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We consider a new chaotic system based onmerging twowell-known systems (the Lorentz and Rössler systems).Meanwhile, taking
into account the effect of environmental noise, we incorporate whit-enoise in each equation. We prove the existence, uniqueness,
and the moments estimations of the Lorentz-Rössler systems. Numerical experiments show the applications of our systems and
illustrate the results.

1. Introduction

The Lorentz system is a well-known model
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This model was introduced in 1963 by Lorentz [1]. For the
meaning of the Lorentz system the reader can refer to [2]
(Chaos), [3] (laser), [4] (thermospheres), [5] (brushless DC
motors), [6] (electric circuits), and [7] (chemical reactions).
The original Rössler system only contains one quadratic
nonlinear term 𝑥
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The system (2) was introduced by Rössler [8].This model has
received increasing attention due to its great potential appli-
cations in secure communication [9–12], chemical reaction,
biological systems, and so on [13].

Furthermore, the general chaotic systems have many
applications, especially in complex genetic networks [14–17].
Of course, since the general chaotic systems are nonlinear
and have stochastic noise terms, lots of mathematical experts
pay still their attentions to the mathematical theory for these
nonlinear chaotic systems [18–22] and so on.

In this paper, we consider a new model including the
Lorentz system and the Rössler system, which has been
slightly adjusted (the nonlinear terms of the Rössler systems
become 𝑥
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Actually, if we take some especial coefficients, the system
(3) would become the system (1) or (2). Therefore, the main
properties of the Lorentz and Rössler systems can be included
by this model. In Figure 1, we take that 𝛼

3
(𝑡) = 0, 𝑏 = 0,

𝛼

1
(𝑡) = 𝛼

2
(𝑡) = 1, 𝑎 = −1, and that our problem becomes

the well-known Lorentz system with the initial value 𝑋
0
=

(8, 5, 30).
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Figure 1: The attractor and the time series of the Lorentz system.

Let 𝛾(𝑡) = 1, 𝛼
1
(𝑡) = 𝛼

2
(𝑡) = 0, and 𝜎 = 0, and take the

correspondingly appropriate other parameters, then the track
similar with the Rössler systems can be obtained.

If the coefficients of our problem are 𝜎 = 9, 𝛾(𝑡) = −1,
𝑟 = 27, 𝑎 = 𝑏 = 𝑐 = 0, 𝛼

1
(𝑡) = 𝛼

2
(𝑡) = 2, 𝛼

3
(𝑡) = 1, and

𝛽 = 8/3, then the system (3) becomes the following Lorentz-
Rössler system.

Remark 1. From the structure of system (3), it is obvious
that there is a great diversification of attractors in the
system inner with different parameters. Since the structure
of our systems is more complex than the Lorentz system
and Rössler system, especially, from Figure 3, the system (3)
can be used in secure communications, to design the more
complex hop-frequency communications time series, which
make the communications content more secure. If we use
the system (3) to design the hop-frequency time series in
communications, it becomes much more difficult to disturb
our communications than the time series of the well-known
Lorentz system and Rössler system.

To obtain better applications about model (3), we
must take into account the effect of environment noise,
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Figure 2:The behavior similar with the Rössler system (initial value
𝑋

0
= (3, −4, 2)).

especially in secure outer communications (complex electric
circumstance), convulsed circuits communications, multi-
level chemical reactions, and so on. Thus we incorporate
white noise in each equation of system (3)
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Figure 3: The Lorentz-Rössler combining system with initial value
𝑋

0
= (1, 0.1, 1).

where all the 𝑢
𝑖𝑗
represent the intensity of the noise at time

𝑡 and all the 𝐵
𝑖
(𝑡) are standard white noise; namely, each

𝐵

𝑖
(𝑡) is a Brownian motion defined on a complete probability

space (Ω,F,P). If we consider the Figures 1, 2, and 3 with
environment noise, the respective stochastic system can be
shown by Figures 4, 5, and 6, respectively.

In this paper, we consider that 𝛾(𝑡) is not a constant
and dependent on the third variable and the coefficient
of the third interactive term 𝛼

3
(𝑡), let 𝛾(𝑡) = 𝛼

3
(𝑡)𝑥

3
(𝑡).

Throughout this paper, unless otherwise specified, we let
(Ω,F, {F

𝑡
}

𝑡≥0
,P) be a complete probability with a filtra-

tion {F
𝑡
}

𝑡≥0
satisfying the usual conditions (i.e., it is right

continuous and increasing while F
0
contains all P-null

sets). 𝐵(𝑡) := (𝐵

1
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2
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𝑇 denotes an 3-dimensional
Brownian motion defined on this probability space.

The rest of this paper is arranged as follows. In Section 2,
we introduce some fundamental conditions of our problem.
In Section 3, the existence and uniqueness of the stochastic
system (4) are established. Meanwhile, in our main results,
the moments estimations of solutions are obtained. Section 4
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Figure 4:The attractor and the time series of the stochastic Lorentz
system with a standard irrelated white noise (𝑢

𝑖𝑖
= 1, 𝑢

𝑖𝑗,𝑖 ̸= 𝑗
= 1,

𝑖, 𝑗 = 1, 2, 3).

shows some numerical simulations with inner random per-
turbations and outer random perturbations, which can sup-
port our results and exhibit diverse behaviors with different
inner perturbations.

