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The sequence space ℓ(𝑝) was introduced by Maddox (1967). Quite recently, the sequence space ℓ(𝐵, 𝑝) of nonabsolute type has
been introduced and studied which is the domain of the double sequential bandmatrix 𝐵(𝑟, 𝑠) in the sequence space ℓ(𝑝) by Nergiz
and Başar (2012). The main purpose of this paper is to investigate the geometric properties of the space ℓ(𝐵, 𝑝), like rotundity and
Kadec-Klee and the uniform Opial properties. The last section of the paper is devoted to the conclusion.

1. Introduction

By 𝜔, we denote the space of all real-valued sequences. Any
vector subspace of 𝜔 is called a sequence space. We write ℓ

∞
,

𝑐, and 𝑐
0
for the spaces of all bounded, convergent, and null

sequences, respectively. Also by 𝑏𝑠, 𝑐𝑠, ℓ
1
, and ℓ

𝑝
; we denote

the spaces of all bounded, convergent, absolutely convergent,
and 𝑝-absolutely convergent series, respectively, where 1 <

𝑝 < ∞.
Assume here and after that (𝑝

𝑘
) is a bounded sequence

of strictly positive real numbers with sup𝑝
𝑘

= 𝐻 and
𝑀 = max{1,𝐻}. Then, the linear space ℓ(𝑝) was defined by
Maddox [1] (see also Simons [2] and Nakano [3]) as follows:

ℓ (𝑝) = {𝑥 = (𝑥
𝑘
) ∈ 𝑤 : ∑

𝑘

𝑥𝑘


𝑝𝑘
< ∞}

(0 < 𝑝
𝑘
≤ 𝐻 < ∞)

(1)

which is complete paranormed space paranormed by

𝑔 (𝑥) = (∑

𝑘

𝑥𝑘


𝑝𝑘
)

1/𝑀

. (2)

For simplicity in notation, here and in what follows, the
summation without limits runs from 1 to∞.

Quite recently, Nergiz and Başar [4] have introduced
the space ℓ(𝐵, 𝑝) of nonabsolute type which consists of all
sequences whose 𝐵(𝑟, 𝑠)-transforms are in the space ℓ(𝑝),
where 𝐵(𝑟, 𝑠) = {𝑏

𝑛𝑘
(𝑟
𝑘
, 𝑠
𝑘
)} is defined by

𝑏
𝑛𝑘
(𝑟
𝑘
, 𝑠
𝑘
) =

{{

{{

{

𝑟
𝑘
, 𝑘 = 𝑛,

𝑠
𝑘
, 𝑘 = 𝑛 − 1,

0, otherwise
(3)

for all 𝑘, 𝑛 ∈ N, where 𝑟 = (𝑟
𝑘
) and 𝑠 = (𝑠

𝑘
) are the convergent

sequences. We should record that the double sequential band
matrices were used for determining its fine spectrum over
some sequence spaces by Kumar and Srivastava in [5, 6],
Panigrahi and Srivastava in [7], and Akhmedov and El-
Shabrawy in [8].The reader may refer to Nergiz and Başar [4,
9] for relevant terminology and additional references on the
space ℓ(𝐵, 𝑝), since the present paper is a natural continuation
of them. Here and after, for short we write 𝐵 instead of 𝐵(𝑟, 𝑠).
In the special case 𝑝

𝑘
= 𝑝 for all 𝑘 ∈ N, the space ℓ(𝐵, 𝑝) is

reduced to the space (ℓ
𝑝
)
𝐵
; that is,

(ℓ
𝑝
)
𝐵

:= {(𝑥
𝑘
) ∈ 𝜔 : ∑

𝑘

𝑠𝑘−1𝑥𝑘−1 + 𝑟
𝑘
𝑥
𝑘



𝑝

< ∞} ,

(0 < 𝑝 < ∞) .

(4)
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2. The Rotundity of the Space ℓ(𝐵,𝑝)

The rotundity of Banach spaces is one of the most important
geometric property in functional analysis. For details, the
reader may refer to [10–12]. In this section, we characterize
the rotundity of the space ℓ(𝐵, 𝑝) and give some results related
to this concept.

