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We introduce the slowly decreasing condition for sequences of fuzzy numbers. We prove that this is a Tauberian condition for the
statistical convergence and the Cesáro convergence of a sequence of fuzzy numbers.

1. Introduction

The concept of statistical convergence was introduced by Fast
[1]. A sequence (𝑥𝑘)𝑘∈N of real numbers is said to be statistical-
ly convergent to some number 𝑙 if for every 𝜀 > 0 we have

lim
𝑛→∞

1

𝑛 + 1

{𝑘 ≤ 𝑛 :
𝑥𝑘 − 𝑙

 ≥ 𝜀}
 = 0, (1)

where by |𝑆| and N, we denote the number of the elements in
the set 𝑆 and the set of natural numbers, respectively. In this
case, we write 𝑠𝑡-lim𝑘→∞𝑥𝑘 = 𝑙.

A sequence (𝑥𝑘) of real numbers is said to be (𝐶, 1)-con-
vergent to 𝑙 if its Cesàro transform {(𝐶1𝑥)𝑛} of order one con-
verges to 𝑙 as 𝑛 → ∞, where

(𝐶1𝑥)𝑛 =
1

𝑛 + 1

𝑛

∑
𝑘 = 0

𝑥𝑘 ∀𝑛 ∈ N. (2)

In this case, we write (𝐶, 1)-lim𝑘→∞𝑥𝑘 = 𝑙.
We recall that a sequence (𝑥𝑘) of real numbers is said to

be slowly decreasing according to Schmidt [2] if

lim
𝜆→1+

lim inf
𝑛→∞

min
𝑛<𝑘≤𝜆

𝑛

(𝑥𝑘 − 𝑥𝑛) ≥ 0, (3)

where we denote by 𝜆𝑛 the integral part of the product 𝜆𝑛, in
symbol 𝜆𝑛 := [𝜆𝑛].

It is easy to see that (3) is satisfied if and only if for every
𝜀 > 0 there exist 𝑛0 = 𝑛0(𝜀) and 𝜆 = 𝜆(𝜀) > 1, as close to 1 as
we wish, such that

𝑥𝑘 − 𝑥𝑛 ≥ −𝜀 whenever 𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛. (4)

Lemma 1 (see [3, Lemma 1]). Let (𝑥𝑘) be a sequence of real
numbers. Condition (3) is equivalent to the following relation:

lim
𝜆→1−

lim inf
𝑛→∞

min
𝜆
𝑛
<𝑘≤𝑛

(𝑥𝑛 − 𝑥𝑘) ≥ 0. (5)

A sequence (𝑥𝑘) of real numbers is said to be slowly in-
creasing if

lim
𝜆→1+

lim sup
𝑛→∞

max
𝑛<𝑘≤𝜆

𝑛

(𝑥𝑘 − 𝑥𝑛) ≤ 0. (6)

Clearly, it is trivial that (𝑥𝑘) is slowly increasing if and only if
the sequence (−𝑥𝑘) is slowly decreasing.

Furthermore, if a sequence (𝑥𝑘) of real numbers satisfies
Landau’s one-sided Tauberian condition (see [4, page 121])

𝑘 (𝑥𝑘 − 𝑥𝑘−1) ≥ −𝐻 for some 𝐻 > 0 and every 𝑘,
(7)

then (𝑥𝑘) is slowly decreasing.
Móricz [3, Lemma 6] proved that if a sequence (𝑥𝑘) is

slowly decreasing, then

𝑠𝑡- lim
𝑘→∞

𝑥𝑘 = 𝑙 ⇒ lim
𝑘→∞

𝑥𝑘 = 𝑙. (8)

Also, Hardy [4,Theorem 68] proved that if a sequence (𝑥𝑘) is
slowly decreasing, then

(𝐶, 1) - lim
𝑘→∞

𝑥𝑘 = 𝑙 ⇒ lim
𝑘→∞

𝑥𝑘 = 𝑙. (9)
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Maddox [5] defined a slowly decreasing sequence in an
ordered linear space and proved implication (9) for slowly
decreasing sequences in an ordered linear space.

We recall in this section the basic definitions dealing with
fuzzy numbers. In 1972, Chang and Zadeh [6] introduced the
concept of fuzzy number which is commonly used in fuzzy
analysis and in many applications.

A fuzzy number is a fuzzy set on the real axis, that is, a
mapping 𝑢 : R → [0, 1] which satisfies the following four
conditions

(i) 𝑢 is normal; that is, there exists an 𝑥0 ∈ R such that
𝑢(𝑥0) = 1.

(ii) 𝑢 is fuzzy convex; that is, 𝑢[𝜆𝑥+(1−𝜆)𝑦] ≥ min{𝑢(𝑥),
𝑢(𝑦)} for all 𝑥, 𝑦 ∈ R and for all 𝜆 ∈ [0, 1].