2. Fundamental Assumptions and Notations

We firstly split the system (4) into different parts and give
some fundamental conditions. In this paper, we consider the
generalized system (4) only forward in time 𝑡 ∈ [0,∞). Let
𝑋 = (𝑥

1
, 𝑥

2
, 𝑥

3
) ∈ R3. The Lorentz-Rössler system can be

rewritten as

𝑑𝑋 = − [𝐴𝑋 + 𝐶 (𝑋) − 𝐹] 𝑑𝑡 + 𝑈 (𝑋, 𝑡) 𝑑𝐵

𝑡
, (5)

𝑋 (0) = 𝑋

0
, 0 ≤ 𝑡 ≤ 𝑇 < +∞, (6)

where the initial condition𝑋
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= (𝑥
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, 𝑥

20
, 𝑥

30
)

𝑇 is fixed point
and independent ofF

𝑡
for all 𝑡 > 0.The four parts of the drift
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Figure 5:The behavior similar with the Rössler system (intensity of
the noise 𝑢

𝑖𝑖
= 0.5, 𝑢

𝑖𝑗,𝑖 ̸= 𝑗
= 0, 𝑖, 𝑗 = 1, 2, 3).

are given by
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𝑈(𝑋, 𝑡) : R3 × [0,∞) → 3 × 3matrices is a noise term.
For the sake of brevity, we introduce some notations.

(i) For any real matrix 𝑅 = [𝑟
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Figure 6: The Lorentz-Rössler combining system with the noise
𝑢

𝑖𝑖
= 0.001, 𝑢

𝑖𝑗,𝑖 ̸= 𝑗
= 0, 𝑖, 𝑗 = 1, 2, 3.

(iii) For any two variables 𝑋,𝑌 ∈ R3, (𝑋, 𝑌) denote the
usual inner product.

(iv) 𝐶
𝑖
(𝑖 = 1, 2, . . .) denote the constants which are

dependent on some parameters.

(A1)The noise term𝑈(𝑋, 𝑡) satisfies a Lipschitz condition
and a linear growth condition
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The condition (A1) can be easily satisfied, for example,
𝑈

𝑖
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(𝑡) ∑

3
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(𝑡)𝑑𝐵

𝑗
(𝑡), when all the 𝜎

𝑖𝑗
(𝑡) are

bounded on R
+
.

For the other coefficients, we suppose the following
conditions.

(A2) The matrix 𝐴 satisfies (𝐴𝑋,𝑋) ≥ 𝜆‖𝑋‖

2

2
, where 𝜆 >

0.
(A3) The constant 𝑏 and the coefficients 𝛼

1
(𝑡), 𝛼

2
(𝑡),

and 𝛼

3
(𝑡) are bounded. In addition, the interactive terms’

coefficients satisfy 𝛼
1
(𝑡) = 𝛼

2
(𝑡) + 𝛼

3
(𝑡).
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Remark 2. If 𝑈(𝑋, 𝑡) ≡ 0, our Lorentz-Rössler systems
become a deterministic system. As for the deterministic
equation, there are many methods to study. In this paper,
we mainly consider the stochastic system. In any case, it is
important to study the properties of the system in a weak
noise environment.

3. Main Results

In this section, we will consider the stochastic equation (4)
with initial value 𝑋(0) = 𝑋

0
= (𝑥

10
, 𝑥

20
, 𝑥

30
)

𝑇
∈ R3

and𝑈(𝑋, 𝑡) ̸= 0. In order for a stochastic differential equation
to have a unique global (i.e., no explosion in a finite time)
solution for any given initial value, the terms of the equation
are generally required to satisfy the linear growth condition
and local Lipschitz condition. In (5), the terms −𝐴(𝑡)𝑋,
𝐹, 𝑈(𝑋, 𝑡) satisfy these two conditions. However, the term
𝐶(𝑋, 𝑡) of (5) does not satisfy the linear growth condition,
though they are locally Lipschitz continuous.

At first, we introduce the modified system. Let us study a
modified system obtained by truncating the term, when it is
too large. Some a priori moment estimates of the solution of
the modified equation enable us to prove that the modified
system converges to a solution of the original problem as the
truncation level goes to infinity.

Lemma 3. Let 𝜒
𝑁
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1
(R3,R)with 𝜒
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(𝑋) = 1 for ‖𝑋‖
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where 𝑋
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𝑁2
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𝑁3
) and 𝑇 is a finite time. And let

the initial value be still independent of {F
𝑡
}

𝑡>0
and satisfy

𝐸‖𝑋

0
‖

2

2
< ∞. Then the modified system (9) possesses a con-

tinuous almost sure unique solution that is {F
𝑡
}measurable.

Remark 4. 𝐶
𝑁
(𝑋

𝑁
) is bounded and satisfies a linear growth

condition and a Lipschitz condition (it can be easily obtained
by the insert-value technique and primary inequalities). All
other coefficients obviously satisfy a linear growth as well as
a Lipschitz condition. Since the truncation function 𝜒

𝑁
∈

𝐶

1
(R3,R), the modified nonlinear term 𝐶

𝑁
(𝑋

𝑁
) remains

differentiable, and its derivative is continuous and has a
compact support. Then the assertions of Lemma 3 follow by
the usual existence and uniqueness theorem.

To get the uniform estimations of the system (9), we deal
with the Itŏ derivative of the Lyapunov functions.

