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This paper focuses on the stability and oscillations of Euler-Maclaurin method for linear differential equations with piecewise
constant arguments 𝑢


(𝑡) = 𝑎𝑢(𝑡) + 𝑏𝑢([𝑡]). The necessary and sufficient conditions under which the numerical stability region

contains the analytical stability region are given. Furthermore, the conditions of oscillation for the Euler-Maclaurin method are
obtained.We prove that the Euler-Maclaurin method preserves the oscillations of the analytic solution. Moreover, the relationships
between stability and oscillations are discussed for analytic solution and numerical solution, respectively. Finally, some numerical
experiments for verifying the theoretical analysis are also provided.

1. Introduction

In the present paperwewill consider the following differential
equations with piecewise constant arguments (EPCA):

𝑢


(𝑡) = 𝑎𝑢 (𝑡) + 𝑏𝑢 ([𝑡]) , 𝑡 ≥ 0,

𝑢 (0) = 𝑢
0
,

(1)

where 𝑎, 𝑏, 𝑢
0

∈ R and [⋅] denotes the greatest integer func-
tion. Moreover, we assume that 𝑏 < 0. The general form of
this type of equations is

𝑢


(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝛽 (𝑡))) , 𝑡 ≥ 0,

𝑢 (0) = 𝑢
0
,

(2)

where the argument 𝛽(𝑡) has intervals of constancy.
It is well known that studies of EPCA were motivated by

the fact that they represent a hybrid of continuous and dis-
crete dynamical systems and combine the properties of both
the differential and difference equations.The local asymptotic
stabilization of a class of instable autonomous nonlinear

difference equations was studied in [1]. Convergence and
stability of adaptation algorithm for a class of nominally first-
order hybrid time-invariant linear systems were considered
in [2], and stability for hybrid difference-differential systems
was analyzed in [3]. The first work devoted to EPCA is the
paper of Shah and Wiener [4] in 1983. In 1984 Cooke and
Wiener [5] studied these equations with delay. The investiga-
tion of EPCA is an important subject because they play an
important role in numerous applications [6–8]. In the litera-
ture, there are many papers dealing with the properties of
EPCA, including the existence and uniqueness of solutions
[9], the stability [10], the oscillations [11], and the existence
of integral manifolds [12]. Moreover, the concept of EPCA
has been generalized in [13–15] by introducing arbitrary
piecewise constant functions as arguments. Significant parts
of pioneer results for EPCA can be found in [16]. For more
details of EPCA, the reader can see [17–22] and the references
cited therein.

In recent ten years, much work has been done in the
numerical solution of EPCA. For instance, in [23, 24], the
stability of numerical solution inRunge-Kuttamethods for (1)
and the mixed type EPCA was studied, respectively. In [25],
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the numerical stability of 𝜃-methods was considered for
EPCA of advanced type. For EPCAwith variable coefficients,
Song and Liu [26] studied the asymptotic stability of the
analytic and numerical solutions. The oscillations of 𝜃-
methods and Runge-Kutta methods were investigated in [27,
28] for EPCA of retarded type, respectively. However, as far
as we know, very few results were obtained on combining
the stability with the oscillations of the numerical solution
in the same article except for [29]. Different from [29], the
novel idea of our paper is that we will study both stability and
oscillations of the numerical solution in the Euler-Maclaurin
method for (1), and their relationships are analyzed quantita-
tively.

Euler-Maclaurin method is an important tool of numeri-
cal analysis which was discovered independently and almost
simultaneously by Euler andMaclaurin in the first half of 18th
century. Rota [30] called Euler-Maclaurin “one of the most
remarkable formulas of mathematics.” After that, it shows us
how to trade a finite sum for an integral. It works much like
Taylor’s formula. The equation involves an infinite series that
may be truncated at any point, leaving an error term that can
be bounded.

It is well known that the trapezoidal rule can be derived
from the Euler-Maclaurin formula. See, for example, Munro’s
paper [31]. In [32], the author indicated how the Newton-
Cotes quadrature formulas and various other quadrature for-
mulas can be developed from special cases of periodic Euler-
Maclaurin formula. With respect to the numerical analysis
of delay differential equations (DDEs), few results on the
Euler-Maclaurin method were obtained except for [33]. In
our present paper, we will apply this method to (1) and
investigate numerical stability and oscillations.