(iii) 𝑢 is upper semicontinuous.

(iv) The set [𝑢]0 := {𝑥 ∈ R : 𝑢(𝑥) > 0} is compact, where
{𝑥 ∈ R : 𝑢(𝑥) > 0} denotes the closure of the set {𝑥 ∈
R : 𝑢(𝑥) > 0} in the usual topology of R.

We denote the set of all fuzzy numbers onR by 𝐸1 and call it
the space of fuzzy numbers. 𝛼-level set [𝑢]𝛼 of 𝑢 ∈ 𝐸1 is defined
by

[𝑢]𝛼 :=
{

{

{

{𝑡 ∈ R : 𝑥 (𝑡) ≥ 𝛼} , (0 < 𝛼 ≤ 1) ,

{𝑡 ∈ R : 𝑥 (𝑡) > 𝛼}, (𝛼 = 0) .
(10)

The set [𝑢]𝛼 is closed, bounded, and nonempty interval for
each 𝛼 ∈ [0, 1] which is defined by [𝑢]𝛼 := [𝑢

−(𝛼), 𝑢+(𝛼)]. R
can be embedded in 𝐸1 since each 𝑟 ∈ R can be regarded as a
fuzzy number 𝑟 defined by

𝑟 (𝑥) := {
1, (𝑥 = 𝑟) ,

0, (𝑥 ̸= 𝑟) .
(11)

Let 𝑢, V, 𝑤 ∈ 𝐸1 and 𝑘 ∈ R. Then the operations addition
and scalar multiplication are defined on 𝐸1 by

𝑢 + V = 𝑤 ⇐⇒ [𝑤]𝛼 = [𝑢]𝛼 + [V]𝛼 ∀𝛼 ∈ [0, 1]

⇐⇒ 𝑤
−
(𝛼) = 𝑢

−
(𝛼) + V

−
(𝛼) ,

𝑤
+
(𝛼) = 𝑢

+
(𝛼) + V

+
(𝛼) ∀𝛼 ∈ [0, 1] ,

[𝑘𝑢]𝛼 = 𝑘[𝑢]𝛼 ∀𝛼 ∈ [0, 1]

(12)

(cf. Bede and Gal [7]).

Lemma 2 (see [7]). The following statements hold.

(i) 0 ∈ 𝐸1 is neutral element with respect to +, that is, 𝑢 +
0 = 0 + 𝑢 = 𝑢 for all 𝑢 ∈ 𝐸1.

(ii) With respect to 0, none of 𝑢 ̸= 𝑟, 𝑟 ∈ R has opposite in
𝐸1.

(iii) For any 𝑎, 𝑏 ∈ R with 𝑎, 𝑏 ≥ 0 or 𝑎, 𝑏 ≤ 0 and any
𝑢 ∈ 𝐸1, we have (𝑎+𝑏)𝑢 = 𝑎𝑢+𝑏𝑢. For general 𝑎, 𝑏 ∈ R,
the above property does not hold.

(iv) For any 𝑎 ∈ R and any 𝑢, V ∈ 𝐸1, we have 𝑎(𝑢 + V) =
𝑎𝑢 + 𝑎V.

(v) For any 𝑎, 𝑏 ∈ R and any 𝑢 ∈ 𝐸1, we have 𝑎(𝑏𝑢) =
(𝑎𝑏)𝑢.

Notice that 𝐸1 is not a linear space over R.
Let𝑊 be the set of all closed bounded intervals 𝐴 of real

numbers with endpoints𝐴 and𝐴; that is,𝐴 := [𝐴, 𝐴]. Define
the relation 𝑑 on𝑊 by

𝑑 (𝐴, 𝐵) := max {𝐴 − 𝐵
 ,

𝐴 − 𝐵


} . (13)

Then, it can be easily observed that 𝑑 is a metric on𝑊 and
(𝑊, 𝑑) is a complete metric space (cf. Nanda [8]). Now, we
may define the metric 𝐷 on 𝐸1 by means of the Hausdorff
metric 𝑑 as follows:

𝐷 (𝑢, V) := sup
𝛼∈[0,1]

𝑑 ([𝑢]𝛼, [V]𝛼)

:= sup
𝛼∈[0,1]

max {𝑢
−
(𝛼) − V

−
(𝛼)
 ,
𝑢
+
(𝛼) − V

+
(𝛼)
} .

(14)

One can see that

𝐷(𝑢, 0) = sup
𝛼∈[0,1]

max {𝑢
−
(𝛼)
 ,
𝑢
+
(𝛼)
}

= max {𝑢
−
(0)
 ,
𝑢
+
(0)
} .

(15)

Now, we may give the following.

Proposition 3 (see [7]). Let 𝑢, V, 𝑤, 𝑧 ∈ 𝐸1 and 𝑘 ∈ R. Then,
the following statements hold.