Lemma 5. Let (A2) and (A3) hold. Then one can get the
estimation
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Using the Itŏ formula with respect to 𝑉(𝑋
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2

𝑁1
+ 𝑥

2

𝑁2
+ 𝑥

2

𝑁3
)

𝑝/2−1

2𝑑𝑥

𝑁𝑖
𝑑𝑥

𝑁𝑖

= 𝑝









𝑋

𝑁









𝑝−2

2
(𝑑𝑋

𝑁
, 𝑋

𝑁
)

+ 𝑝 (

𝑝

2

− 1)









𝑋

𝑁









𝑝−4

2

3

∑

𝑖,𝑗=1

𝑥

𝑁𝑖
𝑑𝑥

𝑁𝑖
𝑥

𝑁𝑗
𝑑𝑥

𝑁𝑗

+

𝑝

2









𝑋

𝑁









𝑝−2

2

3

∑

𝑖=1

𝑑𝑥

𝑁𝑖
𝑑𝑥

𝑁𝑖

= 𝑝









𝑋

𝑁









𝑝−2

2
{− [(𝐴𝑋

𝑁
, 𝑋

𝑁
)

+ (𝜒

𝑁
(𝑋

𝑁
) 𝐶 (𝑋

𝑁
) , 𝑋

𝑁
)

− (𝐹,𝑋

𝑁
)]} 𝑑𝑡

+ 𝑝 (

𝑝

2

− 1)

×









𝑋

𝑁









𝑝−4

2
trace (𝑋

𝑁
𝑋

𝑇

𝑁
𝑈(𝑋

𝑁
) 𝑈

𝑇
(𝑋

𝑁
)) 𝑑𝑡

+

𝑝

2









𝑋

𝑁









𝑝−2

2
trace (𝑈 (𝑋

𝑁
) 𝑈

𝑇
(𝑋

𝑁
)) 𝑑𝑡

+ 𝑝









𝑋

𝑁









𝑝−2

2
𝑋

𝑇

𝑁
𝑈 (𝑋

𝑁
) 𝑑𝐵

𝑡
.

(12)

We individually deal with all the right terms of (12).
Firstly, from the definition of trace and Hölder inequality, we
have the following.

Lemma 6. For any real matrix 𝑅 ∈ R𝑚×𝑛, 𝑄 ∈ R𝑛×𝑚, the
following inequalities hold:

‖𝑅𝑄‖2
≤ ‖𝑅‖2‖

𝑄‖2
, |trace (𝑅𝑄)| ≤ ‖𝑅‖2‖𝑄‖2. (13)
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Proof. From Hölder inequality, it follows that

‖𝑅𝑄‖

2

2
= ∑

𝑖𝑗

(∑

𝑘

𝑟

𝑖𝑘
𝑞

𝑘𝑗
)

2

≤ ∑

𝑖,𝑗

(∑

𝑘

𝑟

2

𝑖𝑘
∑

𝑙

𝑞

2

𝑙𝑗
)

= ∑

𝑖,𝑗,𝑘,𝑙

(𝑟

2

𝑖𝑘
𝑞

2

𝑙𝑗
) = ∑

𝑖,𝑘

𝑟

2

𝑖𝑘
∑

𝑗,𝑙

𝑞

2

𝑙𝑗
= ‖𝑅‖

2

2
‖𝑄‖

2

2
,

|trace (𝑅𝑄)|2 = (∑
𝑖,𝑗

𝑟

𝑖𝑗
𝑞

𝑗𝑖
)

2

≤ ∑

𝑖,𝑗

𝑟

2

𝑖𝑗
∑

𝑖,𝑗

𝑞

2

𝑗𝑖
= ‖𝑅‖

2

2
‖𝑄‖

2

2
.

(14)

By Lemma 6, trace(𝑋
𝑁
𝑋

𝑇

𝑁
𝑈(𝑋

𝑁
)𝑈

𝑇
(𝑋

𝑁
)) of (12) can be

estimated,

trace (𝑋
𝑁
𝑋

𝑇

𝑁
𝑈 (𝑋

𝑁
) 𝑈

𝑇
(𝑋

𝑁
))

≤











𝑋

𝑁
𝑋

𝑇

𝑁









2











𝑈 (𝑋

𝑁
) 𝑈

𝑇
(𝑋

𝑁
)









2

≤









𝑋

𝑁









2

2
‖𝑈(𝑋)‖

2

2
.

(15)

Combining (A2) and Hölder inequality, we have

− (𝐴𝑋

𝑁
, 𝑋

𝑁
) + (𝐹,𝑋

𝑁
) ≤ −

𝜆

2









𝑋

𝑁









2

2
+

𝑏

2

2𝜆

.

(16)

From (A3), we can compute

(𝜒

𝑁
(𝑋

𝑁
) 𝐶 (𝑋

𝑁
) , 𝑋

𝑁
)

= (𝜒

𝑁
(𝑋

𝑁
)(

−𝛼

3
(𝑡) 𝑥

𝑁3
𝑥

𝑁2
+ 𝛼

3
(𝑡) 𝑥

2

𝑁3

𝛼

1
(𝑡) 𝑥

𝑁1
𝑥

𝑁3

−𝛼

2
(𝑡) 𝑥

𝑁1
𝑥

𝑁2
− 𝛼

3
(𝑡) 𝑥

𝑁1
𝑥

𝑁3

) ,(

𝑥

𝑁1

𝑥

𝑁2

𝑥

𝑁3

))

= 𝜒

𝑁
(𝑋

𝑁
) (−𝛼

3
(𝑡) 𝑥

𝑁3
𝑥

𝑁2
𝑥

𝑁1
+ 𝛼

3
(𝑡) 𝑥

2

𝑁3
𝑥

𝑁1

+ 𝛼

1
(𝑡) 𝑥

𝑁1
𝑥

𝑁3
𝑥

𝑁2
− 𝛼

2
(𝑡) 𝑥

𝑁1
𝑥

𝑁2
𝑥

𝑁3

−𝛼

3
(𝑡) 𝑥

𝑁1
𝑥

2

𝑁3
) ≡ 0.