The rest of this paper is organized as follows. In Section 2,
some necessary notations and results are given. In Section 3,
we propose Euler-Maclaurin method to solve (1), and the
asymptotical stability of numerical solution is discussed. In
Section 4, we investigate the oscillations of the numerical
solution and prove that the oscillations of the analytic
solution are inherited by the Euler-Maclaurinmethod. In Sec-
tion 5, we establish some relationships between stability and
oscillations, and several numerical experiments are shown
in Section 6. Finally, concluding remarks are given in Sec-
tion 7.

2. Preliminaries

In this section, we will focus our attention on some prelimi-
nary results which will be used in the further analysis.

Proposition 1 (see [16]). A solution of (1) on [0, ∞) is a
function 𝑢(𝑡) which satisfies the following conditions:

(i) 𝑢(𝑡) is continuous on [0, ∞);
(ii) the derivative 𝑢


(𝑡) exists at each point 𝑡 ∈ [0, ∞), with

the possible exception of the points [𝑡] ∈ [0, ∞), where
one-sided derivatives exist;

(iii) equation (1) is satisfied on each interval [𝑛, 𝑛 + 1) ⊂

[0, ∞) with integral end points.

Theorem 2 (see [16]). Equation (1) has a unique solution on
[0, ∞):

𝑢 (𝑡) = 𝑚
0

({𝑡}) 𝑏
[𝑡]

0
𝑢
0
, (3)

where {𝑡} is the fractional part of 𝑡({𝑡} = 𝑡 − [𝑡]) and

𝑏
0

= 𝑚
0

(1) , 𝑚
0

(𝑡) = 𝑒
𝑎𝑡

+ (𝑒
𝑎𝑡

− 1) 𝑎
−1

𝑏. (4)

Theorem 3 (see [16]). The solution of (1) is asymptotically
stable (𝑢(𝑡) → 0 as 𝑡 → ∞) for all 𝑢

0
, if and only if

−

𝑎 (𝑒
𝑎

+ 1)

𝑒
𝑎

− 1

< 𝑏 < −𝑎, 𝑎 ̸= 0,

−2 < 𝑏 < 0, 𝑎 = 0.

(5)

Definition 4. A non-trivial solution of (1) is said to be
oscillatory if there exists a sequence {𝑡

𝑘
}
∞

𝑘=1
such that 𝑡

𝑘
→ ∞

as 𝑘 → ∞ and 𝑢(𝑡
𝑘
)𝑢(𝑡
𝑘−1

) < 0; otherwise it is called
non-oscillatory. We say (1) is oscillatory if all the non-trivial
solutions of (1) are oscillatory; we say (1) is non-oscillatory if
all the non-trivial solutions of (1) are non-oscillatory.

Theorem 5 (see [16]). Every solution of (1) is non-oscillatory
if and only if

𝑏 >

𝑎𝑒
𝑎

1 − 𝑒
𝑎
. (6)

Remark 6. By Definition 4, we can see that if a solution 𝑢(𝑡)

of (1) is non-oscillatory and continuous, then it must be
eventually positive or eventually negative.That is, there exists
a 𝑇
0

∈ R such that 𝑢(𝑡) > 0 or 𝑢(𝑡) < 0 for 𝑡 ≥ 𝑇
0
.

3. Numerical Stability

3.1. Bernoulli’s Number and Bernoulli’s Polynomial. It is well
known that

𝑧

𝑒
𝑧

− 1

=

∞

∑

𝑗=0

𝐵
𝑗

𝑗!

𝑧
𝑗
, |𝑧| < 2𝜋,

𝑧𝑒
𝑥𝑧

𝑒
𝑧

− 1

=

∞

∑

𝑗=0

𝐵
𝑗
(𝑥)

𝑗!

𝑧
𝑗
, |𝑧| < 2𝜋,

(7)

where𝐵
𝑗
and𝐵

𝑗
(𝑥), 𝑗 = 0, 1, . . ., are called Bernoulli’s number

and Bernoulli’s polynomial, respectively.

Proposition 7 (see [33]). The Bernoulli’s number 𝐵
𝑗
satisfies

the following properties:

(i) 𝐵
0

= 1, 𝐵
1

= −1/2,

(ii) 𝐵
2𝑗

= 2(−1)
𝑗+1

(2𝑗)! ∑
∞

𝑘=1
(2𝑘𝜋)

−2𝑗
, 𝐵
2𝑗+1

= 0, 𝑗 ≥ 1,
(iii) (𝐵

2(2𝑖−1)
/(2(2𝑖 − 1))!) + (𝐵

2(2𝑖)
/(2(2𝑖))!) > 0, 𝑖 =

1, 2, . . .,
(iv) (𝐵

2(2𝑖+1)
/(2(2𝑖 + 1))!) + (𝐵

2(2𝑖)
/(2(2𝑖))!) < 0, 𝑖 =

1, 2, . . ..
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Proposition 8 (see [33]). The Bernoulli’s polynomial 𝐵j(x)

satisfies the following properties:

