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This paper is concerning the asymptotic behavior of solutions to the fast diffusive non-Newtonian filtration equations coupled
by the nonlinear boundary sources. We are interested in the critical global existence curve and the critical Fujita curve, which
are used to describe the large-time behavior of solutions. It is shown that the above two critical curves are both the same for the
multidimensional problem we considered.

1. Introduction

In this paper, we study the non-Newtonian filtration equa-
tions coupled by the nonlinear boundary sources

𝜕𝑢

𝜕𝑡
= div (|∇𝑢|𝑝−2∇𝑢) , 𝜕V

𝜕𝑡
= div (|∇V|𝑞−2∇V) ,

(𝑥, 𝑡) ∈ (R
𝑁
\ 𝐵1 (0)) × (0, 𝑇) ,

(1)

|∇𝑢|
𝑝−2
∇𝑢 ⋅ ]⃗ = V

𝛼
(𝑥, 𝑡) , |∇V|

𝑞−2
∇V ⋅ ]⃗ = 𝑢

𝛽
(𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ 𝜕𝐵1 (0) × (0, 𝑇) ,

(2)

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , V (𝑥, 0) = V0 (𝑥) , 𝑥 ∈ R
𝑁
\ 𝐵1 (0) ,

(3)

where 1 < 𝑝, 𝑞 < 2, 𝛼, 𝛽 ≥ 0, 𝑁 ≥ 2, 𝐵1(0) is the unit ball
in R𝑁 with boundary 𝜕𝐵1(0), ]⃗ is the inward normal vector
on 𝜕𝐵1(0), and 𝑢0(𝑥) and V0(𝑥) are nonnegative, suitably
smooth, and bounded functions satisfying the appropriate
compatibility conditions.

The system (1)–(3) can be used to describe the models in
population dynamics, chemical reactions, heat propagation,
and so on. It is well known that the classical solutions do

not exist because the equations in (1) are degenerate in
{(𝑥, 𝑡); ∇𝑢(𝑥, 𝑡) = 0}, while the local existence and the
comparison principle of the weak solutions can be obtained;
see [1, 2]. In this paper, we investigate the asymptotic behavior
of solutions to the system (1)–(3), including blowup in a finite
time and global existence in time.

Since the beginning work on critical exponent done by
Fujita in [3], there are a lot of Fujita type results established
for various equations; see the survey papers [4, 5] and the
references therein and also the papers [6–9]. We recall some
results on the fast diffusion case. In [10], the authors obtained
the critical exponents for the single one-dimensional fast
diffusive equation on (0, +∞) × (0, +∞), that is,

𝜕𝑢

𝜕𝑡
=
𝜕

𝜕𝑥
(



𝜕𝑢

𝜕𝑥



𝑝−2
𝜕𝑢

𝜕𝑥
) , 𝑥 > 0, 𝑡 > 0,



𝜕𝑢

𝜕𝑥



𝑝−2
𝜕𝑢

𝜕𝑥
(0, 𝑡) = 𝑢

𝛼
(0, 𝑡) , 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 > 0.

(4)

They showed that the global critical exponent is 𝛼0 = 2(𝑝 −
1)/𝑝 and the critical Fujita exponent is 𝛼𝑐 = 2(𝑝 − 1).
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After that, the corresponding results on the coupled𝑝-laplace
equations can be found in the paper [11], in which the authors
consider multiple equations coupled by boundary sources.
For the system,

𝜕𝑢

𝜕𝑡
=
𝜕

𝜕𝑥
(



𝜕𝑢

𝜕𝑥



𝑝−2
𝜕𝑢

𝜕𝑥
) ,

𝜕V

𝜕𝑡
=
𝜕

𝜕𝑥
(



𝜕V

𝜕𝑥



𝑞−2
𝜕V

𝜕𝑥
) , 𝑥 > 0, 𝑡 > 0,



𝜕𝑢

𝜕𝑥



𝑝−2
𝜕𝑢

𝜕𝑥
(0, 𝑡) = V

𝛼
(0, 𝑡) ,



𝜕V

𝜕𝑥



𝑞−2
𝜕𝑢

𝜕𝑥
(0, 𝑡) = 𝑢

𝛽
(0, 𝑡) , 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , V (𝑥, 0) = V0 (𝑥) , 𝑥 > 0,

(5)

the results in [11] are that the critical global existence curve is
𝛼𝛽 = 4(𝑝−1)(𝑞−1)/(𝑝𝑞), andwhen𝛼𝛽 > 4(𝑝−1)(𝑞−1)/(𝑝𝑞),
the critical Fujita curve is min{𝑙1 − 𝑘1, 𝑙2 − 𝑘2} = 0, where
𝑘1, 𝑘2 , 𝑙1, and 𝑙2 are constants depending on 𝑝, 𝑞, 𝛼, and 𝛽.
It can be seen by some computations that the critical Fujita
curve is on the strictly right of the critical global existence
curve.

