional
order. It is clear that the computations are easy and the solu-
tions agree well with the corresponding exact solutions and
more accurate than the solutions obtained by other methods.
Moreover, the accuracy is high with little computed terms
of the solution which confirm that this method with the
given algorithm is a powerful method for handling fractional
differential equations.
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