(i) 𝐵
0
(𝑥) = 1, 𝐵

1
(𝑥) = 𝑥 − 1/2, 𝐵

𝑘
(𝑥) = ∑

𝑘

𝑗=0
𝐶
𝑗

𝑘
𝐵
𝑗
𝑥
𝑘−𝑗,

(ii) 𝐵
2𝑘+1

(1) = 𝐵
2𝑘+1

(0) = 𝐵
2𝑘+1

= 0,
(iii) 𝐵

2𝑘
(1) = 𝐵

2𝑘
(0) = 𝐵

2𝑘
,

(iv) 𝐵
𝑘
(𝑥) = (1/(𝑘 + 1))𝐵



𝑘+1
(𝑥), 𝑘 = 1, 2, . . . .

3.2. The Euler-Maclaurin Method and Discretization. Let 𝑞 >

0 be an integer, and assume that the function 𝑓(𝑡) is at least
2𝑞 + 2 times continuously differentiable on [𝑐, 𝑑]. Further
assume that ℎ evenly divides 𝑐 and 𝑑; then Atkinson’s version
of the Euler-Maclaurin formula [34] is as follows:

∫

𝑑

𝑐

𝑓 (𝑡) 𝑑𝑡 = ℎ

𝑑

∑

𝑛=𝑐

𝑓 (𝑛) −

ℎ

2

(𝑓 (𝑐) + 𝑓 (𝑑))

−

𝑞

∑

𝑖=1

ℎ
2𝑖

𝐵
2𝑖

(2𝑖)!

(𝐷
2𝑖−1

𝑓 (𝑑) − 𝐷
2𝑖−1

𝑓 (𝑐)) ,

(8)

where 𝐵
𝑗
denotes the 𝑗th Bernoulli number and 𝐷 denotes

the differentiation operator.
Let ℎ be a given stepsize; 𝑚 > 1 is a given integer and

satisfies ℎ = 1/𝑚. The grid points 𝑡
𝑖
are defined by 𝑡

𝑖
= 𝑖ℎ (𝑖 =

0, 1, 2, . . .); let 𝑖 = 𝑘𝑚+𝑙 (𝑙 = 0, 1, . . . , 𝑚−1). Applying formula
(8) to (1), we have

𝑢
𝑖+1

= 𝑢
𝑖
+

ℎ𝑎

2

(𝑢
𝑖+1

+ 𝑢
𝑖
)

−

𝑛

∑

𝑗=1

𝐵
2𝑗

(ℎ𝑎)
2𝑗

(2𝑗)!

(𝑢
𝑖+1

− 𝑢
𝑖
) + ℎ𝑏𝑢

𝑘𝑚
.

(9)

Lemma 9 (see [35]). Assume that 𝑓(𝑥) has 2𝑛 + 3𝑟𝑑 continu-
ous derivative on the interval [𝑡

𝑖
, 𝑡
𝑖+1

]; then we have













∫

𝑡𝑖+1

𝑡𝑖

𝑓 (𝑡) 𝑑𝑡 −

ℎ

2

(𝑓 (𝑡
𝑖+1

) + 𝑓 (𝑡
𝑖
))

+

𝑛

∑

𝑗=1

𝐵
2𝑗

ℎ
2𝑗

(2𝑗)!

(𝑓
(2𝑗−1)

(𝑡
𝑖+1

) − 𝑓
(2𝑗−1)

(𝑡
𝑖
))













= 𝑂 (ℎ
2𝑛+3

) .

(10)

According toTheorem 2.2 in [33], we obtain the following
theorem for convergence.

Theorem 10. For any given 𝑛 ∈ N, the Euler-Maclaurin
method is of order 2𝑛 + 2.

Equation (9) can be written as

𝑢
𝑘𝑚+𝑙+1

= 𝛼 (𝑥) 𝑢
𝑘𝑚+𝑙

+

𝑏

𝑎

(𝛼 (𝑥) − 1) 𝑢
𝑘𝑚

, 𝑤ℎ𝑒𝑛 𝑎 ̸= 0,

𝑢
𝑘𝑚+𝑙+1

= 𝑢
𝑘𝑚+𝑙

+ ℎ𝑏𝑢
𝑘𝑚

, 𝑤ℎ𝑒𝑛 𝑎 = 0,

(11)

where

𝑥 = ℎ𝑎, 𝛼 (𝑥) = 1 +

𝑥

Φ (𝑥)

, (12)

Φ (𝑥) = 1 −

𝑥

2

+

𝑛

∑

𝑗=1

𝐵
2𝑗

𝑥
2𝑗

(2𝑗)!