As for the multidimensional problem, the single equation
case of (1)–(3) was discussed in [12]; that is,

𝜕𝑢

𝜕𝑡
= div (|∇𝑢|𝑝−2∇𝑢) , (𝑥, 𝑡) ∈ (R

𝑁
\ 𝐵1 (0)) × (0, 𝑇) ,

|∇𝑢|
𝑝−2
∇𝑢 ⋅ ]⃗ = 𝑢

𝛼
(𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝜕𝐵1 (0) × (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ R
𝑁
\ 𝐵1 (0)

(6)

with 1 < 𝑝 < 2, 𝛼 ≥ 0, 𝑁 ≥ 2. It was shown that the critical
global exponent and the critical Fujita exponent both are 𝛼 =
𝑝 − 1.

Motivated by the papers mentioned above, the aim of this
paper is to study the asymptotic behavior of solutions to the
system (1)–(3). We show that the phenomenon that the two
critical exponents for multi-dimensional equation coincide
also occurs in the coupled equations.

Furthermore, by virtue of the radial symmetry of the
exterior domain of the unit ball, we note that the above result
can be extended to the following more general problems:

𝜕

𝜕𝑡
(|𝑥|
𝜆
1𝑢) = div (|𝑥|𝜆1 |∇𝑢|𝑝−2∇𝑢) ,

𝜕

𝜕𝑡
(|𝑥|
𝜆
2V) = div (|𝑥|𝜆2 |∇V|𝑞−2∇V) ,

(𝑥, 𝑡) ∈ (R
𝑁
\ 𝐵1 (0)) × (0, 𝑇) ,

(7)

|∇𝑢|
𝑝−2
∇𝑢 ⋅ ]⃗ = V

𝛼
(𝑥, 𝑡) , |∇V|

𝑞−2
∇V ⋅ ]⃗ = 𝑢

𝛽
(𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ 𝜕𝐵1 (0) × (0, 𝑇) ,

(8)

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , V (𝑥, 0) = V0 (𝑥) , 𝑥 ∈ R
𝑁
\ 𝐵1 (0) ,

(9)

with 𝜆1 > 𝑝 − 𝑁, 𝜆2 > 𝑞 − 𝑁, 𝑁 ≥ 1.
We will state our main results and prove them in the next

section.

2. Main Results and Their Proofs

In this section, we first state our main results and then prove
them. Our main results are as follows.

Theorem 1. The critical global existence curve and the critical
Fujita curve for the system (1)–(3) with 𝑁 ≥ 2 are the same
one, that is, the curve given by

𝛼𝛽 =
4 (𝑝 − 1) (𝑞 − 1)

𝑝𝑞
. (10)

Namely, if 𝛼𝛽 ≤ 4(𝑝 − 1)(𝑞 − 1)/(𝑝𝑞), then all nonnegative
solutions of the system (1)–(3) exist globally in time, while if
𝛼𝛽 > 4(𝑝 − 1)(𝑞 − 1)/(𝑝𝑞), then there exist both blow-up
solutions for large initial data and global existent solution for
small initial data.

Theorem 2. Assume that 𝜆1 > 𝑝 − 𝑁, 𝜆2 > 𝑞 − 𝑁, and𝑁 ≥

1. Then both the critical global existence curve and the critical
Fujita curve for the system (7)–(9) are the curve given by

𝛼𝛽 =
4 (𝑝 − 1) (𝑞 − 1)

𝑝𝑞
. (11)

Since the proofs of Theorems 1 and 2 are similar, we
shall give the proof of Theorem 2 only. We note that the
equations in (1) and (7) are degenerate at the points where
∇𝑢(𝑥, 𝑡) = 0, and classical solutions may not exist generally.
It is therefore necessary to consider weak solutions in the
distribution sense.