(17)

Using Lemma 6 again and combining all the above estima-
tions from (15)–(17), we derive that

𝑑









𝑋

𝑁









𝑝

2
= −

𝑝𝜆

2









𝑋

𝑁









𝑝

2
𝑑𝑡 + 𝑝









𝑋

𝑁









𝑝−2

2

𝑏

2

2𝜆

𝑑𝑡

+ 0 + 𝑝(

𝑝

2

− 1)









𝑋

𝑁









𝑝−2

2









𝑈 (𝑋

𝑁
)









2

2
𝑑𝑡

+

𝑝

2









𝑋

𝑁









𝑝−2

2









𝑈 (𝑋

𝑁
)









2

2
𝑑𝑡

+ 𝑝









𝑋

𝑁









𝑝−2

2
𝑋

𝑇

𝑁
𝑈 (𝑋

𝑁
) 𝑑𝐵

𝑡
+ 𝜙 (𝑡) 𝑑𝑡,

(18)

where 𝜙(𝑡) ≤ 0 is an adapted process, which compensates all
the estimationswemade.The proof of Lemma 5 is completed.

Lemma 7. Assume that the conditions (A1)–(A3) hold and let
𝑝 ∈ N be even and fixed, the initial expectation 𝐸‖𝑋

0
‖

𝑝

2
< ∞.

Then

𝐸









𝑋

𝑁
(𝑡)









𝑝

2
≤ 𝐶

𝑝
, ∀𝑡 ∈ [0, 𝑇] , (19)

where 𝐶
𝑝
is a constant and only dependent on 𝑇, 𝐸‖𝑋

0
‖

𝑝

2
, 𝑝,

𝜆, 𝐶
1
, and 𝑏, but independent of𝑁.

Proof. Firstly, we introduce the stopping time. For𝐷 ∈ N, let

𝜏

𝐷
:= inf {𝑡 ∈ [0, 𝑇] : 



𝑋

𝑁
(𝑡)







2
≥ 𝐷} . (20)

Note that, for all 𝑓(⋅) ≥ 0,

∫

𝑡∧𝜏𝐷

0

𝑓 (𝑠) 𝑑𝑠 ≤ ∫

𝑡

0

𝑓 (𝑠 ∧ 𝜏

𝐷
) 𝑑𝑠.

(21)

For any 𝑡 ∈ [0, 𝑇], using the linear growth condition of𝑈(𝑋),
we can integrate (10) from 0 to 𝑡 ∧ 𝜏

𝐷
and then take the

expectations to obtain

𝐸









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2

≤ 𝐸‖𝑋(0)‖

𝑝

2
+ 𝐸∫

𝑡∧𝜏𝐷

0

(−

𝑝𝜆

2

)









𝑋

𝑁
(𝑠)









𝑝

2
𝑑𝑠

+ 𝐸∫

𝑡∧𝜏𝐷

0

𝑝𝑏

2

2𝜆









𝑋

𝑁
(𝑠)









𝑝−2

2
𝑑𝑠

+

𝑝 (𝑝 − 1)

2

𝐸∫

𝑡∧𝜏𝐷

0

𝐶

1









𝑋

𝑁
(𝑠)









𝑝−2

2
𝑑𝑠

+

𝑝 (𝑝 − 1)

2

𝐶

1
𝐸∫

𝑡∧𝜏𝐷

0









𝑋

𝑁
(𝑠)









𝑝

2
𝑑𝑠 + 0

= 𝐸‖𝑋(0)‖

𝑝

2

+ 𝐸∫

𝑡∧𝜏𝐷

0

(

𝐶

1
𝑝 (𝑝 − 1)

2

−

𝑝𝜆

2

)









𝑋

𝑁
(𝑠)









𝑝

2
𝑑𝑠

+ 𝐸∫

𝑡∧𝜏𝐷

0

(

𝐶

1
𝑝 (𝑝 − 1)

2

+

𝑝𝑏

2

2𝜆

)









𝑋

𝑁
(𝑠)









𝑝−2

2
𝑑𝑠

≤ 𝐸‖𝑋 (0)‖

𝑝

2
+ ∫

𝑡

0



















𝐶

1
𝑝 (𝑝 − 1)

2

−

𝑝𝜆

2



















𝐸









𝑋

𝑁
(𝑠)









𝑝

2
𝑑𝑠

+ ∫

𝑡

0

(

𝐶

1
𝑝 (𝑝 − 1)

2

+

𝑝𝑏

2

2𝜆

)𝐸









𝑋

𝑁
(𝑠 ∧ 𝜏

𝐷
)









𝑝−2

2
𝑑𝑠.

(22)

Let 𝑝 = 2 and use the Gronwall inequalities, then there exists
a constant 𝐶

2
, such that

sup
𝑡∈[0,𝑇]

𝐸









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2
≤ 𝐶

2
. (23)

Computing recursively, we obtain that there exists a constant
𝐶

𝑝
, such that

𝐸









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2

≤ 𝐸









𝑋

0









𝑝

2
+ ∫

𝑡

0

(



















𝐶

1
p (𝑝 − 1)
2

−

𝑝𝜆

2



















𝐸









𝑋

𝑁
(𝑠 ∧ 𝜏

𝐷
)









𝑝

2

+ (

𝐶

1
𝑝 (𝑝 − 1)

2

+

𝑝𝑏

2

2𝜆

)𝐶

𝑝−2
)𝑑𝑠 ≤ 𝐶

𝑝
.

(24)
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Figure 7:The attractor and the time series of the Stochastic Lorentz-
Rössler combining system with a white noise 𝑢

𝑖𝑖
= 0.01, 𝑖 = 1, 2, 3.

