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We study the existence of periodic solutions of Liénard equation with a deviating argument 𝑥󸀠󸀠 + 𝑓(𝑥)𝑥
󸀠
+ 𝑛
2
𝑥 + 𝑔(𝑥(𝑡 − 𝜏)) =

𝑝(𝑡), where 𝑓, 𝑔, 𝑝 : 𝑅 → 𝑅 are continuous and 𝑝 is 2𝜋-periodic, 0 ≤ 𝜏 < 2𝜋 is a constant, and 𝑛 is a positive integer.
Assume that the limits lim

𝑥→±∞
𝑔(𝑥) = 𝑔(±∞) and lim

𝑥→±∞
𝐹(𝑥) = 𝐹(±∞) exist and are finite, where 𝐹(𝑥) = ∫

𝑥

0
𝑓(𝑢)𝑑𝑢.

We prove that the given equation has at least one 2𝜋-periodic solution provided that one of the following conditions holds:
2cos(𝑛𝜏)[𝑔(+∞)−𝑔(−∞)] ̸= ∫

2𝜋

0
𝑝(𝑡)sin(𝜃+𝑛𝑡)𝑑𝑡, for all 𝜃 ∈ [0, 2𝜋], 2𝑛cos(𝑛𝜏)[𝐹(+∞)−𝐹(−∞)] ̸= ∫

2𝜋

0
𝑝(𝑡)sin(𝜃+𝑛𝑡)𝑑𝑡, for all 𝜃 ∈

[0, 2𝜋], 2[𝑔(+∞) − 𝑔(−∞)] − 2𝑛sin(𝑛𝜏)[𝐹(+∞) − 𝐹(−∞)] ̸= ∫

2𝜋

0
𝑝(𝑡)sin(𝜃 + 𝑛𝑡)𝑑𝑡, for all 𝜃 ∈ [0, 2𝜋], 2𝑛[𝐹(+∞) − 𝐹(−∞)] −

2sin(𝑛𝜏)[𝑔(+∞) − 𝑔(−∞)] ̸= ∫

2𝜋

0
𝑝(𝑡)sin(𝜃 + 𝑛𝑡)𝑑𝑡, for all 𝜃 ∈ [0, 2𝜋].

1. Introduction

We are concerned with the existence of periodic solutions of
Liénard equation with a deviating argument as follows:

𝑥
󸀠󸀠
+ 𝑓 (𝑥) 𝑥

󸀠
+ 𝑛
2
𝑥 + 𝑔 (𝑥 (𝑡 − 𝜏)) = 𝑝 (𝑡) , (1)

where 𝑓, 𝑔, 𝑝 : R → R are continuous and 𝑝 is 2𝜋-periodic,
0 ≤ 𝜏 < 2𝜋 is a constant, and 𝑛 is a positive integer.

In recent years, the periodic problemof Liénard equations
with a deviating argument has been widely studied because
of its background in applied sciences (see [1–8] and the
references cited therein).

In the case when 𝑓(𝑥) ≡ 0, for all 𝑥 ∈ R and 𝜏 = 0, (1)
becomes

𝑥
󸀠󸀠
+ 𝑛
2
𝑥 + 𝑔 (𝑥) = 𝑝 (𝑡) . (2)

Assume that limits

(ℎ
1
) lim
𝑥→±∞

𝑔(𝑥) = 𝑔(±∞)

exist and are finite. Lazer and Leach [9] proved that (2) has
at least one 2𝜋-periodic solution provided that the following
condition holds:

2 [𝑔 (+∞) − 𝑔 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] .

(3)

Assume that, besides (ℎ
1
), the limits

(ℎ
2
) lim
𝑥→±∞

𝐹(𝑥) = 𝐹(±∞)

exist and are finite, where 𝐹(𝑥) = ∫

𝑥

0
𝑓(𝑢)𝑑𝑢. It was proved in

[10] that the following equation:

𝑥
󸀠󸀠
+ 𝑓 (𝑥) 𝑥

󸀠
+ 𝑛
2
𝑥 + 𝑔 (𝑥 (𝑡 − 𝜏)) = 𝑝 (𝑡) (4)
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has at least 2𝜋-periodic solution provided that one of the
following conditions holds:

2 [𝑔 (+∞) − 𝑔 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] ,

2𝑛 [𝐹 (+∞) − 𝐹 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] .

(5)

In the case when 𝑓(𝑥) ≡ 0, for all 𝑥 ∈ R and 𝜏 ̸= 0, (1)
becomes as follows:

𝑥
󸀠󸀠
+ 𝑛
2
𝑥 + 𝑔 (𝑥 (𝑡 − 𝜏)) = 𝑝 (𝑡) . (6)

When the condition (ℎ
1
) holds, it was proved in [5] that

(6) has at least one 2𝜋-periodic solution provided that the
condition (3) holds.

In the present paper, we deal with the existence of
periodic solutions of (1) by assuming (ℎ

1
) and (ℎ

2
). By using

the continuation theorem [11], we prove the following result.

Theorem 1. Assume that the conditions (ℎ
1
) and (ℎ

2
) hold.

Then (1) has at least one 2𝜋-periodic solution provided that one
of the following conditions is satisfied:

2 cos (𝑛𝜏) [𝑔 (+∞) − 𝑔 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] ,

2𝑛 cos (𝑛𝜏) [𝐹 (+∞) − 𝐹 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] ,

2 [𝑔 (+∞) − 𝑔 (−∞)] − 2𝑛 sin (𝑛𝜏) [𝐹 (+∞) − 𝐹 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] ,

2𝑛 [𝐹 (+∞) − 𝐹 (−∞)] − 2 sin (𝑛𝜏) [𝑔 (+∞) − 𝑔 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] .

(7)

Remark 2. Let us denote byΦ the function on the right-hand
side of four inequalities above, namely,

Φ (𝜃) = ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, 𝜃 ∈ [0, 2𝜋] . (8)

Then Φ can be expressed in the following form:

Φ (𝜃) = 𝐴 sin 𝜃 + 𝐵 cos 𝜃, 𝜃 ∈ [0, 2𝜋] , (9)

where

𝐴 = ∫

2𝜋

0

𝑝 (𝑡) cos 𝑛𝑡𝑑𝑡, 𝐵 = ∫

2𝜋

0

𝑝 (𝑡) sin 𝑛𝑡𝑑𝑡. (10)

Obviously, the value ofΦ forms a closed interval [−󰜚, 󰜚] with
󰜚 = √𝐴

2
+ 𝐵
2. Therefore, the four conditions in Theorem 1

are equivalent to the following conditions, respectively:

2 cos (𝑛𝜏) [𝑔 (+∞) − 𝑔 (−∞)] ∉ [−󰜚, 󰜚] ,

2𝑛 cos (𝑛𝜏) [𝐹 (+∞) − 𝐹 (−∞)] ∉ [−󰜚, 󰜚] ,

2 [𝑔 (+∞) − 𝑔 (−∞)]

− 2𝑛 sin (𝑛𝜏) [𝐹 (+∞) − 𝐹 (−∞)] ∉ [−󰜚, 󰜚] ,

2𝑛 [𝐹 (+∞) − 𝐹 (−∞)]

− 2 sin (𝑛𝜏) [𝑔 (+∞) − 𝑔 (−∞)] ∉ [−󰜚, 󰜚] .

