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Consider the variational inequality VI(𝐶, 𝐹) of finding a point 𝑥∗ ∈ 𝐶 satisfying the property ⟨𝐹𝑥∗, 𝑥−𝑥∗⟩ ≥ 0, for all 𝑥 ∈ 𝐶, where
𝐶 is the intersection of finite level sets of convex functions defined on a real Hilbert space 𝐻 and 𝐹 : 𝐻 → 𝐻 is an 𝐿-Lipschitzian
and 𝜂-strongly monotone operator. Relaxed and self-adaptive iterative algorithms are devised for computing the unique solution of
VI(𝐶, 𝐹). Since our algorithm avoids calculating the projection 𝑃

𝐶
(calculating 𝑃

𝐶
by computing several sequences of projections

onto half-spaces containing the original domain 𝐶) directly and has no need to know any information of the constants 𝐿 and 𝜂, the
implementation of our algorithm is very easy. To prove strong convergence of our algorithms, a new lemma is established, which
can be used as a fundamental tool for solving some nonlinear problems.

1. Introduction

The variational inequality problem can mathematically be
formulated as the problem of finding a point 𝑥∗ ∈ 𝐶 with
the property

⟨𝐹𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶, (1)
where 𝐻 is a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, 𝐶 is a nonempty closed convex subset of 𝐻, and
𝐹 : 𝐶 → 𝐻 is a nonlinear operator. Since its inception by
Stampacchia [1] in 1964, the variational inequality problem
VI(𝐶, 𝐹) has received much attention due to its applications
in a large variety of problems arising in structural analysis,
economics, optimization, operations research and engineer-
ing sciences; see [1–23] and the references therein. Using the
projection technique, one can easily show that VI(𝐶, 𝐹) is
equivalent to the fixed-point problem (see, for example, [15]).

Lemma 1. 𝑥
∗ ∈ 𝐶 is a solution of 𝑉𝐼(𝐶, 𝐹) if and only if 𝑥∗ ∈

𝐶 satisfies the fixed-point relation:
𝑥
∗

= 𝑃
𝐶

(𝐼 − 𝜆𝐹) 𝑥
∗

, (2)
where 𝜆 > 0 is an arbitrary constant, 𝑃

𝐶
is the orthogonal

projection onto 𝐶, and 𝐼 is the identity operator on 𝐻.

Recall that an operator 𝐹 : 𝐶 → 𝐻 is called monotone, if

⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 0 ∀𝑥, 𝑦 ∈ 𝐶. (3)

Moreover, a monotone operator 𝐹 is called strictly monotone
if the equality “=” holds only when 𝑥 = 𝑦 in the last relation.
It is easy to see that VI(𝐶, 𝐹) (1) has at most one solution if 𝐹

is strictly monotone.
For variational inequality (1),𝐹 is generally assumed to be

Lipschitzian and strongly monotone on 𝐶; that is, for some
constants 𝐿, 𝜂 > 0, 𝐹 satisfies the conditions

𝐹𝑥 − 𝐹𝑦
 ≤ 𝐿

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶,

⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
𝑥 − 𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐶.

(4)

In this case, 𝐹 is also called an 𝐿-Lipschitzian and 𝜂-strongly
monotone operator. It is quite easy to show the simple result
as follows.

Lemma 2. Assume that 𝐹 satisfies conditions (4) and 𝜆 and
𝜇 are constants such that 𝜆 ∈ (0, 1) and 𝜇 ∈ (0, 2𝜂/𝐿2),
respectively. Let 𝑇𝜇 = 𝑃

𝐶
(𝐼 − 𝜇𝐹) (or 𝐼 − 𝜇𝐹) and 𝑇𝜆,𝜇 =

𝑃
𝐶
(𝐼−𝜆𝜇𝐹) (or 𝐼−𝜆𝜇𝐹).Then𝑇𝜇 and𝑇𝜆,𝜇 are all contractions
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with coefficients 1 − 𝜏 and 1 − 𝜆𝜏, respectively, where 𝜏 =

(1/2)𝜇(2𝜂 − 𝜇𝐿2).

Using Banach’s contraction mapping principle, the fol-
lowing well-known result can be obtained easily from Lem-
mas 1 and 2.

Theorem 3. Assume that 𝐹 satisfies the conditions (4). Then
𝑉𝐼(𝐶, 𝐹) has a unique solution. Moreover, for any 0 < 𝜆 <

2𝜂/𝐿2, the sequence {𝑥
𝑛
} with initial guess 𝑥

0
∈ 𝐶 and defined

recursively by

𝑥
𝑛+1

= 𝑃
𝐶

(𝐼 − 𝜆𝐹) 𝑥
𝑛
, 𝑛 ≥ 0, (5)

converges strongly to the unique solution of 𝑉𝐼(𝐶, 𝐹).

However, Algorithm (5) has two evident weaknesses. On
one hand, Algorithm (5) involves calculating themapping𝑃

𝐶
,

while the computation of a projection onto a closed convex
subset is generally difficult. If 𝐶 is the intersection of finite
closed convex subsets of 𝐻, that is, 𝐶 = ⋂

𝑚

𝑖=1
𝐶
𝑖
( ̸= 0), where

𝐶
𝑖

(𝑖 = 1, . . . , 𝑚) is a closed convex subset of 𝐻, then the
computation of 𝑃

𝐶
is muchmore difficult. On the other hand,

the determination of the stepsize 𝜆 depends on the constants
𝐿 and 𝜂. This means that in order to implement Algorithm
(5), one has first to compute (or estimate) the constants 𝐿 and
𝜂, which is sometimes not an easy work in practice.