. (13)

It is not difficult to see that (11) is equivalent to

𝑢
(𝑘+1)𝑚

= (𝛼(𝑥)
𝑚

+

𝑏

𝑎

(𝛼(𝑥)
𝑚

− 1)) 𝑢
𝑘𝑚

, when 𝑎 ̸= 0,

𝑢
(𝑘+1)𝑚

= (1 + 𝑏) 𝑢
𝑘𝑚

, when 𝑎 = 0,

(14)

𝑢
𝑘𝑚+𝑙

= (𝛼(𝑥)
𝑙
+

𝑏

𝑎

(𝛼(𝑥)
𝑙
− 1)) 𝑢

𝑘𝑚
, when 𝑎 ̸= 0,

𝑢
𝑘𝑚+𝑙

= (1 + ℎ𝑏𝑙) 𝑢
𝑘𝑚

, when 𝑎 = 0,

(15)

where 0 ≤ 𝑙 ≤ 𝑚 − 1.

3.3. Stability Analysis

Definition 11. Process (9) for (1) is called asymptotically stable
at (𝑎, 𝑏) for all sufficiently small ℎ if and only if there exists a
constant ℎ

0
, such that for any given 𝑢

0
, relation (15) defines 𝑢

𝑖

that satisfies 𝑢
𝑖

→ 0 as 𝑖 → ∞ whenever 0 < ℎ < ℎ
0
.

Definition 12. The set, denoted by 𝑆, of all points (𝑎, 𝑏) at
which process (9) for (1) is asymptotically stable, for all
sufficiently small ℎ, is called the asymptotical stability region.

Lemma 13 (see [33]). If |𝑥| ≤ 1, then 𝜑(𝑥) ≥ 1/2 for 𝑥 > 0

and 𝜑(𝑥) ≥ 1 for 𝑥 ≤ 0.

By relation (15), we can easily prove the following lemma.

Lemma 14. For any 𝑘 and 0 ≤ l ≤ 𝑚−1, there exists a constant
𝐶 > 0 independent of 𝑘 and l such that





𝑢
𝑘𝑚+𝑙





≤ 𝐶





𝑢
𝑘𝑚





. (16)

So we have the following corollary.

Corollary 15. 𝑢
𝑖

→ 0 as 𝑖 → ∞ if and only if 𝑢
𝑘𝑚

→ 0 as
𝑘 → ∞.

According toDefinition 11, Corollary 15, and relation (14),
the following theorem is obtained.

Theorem 16. The numerical solution of (1) is asymptotically
stable if and only if

−

𝑎 (𝛼(𝑥)
𝑚

+ 1)

𝛼(𝑥)
𝑚

− 1

< 𝑏 < −𝑎, 𝑤ℎ𝑒𝑛 𝑎 ̸= 0,

−2 < 𝑏 < 0, 𝑤ℎ𝑒𝑛 𝑎 = 0.

(17)
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For convenience, we divide 𝑆 into two parts 𝑆 = 𝑆
∗

∪ 𝑆
0
,

where

𝑆
∗

= {(𝑎, 𝑏) ∈ 𝑆 : 𝑎 ̸= 0} ,

𝑆
0

= {(𝑎, 𝑏) ∈ 𝑆 \ 𝑆
∗

: 𝑎 = 0} ,

(18)

therefore, by Definition 12 andTheorem 16, we have

𝑆
∗

= {(𝑎, 𝑏) ∈ R2 : −

𝑎 (𝛼(𝑥)
𝑚

+ 1)

𝛼(𝑥)
𝑚

− 1

< 𝑏 < −𝑎 , 𝑎 ̸= 0 } ,

𝑆
0

= {(0, 𝑏) ∈ R2 : −2 < 𝑏 < 0} .

(19)

Let us introduce the following sets of all points (𝑎, 𝑏) ∈ R2
which satisfy condition (5) by 𝐻; in a similar way, we denote
𝐻 = 𝐻

∗
∪ 𝐻
0
, where

𝐻
∗

= {(𝑎, 𝑏) ∈ R2 : −

𝑎 (𝑒
𝑎

+ 1)

𝑒
𝑎

− 1

< 𝑏 < −𝑎 , 𝑎 ̸= 0 } ,

𝐻
0

= {(0, 𝑏) ∈ R2 : −2 < 𝑏 < 0} .