(i) (𝐸1, 𝐷) is a complete metric space.
(ii) 𝐷(𝑘𝑢, 𝑘V) = |𝑘|𝐷(𝑢, V).
(iii) 𝐷(𝑢 + V, 𝑤 + V) = 𝐷(𝑢, 𝑤).
(iv) 𝐷(𝑢 + V, 𝑤 + 𝑧) ≤ 𝐷(𝑢, 𝑤) + 𝐷(V, 𝑧).
(v) |𝐷(𝑢, 0) − 𝐷(V, 0)| ≤ 𝐷(𝑢, V) ≤ 𝐷(𝑢, 0) + 𝐷(V, 0).

One can extend the natural order relation on the real line
to intervals as follows:

𝐴 ⪯ 𝐵 iff 𝐴 ≤ 𝐵, 𝐴 ≤ 𝐵. (16)

Also, the partial ordering relation on 𝐸1 is defined as follows:

𝑢 ⪯ V⇐⇒ [𝑢]𝛼 ⪯ [V]𝛼 ⇐⇒ 𝑢
−
(𝛼) ≤ V

−
(𝛼) ,

𝑢
+
(𝛼) ≤ V

+
(𝛼) ∀𝛼 ∈ [0, 1] .

(17)

We say that 𝑢 ≺ V if 𝑢 ⪯ V and there exists 𝛼0 ∈ [0, 1] such
that 𝑢−(𝛼0) < V−(𝛼0) or 𝑢

+(𝛼0) < V+(𝛼0) (cf. Aytar et al. [9]).

Lemma 4 (see [9, Lemma 6]). Let 𝑢, V ∈ 𝐸1 and 𝜀 > 0. The
following statements are equivalent.

(i) 𝐷(𝑢, V) ≤ 𝜀.
(ii) 𝑢 − 𝜀 ⪯ V ⪯ 𝑢 + 𝜀.
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Lemma 5 (see [10, Lemma 5]). Let 𝜇, ] ∈ 𝐸1. If 𝜇 ⪯ ] + 𝜀 for
every 𝜀 > 0, then 𝜇 ⪯ ].

Lemma 6 (see [11, Lemma 3.4]). Let 𝑢, V, 𝑤 ∈ 𝐸1. Then, the
following statements hold.

(i) If 𝑢 ⪯ V and V ⪯ 𝑤, then 𝑢 ⪯ 𝑤.
(ii) If 𝑢 ≺ V and V ≺ 𝑤, then 𝑢 ≺ 𝑤.

Theorem 7 (see [11, Teorem 4.9]). Let 𝑢, V, 𝑤, 𝑒 ∈ 𝐸1. Then,
the following statements hold

(i) If 𝑢 ⪯ 𝑤 and V ⪯ 𝑒, then 𝑢 + V ⪯ 𝑤 + 𝑒.
(ii) If 𝑢 ⪰ 0 and V ≻ 𝑤, then 𝑢V ⪰ 𝑢𝑤.

Following Matloka [12], we give some definitions con-
cerning sequences of fuzzy numbers. Nanda [8] introduced
the concept of Cauchy sequence of fuzzy numbers and
showed that every convergent sequence of fuzzy numbers is
Cauchy.

A sequence 𝑢 = (𝑢𝑘) of fuzzy numbers is a function 𝑢
from the set N into the set 𝐸1. The fuzzy number 𝑢𝑘 denotes
the value of the function at 𝑘 ∈ N and is called the 𝑘th term
of the sequence. We denote by 𝜔(𝐹), the set of all sequences
of fuzzy numbers.

A sequence (𝑢𝑛) ∈ 𝜔(𝐹) is called convergent to the limit
𝜇 ∈ 𝐸1 if and only if for every 𝜀 > 0 there exists an 𝑛0 =
𝑛0(𝜀) ∈ N such that

𝐷(𝑢𝑛, 𝜇) < 𝜀 ∀𝑛 ≥ 𝑛0. (18)

Wedenote by 𝑐(𝐹), the set of all convergent sequences of fuzzy
numbers.

A sequence 𝑢 = (𝑢𝑘) of fuzzy numbers is said to be Cau-
chy if for every 𝜀 > 0 there exists a positive integer 𝑛0 such
that

𝐷(𝑢𝑘, 𝑢𝑚) < 𝜀 ∀𝑘,𝑚 > 𝑛0. (19)

We denote by 𝐶(𝐹), the set of all Cauchy sequences of fuzzy
numbers.

If 𝑢𝑘 ⪯ 𝑢𝑘+1 for every 𝑘 ∈ N, then (𝑢𝑘) is said to be a
monotone increasing sequence.