In order to overcome the above weaknesses of the
algorithm (5), a new relaxed and self-adaptive algorithm is
proposed in this paper to solve VI(𝐶, 𝐹), where 𝐶 is the
intersection of finite level sets of convex functions defined
on 𝐻 and 𝐹 : 𝐻 → 𝐻 is an 𝐿-Lipschitzian and 𝜂-
strongly monotone operator. Our method calculates 𝑃

𝐶
by

computing finite sequences of projections onto half-spaces
containing the original set𝐶 and selects the stepsizes through
a self-adaptive way. The implementation of our algorithm
avoids computing 𝑃

𝐶
directly and has no need to know any

information about 𝐿 and 𝜂.
The rest of this paper is organized as follows. Some useful

lemmas are listed in the next section; in particular, a new
lemma is established in order to prove strong convergence
theorems of our algorithms, which can also be used as
a fundamental tool for solving some nonlinear problems
relating to fixed point. In the last section, a relaxed algorithm
(for the case where 𝐿 and 𝜂 are known) and a relaxed self-
adaptive algorithm (for the casewhere𝐿 and 𝜂 are not known)
are proposed, respectively. The strong convergence theorems
of our algorithms are proved.

2. Preliminaries

Throughout the rest of this paper, we denote by 𝐻 a real
Hilbert space and by 𝐼 the identity operator on𝐻. If𝑓 : 𝐻 →

R is a differentiable functional, then we denote by ∇𝑓 the
gradient of 𝑓. We will also use the following notations:

(i) → denotes strong convergence.
(ii) ⇀ denotes weak convergence.
(iii) 𝜔

𝑤
(𝑥
𝑛
) = {𝑥 | ∃{𝑥

𝑛𝑘
} ⊂ {𝑥

𝑛
} such that 𝑥

𝑛𝑘
⇀ 𝑥}

denotes the weak 𝜔-limit set of {𝑥
𝑛
}.

Recall a trivial inequality, which is well known and in
common use.

Lemma 4. For all 𝑥, 𝑦 ∈ 𝐻, there holds the following relation:
𝑥 + 𝑦


2

≤ ‖𝑥‖
2

+ 2⟨𝑦, 𝑥 + 𝑦⟩. (6)

Recall that a mapping 𝑇 : 𝐻 → 𝐻 is said to be
nonexpansive if

𝑇𝑥 − 𝑇𝑦
 ≤

𝑥 − 𝑦
 , 𝑥, 𝑦 ∈ 𝐻. (7)

𝑇 : 𝐻 → 𝐻 is said to be firmly nonexpansive if, for 𝑥, 𝑦 ∈ 𝐻,
𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦


2

−
(𝐼 − 𝑇)𝑥 − (𝐼 − 𝑇)𝑦


2

. (8)

The following are characterizations of firmly nonexpan-
sive mappings (see [7] or [24]).

Lemma 5. Let 𝑇 : 𝐻 → 𝐻 be an operator. The following
statements are equivalent.

(i) 𝑇 is firmly nonexpansive.
(ii) 𝐼 − 𝑇 is firmly nonexpansive.
(iii) ‖𝑇𝑥 − 𝑇𝑦‖

2

≤ ⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩, 𝑥, 𝑦 ∈ 𝐻.

We know that the orthogonal projection 𝑃
𝐶
from 𝐻 onto

a nonempty closed convex subset 𝐶 ⊂ 𝐻 is a typical example
of a firmly nonexpansive mapping [7], which is defined by

𝑃
𝐶
𝑥 := argmin

𝑦∈𝐶

𝑥 − 𝑦

2

, 𝑥 ∈ 𝐻. (9)

It is well known that𝑃
𝐶
𝑥 is characterized [7] by the inequality

(for 𝑥 ∈ 𝐻)

𝑃
𝐶
𝑥 ∈ 𝐶, ⟨𝑥 − 𝑃

𝐶
𝑥, 𝑦 − 𝑃

𝐶
𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐶. (10)

It is well known that the following lemma [25] is often
used when we analyze the strong convergence of some
algorithms for solving some nonlinear problems, such as
fixed points of nonlinear mappings, variational inequalities,
and split feasibility problems. In fact, this lemma has been
regarded as a fundamental tool for solving some nonlinear
problems relating to fixed point.

Lemma 6 (see [25]). Assume (𝑎
𝑛
) is a sequence of nonnegative

real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛

+ 𝛾
𝑛
𝛿
𝑛
, 𝑛 ≥ 0, (11)

where (𝛾
𝑛
) is a sequence in (0, 1) and (𝛿

𝑛
) is a sequence in R

such that
(i) ∑
∞

𝑛=0
𝛾
𝑛

= ∞,
(ii) lim sup

𝑛→∞
𝛿
𝑛

≤ 0 or ∑
∞

𝑛=0
|𝛾
𝑛
𝛿
𝑛
| < ∞.

Then lim
𝑛→∞

𝑎
𝑛

= 0.

In this paper, inspired and encouraged by an idea in [26],
we obtain the following lemma. Its key effect on the proofs
of our main results will be illustrated in the next section
and this may show that this lemma is likely to become a
new fundamental tool for solving some nonlinear problems
relating to fixed point.
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Lemma 7. Assume (𝑠
𝑛
) is a sequence of nonnegative real

numbers such that

𝑠
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑠
𝑛

+ 𝛾
𝑛
𝛿
𝑛

+ 𝛽
𝑛
, 𝑛 ≥ 0, (12)

𝑠
𝑛+1

≤ 𝑠
𝑛

− 𝜂
𝑛

+ 𝛼
𝑛
, 𝑛 ≥ 0, (13)

where (𝛾
𝑛
) is a sequence in (0, 1), (𝜂

𝑛
) is a sequence of

nonnegative real numbers and (𝛿
𝑛
), (𝛼
𝑛
), and (𝛽

𝑛
) are three

sequences in R such that

(i) ∑
∞

𝑛=0
𝛾
𝑛

= ∞,
(ii) lim

𝑛→∞
𝛼
𝑛

= 0,
(iii) lim

𝑘→∞
𝜂
𝑛𝑘

= 0 implies lim sup
𝑘→∞

𝛿
𝑛𝑘

≤ 0 for any
subsequence (𝑛

𝑘
) ⊂ (𝑛),

(iv) lim sup
𝑛→∞

(𝛽
𝑛
/𝛾
𝑛
) ≤ 0.