It is obvious that the stopping time satisfies 𝜏
𝐷
→ 𝑇 as𝐷 →

∞. By the continuity of the solution𝑋
𝑁
(𝑡) in 𝑡, we derive that

‖𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)‖

𝑝

2
is bounded. Therefore,









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2
→









𝑋

𝑁
(𝑡)









𝑝

2
, a.s. (𝐷 → ∞) . (25)

Combining (24), (25) and Fuatou lemma, we have

𝐸









𝑋

𝑁
(𝑡)









𝑝

2
= 𝐸 lim
𝐷→∞









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2

≤ lim
𝐷→∞

inf 𝐸


𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2
≤ 𝐶

𝑝
.

(26)

Lemma 8. Let 𝑝 ∈ N be even, 𝐸‖𝑋
0
‖

𝑝

2
< ∞, and (A1)–(A3)

hold. Then there exists a constant ̃𝐶
𝑝
such that

𝐸 sup
𝑡∈[0,𝑇]









𝑋

𝑁
(𝑡)









𝑝

2
≤

̃

𝐶

𝑝
, ∀𝑡 ∈ [0, 𝑇] , (27)
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Figure 8: The attractor and the time series of the deterministic
Lorentz-Rössler system.

where ̃𝐶
𝑝
is independent of 𝑁, only dependent on 𝑇, 𝐸‖𝑥

0
‖

𝑝

2
,

𝑝, 𝐶
1
, 𝜆, and 𝑏.

Proof. Note that 𝜏
𝐷
is the stopping time introduced in (20).

Integrating (10) (we take 𝑝 = 2),









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









2

2
=









𝑋

0









2

2
+ ∫

𝑡∧𝜏𝐷

0

(−𝜆









𝑋

𝑁
(𝑠)









2

2
) 𝑑𝑠

+ ∫

𝑡∧𝜏𝐷

0

𝑏

2

𝜆

𝑑𝑠 + ∫

𝑡∧𝜏𝐷

0









𝑈 (𝑋

𝑁
(𝑠))









2

2
𝑑𝑠

+ ∫

𝑡∧𝜏𝐷

0

2𝑋

𝑇

𝑁
(𝑠) 𝑈 (𝑋

𝑁
(𝑠)) 𝑑𝐵

𝑠

+ ∫

𝑡∧𝜏𝐷

0

𝜙 (𝑠) 𝑑𝑠.

(28)

To estimate the expected supremumof ‖𝑋
𝑁
(𝑡∧𝜏

𝐷
)‖

𝑝

2
, we omit

the nonpositive terms∫𝑡∧𝜏𝐷
0

(−𝜆‖𝑋

𝑁
(𝑠)‖

2

2
)𝑑𝑠 and ∫𝑡∧𝜏𝐷

0
𝜙(𝑠)𝑑𝑠,
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Figure 9:The attractor and the time series of the Stochastic Lorentz-
Rössler combining system with a white noise 𝑢

𝑖𝑖
= 0.01, 𝑖 = 1, 2, 3.

then









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









2

2

≤









𝑋

0









2

2
+ ∫

𝑡∧𝜏𝐷

0

𝑏

2

𝜆

𝑑𝑠

+ ∫

𝑡∧𝜏𝐷

0









𝑈 (𝑋

𝑁
(𝑠))









2

2
𝑑𝑠

+ ∫

𝑡∧𝜏𝐷

0

2𝑋

𝑇

𝑁
(𝑠) 𝑈 (𝑋

𝑁
(𝑠)) 𝑑𝐵

𝑠
.

(29)

To obtain the estimation of ‖𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)‖

𝑝

2
, we take

the 𝑝/2 power to (29) and use the primary inequality
| ∑

𝑛

𝑖=1
𝑎

𝑖
|

𝑘
≤ 𝑛

𝑘−1
∑

𝑛

𝑖=1
|𝑎

𝑖
|
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Figure 10: The attractor and the time series of the deterministic
Lorentz-Rössler system.

𝑘 = 𝑝/2),









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2
≤ 3

(𝑝/2−1)






𝑋

0









𝑝

2

+ 3

(𝑝/2−1)

×



















∫

𝑡∧𝜏𝐷

0

(

𝑏

2

𝜆

+









𝑈 (𝑋

𝑁
(𝑠))









2

2
)𝑑𝑠



















𝑝/2

+ 3

(𝑝/2−1)

×

















∫

𝑡∧𝜏𝐷

0

2𝑋

𝑇

𝑁
(𝑠) 𝑈 (𝑋

𝑁
(𝑠)) 𝑑𝐵

𝑠

















𝑝/2

.

(30)

We now compute the expected supremum

𝐸 sup
𝑡∈[0,𝑇]









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2

≤ 3

(𝑝/2−1)
𝐸









𝑋

0









𝑝

2
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+ 3

(𝑝/2−1)
𝐸

×



















∫

𝑇

0

(

𝑏

2

𝜆

+









𝑈 (𝑋

𝑁
(𝑠))









2

2
)𝑑𝑠



















𝑝/2

+ 3

(𝑝/2−1)
𝐸

× sup
𝑡∈[0,𝑇]

















∫

𝑡∧𝜏𝐷

0

2𝑋

𝑇

𝑁
(𝑠) 𝑈 (𝑋

𝑁
(𝑠)) 𝑑𝐵

𝑠

















𝑝/2

.