Statistical convergence of a sequence of fuzzy numbers
was introduced by Nuray and Savaş [13]. A sequence (𝑢𝑘) of
fuzzy numbers is said to be statistically convergent to some
number 𝜇0 if for every 𝜀 > 0 we have

lim
𝑛→∞

1

𝑛 + 1

{𝑘 ≤ 𝑛 : 𝐷 (𝑢𝑘, 𝜇0) ≥ 𝜀}
 = 0. (20)

Nuray and Savaş [13] proved that if a sequence (𝑢𝑘) is con-
vergent, then (𝑢𝑘) is statistically convergent. However, the
converse is false, in general.

Lemma 8 (see [14, Remark 3.7]). If (𝑢𝑘) ∈ 𝜔(𝐹) is statistically
convergent to some 𝜇, then there exists a sequence (V𝑘)which is
convergent (in the ordinary sense) to 𝜇 and

lim
𝑛→∞

1

𝑛 + 1

{𝑘 ≤ 𝑛 : 𝑢𝑘 ̸= V𝑘}
 = 0. (21)

Basic results on statistical convergence of sequences of
fuzzy numbers can be found in [10, 15–17].

The Cesàro convergence of a sequence of fuzzy numbers
is defined in [18] as follows. The sequence (𝑢𝑘) is said to
be Cesàro convergent (written (𝐶, 1)-convergent) to a fuzzy
number 𝜇 if

lim
𝑛→∞

(𝐶1𝑢)𝑛 = 𝜇. (22)

Talo and Çakan [19,Theorem 2.1] have recently proved that if
a sequence (𝑢𝑘) of fuzzy numbers is convergent, then (𝑢𝑘) is
(𝐶, 1)-convergent. However, the converse is false, in general.

Definition 9 (see [14]). A sequence (𝑢𝑘) of fuzzy numbers is
said to be slowly oscillating if

inf
𝜆>1

lim sup
𝑛→∞

max
𝑛<𝑘≤𝜆

𝑛

𝐷(𝑢𝑘, 𝑢𝑛) = 0. (23)

It is easy to see that (23) is satisfied if and only if for every
𝜀 > 0 there exist 𝑛0 = 𝑛0(𝜀) and 𝜆 = 𝜆(𝜀) > 1, as close to 1 as
wished, such that𝐷(𝑢𝑘, 𝑢𝑛) ≤ 𝜀 whenever 𝑛0 ≤ 𝑛 < 𝑘 ≤ 𝜆𝑛.

Talo and Çakan [19, Corollary 2.7] proved that if a
sequence (𝑢𝑘) of fuzzy numbers is slowly oscillating, then the
implication (9) holds.

In this paper, we define the slowly decreasing sequence
over 𝐸1 which is partially ordered and is not a linear space.
Also, we prove that if (𝑢𝑘) ∈ 𝜔(𝐹) is slowly decreasing, then
the implications (8) and (9) hold.

2. The Main Results

Definition 10. A sequence (𝑢𝑘) of fuzzy numbers is said to be
slowly decreasing if for every 𝜀 > 0 there exist 𝑛0 = 𝑛0(𝜀) and
𝜆 = 𝜆(𝜀) > 1, as close to 1 as wished, such that for every 𝑛 > 𝑛0

𝑢𝑘 ⪰ 𝑢𝑛 − 𝜀 whenever 𝑛 < 𝑘 ≤ 𝜆𝑛. (24)

Similarly, (𝑢𝑘) is said to be slowly increasing if for every 𝜀 > 0
there exist 𝑛0 = 𝑛0(𝜀) and 𝜆 = 𝜆(𝜀) > 1, as close to 1 as wished,
such that for every 𝑛 > 𝑛0

𝑢𝑘 ⪯ 𝑢𝑛 + 𝜀 whenever 𝑛 < 𝑘 ≤ 𝜆𝑛. (25)

Remark 11. Each slowly oscillating sequence of fuzzy num-
bers is slowly decreasing. On the other hand, we define the
sequence (𝑢𝑛) = (∑

𝑛

𝑘=0
V𝑘), where

V𝑘 (𝑡) =
{{

{{

{

1 − 𝑡√𝑘 + 1, (0 ≤ 𝑡 ≤
1

√𝑘 + 1
) ,

0, (otherwise) .
(26)

Then, for each 𝛼 ∈ [0, 1], since

𝑢
−

𝑛
(𝛼) = 0, 𝑢

+

𝑛
(𝛼) = (1 − 𝛼)

𝑛

∑
𝑘=0

1

√𝑘 + 1
, (27)
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(𝑢𝑛) is increasing. Therefore, (𝑢𝑛) is slowly decreasing. How-
ever, it is not slowly oscillating because for each 𝑛 ∈ N and
𝜆 > 1 we get for 𝛼 = 0 and 𝑘 = 𝜆𝑛 the statements 𝑘 ≤ 𝜆𝑛 and

𝑢
+

𝑘
(0) − 𝑢

+

𝑛
(0) =

𝑘

∑
𝑗=𝑛+1

1

√𝑗 + 1
≥
𝑘 − 𝑛

√𝑘 + 1

≥
𝜆𝑛 − 1 − 𝑛

√𝜆𝑛 + 1

≥
𝑛 (𝜆 − 1)

√𝜆𝑛 + 1
−

1

√𝜆𝑛 + 1
→ ∞ (𝑛 → ∞)

(28)

hold.