Then lim
𝑛→∞

𝑠
𝑛

= 0.

Proof. Following and generalizing an idea in [26], we distin-
guish two cases to prove 𝑠

𝑛
→ 0 as 𝑛 → 0.

Case 1. (𝑠
𝑛
) is eventually decreasing (i.e., there exists 𝑘 ≥ 0

such that 𝑠
𝑛

> 𝑠
𝑛+1

holds for all 𝑛 ≥ 𝑘). In this case, (𝑠
𝑛
) must

be convergent, and from (13) it follows that

𝜂
𝑛

≤ (𝑠
𝑛

− 𝑠
𝑛+1

) + 𝛼
𝑛
. (14)

Noting condition (ii), letting 𝑛 → ∞ in (14) yields 𝜂
𝑛

→ 0 as
𝑛 → ∞. Using condition (iii), we get that lim sup

𝑛→∞
𝛿
𝑛

≤

0. Noting this together with conditions (i) and (iv), we obtain
𝑠
𝑛

→ 0 by applying Lemma 6 to (12).

Case 2. (𝑠
𝑛
) is not eventually decreasing. Hence, we can find

an integer 𝑛
0
such that 𝑠

𝑛0
≤ 𝑠
𝑛0+1

. Let us now define

𝐽
𝑛

:= {𝑛
0

≤ 𝑘 ≤ 𝑛 : 𝑠
𝑘

≤ 𝑠
𝑘+1

} , 𝑛 > 𝑛
0
. (15)

Obviously, 𝐽
𝑛
is nonempty and satisfies 𝐽

𝑛
⊆ 𝐽
𝑛+1

. Let

𝜏 (𝑛) := max 𝐽
𝑛
, 𝑛 > 𝑛

0
. (16)

It is clear that 𝜏(𝑛) → ∞ as 𝑛 → ∞ (otherwise, (𝑠
𝑛
) is

eventually decreasing). It is also clear that 𝑠
𝜏(𝑛)

≤ 𝑠
𝜏(𝑛)+1

for
all 𝑛 > 𝑛

0
. Moreover,

𝑠
𝑛

≤ 𝑠
𝜏(𝑛)+1

, ∀𝑛 > 𝑛
0
. (17)

In fact, if 𝜏
𝑛

= 𝑛, then inequity (17) is trivial; if 𝜏(𝑛) = 𝑛 − 1,
then 𝜏(𝑛) + 1 = 𝑛, and (17) is also trivial. If 𝜏(𝑛) < 𝑛 − 1, then
there exists an integer 𝑖 ≥ 2 such that 𝜏(𝑛) + 𝑖 = 𝑛. Thus we
deduce from the definition of 𝜏(𝑛) that

𝑠
𝜏(𝑛)+1

> 𝑠
𝜏(𝑛)+2

> ⋅ ⋅ ⋅ > 𝑠
𝜏(𝑛)+𝑖

= 𝑠
𝑛
, (18)

and inequity (17) holds again. Since 𝑠
𝜏(𝑛)

≤ 𝑠
𝜏(𝑛)+1

for all 𝑛 >

𝑛
0
, it follows from (14) that

0 ≤ 𝜂
𝜏(𝑛)

≤ 𝛼
𝜏(𝑛)

→ 0, (19)

so that 𝜂
𝜏(𝑛)

→ 0 as 𝑛 → ∞ using condition (ii). Due to the
condition (iii), this implies that

lim sup
𝑛→∞

𝛿
𝜏(𝑛)

≤ 0. (20)

Noting 𝑠
𝜏(𝑛)

≤ 𝑠
𝜏(𝑛)+1

for all 𝑛 > 𝑛
0
again, it follows from (12)

that

𝑠
𝜏(𝑛)

≤ 𝛿
𝜏(𝑛)

+
𝛽
𝜏(𝑛)

𝛾
𝜏(𝑛)

. (21)

Combining (20), (21), and condition (iv) yields

lim sup
𝑛→∞

𝑠
𝜏(𝑛)

≤ 0, (22)

and hence 𝑠
𝜏(𝑛)

→ 0 as 𝑛 → ∞. This together with (13)
implies that

𝑠
𝜏(𝑛)+1

≤ 𝑠
𝜏(𝑛)

− 𝜂
𝜏(𝑛)

+ 𝛼
𝜏(𝑛)

→ 0, (23)

which together with (17), in turn, implies that 𝑠
𝑛

→ 0 as 𝑛 →

∞.

The following result is just a special case of Lemma 7, that
is, the case where 𝛽

𝑛
= 0 for all 𝑛 ≥ 0.