(31)

To deal with the term 𝐸| ∫

𝑇

0
(𝑏

2
/𝜆 + ‖𝑈(𝑋

𝑁
(𝑠))‖

2

2
)𝑑𝑠|

𝑝/2, we
use Hölder inequality, the linear growth condition (A1), and
the primary inequality again,

𝐸



















∫

𝑇

0

(

𝑏

2

𝜆

+









𝑈 (𝑋

𝑁
(𝑠))









2

2
)𝑑𝑠



















𝑝/2

≤ 𝐸





















(∫

𝑇

0

(

𝑏

2

𝜆

+ 𝐶

1
+ 𝐶

1









𝑋

𝑁
(𝑠)









2

2
)

𝑝/2

𝑑𝑠)

2/𝑝

× (∫

𝑇

0

1

𝑝/(𝑝−2)
𝑑𝑠)

(𝑝−2)/𝑝


















𝑝/2

≤ 𝑇

(𝑝−2)/2
𝐸∫

𝑇

0

(

𝑏

2

𝜆

+ 𝐶

1
+ 𝐶

1









𝑋

𝑁
(𝑠)









2

2
)

𝑝/2

𝑑𝑠

≤ 3

𝑝/2−1
𝑇

(𝑝−2)/2

× 𝐸∫

𝑇

0

((

𝑏

2

𝜆

)

𝑝/2

+ 𝐶

𝑝/2

1
+ 𝐶

𝑝/2

1









𝑋

𝑁
(𝑠)









𝑝

2
)𝑑𝑠.

(32)

Note that the solution of the modified system is both
continuous in both 𝑡 and F

𝑡
measurable for all 𝑡 ≥ 0. By

Fubini theorem and the boundary of Lemma 7, we have

𝐸



















∫

𝑇

0

(

𝑏

2

𝜆

+









𝑈 (𝑋

𝑁
(𝑠))









2

2
)𝑑𝑠



















𝑝/2

≤ (3𝑇)

(𝑝−2)/2
∫

𝑇

0

((

𝑏

2

𝜆

)

𝑝/2

+ 𝐶

𝑝/2

1
+ 𝐶

𝑝/2

1
𝐶

𝑝
)𝑑𝑠 :=

̃

𝐶

(1)

𝑝
.

(33)

We now use the Burholder-Davis-Gundy inequality ([18,
Theorem 2.6]) to estimate the stochastic integral

𝐸 sup
𝑡∈[0,𝑇]

















∫

𝑡∧𝜏𝐷

0

2𝑋

𝑇

𝑁
(𝑠) 𝑈 (𝑋

𝑁
(𝑠)) 𝑑𝐵

𝑠

















𝑝/2

≤

̃

𝐶

(2)

𝑝
𝐸



















∫

𝑇

0











𝑋

𝑇

𝑁
(𝑠) 𝑈 (𝑋

𝑁
(𝑠))











2

2
𝑑𝑠



















𝑝/4

,

(34)

with

̃

𝐶

2

𝑝
:=

{

{

{

{

{

{

{

{

{

(

64

𝑝

)

𝑝/4

, 0 < 𝑝 < 4,

(𝑝/2)

𝑝/2+1

2(𝑝/2 − 1)

𝑝/2−1
, 4 ≥ 𝑝.

(35)

If 𝑝 = 2, we use the inequality √𝑥 ≤ 1 + 𝑥. For 𝑝 > 2,
we use the Hölder inequality to remove the power outside
the integral. Afterwards we proceed a similar technique as
we handled the term ∫

𝑇

0
‖𝑈(𝑋

𝑁
(𝑠))‖

2

2
𝑑𝑠, which leads to a

constant ̃𝐶(3)
𝑝
, such that

𝐸 sup
𝑡∈[0,𝑇]

















∫

𝑡∧𝜏𝐷

0

2𝑋

𝑇

𝑁
(𝑠) 𝑈 (𝑋

𝑁
(𝑠)) 𝑑𝐵

𝑠

















𝑝/2

≤

̃

𝐶

(3)

𝑝
. (36)

Combine (31)–(36), then it follows that

𝐸 sup
𝑡∈[0,𝑇]









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2

≤ 3

(𝑝−2)/2
𝐸









𝑋

0









𝑝

2
+ 3

(𝑝−2)/2
̃

𝐶

(1)

𝑝
+ 3

(𝑝−2)/2
̃

𝐶

(3)

𝑝
:=

̃

𝐶

𝑝
.

(37)

To complete the proof, we mention that 𝑡 ∧ 𝜏

𝐷
→ 𝑡 for

𝐷 → ∞. Furthermore, we note that the solution 𝑋
𝑁
(𝑡) is

continuous in 𝑡. Thus

sup
𝑡∈[0,𝑇]









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2
→ sup
𝑡∈[0,𝑇]









𝑋

𝑁
(𝑡)









𝑝

2
, a.s. (𝐷 → ∞) .

(38)

Since all terms are non negative and the limit exists, using
Fatou lemma, we have

𝐸 sup
𝑡∈[0,𝑇]









𝑋

𝑁
(𝑡)









𝑝

2
= 𝐸 lim
𝐷→∞

sup
𝑡∈[0,𝑇]









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2

≤ lim inf
𝐷→∞

𝐸 sup
𝑡∈[0,𝑇]









𝑋

𝑁
(𝑡 ∧ 𝜏

𝐷
)









𝑝

2
≤

̃

𝐶

𝑝
.

(39)

The uniform boundary of the expected supremum is
obtained.

In the following theorem, the main results are introduced
by the estimations of the moments.

Theorem 9. Let (A1)–(A3) hold. Then the Lorentz-Rössler
system given by (5) and (6) with 𝐸‖𝑋

0
‖

2

2
< ∞ possesses a

unique almost sure continuous solution process, which has the
following properties:

If in addition 𝐸‖𝑋
0
‖

𝑝

2
< ∞ for a fixed 𝑝 ∈ N is even, then

there exist two constants ̃𝐶(1) > 0 and ̃𝐶(2) > 0, which are only
dependent on 𝑇, 𝐸‖𝑋

0
‖

𝑝

2
, 𝑝, 𝜆, and 𝑏, such that

𝐸‖𝑋(𝑡)‖

𝑝

2
≤

̃

𝐶

(1)

, ∀𝑡 ∈ [0, 𝑇] ,

𝐸 sup
𝑡∈[0,𝑇]

‖𝑋(𝑡)‖

𝑝

2
≤

̃

𝐶

(2)

.