(11)

Remark 3. In the case when 𝜏 = 0, the four conditions in
Theorem 1 reduce to the conditions (5).Therefore,Theorem 1
generalizes the result in [10].

Throughout this paper, we always useR to denote the real
number set. For amultivariate function 𝜁 depending on 𝑟, the
notation 𝜁 = 𝑜(1) always means that, for 𝑟 → ∞, 𝜁 → 0

holds uniformly with respect to other variables, whereas 𝜁 =
𝑂(1) (or 𝜁 = 𝑂(𝑟

−1
)) always means that 𝜁 (or 𝑟 ⋅ 𝜁) is bounded

for 𝑟 large enough. For any continuous 2𝜋-periodic function
𝜓(𝑡), we always set ‖𝜓‖

∞
= max

0≤𝑡≤2𝜋
|𝜓(𝑡)|.

2. Basic Lemmas

It iswell known that continuation theoremsplay an important
role in studying the existence of periodic solutions of differ-
ential equations. We now introduce a continuation theorem
whichwill be used to prove the existence of periodic solutions
of (1).

Let𝑋 and 𝑌 be two real Banach spaces and let 𝐿 : 𝐷(𝐿) ⊂

𝑋 → 𝑌 be a Fredholm operator with index zero, where𝐷(𝐿)
denotes the domain of 𝐿. This means that Im 𝐿 is a closed
subspace of 𝑌 and dimker 𝐿 = codim Im 𝐿 < +∞. Let
𝑃 : 𝑋 → Ker 𝐿, 𝑄 : 𝑌 → 𝑌 be two linear continuous
projectors satisfying the following:

Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿. (12)

Then we have the following:

𝑋 = Ker 𝐿 ⊕ Ker𝑃, 𝑌 = Im 𝐿 ⊕ Im𝑄. (13)

Clearly, 𝐿
𝑃
= 𝐿|
𝐷(𝐿)∩Ker𝑃 → Im 𝐿 is invertible. Denote by

𝐾
𝑃
the inverse of 𝐿

𝑃
. Let Ω ⊂ 𝑋 be an open bounded set. A

continuous map𝑁 : Ω → 𝑌 is said to be 𝐿-compact on Ω if
both 𝑄𝑁 : Ω → 𝑌 and𝐾

𝑃
(𝐼 − 𝑄)𝑁 : Ω → 𝑋 are compact.

Lemma 4 (see [11]). Let X and Y be two real Banach spaces.
Suppose that 𝐿 : 𝐷(𝐿) ⊂ 𝑋 → 𝑌 is a Fredholm operator with
index zero and 𝑁 : Ω → 𝑌 is 𝐿-compact on Ω, where Ω is
an open bounded subset of 𝑋. Moreover, assume that all the
following conditions are satisfied:

(1) 𝐿𝑥 ̸= 𝜆𝑁𝑥, for all 𝑥 ∈ 𝜕Ω ∩ 𝐷(𝐿), 𝜆 ∈ (0, 1);
(2) 𝑁𝑥 ∉ Im 𝐿, for all 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿;
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(3) The Brouwer degree deg{𝐽𝑄𝑁,Ω∩Ker 𝐿, 0} ̸= 0, where
𝐽 : Im𝑄 → Ker 𝐿 is an isomorphism.

Then equation 𝐿𝑥 = 𝑁𝑥 has at least one solution on𝐷(𝐿)∩Ω.

3. Main Results

In this section, we will use the continuation theorem intro-
duced in Section 2 to prove the existence of periodic solutions
of (1). To this end, we first quote some notations and
definitions.

Let 𝑋 and 𝑌 be two Banach spaces defined by the
following:

𝑋 = {𝑥 ∈ 𝐶
1

(R,R) : 𝑥 (𝑡 + 2𝜋) = 𝑥 (𝑡) , ∀𝑡 ∈ R} ,

𝑌 = {𝑦 ∈ 𝐶 (R,R) : 𝑦 (𝑡 + 2𝜋) = 𝑦 (𝑡) , ∀𝑡 ∈ R}
(14)

with the following norms

‖𝑥‖
𝑋
= max {‖𝑥‖

∞
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞

} ,
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝑌

=
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩∞

. (15)

Define a linear operator

𝐿 : 𝐷 (𝐿) ⊂ 𝑋 󳨀→ 𝑌, 𝐿𝑥 = 𝑥
󸀠󸀠
+ 𝑛
2
𝑥, (16)

where 𝐷(𝐿) = {𝑥 ∈ 𝑋 : 𝑥
󸀠󸀠

∈ 𝐶(R,R)}, and a nonlinear
operator

𝑁 : X 󳨀→ 𝑌,

(𝑁𝑥) (𝑡) = −𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡) − 𝑔 (𝑥 (𝑡 − 𝜏)) + 𝑝 (𝑡) .

(17)

It is easy to see that

Ker 𝐿 = Span {sin 𝑛𝑡, cos 𝑛𝑡} ,

Im 𝐿 = {𝑦 ∈ 𝑌 : ∫

2𝜋

0

𝑦 (𝑡) sin 𝑛𝑡𝑑𝑡 = 0,

∫

2𝜋

0

𝑦 (𝑡) cos 𝑛𝑡𝑑𝑡 = 0} .

(18)

On the other hand, for any 𝑦 ∈ 𝑌, we can write the following:

𝑦 (𝑡) = 𝑦 (𝑡) + 𝑦 (𝑡) , ∀𝑡 ∈ [0, 2𝜋] , (19)

where 𝑦(𝑡) is defined by the following:

𝑦 (𝑡) = 𝑎 sin 𝑛𝑡 + 𝑏 cos 𝑛𝑡 (20)

with

𝑎 =

1

𝜋

∫

2𝜋

0

𝑦 (𝑡) sin 𝑛𝑡𝑑𝑡, 𝑏 =

1

𝜋

∫

2𝜋

0

𝑦 (𝑡) cos 𝑛𝑡𝑑𝑡, (21)

whereas 𝑦(𝑡) satisfies the following:

∫

2𝜋

0

𝑦 (𝑡) sin 𝑛𝑡𝑑𝑡 = 0, ∫

2𝜋

0

𝑦 (𝑡) cos 𝑛𝑡𝑑𝑡 = 0. (22)

Therefore,

𝑌 = Ker 𝐿 ⊕ Im 𝐿. (23)

It follows that 𝐿 is a Fredholm map of index zero.
Let us define two continuous projectors 𝑃 : 𝑋 → Ker 𝐿

and 𝑄 : 𝑌 → 𝑌 by setting the following:

(𝑃𝑥) (𝑡) = 𝑎
1
sin 𝑛𝑡 + 𝑏

1
cos 𝑛𝑡,

(𝑄𝑦) (𝑡) = 𝑦 (𝑡) = 𝑎 sin 𝑛𝑡 + 𝑏 cos 𝑛𝑡, ∀𝑡 ∈ [0, 2𝜋]