Lemma 8. Assume (𝑠
𝑛
) is a sequence of nonnegative real

numbers such that

𝑠
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑠
𝑛

+ 𝛾
𝑛
𝛿
𝑛
, 𝑛 ≥ 0,

𝑠
𝑛+1

≤ 𝑠
𝑛

− 𝜂
𝑛

+ 𝛼
𝑛
, 𝑛 ≥ 0,

(24)

where (𝛾
𝑛
) is a sequence in (0, 1), (𝜂

𝑛
) is a sequence of

nonnegative real numbers, and (𝛿
𝑛
) and (𝛼

𝑛
) are two sequences

in R such that

(i) ∑
∞

𝑛=0
𝛾
𝑛

= ∞,
(ii) lim

𝑛→∞
𝛼
𝑛

= 0,
(iii) lim

𝑘→∞
𝜂
𝑛𝑘

= 0 implies lim sup
𝑘→∞

𝛿
𝑛𝑘

≤ 0 for any
subsequence (𝑛

𝑘
) ⊂ (𝑛).

Then lim
𝑛→∞

𝑠
𝑛

= 0.

Recall that a function 𝑓 : 𝐻 → R is called convex if

𝑓 (𝜆𝑥 + (1 − 𝜆) 𝑦) ≤ 𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦) ,

∀𝜆 ∈ (0, 1) , ∀𝑥, 𝑦 ∈ 𝐻.
(25)

A differentiable function𝑓 is convex if and only if there holds
the following relation:

𝑓 (𝑧) ≥ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥) , 𝑧 − 𝑥⟩, ∀𝑧 ∈ 𝐻. (26)

Recall that an element 𝑔 ∈ 𝐻 is said to be a subgradient of
𝑓 : 𝐻 → R at 𝑥 if

𝑓 (𝑧) ≥ 𝑓 (𝑥) + ⟨𝑔, 𝑧 − 𝑥⟩, ∀𝑧 ∈ 𝐻. (27)

A function𝑓 : 𝐻 → R is said to be subdifferentiable at 𝑥,
if it has at least one subgradient at 𝑥. The set of subgradients
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of 𝑓 at the point 𝑥 is called the subdifferential of 𝑓 at 𝑥

and is denoted by 𝜕𝑓(𝑥). The last relation above is called the
subdifferential inequality of 𝑓 at 𝑥. A function 𝑓 is called
subdifferentiable, if it is subdifferentiable at all 𝑥 ∈ 𝐻. If a
function 𝑓 is differentiable and convex, then its gradient and
subgradient coincide.

Recall that a function 𝑓 : 𝐻 → R is said to be weakly
lower semicontinuous (𝑤-lsc) at 𝑥 if 𝑥

𝑛
⇀ 𝑥 implies

𝑓 (𝑥) ≤ lim inf
𝑛→∞

𝑓 (𝑥
𝑛
) . (28)

3. Iterative Algorithms

In this section, we consider the iterative algorithms for
solving a particular kind of variational inequality (1) in which
the closed convex subset 𝐶 is of the particular structure, that
is the intersection of finite level sets of convex functions given
as follows:

𝐶 =

𝑚

⋂
𝑖=1

{𝑥 ∈ 𝐻 : 𝑐
𝑖
(𝑥) ≤ 0} , (29)

where 𝑚 is a positive integer and 𝑐
𝑖

: 𝐻 → R (𝑖 =

1, . . . , 𝑚) is a convex function. We always assume that 𝑐
𝑖

(𝑖 =

1, . . . , 𝑚) is subdifferentiable on 𝐻 and 𝜕𝑐
𝑖

(𝑖 = 1, . . . , 𝑚)

is a bounded operator (i.e., bounded on bounded sets).
It is worth noting that every convex function defined on
a finite-dimensional Hilbert space is subdifferentiable and
its subdifferential operator is a bounded operator (see [27,
Corollary 7.9]). We also assume that 𝐹 : 𝐻 → 𝐻 is
an 𝐿-Lipschitzian and 𝜂-strongly monotone operator. It is
well known that in this case VI(𝐶, 𝐹) has a unique solution,
henceforth, which is denoted by 𝑥

∗.
Without loss of the generality, we will consider only the

case 𝑚 = 2; that is, 𝐶 = 𝐶1⋂ 𝐶2, where

𝐶
1

= {𝑥 ∈ 𝐻 : 𝑐
1

(𝑥) ≤ 0} ,

𝐶
2

= {𝑥 ∈ 𝐻 : 𝑐
2

(𝑥) ≤ 0} .

(30)

All of our results can be extended easily to the general case.
The computation of a projection onto a closed convex

subset is generally difficult. To overcome this difficulty,
Fukushima [21] suggested a way to calculate the projection
onto a level set of a convex function by computing a sequence
of projections onto half-spaces containing the original level
set. This idea is followed by Yang [28] and López et al.
[29], respectively, who introduced the relaxed 𝐶𝑄 algorithms
for solving the split feasibility problem in finite-dimensional
and infinite-dimensional Hilbert spaces, respectively. This
idea is also used by Censor et al. [30] in the subgradient
extragradient method for solving variational inequalities in
a Hilbert space.

We are now in a position to introduce a relaxed algorithm
for computing the unique solution 𝑥

∗ of VI(𝐶, 𝐹), where 𝐶 =

𝐶1⋂ 𝐶2 and 𝐶𝑖 (𝑖 = 1, 2) is given as in (30). This scheme
applies to the case where 𝐿 and 𝜂 are easy to be determined.

Algorithm 1. Choose an arbitrary initial guess 𝑥
0

∈ 𝐻. The
sequence (𝑥

𝑛
) is constructed via the formula

𝑥
𝑛+1

= 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

𝑛
, 𝑛 ⩾ 0, (31)

where
𝐶
1

𝑛
= {𝑥 ∈ 𝐻 : 𝑐

1
(𝑥
𝑛
) ≤ ⟨𝜉

1

𝑛
, 𝑥
𝑛

− 𝑥⟩} ,

𝐶
2

𝑛
= {𝑥 ∈ 𝐻 : 𝑐

2
(𝑃
𝐶
1
𝑛
𝑥
𝑛
) ≤ ⟨𝜉

2

𝑛
, 𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑥⟩} ,

(32)

where 𝜉1
𝑛

∈ 𝜕𝑐
1
(𝑥
𝑛
), 𝜉2
𝑛

∈ 𝜕𝑐
2
(𝑃
𝐶
1
𝑛
𝑥
𝑛
), the sequence (𝜆

𝑛
) is in

(0, 1), and 𝜇 is a constant such that 𝜇 ∈ (0, 2𝜂/𝐿2).