To prove Theorem 2, we first establish some preliminary
results. Let 𝑟 = |𝑥| and consider the problem:

𝜕𝑢

𝜕𝑡
=
𝜕

𝜕𝑟
(



𝜕𝑢

𝜕𝑟



𝑝−2
𝜕𝑢

𝜕𝑟
) +

�̃�1

𝑟



𝜕𝑢

𝜕𝑟



𝑝−2
𝜕𝑢

𝜕𝑟
,

𝜕V

𝜕𝑡
=
𝜕

𝜕𝑟
(



𝜕V

𝜕𝑟



𝑞−2
𝜕V

𝜕𝑟
) +

�̃�2

𝑟



𝜕V

𝜕𝑟



𝑞−2
𝜕V

𝜕𝑟
, 𝑟 > 1, 𝑡 > 0

(12)



𝜕𝑢

𝜕𝑟



𝑝−2
𝜕𝑢

𝜕𝑟
(1, 𝑡) = V

𝛼
(1, 𝑡) ,



𝜕V

𝜕𝑟



𝑞−2
𝜕V

𝜕𝑟
(1, 𝑡) = 𝑢

𝛽
(1, 𝑡) , 𝑡 > 0,

(13)

𝑢 (𝑟, 0) = 𝑢0 (𝑟) , V (𝑟, 0) = V0 (𝑟) , 𝑟 > 1, (14)
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where 1 < 𝑝, 𝑞 < 2, �̃�1 = 𝜆1 + 𝑁 − 1 > 𝑝 − 1, �̃�2 >
𝑞 − 1, 𝛼, 𝛽 ≥ 0, 𝑢0, V0 are nonnegative, suitably smooth, and
bounded functions. It is not difficult to check that the solution
(𝑢, V)(𝑟, 𝑡) of the system (12)–(14) is also the solution of the
system (7)–(9) if 𝑢0(𝑥) and V0(𝑥) are radially symmetrical.We
now study the asymptotic behavior of solutions to the system
(12)–(14).

Proposition 3. If𝛼𝛽 ≤ 4(𝑝−1)(𝑞−1)/𝑝𝑞, then all nonnegative
solutions of the system (12)–(14) exist globally in time.

Proof of Proposition 3. We prove this proposition by con-
structing a kind of global upper solutions. Let

𝑢 (𝑟, 𝑡)=e𝐿1𝑡 (𝐾 + e−𝑀1𝜂1) , 𝜂1=(𝑟 − 1) e
𝐽
1
𝑡
, 𝑟 > 1, 𝑡 > 0,

V (𝑟, 𝑡)=e𝐿2𝑡 (𝐾 + e−𝑀2𝜂2) , 𝜂2=(𝑟 − 1) e
𝐽
2
𝑡
, 𝑟 > 1, 𝑡 > 0,

(15)

where𝑀1 = (𝐾 + 1)
𝛼/(𝑝−1),𝑀2 = (𝐾 + 1)

𝛽/(𝑞−1), 𝐽1 = 𝐿1(2 −
𝑝)/𝑝, 𝐽2 = 𝐿2(2 − 𝑞)/𝑞, 𝐿2 = 2(𝑝 − 1)𝐿1/(𝑝𝛼), and𝐾 and 𝐿1
are large constants satisfying that

𝐾 > max{1, 𝑢0
∞,

V0
∞,

2 − 𝑝

𝑝e
,
2 − 𝑞

𝑞e
} ,

𝐿1 > max{
𝑝 (𝑝 − 1) 𝑒𝑀

𝑝

1

𝑝 − 2 + 𝑝𝑒𝐾
,

𝛼𝑝𝑞 (𝑞 − 1) 𝑒𝑀
𝑞

2

2 (𝑝 − 1) (𝑞 − 2 + 𝑞𝑒𝐾)
} .

(16)

Obviously, we have 𝑢(𝑟, 0) ≥ 𝑢0(𝑟) and V(𝑟, 0) ≥ V0(𝑟) for
𝑟 > 1, and a direct computation yields that



𝜕𝑢

𝜕𝑟



𝑝−2
𝜕𝑢

𝜕𝑟
= −𝑀

𝑝−1

1
e(𝑝−1)(𝐿1+𝐽1)𝑡e−(𝑝−1)(𝑟−1)𝑀1e

𝐽1𝑡

< 0,

𝜕

𝜕𝑟
(



𝜕𝑢

𝜕𝑟



𝑝−2
𝜕𝑢

𝜕𝑟
)=(𝑝 − 1)𝑀

𝑝

1
e((𝑝−1)𝐿1+𝑝𝐽1)𝑡e−(𝑝−1)(𝑟−1)𝑀1e

𝐽1 𝑡

≤ (𝑝 − 1)𝑀
𝑝

1
e((𝑝−1)𝐿1+𝑝𝐽1)𝑡.