(24)

for any 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, where constants 𝑎
1
and 𝑏
1
are

defined as constants 𝑎 and 𝑏. Obviously, Im𝑄 = Ker 𝐿.
Set 𝐿
𝑃
= 𝐿|
𝐷(𝐿)∩Ker𝑃 → Im 𝐿. Then 𝐿

𝑃
is an algebraic

isomorphism and we define 𝐾
𝑃
: Im 𝐿 → 𝐷(𝐿) ∩ Ker𝑃 by

the following:

𝐾
𝑃
= 𝐿
−1

𝑃
. (25)

Clearly, we have that, for any 𝑦 ∈ Im 𝐿,

(𝐾
𝑃
𝑦) (𝑡) =

1

𝑛

∫

𝑡

0

𝑦 (𝑠) sin 𝑛 (𝑡 − 𝑠) 𝑑𝑠

+

1

2𝑛𝜋

∫

2𝜋

0

𝑠𝑦 (𝑠) sin 𝑛 (𝑡 − 𝑠) 𝑑𝑠.

(26)

For any open bounded set Ω ⊂ 𝑋, we can prove by standard
arguments that 𝐾

𝑃
(𝐼 − 𝑄)𝑁 and 𝑄𝑁 are compact on the

closure Ω. Therefore,𝑁 is 𝐿-compact onΩ.
It is noted that (1) is equivalent to the operator equation

𝐿𝑥 = 𝑁𝑥. (27)

To use Lemma 4, we embed this operator equation into an
equation family with a parameter 𝜆 ∈ (0, 1),

𝐿𝑥 = 𝜆𝑁𝑥, (28)

which is equivalent to the equation as follows:

𝑥
󸀠󸀠
+ 𝑛
2
𝑥 + 𝜆𝑓 (𝑥 (𝑡)) 𝑥

󸀠

(𝑡) + 𝜆𝑔 (𝑥 (𝑡 − 𝜏))

= 𝜆𝑝 (𝑡) , 𝜆 ∈ (0, 1) .

(29)

In the following, we will prove some new results on the exis-
tence of periodic solutions of (1) by using the continuation
theorem. Consider the equivalent system of (29):

𝑥
󸀠
= 𝑦 − 𝜆𝐹 (𝑥) , 𝑦

󸀠
= −𝑛
2
𝑥 − 𝜆𝑔 (𝑥 (𝑡 − 𝜏)) + 𝜆𝑝 (𝑡) .

(30)

Let 𝑥(𝑡) be any (possible) 2𝜋-periodic solution of (29). Set
𝑦(𝑡) = 𝑥

󸀠
(𝑡) + 𝜆𝐹(𝑥(𝑡)). Then (𝑥(𝑡), 𝑦(𝑡)) is a 2𝜋-periodic

solution of (30).
Now, let us introduce a transformation Φ : (𝑟, 𝜃) ∈ R+ ×

𝑆
1
→ (𝑥, 𝑦) ∈ R2 \ {0} with 𝑆1 = R/2𝜋Z,

𝑥 =

1

𝑛

𝑟
1/2 sin 𝜃, 𝑦 = 𝑟

1/2 cos 𝜃. (31)
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Under the transformation Φ, if |𝑥(𝑡)| + |𝑦(𝑡)| ̸= 0, for 𝑡 ∈

[0, 2𝜋], then the 2𝜋-periodic solution (𝑥(𝑡), 𝑦(𝑡)) of (30) can
be expressed in the form (𝑟(𝑡), 𝜃(𝑡)) satisfying the equations
as follows:

𝑑𝜃

𝑑𝑡

= 𝑛 + 𝜆𝑟
−1/2

𝑔(

1

𝑛

𝑟
1/2

(𝑡 − 𝜏) sin 𝜃 (𝑡 − 𝜏)) sin 𝜃

− 𝜆𝑛𝑟
−1/2

𝐹(

1

𝑛

𝑟
1/2 sin 𝜃) cos 𝜃 − 𝜆𝑟

−1/2
𝑝 (𝑡) sin 𝜃,

𝑑𝑟

𝑑𝑡

= − 2𝜆𝑟
1/2
𝑔(

1

𝑛

𝑟
1/2

(𝑡 − 𝜏) sin 𝜃 (𝑡 − 𝜏)) cos 𝜃

− 2𝜆𝑛𝑟
1/2
𝐹(

1

𝑛

𝑟
1/2 sin 𝜃) sin 𝜃 + 2𝜆𝑟

1/2
𝑝 (𝑡) cos 𝜃.

(32)

Let us set (𝑟
0
, 𝜃
0
) = (𝑟(0), 𝜃(0)) with 𝑟

0
= 𝑛
2
𝑥
2
(0) + 𝑦

2
(0).

Without loss of generality, we always assume 𝜃(0) ∈ [0, 2𝜋].
Dividing the second equation of (32) by 𝑟

1/2, we get the
following:

𝑑𝑟
1/2

𝑑𝑡

= − 𝜆𝑔(

1

𝑛

𝑟
1/2

(𝑡 − 𝜏) sin 𝜃 (𝑡 − 𝜏)) cos 𝜃

− 𝜆𝑛𝐹(

1

𝑛

𝑟
1/2 sin 𝜃) sin 𝜃 + 𝜆𝑝 (𝑡) cos 𝜃.

(33)

Integrating (33) and applying conditions (ℎ
1
) and (ℎ

2
), we get

the following:

𝑟(𝑡)
1/2

= 𝑟
1/2

0
+ 𝑂 (1) , ∀𝑡 ∈ [0, 2𝜋] . (34)

Furthermore,

𝑟(𝑡)
−1/2

= 𝑟
−1/2

0
+ 𝑂 (𝑟

−1

0
) , 𝑡 ∈ [0, 2𝜋] . (35)

On the other hand, it follows from the first equation of (32)
and (35) that

𝑑𝜃

𝑑𝑡

= 𝑛 + 𝑂 (𝑟
−1/2

0
) , 𝑡 ∈ [0, 2𝜋] . (36)

Therefore, we get the following:

𝜃 (𝑡) = 𝜃
0
+ 𝑛𝑡 + 𝑂 (𝑟

−1/2

0
) , 𝑡 ∈ [0, 2𝜋] . (37)

The estimations (34)–(37) will be used to obtain apriori
bounds of 2𝜋-periodic solutions of (29). Multiplying both

sides of (29) by sin(𝜃
0
+𝑛𝑡) and cos(𝜃

0
+𝑛𝑡), respectively, and

integrating over the interval [0, 2𝜋], we obtain the following:

∫

2𝜋

0

𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡) sin (𝜃
0
+ 𝑛𝑡) 𝑑𝑡

+ ∫

2𝜋

0

𝑔 (𝑥 (𝑡 − 𝜏)) sin (𝜃
0
+ 𝑛𝑡) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃
0
+ 𝑛𝑡) 𝑑𝑡,

∫

2𝜋

0

𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡) cos (𝜃
0
+ 𝑛𝑡) 𝑑𝑡

+ ∫

2𝜋

0

𝑔 (𝑥 (𝑡 − 𝜏)) cos (𝜃
0
+ 𝑛𝑡) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) cos (𝜃
0
+ 𝑛𝑡) 𝑑𝑡.