(40)
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Figure 11: Stochastic system with a white noise 𝑢
𝑖𝑖
= 0.1, 𝑖 = 1, 2, 3.

Proof. Since the coefficients of the system (5) satisfy the local
Lipschitz condition, the uniqueness follows. Furthermore,
Lemma 3 exists a continuous solution 𝑋

𝑁
(𝑡). To prove the

existence ofTheorem 9, we need to show that𝑋
𝑁
(𝑡) → 𝑋(𝑡)

for𝑁 → ∞.
Let 𝜏
𝐷
denote the stopping time introduced in (20) for an

𝑁 ∈ N. Using Lemma 8 and Chebyshev inequality, we get

P {𝜏
𝑁
(𝜔) < 𝑇} ≤ P{ sup

𝑡∈[0,𝑇]









𝑋

𝑁
(𝑡)







2
≥ 𝑁}

≤

𝐸 sup
𝑡∈[0,𝑇]









𝑋

𝑁
(𝑡)









2

2

𝑁

2

≤

̃

𝐶 (𝑇, 𝐸









𝑋

0









2

2
)

𝑁

2
→ 0, (𝑁 → ∞) .

(41)

We can find for almost every 𝜔 ∈ Ω and an 𝑁
0
(𝜔) such that

𝜏

𝑁0(𝜔)
= 𝑇. Moreover, we have

𝐶

𝑁
 (𝑋) = 𝐶

𝑁
(𝑋) = 𝐶 (𝑋) , 𝑁


≥ 𝑁 > 0, ∀‖𝑋‖2

≤ 𝑁.

(42)
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Figure 12: Deterministic system.

Thus

𝜏

𝑁
 ≥ 𝜏
𝑁
, 𝑋

𝑋0

𝑁
 (
⋅, 𝜔) = 𝑋

𝑋0

𝑁
(⋅, 𝜔) (almost sure) ,

on [0, 𝜏

𝑁
] ∀𝑁


≥ 𝑁.

(43)

From (43), if 𝜏
𝑁
= 𝑇, then 𝜏

𝑁
 = 𝑇 for all𝑁 ≥ 𝑁.Thus the set

{𝜔 : 𝜏

𝑁
(𝜔) = 𝑇} is monotonously increasing and converges

to Ω as𝑁 → ∞. Combining (41), we have

𝜏

𝑁

P
→ 𝑇, (𝑁 → ∞) .

(44)

Moreover, because𝑋
𝑁
(𝑡) is continuous in 𝑡 and converges to

𝑋(𝑡) uniformly in 𝑡, 𝑋(𝑡) is also continuous in 𝑡. (Actually,
note that if 𝜏

𝑁0(𝜔)
= 𝑇, then we can express for almost all

𝜔 ∈ Ω the limit function by 𝑋(⋅, 𝜔) := 𝑋

𝑁
(⋅, 𝜔) for all𝑁 ≥

𝑁

0
(𝜔).)
In the following proof, we have to show that the limit

function is the solution of the original Lorentz-Rössler
system. When 𝑡 = 0, it is obvious that 𝑋

𝑁
(0) = 𝑋(0) = 𝑋

0



Abstract and Applied Analysis 11

−0.5
0

0.5
1

−0.4
−0.2

0
0.2

0.4
0.2

0.4

0.6

0.8

1

sde 1
sde 2

sd
e
3

(a)

0 50 100 150

0 50 100 150

0 50 100 150

−0.5
0

0.5
1

sd
e
1

−0.5

0

0.5

sd
e
2

0

0.5

1

sd
e
3

(b)

Figure 13: Transform linear terms system with a white noise 𝑢
𝑖𝑖
=

0.1, 𝑖 = 1, 2, 3.

for all𝑁 ∈ N. For 𝑡 ∈ (0, 𝑇], we consider the limit of (9) for
𝑁 → ∞. By the definition of 𝜏

𝐷
in (20), it follows that

𝐶

𝑁
(𝑋

𝑁
(𝑡 ∧ 𝜏

𝑁
)) = 𝐶 (𝑋 (𝑡 ∧ 𝜏

𝑁
)) ,

𝑋

𝑁
(𝑡 ∧ 𝜏

𝑁
) = 𝑋 (𝑡 ∧ 𝜏

𝑁
) , ∀𝑡 < 𝑇.

(45)

Moreover the almost sure convergence of 𝜏
𝑁

(𝑁→∞)

→ 𝑇

implies

P{ sup
𝑡∈[0,𝑇]



















∫

𝑡

𝑡0

(𝐴 (𝑋

𝑁
(𝑠) − 𝑋 (𝑠)) + (𝐹 − 𝐹)

+ 𝐶

𝑁
(𝑋

𝑁
(𝑠)) − 𝐶 (𝑋 (𝑠))) 𝑑𝑠

+∫

𝑡

𝑡0

(𝑈 (𝑋

𝑁
(𝑠)) − 𝑈 (𝑋 (𝑠))) 𝑑𝐵

𝑠

















2

> 0}

≤ P {𝜏
𝑁
< 𝑡}

(𝑁→∞)

→ 0.

(46)
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Figure 14: Deterministic system with different linear terms.