(17)

Noticing that −𝑦e−𝑦 ≥ −e−1 for 𝑦 > 0, we have
𝜕𝑢

𝜕𝑡
= 𝐿1e

𝐿
1
𝑡
(𝐾 + e−𝑀1(𝑟−1)e

𝐽1𝑡

)

+ 𝐽1e
𝐿
1
𝑡
(−𝑀1 (𝑟 − 1) e

𝐽
1
𝑡e−𝑀1(𝑟−1)e

𝐽1𝑡

)

≥ 𝐿1e
𝐿
1
𝑡
(𝐾 + e−𝑀1(𝑟−1)e

𝐽1𝑡

) − 𝐽1e
𝐿
1
𝑡e−1

≥ (𝐿1 −
𝐽1

𝐾e
)𝐾e𝐿1𝑡.

(18)

Due to the choice of 𝐿1 and (𝑝 − 1)𝐿1 + 𝑝𝐽1 = 𝐿1, �̃�1 > 0,
then we get

𝜕𝑢

𝜕𝑡
≥
𝜕

𝜕𝑟
(



𝜕𝑢

𝜕𝑟



𝑝−2
𝜕𝑢

𝜕𝑟
)

≥
𝜕

𝜕𝑟
(



𝜕𝑢

𝜕𝑟



𝑝−2
𝜕𝑢

𝜕𝑟
) +

�̃�1

𝑟



𝜕𝑢

𝜕𝑟



𝑝−2
𝜕𝑢

𝜕𝑟
.

(19)

On the other hand,

−



𝜕𝑢

𝜕𝑟



𝑝−2
𝜕𝑢

𝜕𝑟
(1, 𝑡) = 𝑀

𝑝−1

1
e(𝑝−1)(𝐿1+𝐽1)𝑡

= (𝐾 + 1)
𝛼e2(𝑝−1)𝐿1𝑡/𝑝,

V
𝛼
(1, 𝑡) = e𝛼𝐿2𝑡(𝐾 + 1)𝛼

= (𝐾 + 1)
𝛼e2(𝑝−1)𝐿1𝑡/𝑝

= −



𝜕𝑢

𝜕𝑥



𝑝−2
𝜕𝑢

𝜕𝑥
(1, 𝑡) .

(20)

Similarly, we have

𝜕V

𝜕𝑡
≥
𝜕

𝜕𝑟
(



𝜕V

𝜕𝑟



𝑞−2
𝜕V

𝜕𝑟
) +

�̃�2

𝑟



𝜕V

𝜕𝑟



𝑞−2
𝜕V

𝜕𝑟
,

−



𝜕V

𝜕𝑟



𝑞−2
𝜕V

𝜕𝑟
(1, 𝑡) = 𝑀

𝑞−1

2
e(𝑞−1)(𝐿2+𝐽2)𝑡

= (𝐾 + 1)
𝛽e4(𝑝−1)(𝑞−1)𝐿1𝑡/(𝑝𝑞𝛼) .

(21)

Since that 𝛼𝛽 ≤ 4(𝑝 − 1)(𝑞 − 1)/(𝑝𝑞), then

𝑢
𝛽
(1, 𝑡) = e𝛽𝐿1𝑡(𝐾 + 1)𝛽 ≤ (𝐾 + 1)𝛽e4(𝑝−1)(𝑞−1)𝐿1𝑡/(𝑝𝑞𝛼) .

(22)

This indicates that

−



𝜕V

𝜕𝑟



𝑞−2
𝜕V

𝜕𝑟
(1, 𝑡) ≥ 𝑢

𝛽
(1, 𝑡) . (23)

Noticing the global existence in time of (𝑢, V), we get that
the solution of the problem (12)–(14) exists globally by the
comparison principle. The proof is complete.

Proposition 4. If 𝛼𝛽 > 4(𝑝 − 1)(𝑞 − 1)/(𝑝𝑞), then the
nonnegative nontrivial solutions of the system (12)–(14) blow
up in finite time for large initial data.