Lemma 12. Let (𝑢𝑛) be a sequence of fuzzy numbers. If (𝑢𝑛) is
slowly decreasing, then for every 𝜀 > 0 there exist 𝑛0 = 𝑛0(𝜀)
and 𝜆 = 𝜆(𝜀) < 1, as close to 1 as wished, such that for every
𝑛 > 𝑛0

𝑢𝑛 ⪰ 𝑢𝑘 − 𝜀 𝑤ℎ𝑒𝑛𝑒V𝑒𝑟 𝜆𝑛 < 𝑘 ≤ 𝑛. (29)

Proof. We prove the lemma by an indirect way. Assume that
the sequence (𝑢𝑛) is slowly decreasing and there exists some
𝜀0 > 0 such that for all 𝜆 < 1 and𝑚 ≥ 1 there exist integers 𝑘
and 𝑛 ≥ 𝑚 for which

𝑢𝑛  𝑢𝑘 − 𝜀 whenever 𝜆𝑛 < 𝑘 ≤ 𝑛. (30)

Therefore, there exists 𝛼0 ∈ [0, 1] such that

𝑢
−

𝑛
(𝛼0) < 𝑢

−

𝑘
(𝛼0) − 𝜀 or 𝑢

+

𝑛
(𝛼0) < 𝑢

+

𝑘
(𝛼0) − 𝜀.

(31)

For the sake of definiteness, we only consider the case
𝑢−
𝑛
(𝛼0) < 𝑢

−

𝑘
(𝛼0) − 𝜀. Clearly, (5) is not satisfied by {𝑢−

𝑛
(𝛼0)}.

That is, {𝑢−
𝑛
(𝛼0)} is not slowly decreasing.This contradicts the

hypothesis that (𝑢𝑛) is slowly decreasing.

Theorem 13. Let (𝑢𝑛) be a sequence of fuzzy number. If (𝑢𝑛) is
statistically convergent to some 𝜇 ∈ 𝐸1 and slowly decreasing,
then (𝑢𝑛) is convergent to 𝜇.

Proof. Let us start by setting 𝑛 = 𝑙𝑚 in (21), where 0 ≤ 𝑙0 <
𝑙1 < 𝑙2 < ⋅ ⋅ ⋅ is a subsequence of those indices 𝑘 forwhich𝑢𝑘 =
V𝑘. Therefore, we have

lim
𝑚→∞

1

𝑙𝑚 + 1

{𝑘 ≤ 𝑙𝑚 : 𝑢𝑘 = V𝑘}
 = lim
𝑚→∞

𝑚 + 1

𝑙𝑚 + 1
= 1.

(32)

Consequently, it follows that

lim
𝑚→∞

𝑙𝑚+1

𝑙𝑚
= lim
𝑚→∞

𝑙𝑚+1

𝑚 + 1
×
𝑚 + 1

𝑚
×
𝑚

𝑙𝑚
= 1. (33)

By the definition of the subsequence (𝑙𝑚), we have

lim
𝑚→∞

𝑢𝑙
𝑚

= lim
𝑚→∞

V𝑙
𝑚

= 𝜇. (34)

Since (𝑢𝑛) is slowly decreasing for every 𝜀 > 0 there exist 𝑛0 =
𝑛0(𝜀) and 𝜆 = 𝜆(𝜀) > 1, as close to 1 as we wish, such that for
every 𝑛 > 𝑛0

𝑢𝑘 ⪰ 𝑢𝑛 −
𝜀

2
whenever 𝑛 < 𝑘 ≤ 𝜆𝑛. (35)

For every large enough𝑚

𝑢𝑘 ⪰ 𝑢𝑙
𝑚

−
𝜀

2
whenever 𝑙𝑚 < 𝑘 ≤ 𝜆𝑙𝑚. (36)

By (33), we have 𝑙𝑚+1 < 𝜆𝑙𝑚 for every large enough𝑚, whence
it follows that

𝑢𝑘 ⪰ 𝑢𝑙
𝑚

−
𝜀

2
whenever 𝑙𝑚 < 𝑘 < 𝑙𝑚+1. (37)

By (34) and Lemma 4, for every large enough𝑚 we have

𝜇 −
𝜀

2
≺ 𝑢𝑙
𝑚

≺ 𝜇 +
𝜀

2
. (38)

Combining (37) and (38) we can see that

𝑢𝑘 ≻ 𝜇 − 𝜀 whenever 𝑙𝑚 < 𝑘 < 𝑙𝑚+1. (39)