(20)

We will study which conditions lead to 𝐻
∗

⊆ 𝑆
∗
and 𝐻

0
⊆ 𝑆
0
.

In the following, we assume 𝑀 > |𝑎|, which implies that
|𝑥| < 1 for the stepsize ℎ = 1/𝑚 with 𝑚 ≥ 𝑀. The following
lemmawill be useful to determine the stability and oscillatory
conditions.

Lemma 17 (see [33]). If |𝑥| ≤ 1, then

Φ (𝑥) ≤

𝑥

𝑒
𝑥

− 1

(21)

when 𝑛 is even and

Φ (𝑥) ≥

𝑥

𝑒
𝑥

− 1

(22)

when 𝑛 is odd.

Then the first main result for stability is as follows.

Theorem 18. For the Euler-Maclaurinmethod,𝐻
∗

⊆ 𝑆
∗
if and

only if n is odd.

Proof. In view of (19) and (20), we know that 𝐻
∗

⊆ 𝑆
∗
if and

only if

−

𝑎 (𝛼(𝑥)
𝑚

+ 1)

𝛼(𝑥)
𝑚

− 1

≤ −

𝑎 (𝑒
𝑎

+ 1)

𝑒
𝑎

− 1

, (23)

that is,
𝑎

𝛼(𝑥)
𝑚

− 1

≥

𝑎

𝑒
𝑎

− 1

, (24)

which is equivalent to

𝛼 (𝑥) ≤ 𝑒
𝑥
, 𝑎 > 0,

𝛼 (𝑥) ≥ 𝑒
𝑥
, 𝑎 < 0.

(25)

In view of 𝛼(𝑥) = 1 + (𝑥/Φ(𝑥)), thus (25) leads to

Φ (𝑥) ≥

𝑥

𝑒
𝑥

− 1

. (26)

As a consequence of Lemma 17, the proof is complete.

Theorem 19. For all the Euler-Maclaurin method, we have
𝐻
0

= 𝑆
0
.

4. Oscillations Analysis

Similar to Definition 4, we can easily get the definitions of
oscillations and nonoscillations of numerical solution; for the
sake of simplicity, we omit them.Then the relationships of the
nonoscillations between the integer nodes and any nodes are
as follows.

Theorem 20. {𝑢
𝑖
} and {𝑢

𝑘𝑚
} are given by (15) and (14),

respectively; then {𝑢
𝑖
} is non-oscillatory if and only if {𝑢

𝑘𝑚
} is

non-oscillatory.

Proof. The necessity is easy to prove, so we only consider
the sufficiency. If {𝑢

𝑘𝑚
} is non-oscillatory, without loss of

generality, we can assume that {𝑢
𝑘𝑚

} is an eventually negative
solution of (14); that is, there exists a𝐾

0
∈ R such that𝑢

𝑘𝑚
< 0

for 𝑘 > 𝐾
0
. We will prove 𝑢

𝑘𝑚+𝑙
< 0 for all 𝑘 > 𝐾

0
+ 1 and

𝑙 = 0, 1, . . . , 𝑚 − 1.
If 𝑎 < 0, then 0 < 𝛼(𝑥) < 1 and 𝛼(𝑥)

𝑚
≤ 𝛼(𝑥)

𝑙; hence

𝑢
𝑘𝑚+𝑙

= (𝛼(𝑥)
𝑙
+

𝑏

𝑎

(𝛼(𝑥)
𝑙
− 1)) 𝑢

𝑘𝑚

≤ (𝛼(𝑥)
𝑚

+

𝑏

𝑎

(𝛼(𝑥)
𝑚

− 1)) 𝑢
𝑘𝑚

= 𝑢
𝑘𝑚+𝑚

< 0.

(27)

If 𝑎 > 0, then 𝛼(𝑥) > 1 and 𝛼(𝑥)
−𝑚

≤ 𝛼(𝑥)
−𝑙; thus

𝛼(𝑥)
−𝑙

𝑢
𝑘𝑚+𝑙

= (1 +

𝑏

𝑎

(1 − 𝛼(𝑥)
−𝑙

)) 𝑢
𝑘𝑚

≤ (1 +

𝑏

𝑎

(1 − 𝛼(𝑥)
−𝑚

)) 𝑢
𝑘𝑚

= 𝛼(𝑥)
−𝑚

𝑢
𝑘𝑚+𝑚

< 0.

(28)

Therefore 𝑢
𝑘𝑚+𝑙

< 0. This completes the proof.