Definition 1. Let 𝑆(𝑋) be the unit sphere of a Banach space𝑋.
Then, a point 𝑥 ∈ 𝑆(𝑋) is called an extreme point if 2𝑥 = 𝑦+𝑧

implies 𝑦 = 𝑧 for every 𝑦, 𝑧 ∈ 𝑆(𝑋). A Banach space 𝑋 is
said to be rotund (strictly convex) if every point of 𝑆(𝑋) is an
extreme point.

Definition 2. A Banach space 𝑋 is said to have Kadec-
Klee property (or property (H)) if every weakly convergent
sequence on the unit sphere is convergent in norm.

Definition 3. A Banach space𝑋 is said to have

(i) the Opial property if every sequence (𝑥
𝑛
) weakly

convergent to 𝑥
0
∈ 𝑋 satisfies

lim inf
𝑛→∞

𝑥𝑛 − 𝑥
0

 < lim inf
𝑛→∞

𝑥𝑛 + 𝑥
 (5)

for every 𝑥 ∈ 𝑋 with 𝑥 ̸= 𝑥
0
;

(ii) the uniform Opial property if for each 𝜖 > 0, there
exists an 𝑟 > 0 such that

1 + 𝑟 ≤ lim inf
𝑛→∞

𝑥𝑛 + 𝑥
 (6)

for each 𝑥 ∈ 𝑋 with ‖𝑥‖ ≥ 𝜖 and each sequence (𝑥
𝑛
)

in𝑋 such that 𝑥
𝑛
→ 0 and lim inf

𝑛→∞
‖𝑥
𝑛
‖ ≥ 1.

Definition 4. Let 𝑋 be a real vector space. A functional 𝜎 :

𝑋 → [0,∞) is called a modular if

(i) 𝜎(𝑥) = 0 if and only if 𝑥 = 𝜃;
(ii) 𝜎(𝛼𝑥) = 𝜎(𝑥) for all scalars 𝛼 with |𝛼| = 1;
(iii) 𝜎(𝛼𝑥+𝛽𝑦) ≤ 𝜎(𝑥)+𝜎(𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼, 𝛽 ≥ 0

with 𝛼 + 𝛽 = 1;
(iv) themodular𝜎 is called convex if𝜎(𝛼𝑥+𝛽𝑦) ≤ 𝛼𝜎(𝑥)+

𝛽𝜎(𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼, 𝛽 > 0 with 𝛼 + 𝛽 = 1.

A modular 𝜎 on𝑋 is called

(a) right continuous if lim
𝛼→1

+𝜎(𝛼𝑥) = 𝜎(𝑥) for all 𝑥 ∈

𝑋
𝜎
.

(b) left continuous if lim
𝛼→1

−𝜎(𝛼𝑥) = 𝜎(𝑥) for all 𝑥 ∈

𝑋
𝜎
.

(c) continuous if it is both right and left continuous,
where

𝑋
𝜎
= {𝑥 ∈ 𝑋 : lim

𝛼→0
+
𝜎 (𝛼𝑥) = 0} . (7)

We define 𝜎
𝑝
on ℓ(𝐵, 𝑝) by 𝜎

𝑝
(𝑥) = ∑

𝑘
|𝑠
𝑘−1

𝑥
𝑘−1

+𝑟
𝑘
𝑥
𝑘
|
𝑝𝑘 .

If 𝑝
𝑘
≥ 1 for all 𝑘 ∈ N = {1, 2, 3, . . .}, by the convexity of the

function 𝑡 → |𝑡|
𝑝𝑘 for each 𝑘 ∈ N, 𝜎

𝑝
is a convex modular on

ℓ(𝐵, 𝑝).

Proposition 5. Themodular 𝜎
𝑝
on ℓ(𝐵, 𝑝) satisfies the follow-

ing properties with 𝑝
𝑘
≥ 1 for all 𝑘 ∈ N:

(i) if 0 < 𝛼 ≤ 1, then 𝛼
𝑀

𝜎
𝑝
(𝑥/𝛼) ≤ 𝜎

𝑝
(𝑥) and 𝜎

𝑝
(𝛼𝑥) ≤

𝛼𝜎
𝑝
(𝑥).