(38)

Hence,

− 𝑛∫

2𝜋

0

𝐹 (𝑥 (𝑡)) cos (𝜃
0
+ 𝑛𝑡) 𝑑𝑡

+ ∫

2𝜋

0

𝑔 (𝑥 (𝑡 − 𝜏)) sin (𝜃
0
+ 𝑛𝑡) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃
0
+ 𝑛𝑡) 𝑑𝑡

(39)

𝑛∫

2𝜋

0

𝐹 (𝑥 (𝑡)) sin (𝜃
0
+ 𝑛𝑡) 𝑑𝑡

+ ∫

2𝜋

0

𝑔 (𝑥 (𝑡 − 𝜏)) cos (𝜃
0
+ 𝑛𝑡) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) cos (𝜃
0
+ 𝑛𝑡) 𝑑𝑡.

(40)

Multiplying both sides of (29) by sin(𝜃
0
+𝑛(𝑡−𝜏)) and cos(𝜃

0
+

𝑛(𝑡−𝜏)), respectively, and integrating over the interval [0, 2𝜋],
we obtain the following:

∫

2𝜋

0

𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡) sin (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡

+ ∫

2𝜋

0

𝑔 (𝑥 (𝑡 − 𝜏)) sin (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡,

∫

2𝜋

0

𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡) cos (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡

+ ∫

2𝜋

0

𝑔 (𝑥 (𝑡 − 𝜏)) cos (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) cos (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡.

(41)
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Hence,

− 𝑛∫

2𝜋

0

𝐹 (𝑥 (𝑡)) cos (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡

+ ∫

2𝜋

0

𝑔 (𝑥 (𝑡 − 𝜏)) sin (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡,

𝑛 ∫

2𝜋

0

𝐹 (𝑥 (𝑡)) sin (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡

+ ∫

2𝜋

0

𝑔 (𝑥 (𝑡 − 𝜏)) cos (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) cos (𝜃
0
+ 𝑛 (𝑡 − 𝜏)) 𝑑𝑡.

(42)

Proof of Theorem 1. We shall prove the existence of periodic
solutions of (1) provided that either

2 cos 𝑛𝜏 [𝑔 (+∞) − 𝑔 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] ,

(43)

or

2𝑛 [𝐹 (+∞) − 𝐹 (−∞)] − 2 sin 𝑛𝜏 [𝑔 (+∞) − 𝑔 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋]

(44)

holds by using (39) and (40). The other cases can be handled
similarly by using (43) and (44). We proceed in three steps.

(1) We prove that there exist positive constants 𝑀
1
and

𝑀
2
such that, for any 2𝜋-periodic solution 𝑥(𝑡) of (29),

‖𝑥‖
∞
< 𝑀
1
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞

< 𝑀
2
. (45)

Assume by contradiction that (45) does not hold. Then there
exists a sequence of 2𝜋-periodic solutions {𝑥

𝑘
(𝑡)}
∞

𝑘=1
of (29)

with 𝜆 = 𝜆
𝑘
∈ (0, 1) such that

󵄩
󵄩
󵄩
󵄩
𝑥
𝑘

󵄩
󵄩
󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
󸀠

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩∞

󳨀→ +∞, for 𝑘 → ∞. (46)

Write 𝑦
𝑘
(𝑡) = 𝑥

󸀠

𝑘
(𝑡) + 𝜆

𝑘
𝐹(𝑥
𝑘
(𝑡)). Since 𝐹 is bounded on the

interval (−∞, +∞), we have the following:

󵄩
󵄩
󵄩
󵄩
𝑥
𝑘

󵄩
󵄩
󵄩
󵄩∞

+
󵄩
󵄩
󵄩
󵄩
𝑦
𝑘

󵄩
󵄩
󵄩
󵄩∞

󳨀→ +∞, for 𝑘 → ∞. (47)

Let (𝑟
𝑘
(𝑡), 𝜃
𝑘
(𝑡)) be the 2𝜋-periodic solution of (32) related to

(𝑥
𝑘
(𝑡), 𝑦
𝑘
(𝑡)). Obviously, 𝑟

𝑘
(𝑡) = 𝑛

2
𝑥
2

𝑘
(𝑡)+𝑦

2

𝑘
(𝑡).Thenwe have

the following:

󵄩
󵄩
󵄩
󵄩
𝑟
𝑘

󵄩
󵄩
󵄩
󵄩∞

󳨀→ +∞, for 𝑘 󳨀→ ∞. (48)

Without loss of generality, we also assume 𝜃
𝑘
(0) ∈ [0, 2𝜋]. It

follows from (39) that

− 𝑛∫

2𝜋

0

𝐹 (𝑥
𝑘
(𝑡)) cos (𝜃

𝑘
(0) + 𝑛𝑡) 𝑑𝑡

+ ∫

2𝜋

0

𝑔 (𝑥
𝑘
(𝑡 − 𝜏)) sin (𝜃

𝑘
(0) + 𝑛𝑡) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃
𝑘
(0) + 𝑛𝑡) 𝑑𝑡.

(49)

From (34) and (37) we get that, for 𝑡 ∈ [0, 2𝜋],

𝑔 (𝑥
𝑘
(𝑡 − 𝜏))

= 𝑔 (

1

𝑛

𝑟
𝑘
(𝑡 − 𝜏)

1/2 sin 𝜃
𝑘
(𝑡 − 𝜏))

= 𝑔 (

1

𝑛

𝑟
𝑘
(0)
1/2 sin (𝜃

𝑘
(0) + 𝑛 (𝑡 − 𝜏)) + 𝑂 (1)) .

(50)

Therefore,

∫

2𝜋

0

𝑔 (𝑥
𝑘
(𝑡 − 𝜏)) sin (𝜃

𝑘
(0) + 𝑛𝑡) 𝑑𝑡

= ∫

2𝜋

0

𝑔(

1

𝑛

𝑟
𝑘
(0)
1/2 sin (𝜃

𝑘
(0) + 𝑛 (𝑡 − 𝜏)) + 𝑂 (1))

× sin (𝜃
𝑘
(0) + 𝑛𝑡) 𝑑𝑡.