FromTheorem 20, we get the following corollary.

Corollary 21. {𝑢
𝑖
} and {𝑢

𝑘𝑚
} are given by (15) and (14), respec-

tively; then {𝑢
𝑖
} is oscillatory if and only if {𝑢

𝑘𝑚
} is oscillatory.

Theorem 22. Equation (14) is oscillatory if and only if

𝑏 <

𝑎𝛼(𝑥)
𝑚

1 − 𝛼(𝑥)
𝑚

, 𝑤ℎ𝑒𝑛 𝑎 ̸= 0,

𝑏 < −1, 𝑤ℎ𝑒𝑛 𝑎 = 0.

(29)
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Proof. Equation (14) is oscillatory if and only if the corre-
sponding characteristic equation has no positive roots, that
is,

𝛼(𝑥)
𝑚

+

𝑏

𝑎

(𝛼(𝑥)
𝑚

− 1) < 0, when 𝑎 ̸= 0,

1 + 𝑏 < 0, when 𝑎 = 0,

(30)

which is equivalent to

𝑏 <

𝑎𝛼(𝑥)
𝑚

1 − 𝛼(𝑥)
𝑚

, when 𝑎 ̸= 0, (31)

𝑏 < −1, when 𝑎 = 0, (32)

thus (29) is obtained. The proof is finished.

Let

Π =

𝑎𝑒
𝑎

1 − 𝑒
𝑎
, Π (𝑚) =

𝑎𝛼(𝑥)
𝑚

1 − 𝛼(𝑥)
𝑚

, (33)

we have the following lemma.

Lemma 23. (I) Π(𝑚) → Π as ℎ → 0;
(II) Π ≥ Π(𝑚) if either of the following conditions is

satisfied:
(i) 𝑎 > 0 and 𝑒

𝑥
≥ 𝛼(𝑥),

(ii) 𝑎 < 0 and 𝑒
𝑥

≤ 𝛼(𝑥);
(III) Π < Π(𝑚) if either of the following conditions is

satisfied:
(i) 𝑎 > 0 and 𝑒

𝑥
< 𝛼(𝑥),

(ii) 𝑎 < 0 and 𝑒
𝑥

> 𝛼(𝑥).

Proof. (II) If 𝑎 > 0 and 𝑒
𝑥

≥ 𝛼(𝑥), then 𝑒
𝑎

≥ 𝛼(𝑥)
𝑚, which is

equivalent to

1

1 − 𝑒
𝑎

≥

1

1 − 𝛼(𝑥)
𝑚

, (34)

that is,

𝑒
𝑎

1 − 𝑒
𝑎

≥

𝛼(𝑥)
𝑚

1 − 𝛼(𝑥)
𝑚

, (35)

so we haveΠ ≥ Π(𝑚). Similarly, we can prove the other cases.

Definition 24. We say the Euler-Maclaurin method preserves
the oscillations of (1) if (1) oscillates, then there is an ℎ

0
>

0, such that (15) oscillates for ℎ < ℎ
0
. Similarly, we say the

Euler-Maclaurin method preserves the nonoscillations of (1)
if (1) nonoscillates then there is an ℎ

0
> 0, such that (15) non-

oscillates for ℎ < ℎ
0
.

By Theorems 5, 20, and 22 and Corollary 21, we have the
following theorem.

Theorem 25. (i) The Euler-Maclaurin method preserves the
oscillations of (1) if and only if Π < Π(𝑚).

(ii) The Euler-Maclaurin method preserves the non-
oscillations of (1) if and only if Π ≥ Π(𝑚).

Applying Theorem 25 and Lemmas 17 and 23, we can
obtain the following main theorems for oscillations.

Theorem26. TheEuler-Maclaurinmethod preserves the oscil-
lations of (1) if 𝑛 is even.

Theorem 27. The Euler-Maclaurin method preserves the non-
oscillations of (1) if 𝑛 is odd.

5. Relationships between Stability
and Oscillations

Let

Π̃ = −

𝑎 (𝑒
𝑎

+ 1)

𝑒
𝑎

− 1

, Π̃ (𝑚) = −

𝑎 (𝛼(𝑥)
𝑚

+ 1)

𝛼(𝑥)
𝑚

− 1

. (36)

By Theorems 3, 5, 16, and 22, we can get the following other
main theorems.