On the other hand, by virtue of Lemma 12, for every 𝜀 > 0
there exist 𝑛0 = 𝑛0(𝜀) and 𝜆 = 𝜆(𝜀) < 1 such that for every
𝑛 > 𝑛0

𝑢𝑛 ⪰ 𝑢𝑘 −
𝜀

2
whenever 𝜆𝑛 < 𝑘 ≤ 𝑛. (40)

For every large enough𝑚

𝑢𝑙
𝑚+1

⪰ 𝑢𝑘 −
𝜀

2
whenever 𝜆𝑙𝑚+1 < 𝑘 ≤ 𝑙𝑚+1. (41)

By (33), we have 𝜆𝑙𝑚+1 < 𝑙𝑚 for every large enough𝑚, whence
it follows that

𝑢𝑙
𝑚+1

⪰ 𝑢𝑘 −
𝜀

2
whenever 𝑙𝑚 < 𝑘 < 𝑙𝑚+1. (42)

By (34) and Lemma 4, for every large enough𝑚 we have

𝜇 −
𝜀

2
≺ 𝑢𝑙
𝑚+1

≺ 𝜇 +
𝜀

2
. (43)

Therefore, (42) and (43) lead us to the consequence that

𝑢𝑘 ≺ 𝜇 + 𝜀 whenever 𝑙𝑚 < 𝑘 < 𝑙𝑚+1 (44)

which yields with (39) for each 𝜀 > 0 and Lemma 4 that

𝐷(𝑢𝑘, 𝜇) ≤ 𝜀 whenever 𝑙𝑚 < 𝑘 < 𝑙𝑚+1. (45)

Therefore, (45) gives together with (34) that the whole
sequence (𝑢𝑘) is convergent to 𝜇.

Lemma 14. Let 𝜇, ], 𝑤 ∈ 𝐸1. If 𝜇 + 𝑤 ⪯ ] + 𝑤, then 𝜇 ⪯ ].
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Proof. Let 𝜇, ], 𝑤 ∈ 𝐸1. If 𝜇 + 𝑤 ⪯ ] + 𝑤, then

𝜇
−
(𝛼) + 𝑤

−
(𝛼) ≤ ]

−
(𝛼) + 𝑤

−
(𝛼) ,

𝜇
+
(𝛼) + 𝑤

+
(𝛼) ≤ ]

+
(𝛼) + 𝑤

+
(𝛼)

(46)

for all 𝛼∈[0, 1].Therefore, we have 𝜇−(𝛼)≤]−(𝛼) and 𝜇+(𝛼) ≤
]+(𝛼) for all 𝛼 ∈ [0, 1]. This means that 𝜇 ⪯ ].

Theorem 15. Let (𝑢𝑛) ∈ 𝜔(𝐹). If (𝑢𝑛) is (𝐶, 1)-convergent to
some 𝜇 ∈ 𝐸1 and slowly decreasing, then (𝑢𝑛) is convergent to
𝜇.

Proof. Assume that (𝑢𝑛) ∈ 𝜔(𝐹) is satisfied (22) and is slowly
decreasing. Then for every 𝜀 > 0 there exist 𝑛0 = 𝑛0(𝜀) and
𝜆 = 𝜆(𝜀) > 1, as close to 1 as we wish, such that for every
𝑛 > 𝑛0

𝑢𝑘 ⪰ 𝑢𝑛 −
𝜀

3
whenever 𝑛 < 𝑘 ≤ 𝜆𝑛. (47)

If 𝑛 is large enough in the sense that 𝜆𝑛 > 𝑛, then

𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝐶1𝑢)𝜆

𝑛

+ (𝐶1𝑢)𝑛 =
𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝐶1𝑢)𝑛 +

1

𝜆𝑛 − 𝑛

𝜆
𝑛

∑
𝑘 = 𝑛+1

𝑢𝑘.

(48)

For every large enough 𝑛, since

𝜆𝑛 + 1

𝜆𝑛 − 𝑛
≤
2𝜆

𝜆 − 1
, (49)

we have

lim
𝑛→∞

𝐷[
𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝐶1𝑢)𝜆

𝑛

,
𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝐶1𝑢)𝑛]

= lim
𝑛→∞

𝜆𝑛 + 1

𝜆𝑛 − 𝑛
𝐷 [(𝐶1𝑢)𝜆

𝑛

, (𝐶1𝑢)𝑛]

≤ lim
𝑛→∞

2𝜆

𝜆 − 1
𝐷 [(𝐶1𝑢)𝜆

𝑛

, (𝐶1𝑢)𝑛] = 0.

(50)

By Lemma 4, we obtain for large enough 𝑛 that

𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝐶1𝑢)𝑛 −

𝜀

3
⪯
𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝐶1𝑢)𝜆

𝑛

⪯
𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝐶1𝑢)𝑛 +

𝜀

3
.