We now analyze strong convergence of Algorithm 1,
which also illustrates the application of Lemma 7 (or
Lemma 8).

Theorem 9. Assume that 𝜆
𝑛

→ 0 (𝑛 → ∞) and ∑
+∞

𝑛=1
𝜆
𝑛

=

+∞. Then the sequence (𝑥
𝑛
) generated by Algorithm 1 con-

verges strongly to the unique solution 𝑥∗ of 𝑉𝐼(𝐶, 𝐹).

Proof. Firstly, we verify that (𝑥
𝑛
) is bounded. Indeed, it is easy

to see from the subdifferential inequality and the definitions
of 𝐶1
𝑛
and 𝐶2

𝑛
that 𝐶1

𝑛
⊃ 𝐶1 and 𝐶2

𝑛
⊃ 𝐶2 hold for all 𝑛 ≥ 0,

and hence it follows that 𝐶1
𝑛

⋂ 𝐶2
𝑛

⊃ 𝐶1⋂ 𝐶2 = 𝐶. Since the
projection operators𝑃

𝐶
1
𝑛
and𝑃
𝐶
2
𝑛
are nonexpansive, we obtain

from (31), Lemmas 2 and 4 that
𝑥
𝑛+1

− 𝑥
∗
2

=

𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹)𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
∗


2

≤
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

𝑛
− (𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

∗

− 𝜆
𝑛
𝜇𝐹𝑥
∗
2

≤ (1 − 𝜏𝜆
𝑛
)

𝑥
𝑛

− 𝑥
∗
2

− 2𝜆
𝑛
𝜇 ⟨𝐹𝑥

∗

, 𝑥
𝑛

− 𝑥
∗

− 𝜆
𝑛
𝜇𝐹𝑥
𝑛
⟩

≤ (1 − 𝜏𝜆
𝑛
)

𝑥
𝑛

− 𝑥
∗
2

− 2𝜆
𝑛
𝜇 ⟨𝐹𝑥

∗

, 𝑥
𝑛

− 𝑥
∗

⟩

+ 2𝜆
2

𝑛
𝜇
2 𝐹𝑥
∗

𝐹𝑥
𝑛

 ,

(33)

𝑥
𝑛+1

− 𝑥
∗
2

=

𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

𝑛
− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

∗

+𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹)𝑥
∗

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
∗


2

≤ (1 − 𝜏𝜆
𝑛
)

𝑥
𝑛

− 𝑥
∗
2

+ 2 ⟨𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

∗

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝜏𝜆
𝑛
)

𝑥
𝑛

− 𝑥
∗
2

+ 2𝜆
𝑛
𝜇

𝐹𝑥
∗

𝑥
𝑛+1

− 𝑥
∗

≤ (1 − 𝜏𝜆
𝑛
)

𝑥
𝑛

− 𝑥
∗
2

+
1

4
𝜏𝜆
𝑛

𝑥
𝑛+1

− 𝑥
∗
2

+ 4𝜆
𝑛

𝜇2

𝜏

𝐹𝑥
∗
2

,

(34)

where 𝜏 = (1/2)𝜇(2𝜂 − 𝜇𝐿2).
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Consequently

𝑥
𝑛+1

− 𝑥
∗
2

≤
1 − 𝜏𝜆

𝑛

1 − (1/4) 𝜏𝜆
𝑛

𝑥
𝑛

− 𝑥
∗
2

+
(3/4) 𝜏𝜆

𝑛

1 − (1/4) 𝜏𝜆
𝑛

16𝜇2

3𝜏2
𝐹𝑥
∗
2

.

(35)

It turns out that

𝑥
𝑛+1

− 𝑥
∗ ≤ max{

𝑥
𝑛

− 𝑥
∗ ,

4𝜇

√3𝜏

𝐹𝑥
∗} , (36)

inductively

𝑥
𝑛

− 𝑥
∗ ≤ max{

𝑥
0

− 𝑥
∗ ,

4𝜇

√3𝜏

𝐹𝑥
∗} , (37)

and this means that (𝑥
𝑛
) is bounded. Obviously, (𝐹𝑥

𝑛
) is also

bounded.
Secondly, since a projection is firmly nonexpansive, we

obtain

𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
∗


2

≤

𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑃
𝐶
1
𝑛
𝑥
∗


2

−

𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
𝑛



2

≤
𝑥
𝑛

− 𝑥
∗
2

−

𝑥
𝑛

− 𝑃
𝐶
1
𝑛
𝑥
𝑛



2

−

𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
𝑛



2

;

(38)

thus we also have
𝑥
𝑛+1

− 𝑥
∗
2

=

𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

𝑛
− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
∗


2

=

𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝜆

𝑛
𝜇𝐹) 𝑥

𝑛
− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
𝑛

+𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
∗


2

≤

𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
∗


2

+ 2𝜆
𝑛
𝜇

𝐹𝑥
𝑛

 ⋅
𝑥
𝑛

− 𝑥
∗ + 𝜆

2

𝑛
𝜇
2𝐹𝑥
𝑛


2

≤

𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
∗


2

+ 𝜆
𝑛
𝑀,

(39)

where 𝑀 is a positive constant such that 𝑀 ≥ sup
𝑛
{2𝜇‖𝐹𝑥

𝑛
‖ ⋅

‖𝑥
𝑛

− 𝑥∗‖ + 𝜆
𝑛
𝜇2‖𝐹𝑥

𝑛
‖
2

}. The combination of (38) and (39)
leads to

𝑥
𝑛+1

− 𝑥
∗
2

≤
𝑥
𝑛

− 𝑥
∗
2

−

𝑥
𝑛

− 𝑃
𝐶
1
𝑛
𝑥
𝑛



2

−

𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
𝑛



2

+ 𝜆
𝑛
𝑀.