Proof of Proposition 4. The proposition is proved by con-
structing a kind of lower blow-up solutions. Set

𝑢 (𝑟, 𝑡) = (𝑇 − 𝑡)
−𝑘
1𝑓1 (𝜉) ,

𝜉 = (𝑟 − 1) (𝑇 − 𝑡)
−𝑙
1 , 𝑟 > 1, 𝑡 > 0,

V (𝑟, 𝑡) = (𝑇 − 𝑡)
−𝑘
2𝑓2 (𝜂) ,

𝜂 = (𝑟 − 1) (𝑇 − 𝑡)
−𝑙
2 , 𝑟 > 1, 𝑡 > 0,

(24)

where 𝑇 > 0, and

𝑘1 =
(𝑞 − 1) (2 (𝑝 − 1) + 𝛼𝑝)

𝛼𝛽𝑝𝑞 − 4 (𝑝 − 1) (𝑞 − 1)
, 𝑙1 =

1 + (2 − 𝑝) 𝑘1

𝑝
,

𝑘2 =
(𝑝 − 1) (2 (𝑞 − 1) + 𝛽𝑞)

𝛼𝛽𝑝𝑞 − 4 (𝑝 − 1) (𝑞 − 1)
, 𝑙2 =

1 + (2 − 𝑞) 𝑘2

𝑞
.

(25)
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Due to 1 < 𝑝, 𝑞 < 2, 𝛼𝛽 > 4(𝑝 − 1)(𝑞 − 1)/(𝑝𝑞), we see that
𝑘1, 𝑙1, 𝑘2, 𝑙2 > 0 and

𝑘1 + 1 = (𝑝 − 1) 𝑘1 + 𝑝𝑙1, (𝑝 − 1) (𝑘1 + 𝑙1) = 𝑘2𝛼,

𝑘2 + 1 = (𝑞 − 1) 𝑘2 + 𝑞𝑙2, (𝑞 − 1) (𝑘2 + 𝑙2) = 𝑘1𝛽.

(26)

We claim that (𝑢, V) is a lower solution to the problem
(12)–(14) with 𝑢0(𝑟) ≥ 𝑢(𝑟, 0), V0(𝑟) ≥ V(𝑟, 0) if the following
inequalities hold:

(

𝑓


1
(𝜉)


𝑝−2

𝑓


1
(𝜉))


+
�̃�1(𝑇 − 𝑡)

𝑙
1

𝑟


𝑓


1
(𝜉)


𝑝−2

𝑓


1
(𝜉)

− 𝑙1𝜉𝑓


1
(𝜉) − 𝑘1𝑓1 (𝜉) ≥ 0,

(27)

−

𝑓


1
(0)


𝑝−2

𝑓


1
(0) ≤ 𝑓

𝛼

2
(0) , (28)

(

𝑓


2
(𝜂)


𝑞−2

𝑓


2
(𝜂))


+
�̃�2(𝑇 − 𝑡)

𝑙
2

𝑟


𝑓


2
(𝜂)


𝑞−2

𝑓


2
(𝜂)

− 𝑙2𝜂𝑓


2
(𝜂) − 𝑘2𝑓2 (𝜂) ≥ 0,

(29)

−

𝑓


2
(0)


𝑞−2

𝑓


2
(0) ≤ 𝑓

𝛽

1
(0) . (30)

Note that

�̃�1(𝑇 − 𝑡)
𝑙
1

𝑟
≤ �̃�1(𝑇 − 𝑡)

𝑙
1 ≤ �̃�1𝑇

𝑙
1 ,

�̃�2(𝑇 − 𝑡)
𝑙
1

𝑟
≤ �̃�2𝑇

𝑙
2 , for 𝑟 > 1.

(31)

So if we assume that 𝑓1, 𝑓2 satisfy

𝑓1 (𝜉) , 𝑓2 (𝜂) ≥ 0, 𝑓1(𝜉)

, 𝑓2(𝜂)


≤ 0,

𝑓1(𝜉)

, 𝑓2(𝜂)


≥ 0, 𝜉, 𝜂 ≥ 0,

(32)

then (27)– (30) hold provided that

(

𝑓


1
(𝜉)


𝑝−2

𝑓


1
(𝜉))


+ �̃�1𝑇𝑙1

𝑓


1
(𝜉)


𝑝−2

𝑓


1
(𝜉) − 𝑘1𝑓1 (𝜉) ≥ 0,

(33)

−

𝑓


1
(0)


𝑝−2

𝑓


1
(0) ≤ 𝑓

𝛼

2
(0) , (34)

(

𝑓


2
(𝜂)


𝑞−2

𝑓


2
(𝜂))


+ �̃�2𝑇
𝑙
2

𝑓


2
(𝜂)


𝑞−2

𝑓


2
(𝜂) − 𝑘2𝑓2 (𝜂) ≥ 0,

(35)

−

𝑓


2
(0)


𝑞−2

𝑓


2
(0) ≤ 𝑓

𝛽

1
(0) . (36)