(51)

By (22), for large enough 𝑛 we obtain

𝜇 −
𝜀

3
⪯ (𝐶1𝑢)𝑛 ⪯ 𝜇 +

𝜀

3
. (52)

Since (𝑢𝑛) is slowly decreasing, we have

1

𝜆𝑛 − 𝑛

𝜆
𝑛

∑
𝑘 = 𝑛+1

𝑢𝑘 ⪰ 𝑢𝑛 −
𝜀

3
. (53)

Combining (51), (52), and (53) we obtain by (48) for each 𝜀 >
0 that
𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝐶1𝑢)𝑛 +

𝜀

3
+ 𝜇 +

𝜀

3
⪰
𝜆𝑛 + 1

𝜆𝑛 − 𝑛
(𝐶1𝑢)𝑛 + 𝑢𝑛 −

𝜀

3
.

(54)

By Lemma 14, we have

𝜇 + 𝜀 ⪰ 𝑢𝑛. (55)

On the other hand, by virtue of Lemma 12, for every 𝜀 > 0
there exist 𝑛0 = 𝑛0(𝜀) and 𝜆 = 𝜆(𝜀) < 1 such that for every
𝑛 > 𝑛0

𝑢𝑛 ⪰ 𝑢𝑘 −
𝜀

3
whenever 𝜆𝑛 < 𝑘 ≤ 𝑛. (56)

If 𝑛 is large enough in the sense that 𝜆𝑛 < 𝑛, then

𝜆𝑛 + 1

𝑛 − 𝜆𝑛
(𝐶1𝑢)𝜆

𝑛

+
1

𝑛 − 𝜆𝑛

𝑛

∑
𝑘 = 𝜆

𝑛
+1

𝑢𝑘 = (
𝜆𝑛 + 1

𝑛 − 𝜆𝑛
+ 1) (𝐶1𝑢)𝑛.

(57)

For large enough 𝑛, since

𝜆𝑛 + 1

𝑛 − 𝜆𝑛
≤
2𝜆

1 − 𝜆
, (58)

we have

lim
𝑛→∞

𝐷[
𝜆𝑛 + 1

𝑛 − 𝜆𝑛
(𝐶1𝑢)𝜆

𝑛

,
𝜆𝑛 + 1

𝑛 − 𝜆𝑛
(𝐶1𝑢)𝑛] = 0. (59)

Using the similar argument above, we conclude that

𝑢𝑛 ⪰ 𝜇 − 𝜀. (60)

Therefore, combining (55) and (60) for each 𝜀 ≥ 0 and large
enough 𝑛, it is obtained that𝐷(𝑢𝑛, 𝜇) ≤ 𝜀. This completes the
proof.

Now, we define the Landau’s one-sided Tauberian condi-
tion for sequences of fuzzy numbers.

Lemma 16. If a sequence (𝑢𝑛) ∈ 𝜔(𝐹) satisfies the one-sided
Tauberian condition

𝑛𝑢𝑛 ⪰ 𝑛𝑢𝑛−1 − 𝐻 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐻 > 0 𝑎𝑛𝑑 𝑒V𝑒𝑟𝑦 𝑛,

(61)

then (𝑢𝑛) is slowly decreasing.

Proof. A sequence of fuzzy numbers (𝑢𝑘) satisfies

𝑛𝑢𝑛 ⪰ 𝑛𝑢𝑛−1 − 𝐻 (62)

for 𝑛 ∈ N, where 𝐻 > 0 is suitably chosen. Therefore, for all
𝛼 ∈ [0, 1] we have

𝑢
−

𝑛
(𝛼) − 𝑢

−

𝑛−1
(𝛼) ≥

−𝐻

𝑛
, 𝑢

+

𝑛
(𝛼) − 𝑢

+

𝑛−1
(𝛼) ≥

−𝐻

𝑛
.

(63)

For all 𝑛 < 𝑘 and 𝛼 ∈ [0, 1], we obtain

𝑢
−

𝑘
(𝛼) − 𝑢

−

𝑛
(𝛼) ≥

𝑘

∑
𝑗 = 𝑛+1

[𝑢
−

𝑗
(𝛼) − 𝑢

−

𝑗−1
(𝛼)]

≥

𝑘

∑
𝑗 = 𝑛+1

−𝐻

𝑗
≥ −𝐻(

𝑘 − 𝑛

𝑛
) .

(64)
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Hence, for each 𝜀 > 0 and 1 < 𝜆 ≤ 1 + 𝜀/𝐻 we get for all
𝑛 < 𝑘 ≤ 𝜆𝑛

𝑢
−

𝑘
(𝛼) − 𝑢

−

𝑛
(𝛼) ≥ −𝐻(

𝑘

𝑛
− 1) ≥ −𝐻 (𝜆 − 1) ≥ −𝜀.