(ii) If 𝛼 ≥ 1, then 𝜎
𝑝
(𝑥) ≤ 𝛼

𝑀

𝜎
𝑝
(𝑥/𝛼).

(iii) If 𝛼 ≥ 1, then 𝜎
𝑝
(𝑥) ≤ 𝛼𝜎

𝑝
(𝑥/𝛼).

(iv) The modular 𝜎
𝑝

is continuous on the space ℓ(𝐵, 𝑝).

Proof. Consider the modular 𝜎
𝑝
on ℓ(𝐵, 𝑝).

(i) Let 0 < 𝛼 ≤ 1, then 𝛼
𝑀

/𝛼
𝑝𝑘 ≤ 1. So, we have

𝛼
𝑀

𝜎
𝑝
(
𝑥

𝛼
) = 𝛼

𝑀

∑

𝑘

1

𝛼𝑝𝑘

𝑠𝑘−1𝑥𝑘−1 + 𝑟
𝑘
𝑥
𝑘



𝑝𝑘

= ∑

𝑘

𝛼
𝑀

𝛼𝑝𝑘

𝑠𝑘−1𝑥𝑘−1 + 𝑟
𝑘
𝑥
𝑘



𝑝𝑘

≤ ∑

𝑘

𝑠𝑘−1𝑥𝑘−1 + 𝑟
𝑘
𝑥
𝑘



𝑝𝑘
= 𝜎
𝑝
(𝑥) ,

𝜎
𝑝
(𝛼𝑥) = ∑

𝑘

𝛼
𝑝𝑘
𝑠𝑘−1𝑥𝑘−1 + 𝑟

𝑘
𝑥
𝑘



𝑝𝑘

≤ 𝛼∑

𝑘

𝑠𝑘−1𝑥𝑘−1 + 𝑟
𝑘
𝑥
𝑘



𝑝𝑘
= 𝛼𝜎
𝑝
(𝑥) .

(8)

(ii) Let 𝛼 ≥ 1. Then, 𝛼𝑀/𝛼𝑝𝑘 ≥ 1 for all 𝑝
𝑘
≥ 1. So, we

have

𝜎
𝑝
(𝑥) ≤

𝛼
𝑀

𝛼𝑝𝑘
𝜎
𝑝
(𝑥) = 𝛼

𝑀

𝜎
𝑝
(
𝑥

𝛼
) . (9)

(iii) Let 𝛼 ≥ 1. Then, 𝛼/𝛼𝑝𝑘 ≥ 1 for all 𝑝
𝑘
≥ 1. So, we have

𝜎
𝑝
(𝑥) = ∑

𝑘

𝑠𝑘−1𝑥𝑘−1 + 𝑟
𝑘
𝑥
𝑘



𝑝𝑘

≤ ∑

𝑘

𝛼

𝛼𝑝𝑘

𝑠𝑘−1𝑥𝑘−1 + 𝑟
𝑘
𝑥
𝑘



𝑝𝑘
= 𝛼𝜎
𝑝
(
𝑥

𝛼
) .

(10)

(iv) By (ii) and (iii), one can immediately see for 𝛼 > 1

that

𝜎
𝑝
(𝑥) ≤ 𝛼𝜎

𝑝
(𝑥) ≤ 𝜎

𝑝
(𝛼𝑥) ≤ 𝛼

𝑀

𝜎
𝑝
(𝑥) . (11)

By passing to limit as 𝛼 → 1
+ in (11), we have

lim
𝛼→1

+𝜎
𝑝
(𝛼𝑥) = 𝜎

𝑝
(𝑥). Hence, 𝜎

𝑝
is right contin-

uous. If 0 < 𝛼 < 1, by (i) we have

𝛼
𝑀

𝜎
𝑝
(𝑥) ≤ 𝜎

𝑝
(𝛼𝑥) ≤ 𝛼𝜎

𝑝
(𝑥) . (12)

By letting 𝛼 → 1
− in (12), we observe that

lim
𝛼→1

−𝜎
𝑝
(𝛼𝑥) = 𝜎

𝑝
(𝑥). Hence, 𝜎

𝑝
is also left con-

tinuous, and so, it is continuous.
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Proposition 6. For any 𝑥 ∈ ℓ(𝐵, 𝑝), the following statements
hold:

(i) if ‖𝑥‖ < 1, then 𝜎
𝑝
(𝑥) ≤ ‖𝑥‖.