Take

𝑓1 (𝜉) = ((𝐴1 + 𝐵1𝜉)
𝑝/(𝑝−2)

− (2𝐴1)
𝑝/(𝑝−2)

)
+
, 𝜉 ≥ 0,

(37)

𝑓2 (𝜂) = ((𝐴2 + 𝐵2𝜂)
𝑞/(𝑞−2)

− (2𝐴2)
𝑞/(𝑞−2)

)
+
, 𝜂 ≥ 0,

(38)

where 0 < 𝐴1, 𝐴2 < 1, 𝐵1, 𝐵2 > 0 are the constants to be
determined. It is clear that the above 𝑓1, 𝑓2 satisfy (32). Now,
we verify that𝑓1, 𝑓2 satisfy (33)–(36) in the distribution sense.
We claim that (33) is valid for 0 < 𝜉 < 𝐴1/𝐵1. In fact, we only
need to verify that

1

2
(

𝑓


1
(𝜉)


𝑝−2

𝑓


1
(𝜉))


≥ − �̃�1𝑇
𝑙
1

𝑓


1
(𝜉)


𝑝−2

𝑓


1
(𝜉) ,

1

2
(

𝑓


1
(𝜉)


𝑝−2

𝑓


1
(𝜉))


≥ 𝑘1𝑓1 (𝜉) ,

(39)

that is,

𝑝 − 1

2
𝑓


1
(𝜉) ≥ − �̃�1𝑇

𝑙
1𝑓


1
(𝜉) ,

𝑝 − 1

2


𝑓


1
(𝜉)


𝑝−2

𝑓


1
(𝜉) ≥ 𝑘1𝑓1 (𝜉) .

(40)

In the first place, we compute each term in (40) as follows:

𝑝 − 1

2
𝑓


1
(𝜉)=

𝑝 − 1

2

2𝑝𝐵
2

1

(𝑝 − 2)
2
(𝐴1 + 𝐵1𝜉)

(4−𝑝)/(𝑝−2)
,

−�̃�1𝑇
𝑙
1𝑓


1
(𝜉) = −�̃�1𝑇

𝑙
1
𝑝𝐵1

𝑝 − 2
(𝐴1 + 𝐵1𝜉)

2/(𝑝−2)
,

𝑝 − 1

2


𝑓


1
(𝜉)


𝑝−2

𝑓


1
(𝜉)=

(𝑝 − 1) 𝑝
𝑝−1
𝐵
𝑝

1

(2 − 𝑝)
𝑝

(𝐴1 + 𝐵1𝜉)
𝑝/(𝑝−2)

,

𝑘1𝑓1 (𝜉)=𝑘1 ((𝐴1 + 𝐵1𝜉)
𝑝/(𝑝−2)

− (2𝐴1)
𝑝/(𝑝−2)

) .

(41)

Then, the inequalities in (40) are valid provided that, for 0 <
𝜉 < 𝐴1/𝐵1,

(𝑝 − 1) 𝐵1

2 − 𝑝
≥ 2�̃�1𝐴1𝑇

𝑙
1 ≥ �̃�1𝑇

𝑙
1 (𝐴1 + 𝐵1𝜉) ,

(𝑝 − 1) 𝑝
𝑝−1
𝐵
𝑝

1

(2 − 𝑝)
𝑝

≥ 𝑘1.

(42)

So, we choose 𝐵1 = 𝑘
1/𝑝

1
(2 − 𝑝)/[(𝑝 − 1)𝑝

𝑝−1
]
1/𝑝, and 𝐴1 is

small enough that

𝐴1 ≤
𝐵1 (𝑝 − 1)

�̃�1𝑇
𝑙
1 (2 − 𝑝)

. (43)

Similarly, choose 𝐵2, 𝐴2, satisfying that

𝐵2 = (𝑘2

(2 − 𝑞)
𝑞

(𝑞 − 1) 𝑞𝑞−1
)

1/𝑞

, 𝐴2 ≤
𝐵2 (𝑞 − 1)

�̃�2𝑇
𝑙
2 (2 − 𝑞)

(44)

to get the validity of (35).
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Next, we verify that𝑓1 and 𝑓2 given by (37) and (38) also
satisfy the boundary conditions (34) and (36):

−

𝑓


1
(0)


𝑝−2

𝑓


1
(0) = (

𝑝𝐵1

2 − 𝑝
𝐴
2/(𝑝−2)

1
)

𝑝−1

= (
𝑝𝐵1

2 − 𝑝
)

𝑝−1

𝐴
2(𝑝−1)/(𝑝−2)

1
,

𝑓
𝛼

2
(0) = (𝐴

𝑞/𝑞−2

2
− (2𝐴2)

𝑞/𝑞−2
)
𝛼

= (1 − 2
𝑞/𝑞−2

)
𝛼

𝐴
𝑞𝛼/(𝑞−2)

2
.