(40)

Setting

𝑠
𝑛

=
𝑥
𝑛

− 𝑥
∗
2

, 𝛾
𝑛

= 𝜏𝜆
𝑛
, 𝛼

𝑛
= 𝑀𝜆

𝑛
,

𝛿
𝑛

= −
2𝜇

𝜏
⟨𝐹𝑥
∗

, 𝑥
𝑛

− 𝑥
∗

⟩ +
2𝜆
𝑛
𝜇2

𝜏

𝐹𝑥
∗

𝐹𝑥
𝑛

 ,

𝜂
𝑛

=

𝑥
𝑛

− 𝑃
𝐶
1
𝑛
𝑥
𝑛



2

+

𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
𝑛



2

,

(41)

then (33) and (40) can be rewritten as the following forms,
respectively:

𝑠
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑠
𝑛

+ 𝛾
𝑛
𝛿
𝑛
,

𝑠
𝑛+1

≤ 𝑠
𝑛

− 𝜂
𝑛

+ 𝛼
𝑛
.

(42)

Finally, observing that the conditions 𝜆
𝑛

→ 0 and ∑
∞

𝑛=1
𝜆
𝑛

=

∞ imply 𝛼
𝑛

→ 0 and ∑
∞

𝑛=1
𝛾
𝑛

= ∞, respectively, in order to
complete the proof using Lemma 7 (or Lemma 8), it suffices
to verify that

lim
𝑘→∞

𝜂
𝑛𝑘

= 0 (43)

implies

lim sup
𝑘→∞

𝛿
𝑛𝑘

≤ 0 (44)

for any subsequence (𝑛
𝑘
) ⊂ (𝑛). In fact, if 𝜂

𝑛𝑘
→ 0 as 𝑘 →

∞, then ‖𝑥
𝑛𝑘

− 𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

‖ → 0 and ‖𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

− 𝑃
𝐶
2
𝑛𝑘

𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

‖ →

0 hold. Since 𝜕𝑐
1
and 𝜕𝑐

2
are bounded on bounded sets, we

have two positive constants 𝜅
1
and 𝜅
2
such that ‖𝜉1

𝑛𝑘

‖ ≤ 𝜅
1
and

‖𝜉2
𝑛𝑘

‖ ≤ 𝜅
2
for all 𝑘 ≥ 0 (noting that (𝑃

𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

) is also bounded
due to the fact that ‖𝑃

𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

− 𝑥∗‖ = ‖𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

− 𝑃
𝐶
1
𝑛𝑘

𝑥∗‖ ≤

‖𝑥
𝑛𝑘

− 𝑥∗‖). From (32) and the trivial fact that 𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

∈ 𝐶1
𝑛𝑘

and 𝑃
𝐶
2
𝑛𝑘

𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

∈ 𝐶2
𝑛𝑘

, it follows that

𝑐
1

(𝑥
𝑛𝑘

) ≤ ⟨𝜉
1

𝑛𝑘

, 𝑥
𝑛𝑘

− 𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

⟩ ≤ 𝜅
1


𝑥
𝑛𝑘

− 𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘


,

(45)

𝑐
2

(𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

) ≤ ⟨𝜉
2

𝑛𝑘

, 𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

− 𝑃
𝐶
2
𝑛𝑘

𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

⟩

≤ 𝜅
2


𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

− 𝑃
𝐶
2
𝑛𝑘

𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘


.

(46)

Now if 𝑥 ∈ 𝜔
𝑤

(𝑥
𝑛𝑘

), and (𝑥
𝑛𝑘

) such that 𝑥
𝑛𝑘

⇀ 𝑥 without
loss of the generality, then the 𝑤-lsc and (45) imply that

𝑐
1

(𝑥


) ≤ lim inf
𝑘→∞

𝑐
1

(𝑥
𝑛𝑘

) ≤ 0. (47)

This means that 𝑥 ∈ 𝐶1 holds. On the other hand, noting
‖𝑥
𝑛𝑘

− 𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

‖ → 0, we can assert that 𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

⇀ 𝑥 and
have from the 𝑤-lsc and (46) that

𝑐
2

(𝑥


) ≤ lim inf
𝑘→∞

𝑐
2

(𝑃
𝐶
1
𝑛𝑘

𝑥
𝑛𝑘

) ≤ 0. (48)

This, in turn, implies that 𝑥 ∈ 𝐶2. Moreover, we obtain that
𝑥 ∈ 𝐶1⋂ 𝐶2 and hence 𝜔

𝑤
(𝑥
𝑛𝑘

) ⊂ 𝐶1⋂ 𝐶2 = 𝐶.
Noting 𝑥∗ is the unique solution of VI(𝐶, 𝐹), it turns out

that

lim sup
𝑘→∞

{−
2𝜇

𝜏
⟨𝐹𝑥
∗

, 𝑥
𝑛𝑘

− 𝑥
∗

⟩}

= −
2𝜇

𝜏
lim inf
𝑘→∞

⟨𝐹𝑥
∗

, 𝑥
𝑛𝑘

− 𝑥
∗

⟩

= −
2𝜇

𝜏
inf
𝑤∈𝜔𝑤(𝑥𝑛𝑘

)

⟨𝐹𝑥
∗

, 𝑤 − 𝑥
∗

⟩ ≤ 0.