(ii) If ‖𝑥‖ > 1, then 𝜎
𝑝
(𝑥) ≥ ‖𝑥‖.

(iii) ‖𝑥‖ = 1 if and only if 𝜎
𝑝
(𝑥) = 1.

(iv) ‖𝑥‖ < 1 if and only if 𝜎
𝑝
(𝑥) < 1.

(v) ‖𝑥‖ > 1 if and only if 𝜎
𝑝
(𝑥) > 1.

Proof. Let 𝑥 ∈ ℓ(𝐵, 𝑝).

(i) Let 𝜖 > 0 be such that 0 < 𝜖 < 1−‖𝑥‖. By the definition
of ‖ ⋅ ‖, there exists an 𝛼 > 0 such that ‖𝑥‖ + 𝜖 > 𝛼 and
𝜎
𝑝
(𝑥) ≤ 1. From Parts (i) and (ii) of Proposition 5, we

obtain

𝜎
𝑝
(𝑥) ≤ 𝜎

𝑝
[(‖𝑥‖ + 𝜖)

𝑥

𝛼
] ≤ (‖𝑥‖ + 𝜖) 𝜎

𝑝
(
𝑥

𝛼
) ≤ ‖𝑥‖ + 𝜖.

(13)

Since 𝜖 is arbitrary, we have (i).
(ii) If we choose 𝜖 > 0 such that 0 < 𝜖 < 1 − (1/‖𝑥‖), then

1 < (1−𝜖)‖𝑥‖ < ‖𝑥‖. By the definition of ‖ ⋅ ‖ and Part
(i) of Proposition 5, we have

1 < 𝜎
𝑝
[

𝑥

(1 − 𝜖) ‖𝑥‖
] ≤

1

(1 − 𝜖) ‖𝑥‖
𝜎
𝑝
(𝑥) . (14)

So, (1 − 𝜖)‖𝑥‖ < 𝜎
𝑝
(𝑥) for all 𝜖 ∈ (0, 1 − (1/‖𝑥‖)). This

implies that ‖𝑥‖ < 𝜎
𝑝
(𝑥).

(iii) Since 𝜎
𝑝
is continuous, by Theorem 1.4 of [12] we

directly have (iii).
(iv) This follows from Parts (i) and (iii).
(v) This follows from Parts (ii) and (iii).

Now, we consider the space ℓ(𝐵, 𝑝) equipped with the
Luxemburg norm given by

‖𝑥‖ = inf {𝛼 > 0 : 𝜎
𝑝
(
𝑥

𝛼
) ≤ 1} . (15)

Theorem 7. ℓ(𝐵, 𝑝) is a Banach space with Luxemburg norm.

Proof. Let 𝑆
𝑥
= {𝛼 > 0 : 𝜎

𝑝
(𝑥/𝛼) ≤ 1} and ‖𝑥‖ = inf 𝑆

𝑥
for

all 𝑥 ∈ ℓ(𝐵, 𝑝). Then, 𝑆
𝑥
⊂ (0,∞). Therefore, ‖𝑥‖ ≥ 0 for all

𝑥 ∈ ℓ(𝐵, 𝑝).
For 𝑥 = 𝜃, 𝜎

𝑝
(𝜃) = 0 for all 𝛼 > 0. Hence, 𝑆

0
= (0,∞) and

‖𝜃‖ = inf 𝑆
0
= inf(0,∞) = 0.

Let 𝑥 ̸= 𝜃 and 𝑌 = {𝑘𝑥 : 𝑘 ∈ C and 𝑥 ∈ ℓ(𝐵, 𝑝)} be
a nonempty subset of ℓ(𝐵, 𝑝). Since 𝑌 ⊊ 𝑆[ℓ(𝐵, 𝑝)], there
exists 𝑘

1
∈ C such that 𝑘

1
𝑥 ∉ 𝑆[ℓ(𝐵, 𝑝)]. Obviously, 𝑘

1
̸= 0.