(45)

From (34), we need

(
𝑝𝐵1

2 − 𝑝
)

𝑝−1

𝐴
2(𝑝−1)/(𝑝−2)

1
≤ (1 − 2

𝑞/(𝑞−2)
)
𝛼

𝐴
𝑞𝛼/(𝑞−2)

2
. (46)

Set𝐴2 = 𝐴
𝜎

1
, where 𝜎 is to be determined.Then rewriting the

last inequality, we get

𝐴
2(𝑝−1)/(𝑝−2) −𝑞𝛼𝜎/(𝑞−2)

1
≤ (1 − 2

𝑞/(𝑞−2)
)
𝛼

(
2 − 𝑝

𝑝𝐵1

)

𝑝−1

, (47)

which can be obtained by choosing 𝐴1 > 0 small enough, if

2 (𝑝 − 1)

𝑝 − 2
−
𝑞𝛼𝜎

𝑞 − 2
> 0. (48)

In a similar discussion on the boundary condition (36), for
enough small 𝐴1, the following inequality is needed:

2𝜎 (𝑞 − 1)

𝑞 − 2
−
𝑝𝛽

𝑝 − 2
> 0. (49)

Note that 1 < 𝑝 and 𝑞 < 2; therefore, (48)-(49) are equal to

2 (𝑝 − 1)

𝑞𝛼
< 𝜎

𝑝 − 2

𝑞 − 2
<

𝑝𝛽

2 (𝑞 − 1)
. (50)

Recall the assumption that 𝛼𝛽 > 4(𝑝 − 1)(𝑞 − 1)/𝑝𝑞, so there
exists a constant 𝜎 > 0, such that (50) holds. Furthermore, we
can choose 𝐴1 as small as needed.

Therefore, the solution (𝑢, V) of the problem (12)–(14)
blows up in a finite time if (𝑢0(𝑟), V0(𝑟)) is large enough such
that

𝑢0 (𝑟) ≥ 𝑢 (𝑟, 0) , V0 (𝑟) ≥ V (𝑟, 0) , 𝑟 > 1. (51)

The proof is completed.

Proposition 5. If 𝛼𝛽 ̸= (𝑝 − 1)(𝑞 − 1), then every nonnegative
nontrivial solution of the system (12)–(14) with small initial
data exists globally.

Proof of Proposition 5. We seek the steady-state solution of
the system (12)–(14):

𝑢 (𝑟, 𝑡) = �̃� (𝑟) , V (𝑟, 𝑡) = Ṽ (𝑟) , 𝑟 > 1, 𝑡 > 0. (52)

A direct calculation shows that �̃�(𝑟), Ṽ(𝑟) should satisfy

(𝑟
�̃�
1

�̃�


𝑝−2

�̃�

)


= 0, (𝑟
�̃�
2

Ṽ


𝑞−2

Ṽ

)


= 0, 𝑟 > 1,

−

�̃�

(1)


𝑝−2

�̃�

(1) = Ṽ

𝛼
(1) , −


Ṽ

(1)


𝑝−2

Ṽ

(1) = �̃�

𝛽
(1) ,

(53)

which implies that

�̃�

=−𝐴
𝛼/(𝑝−1)

2
𝑟
−�̃�
1
/(𝑝−1)

, Ṽ

=−𝐴
𝛽/(𝑞−1)

1
𝑟
−�̃�
2
/(𝑞−1)

, 𝑟 > 1

(54)

with 𝐴1 = �̃�(1), 𝐴2 = Ṽ(1). Integrating the above equalities
yields

�̃� (𝑟) = (𝐴1 −
𝐴
𝛼/(𝑝−1)

2

�̃�1/ (𝑝 − 1) − 1
)

+
𝐴
𝛼/(𝑝−1)

2

�̃�1/ (𝑝 − 1) − 1
𝑟
1−�̃�
1
/(𝑝−1)

,

Ṽ (𝑟) = (𝐴2 −
𝐴
𝛽/(𝑞−1)

1

�̃�2/ (𝑞 − 1) − 1
)

+
𝐴
𝛽/(𝑞−1)

1

�̃�2/ (𝑞 − 1) − 1
𝑟
1−𝜆2/(𝑞−1)

.