(51)

Obviously, we have the following:

∫

2𝜋

0

𝑔(

1

𝑛

𝑟
𝑘
(0)
1/2 sin (𝜃

𝑘
(0) + 𝑛 (𝑡 − 𝜏)) + 𝑂 (1))

× sin (𝜃
𝑘
(0) + 𝑛𝑡) 𝑑𝑡

=

1

𝑛

∫

2𝑛𝜋+𝜃𝑘(0)−𝑛𝜏

𝜃𝑘(0)−𝑛𝜏

𝑔(

1

𝑛

𝑟
𝑘
(0)
1/2 sin 𝑠 + 𝑂 (1))

× sin (𝑠 + 𝑛𝜏) 𝑑𝑠

=

cos 𝑛𝜏
𝑛

× ∫

2𝑛𝜋+𝜃𝑘(0)−𝑛𝜏

𝜃𝑘(0)−𝑛𝜏

𝑔(

1

𝑛

𝑟
𝑘
(0)
1/2 sin 𝑠 + 𝑂 (1)) sin 𝑠𝑑𝑠

+

sin 𝑛𝜏
𝑛

× ∫

2𝑛𝜋+𝜃𝑘(0)−𝑛𝜏

𝜃𝑘(0)−𝑛𝜏

𝑔(

1

𝑛

𝑟
𝑘
(0)
1/2 sin 𝑠 + 𝑂 (1)) cos 𝑠𝑑𝑠.

(52)

Since 𝜃
𝑘
(0) ∈ [0, 2𝜋], there exists a subsequence {𝜃

𝑘𝑗
(0)}

such that 𝜃
𝑘𝑗

→ 𝜃
∗
, 𝑗 → ∞. By using Lebesgue
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dominated convergent theoremand the condition (ℎ
1
), we get

the following:

lim
𝑗→+∞

∫

2𝑛𝜋+𝜃𝑘𝑗
(0)−𝑛𝜏

𝜃𝑘𝑗
(0)−𝑛𝜏

𝑔(

1

𝑛

𝑟
𝑘𝑗
(0)
1/2 sin 𝑠 + 𝑂 (1)) sin 𝑠𝑑𝑠

= 2𝑛 (𝑔 (+∞) − 𝑔 (−∞)) ,

lim
𝑗→+∞

∫

2𝑛𝜋+𝜃𝑘𝑗
(0)−𝑛𝜏

𝜃𝑘𝑗
(0)−𝑛𝜏

𝑔(

1

𝑛

𝑟
𝑘𝑗
(0)
1/2 sin 𝑠 + 𝑂 (1)) cos 𝑠𝑑𝑠 = 0.

(53)

Therefore,

lim
𝑗→+∞

∫

2𝜋

0

𝑔 (𝑥
𝑘𝑗
(𝑡 − 𝜏)) sin (𝜃

𝑘𝑗
(0) + 𝑛𝑡) 𝑑𝑡

= 2 cos 𝑛𝜏 [𝑔 (+∞) − 𝑔 (−∞)] .

(54)

Similarly, we can get the following:

lim
𝑗→+∞

∫

2𝜋

0

𝐹 (𝑥
𝑘𝑗
(𝑡)) cos (𝜃

𝑘𝑗
(0) + 𝑛𝑡) 𝑑𝑡 = 0. (55)

Hence, we obtain the following:

2 cos 𝑛𝜏 [𝑔 (+∞) − 𝑔 (−∞)] = ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃
∗
+ 𝑛𝑡) 𝑑𝑡,

(56)

which contradicts with (43).
On the other hand, it follows from (40) that

𝑛∫

2𝜋

0

𝐹 (𝑥
𝑘
(𝑡)) sin (𝜃

𝑘
(0) + 𝑛𝑡) 𝑑𝑡

+ ∫

2𝜋

0

𝑔 (𝑥
𝑘
(𝑡 − 𝜏)) cos (𝜃

𝑘
(0) + 𝑛𝑡) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) cos (𝜃
𝑘
(0) + 𝑛𝑡) 𝑑𝑡.

(57)

According to (50), we have the following:

∫

2𝜋

0

𝑔 (𝑥
𝑘
(𝑡 − 𝜏)) cos (𝜃

𝑘
(0) + 𝑛𝑡) 𝑑𝑡

= ∫

2𝜋

0

𝑔(

1

𝑛

𝑟
𝑘
(0)
1/2 cos (𝜃

𝑘
(0) + 𝑛 (𝑡 − 𝜏)) + 𝑂 (1))

× cos (𝜃
𝑘
(0) + 𝑛𝑡) 𝑑𝑡

=

1

𝑛

∫

2𝑛𝜋+𝜃𝑘(0)−𝑛𝜏

𝜃𝑘(0)−𝑛𝜏

𝑔(

1

𝑛

𝑟
𝑘
(0)
1/2 sin 𝑠 + 𝑂 (1))

× cos (𝑠 + 𝑛𝜏) 𝑑𝑠

=

cos 𝑛𝜏
𝑛

× ∫

2𝑛𝜋+𝜃𝑘(0)−𝑛𝜏

𝜃𝑘(0)−𝑛𝜏

𝑔(

1

𝑛

𝑟
𝑘
(0)
1/2 sin 𝑠 + 𝑂 (1)) cos 𝑠𝑑𝑠

−

sin 𝑛𝜏
𝑛

× ∫

2𝑛𝜋+𝜃𝑘(0)−𝑛𝜏

𝜃𝑘(0)−𝑛𝜏

𝑔(

1

𝑛

𝑟
𝑘
(0)
1/2 sin 𝑠 + 𝑂 (1)) sin 𝑠𝑑𝑠.

(58)

From (53) we obtain the following:

lim
𝑗→+∞

∫

2𝜋

0

𝑔 (𝑥
𝑘𝑗
(𝑡 − 𝜏)) cos (𝜃

𝑘𝑗
(0) + 𝑛𝑡) 𝑑𝑡

= −2 sin 𝑛𝜏 [𝑔 (+∞) − 𝑔 (−∞)] .

(59)

Similarly, we have the following:

lim
𝑗→+∞

∫

2𝜋

0

𝐹 (𝑥
𝑘𝑗
(𝑡)) sin (𝜃

𝑘𝑗
(0) + 𝑛𝑡) 𝑑𝑡

= 2 [𝐹 (+∞) − 𝐹 (−∞)] .

(60)

It follows from (57)–(60) that

2𝑛 [𝐹 (+∞) − 𝐹 (−∞)] − 2 sin (𝑛𝜏) [𝑔 (+∞) − 𝑔 (−∞)]

= ∫

2𝜋

0

𝑝 (𝑡) cos (𝜃
∗
+ 𝑛𝑡) 𝑑𝑡,

(61)

which contradicts with (44). Therefore, there exist positive
constants𝑀

1
and𝑀

2
such that (45) holds.

(2) Let 𝑥(𝑡) = 󰜚 sin(𝑛𝑡 + 𝛼), where 𝛼 is an arbitrary
constant. We will prove that there exists 𝑀

0
> 0 such that,

for 󰜚 ≥ 𝑀
0
, 𝑁𝑥 ∉ Im 𝐿. Otherwise, there exits a sequence
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{󰜚
𝑘
} satisfying lim

𝑘→∞
󰜚
𝑘
= +∞ such that 𝑁𝑥

𝑘
∈ Im 𝐿 with

𝑥
𝑘
(𝑡) = 󰜚

𝑘
sin(𝑛𝑡 + 𝛼). We will prove the following:

2 cos 𝑛𝜏 [𝑔 (+∞) − 𝑔 (−∞)] = ∫

2𝜋

0

𝑝 (𝑡) sin (𝑛𝑡 + 𝛼) 𝑑𝑡,

2𝑛 [𝐹 (+∞) − 𝐹 (−∞)] − 2 sin (𝑛𝜏) [𝑔 (+∞) − 𝑔 (−∞)]

= ∫

2𝜋

0

𝑝 (𝑡) sin (𝑛𝑡 + 𝛼) 𝑑𝑡.