(65)

Similarly, for all 𝑛 < 𝑘 ≤ 𝜆𝑛 and 𝛼 ∈ [0, 1] we have

𝑢
+

𝑘
(𝛼) − 𝑢

+

𝑛
(𝛼) ≥ −𝜀. (66)

Combining (65) and (66), one can see that 𝑢𝑘 ⪰ 𝑢𝑛 − 𝜀 which
proves that (𝑢𝑘) is slowly decreasing.

ByTheorems 13, 15 andLemma 16,we derive the following
two consequences.

Corollary 17. Let (𝑢𝑘) be a sequence of fuzzy numbers which is
statistically convergent to a fuzzy number 𝜇0. If (61) is satisfied,
then lim𝑘→∞𝑢𝑘 = 𝜇0.

Corollary 18. Let (𝑢𝑘) be a sequence of fuzzy numbers which
is (𝐶, 1)-convergent to a fuzzy number 𝜇0. If (61) is satisfied,
then lim𝑘→∞𝑢𝑘 = 𝜇0.

Lemma 19. If the sequence (𝑢𝑛) ∈ 𝜔(𝐹) satisfies (61), then

𝑛(𝐶1𝑢)𝑛 ⪰ 𝑛(𝐶1𝑢)𝑛−1 − 𝐻 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐻 > 0 𝑎𝑛𝑑 𝑒V𝑒𝑟𝑦 𝑛.

(67)

Proof. Assume that the sequence (𝑢𝑛) ∈ 𝜔(𝐹) satisfies (61),
then for all 𝛼 ∈ [0, 1] we have

𝑛 [𝑢
−

𝑛
(𝛼) − 𝑢

−

𝑛−1
(𝛼)] ≥ −𝐻, 𝑛 [𝑢

+

𝑛
(𝛼) − 𝑢

+

𝑛−1
(𝛼)] ≥ −𝐻.

(68)

By the proof of Theorem 2.3 in [20], we obtain

𝑛 [(𝐶1𝑢)
−

𝑛
(𝛼) − (𝐶1𝑢)

−

𝑛−1
(𝛼)] ≥ −𝐻,

𝑛 [(𝐶1𝑢)
+

𝑛
(𝛼) − (𝐶1𝑢)

+

𝑛−1
(𝛼)] ≥ −𝐻.

(69)

This means that 𝑛(𝐶1𝑢)𝑛 ⪰ 𝑛(𝐶1𝑢)𝑛−1 − 𝐻, as desired.

Corollary 20. If the sequence (𝑢𝑛) ∈ 𝜔(𝐹) satisfies (61), then

𝑠𝑡- lim
𝑛→∞

(𝐶1𝑢)𝑛 = 𝜇0 ⇒ lim
𝑛→∞

𝑢𝑛 = 𝜇0. (70)

Proof. By Lemma 19, 𝑛(𝐶1𝑢)𝑛 ⪰ 𝑛(𝐶1𝑢)𝑛−1 − 𝐻 which
is a Tauberian condition for statistical convergence by
Corollary 17. Therefore, 𝑠𝑡-lim𝑛→∞(𝐶1𝑢)𝑛 = 𝜇0 implies that
lim𝑛→∞(𝐶1𝑢)𝑛=𝜇0. Then,Corollary 18 yields that lim𝑛→∞𝑢𝑛=
𝜇0.

3. Conclusion

In the present paper, we introduce the slowly decreasing con-
dition for a sequence of fuzzy numbers. This is a Tauberian
condition from 𝑠𝑡- lim 𝑢𝑘 = 𝜇0 to lim 𝑢𝑘 = 𝜇0 and from (𝐶, 1)-
lim 𝑢𝑘 = 𝜇0 to lim 𝑢𝑘 = 𝜇0.

Since we are not able to prove the fact that “(𝐶, 1)-
statistical convergence can be replaced by (𝐶, 1)-convergence as
a weaker condition, if it is proved that {(𝐶1𝑢)𝑛} is slowly de-
creasing while (𝑢𝑘) ∈ 𝜔(𝐹) is slowly decreasing,” this problem
is still open. So, it is meaningful to solve this problem.

Finally, we note that our results can be extended to Riesz
means of sequences of fuzzy numbers which are introduced
by Tripathy and Baruah in [21].
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[13] F. Nuray and E. Savaş, “Statistical convergence of sequences of
fuzzy numbers,” Mathematica Slovaca, vol. 45, no. 3, pp. 269–
273, 1995.

[14] Y. Altın,M.Mursaleen, andH. Altınok, “Statistical summability
(𝐶, 1) for sequences of fuzzy real numbers and a Tauberian
theorem,” Journal of Intelligent & Fuzzy Systems, vol. 21, no. 6,
pp. 379–384, 2010.

[15] S. Aytar, “Statistical limit points of sequences of fuzzy numbers,”
Information Sciences, vol. 165, no. 1-2, pp. 129–138, 2004.

[16] J. S. Kwon, “On statistical and 𝑝-Cesàro convergence of fuzzy
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