Theorem 28. When 𝑎 ̸= 0, the analytic solution of (1) is

(i) oscillatory and unstable if 𝑏 ∈ (−∞, Π̃),

(ii) oscillatory and asymptotically stable if 𝑏 ∈ (Π̃, Π),

(iii) non-oscillatory and asymptotically stable if 𝑏 ∈

(Π, −𝑎),

(iv) non-oscillatory and unstable if 𝑏 ∈ (−𝑎, 0).

Theorem 29. When 𝑎 ̸= 0, the numerical solution of (1) is

(i) oscillatory and unstable if 𝑏 ∈ (−∞, Π̃(𝑚)),

(ii) oscillatory and asymptotically stable if 𝑏 ∈

(Π̃(𝑚), Π(𝑚)),

(iii) non-oscillatory and asymptotically stable if 𝑏 ∈

(Π(𝑚), −𝑎),

(iv) non-oscillatory and unstable if 𝑏 ∈ (−𝑎, 0).

Theorem 30. When 𝑎 = 0, the analytic solution and the
numerical solution of (1) both are

(i) oscillatory and unstable if 𝑏 ∈ (−∞, −2),

(ii) oscillatory and asymptotically stable if 𝑏 ∈ (−2, −1),

(iii) non-oscillatory and asymptotically stable if 𝑏 ∈ (−1, 0).

Remark 31. In Theorem 30, we can see that the solution of
(1) is not non-oscillatory and unstable at the same time.
Otherwise, if the solution of (1) is both non-oscillatory and
unstable, we can get 𝑏 ∈ (0, +∞); it is inconsistent with 𝑏 < 0.
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Table 1: Errors and ratio for (37).

Euler-Maclaurin method 𝜃-methods 2-Radau IA method
AE RE AE RE AE RE

𝑚 = 2 1.5555𝐸 − 13 5.0586𝐸 − 5 2.7882𝐸 − 9 9.0670𝐸 − 1 6.5320𝐸 − 10 2.1240𝐸 − 1

𝑚 = 3 1.3547𝐸 − 14 4.4054𝐸 − 6 1.8944𝐸 − 9 6.1610𝐸 − 1 1.7228𝐸 − 10 5.6000𝐸 − 2

𝑚 = 5 6.2942𝐸 − 16 2.0469𝐸 − 7 8.6318𝐸 − 10 2.8070𝐸 − 1 3.5051𝐸 − 11 1.1400𝐸 − 2

𝑚 = 10 9.8172𝐸 − 18 3.1926𝐸 − 9 2.3894𝐸 − 10 7.7700𝐸 − 2 4.2380𝐸 − 12 1.4000𝐸 − 3

𝑚 = 20 1.5337𝐸 − 19 4.9876𝐸 − 11 6.1287𝐸 − 11 1.9900𝐸 − 2 5.2217𝐸 − 13 1.6981𝐸 − 4

𝑚 = 40 2.7140𝐸 − 21 8.8259𝐸 − 13 1.5420𝐸 − 11 5.0000𝐸 − 3 6.4824𝐸 − 14 2.1081𝐸 − 5

Ratio 56.5107 56.5110 3.9745 3.9800 8.0552 8.0551

Table 2: Errors and ratio for (38).

Euler-Maclaurin method 𝜃-methods 2-Radau IA method
AE RE AE RE AE RE

𝑚 = 2 2.5585𝐸 − 9 4.7914𝐸 − 4 1.1595𝐸 − 5 2.1715𝐸 + 0 8.9866𝐸 − 7 1.6830𝐸 − 1

𝑚 = 3 2.1747𝐸 − 10 4.0727𝐸 − 5 3.5420𝐸 − 6 6.6330𝐸 − 1 2.6576𝐸 − 7 4.9800𝐸 − 2

𝑚 = 5 9.9800𝐸 − 12 1.8690𝐸 − 6 1.0695𝐸 − 6 2.0030𝐸 − 1 5.9321𝐸 − 8 1.1100𝐸 − 2

𝑚 = 10 1.5485𝐸 − 13 2.9000𝐸 − 8 2.4905𝐸 − 7 4.6600𝐸 − 2 7.7177𝐸 − 9 1.4000𝐸 − 3

𝑚 = 20 2.4153𝐸 − 15 4.5232𝐸 − 10 6.1184𝐸 − 8 1.1500𝐸 − 2 9.8799𝐸 − 10 1.8502𝐸 − 4

𝑚 = 40 3.7816𝐸 − 17 7.0819𝐸 − 12 1.5230𝐸 − 8 2.9000𝐸 − 3 1.2508𝐸 − 10 2.3424𝐸 − 5

Ratio 63.8698 63.8699 4.0173 3.9655 7.8989 7.8987

6. Numerical Experiments

In this section, we will use the following four equations to
demonstrate the main theorems