(62)

In fact, since𝑁𝑥
𝑘
∈ Im 𝐿, we have the following:

∫

2𝜋

0

[𝑓 (𝑥
𝑘
(𝑡)) 𝑥
󸀠

𝑘
(𝑡) + 𝑔 (𝑥

𝑘
(𝑡 − 𝜏))] sin (𝑛𝑡 + 𝛼) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) sin (𝑛𝑡 + 𝛼) 𝑑𝑡,

∫

2𝜋

0

[𝑓 (𝑥
𝑘
(𝑡)) 𝑥
󸀠

𝑘
(𝑡) + 𝑔 (𝑥

𝑘
(𝑡 − 𝜏))] cos (𝑛𝑡 + 𝛼) 𝑑𝑡

= ∫

2𝜋

0

𝑝 (𝑡) cos (𝑛𝑡 + 𝛼) 𝑑𝑡.

(63)

Using the samemethod as in step 1, we have the following:

lim
𝑘→∞

∫

2𝜋

0

[𝑓 (𝑥
𝑘
(𝑡)) 𝑥
󸀠

𝑘
(𝑡) + 𝑔 (𝑥

𝑘
(𝑡 − 𝜏))] sin (𝑛𝑡 + 𝛼) 𝑑𝑡

= 2 cos 𝑛𝜏 [𝑔 (+∞) − 𝑔 (−∞)] ,

lim
𝑘→∞

∫

2𝜋

0

[𝑓 (𝑥
𝑘
(𝑡)) 𝑥
󸀠

𝑘
(𝑡) + 𝑔 (𝑥

𝑘
(𝑡 − 𝜏))] cos (𝑛𝑡 + 𝛼) 𝑑𝑡

= 2𝑛 [𝐹 (+∞) − 𝐹 (−∞)]

− 2 sin (𝑛𝜏) [𝑔 (+∞) − 𝑔 (−∞)] .

(64)

As a consequence, (62) holds. Thus, we get a contradic-
tion.

(3) Let 𝑀 > max{𝑛𝑀
0
,𝑀
1
,𝑀
2
} be a sufficiently large

constant (if it is necessary,𝑀 can be enlarged). Set

Ω = {𝑥 ∈ 𝑋 : ‖𝑥‖
∞
< 𝑀,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞

< 𝑀} . (65)

From the conclusion in step 1 we know that

𝐿𝑥 ̸= 𝜆𝑁𝑥, ∀𝑥 ∈ 𝜕Ω ∩ 𝐷 (𝐿) , 𝜆 ∈ (0, 1) . (66)

From the conclusion in step 2 we know that

𝑁𝑥 ∉ Im 𝐿, ∀𝑥 ∈ 𝜕Ω ∩ Ker 𝐿, (67)

which implies𝑄𝑁𝑥 ̸= 0 for any 𝑥 ∈ 𝜕Ω∩Ker 𝐿. Since Im𝑄 =

Ker 𝐿, we can take an isomorphism 𝐽 = identity : Im𝑄 →

Ker 𝐿. In what follows, we will prove the following:

deg {𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0. (68)

To this end, let us define 𝜙 : Ker 𝐿 → R2, 𝑥 = 𝑎 sin 𝑛𝑡 +
𝑏 cos 𝑛𝑡 → (𝑎, 𝑏), namely,

𝜙𝑥 = (𝑎, 𝑏) . (69)

Obviously, 𝜙 is a linear isomorphism. For any 𝑥 = 𝑎 sin 𝑛𝑡 +
𝑏 cos 𝑛𝑡, set

(𝐽𝑄𝑁𝑥) (𝑡) = ℎ
1
(𝑎, 𝑏) sin 𝑛𝑡 + ℎ

2
(𝑎, 𝑏) cos 𝑛𝑡, (70)

where

ℎ
1
(𝑎, 𝑏) =

1

𝜋

∫

2𝜋

0

[−𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡) − 𝑔 (𝑥 (𝑡 − 𝜏)) + 𝑝 (𝑡)]

× sin 𝑛𝑡𝑑𝑡

ℎ
2
(𝑎, 𝑏) =

1

𝜋

∫

2𝜋

0

[−𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡) − 𝑔 (𝑥 (𝑡 − 𝜏)) + 𝑝 (𝑡)]

× cos 𝑛𝑡𝑑𝑡.
(71)

Define ℎ : R2 → R2 as follows:

ℎ (𝑎, 𝑏) = 𝜙 ∘ 𝑄 ∘ 𝑁 ∘ 𝜙
−1

(𝑎, 𝑏) = (ℎ
1
(𝑎, 𝑏) , ℎ

2
(𝑎, 𝑏)) . (72)

Then we have the following:

deg {𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} = deg {ℎ, 𝜙 (Ω ∩ Ker 𝐿) , 0} . (73)

To calculate deg{ℎ, 𝜙(Ω∩Ker 𝐿), 0}, we first estimate 𝑙
1
and 𝑙
2

as follows:

𝑙
1
(𝑎, 𝑏) =

1

𝜋

∫

2𝜋

0

[−𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡) − 𝑔 (𝑥 (𝑡 − 𝜏))] sin 𝑛𝑡𝑑𝑡,

𝑙
2
(𝑎, 𝑏) =

1

𝜋

∫

2𝜋

0

[−𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡) − 𝑔 (𝑥 (𝑡 − 𝜏))] cos 𝑛𝑡𝑑𝑡.

(74)

Write 𝑥 = 𝜌 sin(𝑛𝑡 + 𝜗) with 𝜌 = √𝑎
2
+ 𝑏
2, 𝜗 = arctan(𝑏/𝑎)

or 𝜗 = 𝜋 + arctan(𝑏/𝑎). Then we have that, for 𝜌 → ∞,

∫

2𝜋

0

𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡) sin 𝑛𝑡𝑑𝑡

= −𝑛∫

2𝜋

0

𝐹 (𝑥 (𝑡)) cos 𝑛𝑡𝑑𝑡

= −𝑛∫

2𝜋

0

𝐹 (𝜌 sin (𝑛𝑡 + 𝜗)) cos 𝑛𝑡𝑑𝑡

= −∫

2𝑛𝜋+𝜗

𝜗

𝐹 (𝜌 sin 𝑠) (cos 𝑠 cos 𝜗 + sin 𝑠 sin 𝜗) 𝑑𝑠

= − cos 𝜗∫
2𝑛𝜋+𝜗

𝜗

𝐹 (𝜌 sin 𝑠) cos 𝑠𝑑𝑠

− sin 𝜗∫
2𝑛𝜋+𝜗

𝜗

𝐹 (𝜌 sin 𝑠) sin 𝑠𝑑𝑠

= −2𝑛 sin 𝜗 [𝐹 (+∞) − 𝐹 (−∞)] + 𝑜 (1) .