In fact, if 𝜏
𝑁

≥ 𝑡, then 𝜏

𝑁
∧ 𝑡 = 𝑡. So 𝑋

𝑁
(𝑡) = 𝑋(𝑡),

𝐶

𝑁
(𝑋

𝑁
(𝑡)) = 𝐶(𝑋(𝑡)), and

sup
𝑡∈[0,𝑇]



















∫

𝑡

𝑡0

(𝐴 (𝑋

𝑁
(𝑠) − 𝑋 (𝑠)) + (𝐹 − 𝐹)

+ 𝐶

𝑁
(𝑋

𝑁
(𝑠)) − 𝐶 (𝑋 (𝑠))) 𝑑𝑠

+ ∫

𝑡

𝑡0

(𝑈 (𝑋

𝑁
(𝑠)) − 𝑈 (𝑋 (𝑠))) 𝑑𝐵

𝑠

















2

= 0.

(47)

Hence 𝑋(⋅) is a solution of the stochastic Lorentz-Rössler
system on [0, 𝑇]. Finally, the boundary of the moments (40)
can be obtained by the uniform convergence of𝑋

𝑁
(𝑡) to𝑋(𝑡)

in 𝑡, Lemmas 7 and 8.

4. Numerical Results

In this section, we give some numerical results with dif-
ferent parameters for which the stochastic and determin-
istic Lorentz-Rössler systems show qualitatively different
behaviors and illustrate our theory. The respective numerical
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Figure 15: Stochastic system with a white noise 𝑢
𝑖𝑖
= 0.1, 𝑖 = 1, 2, 3.

schemes are the stochastic and deterministic Runge-Kutta
numerical difference schemes. All of the initial value of our
problems are given by𝑋

0
= (1, 0.1, 1) and all of the systems of

this section satisfy our conditions (A1)–(A3). To simplify, in
this section, we only consider the independent noise (𝑢

𝑖𝑗,𝑖 ̸= 𝑗
=

0, 𝑖, 𝑗 = 1, 2, 3).
Firstly, we consider some examples to exhibit themoment

estimations of the Lorentz-Rössler combining systems.

Example 10. Let the coefficients of the linear terms be 𝜎 = 2,
𝑟 = 1, 𝑎 = −7, 𝑏 = 1, 𝛽 = 2, and 𝑐 = 1, and let nonlinear
parameters be 𝛼

1
(𝑡) = 2/(cos(𝑡2) + 2), 𝛼

2
(𝑡) = 1/(cos(𝑡2) + 2),

𝛼

3
(t) = 1/(cos(𝑡2) + 2), which easily satisfy the conditions

(A1)–(A3).The stochastic and deterministic (4) can be shown
by Figures 7, 8.

Let the nonlinear terms be 𝛼
1
(𝑡) = 4/(sin(𝑡2) + 8), 𝛼

2
(𝑡) =

3/(sin(𝑡2) + 8), and 𝛼

3
(𝑡) = 1/(sin(𝑡2) + 8), then we can

find that the stochastic and deterministic behavior make very
different trajectory (Figures 9, 10).

Example 11. Let 𝑐 = 0. To satisfy the condition (A2), it is
enough to take 𝛽 > 0 and 𝑎 < 1. Thus in this example, firstly,
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Figure 16: Stochastic systemwith a white noise 𝑢
𝑖𝑖
= 0.01, 𝑖 = 1, 2, 3.

we consider 𝜎 = 12, 𝑟 = −10, 𝑎 = −7, 𝑏 = 1, 𝛽 = 2, and 𝑐 = 0

and𝛼
1
(𝑡) = 1/(sin 𝑡+2)+5/(sin(𝑡2)+2),𝛼

2
(𝑡) = 5/(sin(𝑡2)+2),

and 𝛼
3
(𝑡) = 1/(sin 𝑡 + 2) (Figures 11, 12).

And in this example, we consider the effect of matrix 𝐴.
Change the linear terms and take 𝜎 = 9, 𝑟 = −10, 𝑎 = −18,
𝑏 = 1, 𝛽 = 2, and 𝑐 = 0 (Figures 13, 14).

Example 12. In this example, we mainly consider the effect of
the noise. Let 𝜎 = 2, 𝑟 = 0, 𝑎 = −18, 𝑏 = 1, 𝛽 = | cos 𝑡|,
𝑐 = 0 and 𝛼

1
(𝑡) = 𝑡/(2𝑡 + 2) − ((2 sin 𝑡 + 3) + 1/(cos(3𝑡) + 2)),

𝛼

2
(𝑡) = −((2 sin 𝑡+3)+1/(cos(3𝑡)+2)), and 𝛼

3
(𝑡) = 𝑡/(2𝑡+2)

(Figures 15–18).

In this paper, we have established a sufficient condition
under which the stochastic system (3) has a unique solution.
And from these numerical results, some interesting qualities
can be seen.

(i) From Examples 10–12, it is obvious that for any time
𝑇, Theorem 9 can be ensured. And the boundary of
the moments of the solutions can be obtained.

(ii) Examples 10 and 11 show that for (4), the effect of
the dynamical behavior would mainly depend on
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Figure 17: Stochastic system with a white noise 𝑢
𝑖𝑖
= 0.001, 𝑖 =

1, 2, 3.

the nonlinear terms. Some transformations especially
about linear terms are given by Example 11, but the
paths have small transformations.

(iii) For the more general Lorentz-Rössler systems, if the
uniqueness can be ensured, especially in Example 12,
we can show that the stochastic systems converge
toward the deterministic systemwhen the intensity of
noise converges to zero.

(iv) The system (3) gives us very abundant expressions
including the behavior of the well-known Lorentz
system and the Rössler system. Some systems with
appropriate parameters in (3) can be used to make
good hop-frequency time series.
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Figure 18: Deterministic system with a white noise 𝑢
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