We assume that 0 < 𝛼 < 1/𝑘
1
and 𝛼 ∈ 𝑆

𝑥
. Then, (𝑥/𝛼) ∈

𝑆[ℓ(𝐵, 𝑝)]. Since |𝑘
1
𝛼| < 1, we get

𝑘
1
𝑥 = 𝑘
1
𝛼
𝑥

𝛼
∈ 𝑆 [ℓ (𝐵, 𝑝)] (16)

which contradicts the assumption. Hence, we obtain that if
𝛼 ∈ 𝑆

𝑥
, then 𝛼 > 1/|𝑘

1
|. This means that ‖𝑥‖ ≥ 1/|𝑘

1
| > 0.

Thus, we conclude that ‖𝑥‖ = 0 if and only if 𝑥 = 𝜃.
Now, let 𝑘 ̸= 0 and 𝛼 ∈ 𝑆

𝑘𝑥
. Then, we have

𝜎
𝑝
(
𝑘𝑥

𝛼
) ≤ 1,

𝑘𝑥

𝛼
∈ 𝑆 [ℓ (𝐵, 𝑝)] . (17)

Therefore, we obtain

|𝑘| 𝑥

𝛼
=
|𝑘|

𝑘
×
𝑘𝑥

𝛼
∈ 𝑆 [ℓ (𝐵, 𝑝)] ,

𝛼

|𝑘|
∈ 𝑆
𝑥
. (18)

That is, ‖𝑥‖ ≤ 𝛼/|𝑘| and |𝑘|‖𝑥‖ ≤ 𝛼 for all 𝛼 ∈ 𝑆
𝑘𝑥
. So, |𝑘|‖𝑥‖ ≤

‖𝑘𝑥‖.
If we take 1/𝑘 and 𝑘𝑥 instead of 𝑘 and 𝑥, respectively, then

we obtain that


1

𝑘𝑥


‖𝑘𝑥‖ ≤



1

𝑘
𝑘𝑥


= ‖𝑥‖ , ‖𝑘𝑥‖ ≤ |𝑘| ‖𝑥‖ . (19)

Hence, we get ‖𝑘𝑥‖ = |𝑘|‖𝑥‖. This also holds when 𝑘 = 0.
To prove the triangle inequality, let 𝑥, 𝑦 ∈ ℓ(𝐵, 𝑝) and 𝜖 >

0 be given. Then, there exist 𝛼 ∈ 𝑆
𝑥
and 𝛽 ∈ 𝑆

𝑦
such that

𝛼 < ‖𝑥‖ + 𝜖 and 𝛽 < ‖𝑦‖ + 𝜖. Since 𝑆[ℓ(𝐵, 𝑝)] is convex,

𝑥

𝛼
∈ 𝑆 [ℓ (𝐵, 𝑝)] ,

𝑦

𝛽
∈ 𝑆 [ℓ (𝐵, 𝑝)] ,

(𝑥 + 𝑦)

𝛼 + 𝛽
=

𝛼

𝛼 + 𝛽
(
𝑥

𝛼
) +

𝛽

𝛼 + 𝛽
(
𝑦

𝛽
) ∈ 𝑆 [ℓ (𝐵, 𝑝)] .

(20)

Therefore, 𝛼 + 𝛽 ∈ 𝑆
𝑥+𝑦

. Then, we have ‖𝑥 + 𝑦‖ ≤ 𝛼 + 𝛽 <

‖𝑥‖ + ‖𝑦‖ + 2𝜖. Since 𝜖 > 0 was arbitrary, we obtain ‖𝑥 + 𝑦‖ ≤

‖𝑥‖ + ‖𝑦‖. Hence, ‖𝑥‖ = inf{𝛼 > 0 : 𝜎
𝑝
(𝑥/𝛼) ≤ 1} is a norm

on ℓ(𝐵, 𝑝).
Now, we need to show that every Cauchy sequence in

ℓ(𝐵, 𝑝) is convergent according to the Luxemburg norm. Let
{𝑥
(𝑛)

𝑘
} be a Cauchy sequence in ℓ(𝐵, 𝑝) and 𝜖 ∈ (0, 1). Thus,

there exists 𝑛
0
such that ‖𝑥(𝑛) − 𝑥

(𝑚)