(49)
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Since 𝜆
𝑛

→ 0 and (𝐹𝑥
𝑛
) is bounded, it is easy to see that

lim sup
𝑘→∞

𝛿
𝑛𝑘

≤ 0.

Observing that in Algorithm 1 the determination of the
stepsize 𝜇 still depends on the constants 𝐿 and 𝜂; this means
that in order to implement Algorithm 1, one has first to
estimate the constants 𝐿 and 𝜂, which is sometimes not an
easy work in practice.

To overcome this difficulty, we furthermore introduce
a so-called relaxed and self-adaptive algorithm, that is, a
modification of Algorithm 1, in which the stepsize is selected
through a self-adaptive way that has no connection with the
constants 𝐿 and 𝜂.

Algorithm 2. Choose an arbitrary initial guess 𝑥
0

∈ 𝐻 and an
arbitrary element 𝑥

1
∈ 𝐻 such that 𝑥

1
̸= 𝑥
0
. Assume that the

𝑛th iterate 𝑥
𝑛

(𝑛 ≥ 1) has been constructed. Continue and
calculate the (𝑛 + 1)th iterate 𝑥

𝑛+1
via the following formula:

𝑥
𝑛+1

= 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝜆

𝑛
𝜇
𝑛
𝐹) 𝑥
𝑛
, 𝑛 ≥ 1, (50)

where 𝐶1
𝑛
and 𝐶2

𝑛
are given as in (32), the sequence (𝜆

𝑛
) is in

(0, 1), and the sequence (𝜇
𝑛
) is determined via the following

relation:

𝜇
𝑛

=

{{

{{

{

⟨𝐹𝑥
𝑛

− 𝐹𝑥
𝑛−1

, 𝑥
𝑛

− 𝑥
𝑛−1

⟩

𝐹𝑥
𝑛

− 𝐹𝑥
𝑛−1


2

, if 𝑥
𝑛

̸= 𝑥
𝑛−1

,

𝜇
𝑛−1

, if 𝑥
𝑛

= 𝑥
𝑛−1

,

𝑛 ≥ 1.

(51)

Firstly, we show that the sequence (𝑥
𝑛
) is well defined.

Noting strong monotonicity of 𝐹, 𝑥
1

̸= 𝑥
0

implies that
𝐹𝑥
1

̸= 𝐹𝑥
0
and 𝜇

1
is well defined via the first formula of

(51). Consequently, 𝜇
𝑛

(𝑛 ≥ 2) is well defined inductively
according to (51) and thus the sequence (𝑥

𝑛
) is also well

defined.
Next, we estimate (𝜇

𝑛
) roughly. If 𝑥

𝑛
̸= 𝑥
𝑛−1

(that is,
𝐹𝑥
𝑛

̸= 𝐹𝑥
𝑛−1

), set

𝜂
𝑛

=
⟨𝐹𝑥
𝑛

− 𝐹𝑥
𝑛−1

, 𝑥
𝑛

− 𝑥
𝑛−1

⟩

𝑥
𝑛

− 𝑥
𝑛−1


2

,

𝐿
𝑛

=

𝐹𝑥
𝑛

− 𝐹𝑥
𝑛−1


𝑥
𝑛

− 𝑥
𝑛−1


, 𝑛 ≥ 1.

(52)

Obviously, it turns out that

𝜂 ≤ 𝜂
𝑛

=
⟨𝐹𝑥
𝑛

− 𝐹𝑥
𝑛−1

, 𝑥
𝑛

− 𝑥
𝑛−1

⟩

𝑥
𝑛

− 𝑥
𝑛−1


2

≤

𝐹𝑥
𝑛

− 𝐹𝑥
𝑛−1


𝑥
𝑛

− 𝑥
𝑛−1


= 𝐿
𝑛

≤ 𝐿.

(53)

Consequently

𝜂

𝐿2
≤ 𝜇
𝑛

=
𝜂
𝑛

𝐿2
𝑛

≤
1

𝜂
𝑛

≤
1

𝜂
. (54)

By the definition of (𝜇
𝑛
), we can assert that (54) holds for all

𝑛 ≥ 1.
Lemma 7 (or Lemma 8) is also important for the proof of

the strong convergence of Algorithm 2.

Theorem 10. Assume that 𝜆
𝑛

→ 0 (𝑛 → ∞) and∑
+∞

𝑛=1
𝜆
𝑛

=

+∞. Then the sequence (𝑥
𝑛
) generated by Algorithm 2 con-

verges strongly to the unique solution 𝑥∗ of 𝑉𝐼(𝐶, 𝐹).

Proof. Setting 𝛾
𝑛

= 𝜆
𝑛
𝜇
𝑛
and 𝛽

𝑛
= (1/2)(2𝜂 − 𝛾

𝑛
𝐿2), it

concludes observing 𝜆
𝑛

→ 0 and (54) that there exists some
positive integer 𝑛

0
such that

0 < 𝛾
𝑛

<
𝜂

𝐿2
, 𝑛 ≥ 𝑛

0
, (55)

and consequently

𝛽
𝑛

≥
1

2
𝜂, 𝑛 ≥ 𝑛

0
. (56)