(75)
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On the other hand, we have that, for 𝜌 → ∞,

∫

2𝜋

0

𝑔 (𝑥 (𝑡 − 𝜏)) sin 𝑛𝑡𝑑𝑡

= ∫

2𝜋

0

𝑔 (𝜌 sin (𝑛 (𝑡 − 𝜏) + 𝜗)) sin 𝑛𝑡𝑑𝑡

=

1

𝑛

∫

2𝑛𝜋+𝜗−𝑛𝜏

𝜗−𝑛𝜏

𝑔 (𝜌 sin 𝑠) sin (𝑠 + 𝑛𝜏 − 𝜗) 𝑑𝑠

=

cos (𝑛𝜏 − 𝜗)

𝑛

∫

2𝑛𝜋+𝜗−𝑛𝜏

𝜗−𝑛𝜏

𝑔 (𝜌 sin 𝑠) sin 𝑠𝑑𝑠

+

sin (𝑛𝜏 − 𝜗)

𝑛

∫

2𝑛𝜋+𝜗−𝑛𝜏

𝜗−𝑛𝜏

𝑔 (𝜌 sin 𝑠) cos 𝑠𝑑𝑠

= 2 cos (𝑛𝜏 − 𝜗) [𝑔 (+∞) − 𝑔 (−∞)] + 𝑜 (1) .

(76)

Therefore, we get the following:

𝑙
1
(𝑎, 𝑏) =

2

𝜋

{𝑛 sin 𝜗 [𝐹 (+∞) − 𝐹 (−∞)]

− cos (𝑛𝜏 − 𝜗) [𝑔 (+∞) − 𝑔 (−∞)]}

+ 𝑜 (1) .

(77)

To estimate 𝑙
2
, we have that, for 𝜌 → ∞,

∫

2𝜋

0

𝑓 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡) cos 𝑛𝑡𝑑𝑡

= 𝑛∫

2𝜋

0

𝐹 (𝑥 (𝑡)) sin 𝑛𝑡𝑑𝑡

= 𝑛∫

2𝜋

0

𝐹 (𝜌 sin (𝑛𝑡 + 𝜗)) sin 𝑛𝑡𝑑𝑡

= cos 𝜗∫
2𝑛𝜋+𝜗

𝜗

𝐹 (𝜌 sin 𝑠) sin 𝑠𝑑𝑠

− sin 𝜗∫
2𝑛𝜋+𝜗

𝜗

𝐹 (𝜌 sin 𝑠) cos 𝑠𝑑𝑠

= 2𝑛 cos 𝜗 [𝐹 (+∞) − 𝐹 (−∞)] + 𝑜 (1) .

(78)

Meanwhile, we get that, for 𝜌 → ∞,

∫

2𝜋

0

𝑔 (𝑥 (𝑡 − 𝜏)) cos 𝑛𝑡𝑑𝑡

= ∫

2𝜋

0

𝑔 (𝜌 sin (𝑛 (𝑡 − 𝜏) + 𝜗)) cos 𝑛𝑡𝑑𝑡

=

1

𝑛

∫

2𝑛𝜋+𝜗−𝑛𝜏

𝜗−𝑛𝜏

𝑔 (𝜌 sin 𝑠) cos (𝑠 + 𝑛𝜏 − 𝜗) 𝑑𝑠

=

cos (𝑛𝜏 − 𝜗)

𝑛

∫

2𝑛𝜋+𝜗−𝑛𝜏

𝜗−𝑛𝜏

𝑔 (𝜌 sin 𝑠) cos 𝑠𝑑𝑠

−

sin (𝑛𝜏 − 𝜗)

𝑛

∫

2𝑛𝜋+𝜗−𝑛𝜏

𝜗−𝑛𝜏

𝑔 (𝜌 sin 𝑠) sin 𝑠𝑑𝑠

= −2 sin (𝑛𝜏 − 𝜗) [𝑔 (+∞) − 𝑔 (−∞)] + 𝑜 (1) .

(79)

Hence, we obtain the following:

𝑙
2
(𝑎, 𝑏) =

2

𝜋

{ − 𝑛 cos 𝜗 [𝐹 (+∞) − 𝐹 (−∞)]

+ sin (𝑛𝜏 − 𝜗) [𝑔 (+∞) − 𝑔 (−∞)]}

+ 𝑜 (1) .

(80)

Set

̂
ℎ
1
(𝑎, 𝑏) =

2

𝜋

{𝑛 sin 𝜗 [𝐹 (+∞) − 𝐹 (−∞)]

− cos (𝑛𝜏 − 𝜗) [𝑔 (+∞) − 𝑔 (−∞)]} ,

̂
ℎ
2
(𝑎, 𝑏) =

2

𝜋

{ − 𝑛 cos 𝜗 [𝐹 (+∞) − 𝐹 (−∞)]

+ sin (𝑛𝜏 − 𝜗) [𝑔 (+∞) − 𝑔 (−∞)]} ,

̂
ℎ (𝑎, 𝑏) = (

̂
ℎ
1
(𝑎, 𝑏) ,

̂
ℎ
2
(𝑎, 𝑏)) .

(81)

Replacing 𝜗 in 𝑥 = 𝜌 sin(𝑛𝑡 + 𝜗) with 𝜋 + 𝜗, we get the
following:

̂
ℎ
1
(−𝑎, −𝑏) = −

2

𝜋

{𝑛 sin 𝜗 [𝐹 (+∞) − 𝐹 (−∞)]

− cos (𝑛𝜏 − 𝜗) [𝑔 (+∞) − 𝑔 (−∞)]} ,

̂
ℎ
2
(−𝑎, −𝑏) = −

2

𝜋

{ − 𝑛 cos 𝜗 [𝐹 (+∞) − 𝐹 (−∞)]

+ sin (𝑛𝜏 − 𝜗) [𝑔 (+∞) − 𝑔 (−∞)]} .

(82)

As a consequence,

̂
ℎ
1
(−𝑎, −𝑏) = −

̂
ℎ
1
(𝑎, 𝑏) ,

̂
ℎ
2
(−𝑎, −𝑏) = −

̂
ℎ
2
(𝑎, 𝑏) ,

̂
ℎ (−𝑎, −𝑏) = −

̂
ℎ (𝑎, 𝑏) .