‖ < 𝜖 for all 𝑛,𝑚 ≥ 𝑛
0
. By

Part (i) of Proposition 6, we have

𝜎
𝑝
(𝑥
(𝑛)

− 𝑥
(𝑚)

) ≤

𝑥
(𝑛)

− 𝑥
(𝑚)


< 𝜖 (21)

for all 𝑛,𝑚 ≥ 𝑛
0
. This implies that

∑

𝑘


[𝐵 (𝑥
(𝑛)

− 𝑥
(𝑚)

)]
𝑘



𝑝𝑘

< 𝜖. (22)

Then, for each fixed 𝑘 and for all 𝑛,𝑚 ≥ 𝑛
0
,


[𝐵 (𝑥
(𝑛)

− 𝑥
(𝑚)

)]
𝑘


=

(𝐵𝑥
(𝑛)

)
𝑘

− (𝐵𝑥
(𝑚)

)
𝑘


< 𝜖. (23)

Hence, the sequence {(𝐵𝑥
(𝑛)

)
𝑘
} is a Cauchy sequence in

R. Since R is complete, there is a (𝐵𝑥)
𝑘

∈ R such that
(𝐵𝑥
(𝑚)

)
𝑘
→ (𝐵𝑥)

𝑘
as 𝑚 → ∞. Therefore, as 𝑚 → ∞ by

(22), we have

∑

𝑘


[𝐵 (𝑥
(𝑛)

− 𝑥)]
𝑘



𝑝𝑘

< 𝜖 (24)

for all 𝑛 ≥ 𝑛
0
.
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Now, we have to show that (𝑥
𝑘
) is an element of ℓ(𝐵, 𝑝).

Since (𝐵𝑥(𝑚))
𝑘
→ (𝐵𝑥)

𝑘
as𝑚 → ∞, we have

lim
𝑚→∞

𝜎
𝑝
(𝑥
(𝑛)

− 𝑥
(𝑚)

) = 𝜎
𝑝
(𝑥
(𝑛)

− 𝑥) . (25)

Then, we see by (21) that 𝜎
𝑝
(𝑥
(𝑛)

− 𝑥) ≤ ‖𝑥
(𝑛)

− 𝑥‖ < 𝜖 for
all 𝑛 ≥ 𝑛

0
. This implies that 𝑥𝑛 → 𝑥 as 𝑛 → ∞. So, we

have 𝑥 = 𝑥
(𝑛)

− (𝑥
(𝑛)

− 𝑥) ∈ ℓ(𝐵, 𝑝). Therefore, the sequence
space ℓ(𝐵, 𝑝) is complete with respect to Luxemburg norm.
This completes the proof.

Theorem 8. The space ℓ(𝐵, 𝑝) is rotund if and only if 𝑝
𝑘
> 1

for all 𝑘 ∈ N.

Proof. Let ℓ(𝐵, 𝑝) be rotund and choose 𝑘 ∈ N such that 𝑝
𝑘
=

1 for 𝑘 < 3. Consider the following sequences given by

𝑥 = (0,
1

𝑟
1

,
−𝑠
1

𝑟
1
𝑟
2

,
𝑠
1
𝑠
2

𝑟
1
𝑟
2
𝑟
3

, . . .) ,

𝑦 = (0, 0,
1

𝑟
2

,
−𝑠
2

𝑟
2
𝑟
3

,
𝑠
2
𝑠
3

𝑟
2
𝑟
3
𝑟
4

, . . .) .

(26)

Then, obviously 𝑥 ̸= 𝑦 and

𝜎
𝑝
(𝑥) = 𝜎

𝑝
(𝑦) = 𝜎

𝑝
(
𝑥 + 𝑦

2
) = 1. (27)

By Part (iii) of Proposition 6, 𝑥, 𝑦, (𝑥 + 𝑦)/2 ∈ 𝑆[ℓ(𝐵, 𝑝)]

which leads us to the contradiction that the sequence space
ℓ(𝐵, 𝑝) is not rotund. Hence, 𝑝

𝑘
> 1 for all 𝑘 ∈ N.