𝑢


(𝑡) = 𝑢 (𝑡) − 1.5𝑢 ([𝑡]) , 𝑢 (0) = 1, (37)

𝑢


(𝑡) = −2𝑢 (𝑡) − 𝑢 ([𝑡]) , 𝑢 (0) = 1, (38)

𝑢


(𝑡) = 3𝑢 (𝑡) − 3.2𝑢 ([𝑡]) , 𝑢 (0) = 1, (39)

𝑢


(𝑡) = 0.8𝑢 (𝑡) − 0.1𝑢 ([𝑡]) , 𝑢 (0) = 1. (40)

For (37) and (38), it is not difficult to see that (1, −1.5),
(−2, −1) ∈ 𝐻 by straightforward computing. Let the stepsize
ℎ = 1/𝑚; we shall use the Euler-Maclaurin method with 𝑛 =

2, the 𝜃-methods with 𝜃 = 0.5, and the 2-Radau IAmethod to
get the numerical solution at 𝑡 = 10. On the other hand, the
theoretical solutions are 𝑢(10) ≈ 3.0750 × 10

−9 and 𝑢(10) ≈

5.3398 × 10
−6 for (37) and (38), respectively. In Tables 1 and

2, we have listed the absolute errors (AE), the relative errors
(RE) at 𝑡 = 10, and the ratio of the errors of the case 𝑚 = 20

over that of 𝑚 = 40. We can see from these tables that the
Euler-Maclaurin method with 𝑛 = 2 is of order 6; that is, the
method preserves its order of convergence. Furthermore, the
errors of the 𝜃-methods and the 2-Radau IAmethod are both
larger than that of the Euler-Maclaurin method. Therefore,
compared with the two mentioned numerical methods, the
Euler-Maclaurin method has higher accuracy.

In Figures 1 and 3, we draw the numerical solution with
𝑚 = 20 for (37) and (38), respectively. It is easy to see that
the numerical solution is asymptotically stable. In Figure 2,
we draw the stability region for (37); it can be seen that the
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0.4
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0.6

0.7

0.8
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𝑢
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Figure 1: The numerical solution of (37) with 𝑛 = 2 and 𝑚 = 20.

analytical stability region is contained in the numerical
stability region, which is in accordance withTheorem 18.

For (39) and (40), the analytic solution of (39) is oscil-
latory, and the analytic solution of (40) is non-oscillatory
according toTheorem 5. FromFigures 4 and 5, we can see that
the numerical solution of (39) is oscillatory and the numer-
ical solution of (40) is non-oscillatory, which are in accor-
dance withTheorems 26 and 27.

In Figure 4, let 𝑚 = 40; it is easy to calculate that
Π ≈ −3.1572, Π̃ ≈ −3.3144, Π(𝑚) ≈ −3.1572, and
Π̃(𝑚) ≈ −3.3144. Obviously, 𝑏 = −3.2 ∈ (Π̃, Π) and
𝑏 = −3.2 ∈ (Π̃(𝑚), Π(𝑚)). Therefore, the analytic solution
and the numerical solution of (39) are both oscillatory and
asymptotically stable according toTheorems 28 and 29,which
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Figure 2: The stability region of (37): (a) the analytical stability
region, (b) the numerical stability region with 𝑛 = 3 and 𝑚 = 20.
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Figure 3: The numerical solution of (38) with 𝑛 = 3 and 𝑚 = 20.

are in agreement with Figure 4. For (37), (38), and (40), we
can verify them in the same way (see Figures 1, 3, and 5).

From Figures 1–5, we can see that the numerical results
coincide with our theoretical analysis.

7. Conclusions

In this paper, the Euler-Maclaurin method is presented for
solving an important EPCA. Asymptotical stability and oscil-
lations of numerical solution are considered, respectively.
Furthermore, the relationships between stability and oscilla-
tions are also revealed. Results of numerical examples have
shown that the Euler-Maclaurin method has good conver-
gence and stability, so it is applicable for the study of EPCA.
That is, the Euler-Maclaurin method is an alternative numer-
ical method for DDEs except for the classical 𝜃-methods and
Runge-Kutta methods. We will consider the nonlinear and
multidimensional problems in the future work.
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Figure 4: The analytic solution and the numerical solution of (39)
with 𝑛 = 2 and 𝑚 = 40.
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Figure 5: The analytic solution and the numerical solution of (40)
with 𝑛 = 3 and 𝑚 = 40.
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