(83)

We note that, for 𝑎2 + 𝑏
2
→ +∞,

ℎ
1
(𝑎, 𝑏) =

̂
ℎ
1
(𝑎, 𝑏) + 𝑐

1
+ 𝑜 (1) ,

ℎ
2
(𝑎, 𝑏) =

̂
ℎ
2
(𝑎, 𝑏) + 𝑐

2
+ 𝑜 (1) ,

(84)

where

𝑐
1
=

1

𝜋

∫

2𝜋

0

𝑝 (𝑡) sin 𝑛𝑡𝑑𝑡,

𝑐
2
=

1

𝜋

∫

2𝜋

0

𝑝 (𝑡) cos 𝑛𝑡𝑑𝑡.
(85)

Let us consider the map 𝐻 : 𝜙(Ω ∩ Ker 𝐿) × [0, 1] → R2 :
(𝑎, 𝑏, 𝜇) → (ℎ

1
(𝑎, 𝑏, 𝜇), ℎ

2
(𝑎, 𝑏, 𝜇)) with

ℎ
1
(𝑎, 𝑏, 𝜇) =

̂
ℎ
1
(𝑎, 𝑏) + 𝜇𝑐

1
,

ℎ
2
(𝑎, 𝑏, 𝜇) =

̂
ℎ
2
(𝑎, 𝑏) + 𝜇𝑐

2
.

(86)
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Obviously,𝐻 is continuous. Next, we shall prove that, for any
(𝑎, 𝑏, 𝜇) ∈ 𝜕𝜙(Ω ∩ Ker 𝐿) × [0, 1],

(ℎ
1
(𝑎, 𝑏, 𝜇) , ℎ

2
(𝑎, 𝑏, 𝜇)) ̸= (0, 0) . (87)

Otherwise, there exists some (𝑎, 𝑏, 𝜇) ∈ 𝜕𝜙(Ω∩Ker 𝐿)× [0, 1]
such that

ℎ
1
(𝑎, 𝑏, 𝜇) = 0, ℎ

2
(𝑎, 𝑏, 𝜇) = 0. (88)

Then we have the following:

2𝑛 sin 𝜗 [𝐹 (+∞) − 𝐹 (−∞)]

− 2 cos (𝑛𝜏 − 𝜗) [𝑔 (+∞) − 𝑔 (−∞)]

= −𝜇𝜋𝑐
1
,

− 2𝑛 cos 𝜗 [𝐹 (+∞) − 𝐹 (−∞)]

+ 2 sin (𝑛𝜏 − 𝜗) [𝑔 (+∞) − 𝑔 (−∞)]

= −𝜇𝜋𝑐
2
.

(89)

Therefore, we get the following:

2 cos 𝑛𝜏 [𝑔 (+∞) − 𝑔 (−∞)] = 𝜇∫

2𝜋

0

𝑝 (𝑡) sin (𝑛𝑡 + 𝜗) 𝑑𝑡,

2𝑛 [𝐹 (+∞) − 𝐹 (−∞)] − 2 sin (𝑛𝜏) [𝑔 (+∞) − 𝑔 (−∞)]

= 𝜇∫

2𝜋

0

𝑝 (𝑡) cos (𝑛𝑡 + 𝜗) 𝑑𝑡.

(90)

Since 𝜇 ∈ [0, 1], we know from (90) that

2 cos 𝑛𝜏 [𝑔 (+∞) − 𝑔 (−∞)] ∈ [−󰜚, 󰜚] , (91)

2𝑛 [𝐹 (+∞) − 𝐹 (−∞)]

− 2 sin (𝑛𝜏) [𝑔 (+∞) − 𝑔 (−∞)] ∈ [−󰜚, 󰜚] ,

(92)

where 󰜚 is given in Remark 2. From Remark 2 we know that
(91) and (92) contradict with (43) and (44).

In particular, we have that, for (𝑎, 𝑏) ∈ 𝜕𝜙(Ω ∩ Ker 𝐿),

(
̂
ℎ
1
(𝑎, 𝑏) ,

̂
ℎ
2
(𝑎, 𝑏)) ̸= (0, 0) , (93)

(
̂
ℎ
1
(𝑎, 𝑏) + 𝑐

1
,
̂
ℎ
2
(𝑎, 𝑏) + 𝑐

2
) ̸= (0, 0) . (94)

Since ̂ℎ : R2 → R2 is odd and (93) holds, we know from
BorsukTheorem [12] that

deg (̂ℎ, 𝜙 (Ω ∩ Ker 𝐿) , 0) = 2𝑚 + 1 ̸= 0, (95)

where𝑚 is an integer.
On the other hand, we know from (94) and the expres-

sions of ̂ℎ
1
and ̂ℎ
2
that there exists a positive constant ], which

is independent of 𝑎 and 𝑏, such that, for (𝑎, 𝑏) ∈ R2

󵄨
󵄨
󵄨
󵄨
󵄨

̂
ℎ
1
(𝑎, 𝑏) + 𝑐

1

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨

̂
ℎ
2
(𝑎, 𝑏) + 𝑐

2

󵄨
󵄨
󵄨
󵄨
󵄨
≥ ]. (96)

Consequently, we infer from the homotopy invariance of
degree that, if𝑀 > max{𝑀

0
,𝑀
1
,𝑀
2
} is large enough; then

deg (𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0)

= deg (ℎ, 𝜙 (Ω ∩ Ker 𝐿) , 0)

= deg (𝐻 (⋅, 1) , 𝜙 (Ω ∩ Ker 𝐿) , 0)

= deg (𝐻 (⋅, 0) , 𝜙 (Ω ∩ Ker 𝐿) , 0)

= deg (̂ℎ, 𝜙 (Ω ∩ Ker 𝐿) , 0)

= 2𝑚 + 1 ̸= 0.

(97)

Therefore, all conditions of Lemma 4 are satisfied. Thus, (1)
has at least one 2𝜋-periodic solution.

4. Remarks

We can use the method developed in Section 3 to deal
with the existence of 2𝜋-periodic solutions of the following
equation:

𝑥
󸀠󸀠
+ 𝑓 (𝑥

󸀠
) + 𝑛
2
𝑥 + 𝑔 (𝑥 (𝑡 − 𝜏)) = 𝑝 (𝑡) . (98)

Assume that the limits

(ℎ
3
) lim
𝑥→±∞

𝑓(𝑥) = 𝑓(±∞)

exist and are finite. We can prove the following theorem.

Theorem 5. Assume that the conditions (ℎ
1
) and (ℎ

3
) hold.

Then (98) has at least one 2𝜋-periodic solution provided that
one of the following conditions holds:

2 cos (𝑛𝜏) [𝑔 (+∞) − 𝑔 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] ,

2 cos (𝑛𝜏) [𝑓 (+∞) − 𝑓 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] ,

2 [𝑔 (+∞) − 𝑔 (−∞)] − 2 sin (𝑛𝜏) [𝑓 (+∞) − 𝑓 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] ,

2 [𝑓 (+∞) − 𝑓 (−∞)] − 2 sin (𝑛𝜏) [𝑔 (+∞) − 𝑔 (−∞)]

̸= ∫

2𝜋

0

𝑝 (𝑡) sin (𝜃 + 𝑛𝑡) 𝑑𝑡, ∀𝜃 ∈ [0, 2𝜋] .

(99)

Remark 6. In the case when 𝑛 = 1, the third and the fourth
condition inTheorem 5 are identical to the related conditions
in [6]. But the first and the second condition inTheorem 5 did
not appear in [6].
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