Conversely, let 𝑥 ∈ 𝑆[ℓ(𝐵, 𝑝)] and V, 𝑧 ∈ 𝑆[ℓ(𝐵, 𝑝)]

with 𝑥 = (V + 𝑧)/2. By convexity of 𝜎
𝑝
and Part (iii) of

Proposition 6, we have

1 = 𝜎
𝑝
(𝑥) ≤

𝜎
𝑝
(V) + 𝜎

𝑝
(𝑧)

2
≤
1

2
+
1

2
= 1, (28)

which gives that 𝜎
𝑝
(V) = 𝜎

𝑝
(𝑧) = 1, and

𝜎
𝑝
(𝑥) =

𝜎
𝑝
(V) + 𝜎

𝑝
(𝑧)

2
. (29)

Also, we obtain from (29) that

∑

𝑘

𝑠𝑘−1𝑥𝑘−1 + 𝑟
𝑘
𝑥
𝑘



𝑝𝑘
=

1

2
(∑

𝑘

𝑠𝑘−1V𝑘−1 + 𝑟
𝑘
V
𝑘



𝑝𝑘

+∑

𝑘

𝑠𝑘−1𝑧𝑘−1 + 𝑟
𝑘
𝑧
𝑘



𝑝𝑘
) .

(30)

Since 𝑥 = (V + 𝑧)/2, we have

∑

𝑘

𝑠𝑘−1 (V𝑘−1 + 𝑧
𝑘−1

) + 𝑟
𝑘
(V
𝑘
+ 𝑧
𝑘
)


𝑝𝑘

=
1

2
(∑

𝑘

𝑠𝑘−1V𝑘−1+𝑟𝑘V𝑘


𝑝𝑘
+∑

𝑘

𝑠𝑘−1𝑧𝑘−1+𝑟𝑘𝑧𝑘


𝑝𝑘
) .

(31)

This implies that

𝑠𝑘−1 (V𝑘−1 + 𝑧
𝑘−1

) + 𝑟
𝑘
(V
𝑘
+ 𝑧
𝑘
)


𝑝𝑘

=
1

2

𝑠𝑘−1V𝑘−1 + 𝑟
𝑘
V
𝑘



𝑝𝑘
+
1

2

𝑠𝑘−1𝑧𝑘−1 + 𝑟
𝑘
𝑧
𝑘



𝑝𝑘

(32)

for all 𝑘 ∈ N. Since the function 𝑡 → |𝑡|
𝑝𝑘 is strictly convex for

all 𝑘 ∈ N, it follows by (32) that V
𝑘
= 𝑧
𝑘
for all 𝑘 ∈ N. Hence,

V = 𝑧. That is, the sequence space ℓ(𝐵, 𝑝) is rotund.

Theorem 9. Let 𝑥 ∈ ℓ(𝐵, 𝑝). Then, the following statements
hold:

(i) 0 < 𝛼 < 1 and ‖x‖ > 𝛼 imply 𝜎
𝑝
(𝑥) > 𝛼

𝑀.

(ii) 𝛼 ≥ 1 and ‖𝑥‖ < 𝛼 imply 𝜎
𝑝
(𝑥) < 𝛼

𝑀.

Proof. Let 𝑥 ∈ ℓ(𝐵, 𝑝).

(i) Suppose that ‖𝑥‖ > 𝛼 with 0 < 𝛼 < 1. Then,
‖𝑥/𝛼‖ > 1. By Part (ii) of Proposition 6, ‖𝑥/𝛼‖ > 1

implies 𝜎
𝑝
(𝑥/𝛼) ≥ ‖𝑥/𝛼‖ > 1. That is, 𝜎

𝑝
(𝑥/𝛼) > 1.

Since 0 < 𝛼 < 1, by Part (i) of Proposition 5, we get
𝛼
𝑀

𝜎
𝑝
(𝑥/𝛼) ≤ 𝜎

𝑝
(𝑥). Thus, we have 𝛼𝑀 < 𝜎

𝑝
(𝑥).