Using Lemma 2, we have from (55) that 𝑃
𝐶𝑛

(𝐼−𝛾
𝑛
𝐹) (so is 𝐼−

𝛾
𝑛
𝐹) is a contraction with coefficient 1 − 𝛾

𝑛
𝛽
𝑛
. This concludes

that, for all 𝑛 ≥ 𝑛
0
,

𝑥
𝑛+1

− 𝑥
∗
2

=

𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝛾

𝑛
𝐹)𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
∗


2

≤
(𝐼 − 𝛾

𝑛
𝐹)𝑥
𝑛

− (𝐼 − 𝛾
𝑛
𝐹)𝑥
∗

− 𝛾
𝑛
𝐹𝑥
∗
2

≤ (1 − 𝛾
𝑛
𝛽
𝑛
)

𝑥
𝑛

− 𝑥
∗
2

− 2𝛾
𝑛

⟨𝐹𝑥
∗

, 𝑥
𝑛

− 𝑥
∗

− 𝛾
𝑛
𝐹𝑥
𝑛
⟩ ,

≤ (1 − 𝛾
𝑛
𝛽
𝑛
)

𝑥
𝑛

− 𝑥
∗
2

− 2𝛾
𝑛
⟨𝐹𝑥
∗

, 𝑥
𝑛

− 𝑥
∗

⟩

+ 2𝛾
2

𝑛

𝐹𝑥
∗

𝐹𝑥
𝑛

 ,

(57)

𝑥
𝑛+1

− 𝑥
∗
2

=

𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝛾

𝑛
𝐹) 𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝛾

𝑛
𝐹) 𝑥
∗

+𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝛾

𝑛
𝐹)𝑥
∗

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
∗


2

≤ (1 − 𝛾
𝑛
𝛽
𝑛
)

𝑥
𝑛

− 𝑥
∗
2

+ 2 ⟨𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
(𝐼 − 𝛾

𝑛
𝐹) 𝑥
∗

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝛾
𝑛
𝛽
𝑛
)

𝑥
𝑛

− 𝑥
∗
2

+ 2𝛾
𝑛

𝐹𝑥
∗

𝑥
𝑛+1

− 𝑥
∗

≤ (1 − 𝛾
𝑛
𝛽
𝑛
)

𝑥
𝑛

− 𝑥
∗
2

+
𝛾
𝑛
𝛽
𝑛

4

𝑥
𝑛+1

− 𝑥
∗
2

+
4𝛾
𝑛

𝛽
𝑛

𝐹𝑥
∗
2

,

(58)
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and hence

𝑥
𝑛+1

− 𝑥
∗
2

≤
1 − 𝛾
𝑛
𝛽
𝑛

1 − (1/4) 𝛾
𝑛
𝛽
𝑛

𝑥
𝑛

− 𝑥
∗
2

+
(3/4) 𝛾

𝑛
𝛽
𝑛

1 − (1/4) 𝛾
𝑛
𝛽
𝑛

16

3𝛽2
𝑛

𝐹𝑥
∗
2

.

(59)

Using (56), it turns out that

𝑥
𝑛+1

− 𝑥
∗ ≤ max{

𝑥
𝑛

− 𝑥
∗ ,

8

√3𝜂

𝐹𝑥
∗} , 𝑛 ≥ 𝑛

0
,

(60)

inductively

𝑥
𝑛

− 𝑥
∗ ≤ max{


𝑥
𝑛0

− 𝑥
∗


,
8

√3𝜂

𝐹𝑥
∗} , 𝑛 ≥ 𝑛

0
,

(61)

and this means that (𝑥
𝑛
) is bounded, so is (𝐹𝑥

𝑛
).

By an argument similar to getting (38)–(40), we have

𝑥
𝑛+1

− 𝑥
∗
2

≤
𝑥
𝑛

− 𝑥
∗
2

−

𝑥
𝑛

− 𝑃
𝐶
1
𝑛
𝑥
𝑛



2

−

𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
𝑛



2

+ 𝛾
𝑛
𝑀,

(62)

where 𝑀 is a positive constant. Setting

𝑠
𝑛

=
𝑥
𝑛

− 𝑥
∗
2

,

𝛿
𝑛

= −
2

𝛽
𝑛

⟨𝐹𝑥
∗

, 𝑥
𝑛

− 𝑥
∗

⟩ +
2𝛾
𝑛

𝛽
𝑛

𝐹𝑥
∗

𝐹𝑥
𝑛

 ,

𝛼
𝑛

= 𝑀𝛾
𝑛
,

𝜎
𝑛

=

𝑥
𝑛

− 𝑃
𝐶
1
𝑛
𝑥
𝑛



2

+

𝑃
𝐶
1
𝑛
𝑥
𝑛

− 𝑃
𝐶
2
𝑛
𝑃
𝐶
1
𝑛
𝑥
𝑛



2

,

(63)

then (57) and (62) can be rewritten as the following forms,
respectively:

𝑠
𝑛+1

≤ (1 − 𝛾
𝑛
𝛽
𝑛
) 𝑠
𝑛

+ 𝛾
𝑛
𝛽
𝑛
𝛿
𝑛
,

𝑠
𝑛+1

≤ 𝑠
𝑛

− 𝜎
𝑛

+ 𝛼
𝑛
.

(64)

Clearly, 𝜆
𝑛

→ 0 and ∑
∞

𝑛=1
𝜆
𝑛

= ∞, together with (54) and
(56), imply that 𝛼

𝑛
→ 0 and ∑

∞

𝑛=1
𝛾
𝑛
𝛽
𝑛

= ∞.
By an argument very similar to the proof ofTheorem 9, it

is not difficult to verify that

lim
𝑘→∞

𝜎
𝑛𝑘

= 0 (65)

implies

lim sup
𝑘→∞

𝛿
𝑛𝑘

≤ 0 (66)

for any subsequence (𝑛
𝑘
) ⊂ (𝑛). Thus we can complete the

proof by using Lemma 7 (or Lemma 8).
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