(55)

In particular, we let

𝐴1 −
𝐴
𝛼/(𝑝−1)

2

�̃�1/ (𝑝 − 1) − 1
= 0, 𝐴2 −

𝐴
𝛽/(𝑞−1)

1

�̃�2/ (𝑞 − 1) − 1
= 0.

(56)

Define 𝐶1 = �̃�1/(𝑝 − 1) − 1, 𝐶2 = �̃�2/(𝑞 − 1) − 1, and then
𝐶1 > 0, 𝐶2 > 0. Noticing that 𝛼𝛽 ̸= (𝑝 − 1)(𝑞 − 1), we get

𝐴2 = (𝐶
𝛽/(𝑞−1)

1
𝐶2)
(𝑝−1)(𝑞−1)/((𝑝−1)(𝑞−1)−𝛼𝛽)

,

𝐴1 = 𝐶1𝐴
𝛼/(𝑝−1)

2
.

(57)

Therefore, the bounded positive functions:

�̃� (𝑟) =
𝐴
𝛼/(𝑝−1)

2

𝐶1

𝑟
−𝐶
1 , Ṽ (𝑟) =

𝐴
𝛽/(𝑞−1)

1

𝐶2

𝑟
−𝐶
2 (58)

are just a couple of steady-state solutions of the problem
(12)–(14) with the initial data �̃�(𝑟), Ṽ(𝑟). By the comparison
principle, for any initial data 𝑢0(𝑟), V0(𝑟) which is small
enough to satisfy

𝑢0 (𝑟) ≤ �̃� (𝑟) , V0 (𝑟) ≤ Ṽ (𝑟) , 𝑟 > 1, (59)

the solutions of the problem (12)–(14) exist globally in time.
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Remark 6. Due to the fact that (𝑝 − 1)(𝑞 − 1) < 4(𝑝 − 1)(𝑞 −
1)/(𝑝𝑞) for 1 < 𝑝, 𝑞 < 2, it is seen from Propositions 3 and
5 that all nonnegative solutions to the system (12)–(14) with
enough small initial data exist globally in time.

Now, we prove themain result for the system (7)–(9), that
is, Theorem 2.

Proof of Theorem 2. Noticing that the functions 𝑢0(𝑥), V0(𝑥)
are bounded, we can choose two bounded, radially symmet-
rical functions denoted by 𝑢1(𝑥), V1(𝑥) satisfying that 𝑢1(𝑥) =
𝑢1(|𝑥|) ≥ 𝑢0(𝑥), V1(𝑥) = V1(|𝑥|) ≥ V0(𝑥), respectively. By
using Proposition 3 and the comparison principle, we can
obtain the global existence of solutions to the system (7)–(9).

For the initial data (𝑢0, V0) is large enough such that
𝑢0(𝑥) ≥ 𝑢(|𝑥|, 0), V0(𝑥) ≥ V(|𝑥|, 0), here 𝑢(|𝑥|, 0), V(|𝑥|, 0) are
defined in the proof of Proposition 4 if 𝛼𝛽 > 4(𝑝 − 1)(𝑞 −
1)/(𝑝𝑞), then the solutions of the system (7)–(9) with such
(𝑢0, V0) blow up in a finite time by the comparison principle
and Proposition 4.

On the other hand, using the comparison principle again
and combining with Proposition 5, we see that the solution
(𝑢, V) of (7)–(9) exists globally if

𝑢0 (𝑥) ≤
(𝑝 − 1)𝐴

𝛼/(𝑝−1)

2

𝜆1 + 𝑁 − 𝑝
|𝑥|
−(𝜆
1
+𝑁−𝑝)/(𝑝−1)

,

V0 (𝑥) ≤
(𝑞 − 1)𝐴

𝛽/(𝑞−1)

1

𝜆2 + 𝑁 − 𝑞
|𝑥|
−(𝜆
2
+𝑁−𝑞)/(𝑞−1)

,

(60)

where

𝐴2 = ((
𝜆1 + 𝑁 − 𝑝

𝑝 − 1
)

𝛽/(𝑞−1)

× (
𝜆2 + 𝑁 − 𝑞

𝑞 − 1
))

(𝑝−1)(𝑞−1)/[(𝑝−1)(𝑞−1)−𝛼𝛽]

,

𝐴1 =
𝜆1 + 𝑁 − 𝑝

𝑝 − 1
𝐴
𝛼/(𝑝−1)

2
.

(61)

The proof is complete.
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