(ii) Let ‖𝑥‖ < 𝛼 and 𝛼 ≥ 1. Then, ‖𝑥/𝛼‖ < 1. By Part
(i) of Proposition 6, ‖𝑥/𝛼‖ < 1 implies 𝜎

𝑝
(𝑥/𝛼) ≤

‖𝑥/𝛼‖ < 1. That is, 𝜎
𝑝
(𝑥/𝛼) < 1. If 𝛼 = 1, then

𝜎
𝑝
(𝑥/𝛼) = 𝜎

𝑝
(𝑥) < 1 = 𝛼

𝑀. If 𝛼 > 1, then by Part (ii)
of Proposition 5, we have 𝜎

𝑝
(𝑥) ≤ 𝛼

𝑀

𝜎
𝑝
(𝑥/𝛼). This

means that 𝜎
𝑝
(𝑥) < 𝛼

𝑀.

Theorem 10. Let (𝑥
𝑛
) be a sequence in ℓ(𝐵, 𝑝). Then, the

following statements hold:

(i) limn→∞‖xn‖ = 1 implies lim
𝑛→∞

𝜎
𝑝
(𝑥
𝑛
) = 1.

(ii) lim
𝑛→∞

𝜎
𝑝
(𝑥
𝑛
) = 0 implies lim

𝑛→∞
‖𝑥
𝑛
‖ = 0.

Proof. Let (𝑥
𝑛
) be a sequence in ℓ(𝐵, 𝑝).

(i) Let lim
𝑛→∞

‖𝑥
𝑛
‖ = 1 and 𝜖 ∈ (0, 1). Then, there exists

𝑛
0
∈ N such that 1− 𝜖 < ‖𝑥

𝑛
‖ < 𝜖+ 1 for all 𝑛 ≥ 𝑛

0
. By

Parts (i) and (ii) of Theorem 9, 1 − 𝜖 < ‖𝑥
𝑛
‖ implies

𝜎
𝑝
(𝑥
𝑛
) > (1 − 𝜖)

𝑀 and ‖𝑥
𝑛
‖ < 𝜖 + 1 implies 𝜎

𝑝
(𝑥
𝑛
) <

(1 + 𝜖)
𝑀 for all 𝑛 ≥ 𝑛

0
. This means 𝜖 ∈ (0, 1) and for

all 𝑛 ≥ 𝑛
0
there exists 𝑛

0
∈ N such that (1 − 𝜖)

𝑀

<

𝜎
𝑝
(𝑥
𝑛
) < (1 + 𝜖)

𝑀. That is, lim
𝑛→∞

𝜎
𝑝
(𝑥
𝑛
) = 1.

(ii) We assume that lim
𝑛→∞

‖𝑥
𝑛
‖ ̸= 0 and 𝜖 ∈ (0, 1).Then,

there exists a subsequence (𝑥
𝑛𝑘
) of (𝑥

𝑛
) such that

‖𝑥
𝑛𝑘
‖ > 𝜖 for all 𝑘 ∈ N. By Part (i) of Theorem 9,

0 < 𝜖 < 1 and ‖𝑥
𝑛𝑘
‖ > 𝜖 imply 𝜎

𝑝
(𝑥
𝑛𝑘
) > 𝜖
𝑀. Thus,

lim
𝑛→∞

𝜎
𝑝
(𝑥
𝑛
) ̸= 0 for all 𝑘 ∈ N. Hence, we obtain

that lim
𝑛→∞

𝜎
𝑝
(𝑥
𝑛
) = 0 implies lim

𝑛→∞
‖𝑥
𝑛
‖ = 0.

Theorem 11. Let 𝑥 ∈ ℓ(𝐵, 𝑝) and (𝑥
(𝑛)

) ⊂ ℓ(𝐵, 𝑝). If
𝜎
𝑝
(𝑥
(𝑛)

) → 𝜎
𝑝
(𝑥) as 𝑛 → ∞ and 𝑥

(𝑛)

𝑘
→ 𝑥
𝑘
as 𝑛 → ∞

for all 𝑘 ∈ N, then 𝑥
(𝑛)

→ 𝑥 as 𝑛 → ∞.
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Proof. Let 𝜖 > 0 be given. Since 𝜎
𝑝
(𝑥) = ∑

𝑘
|(𝐵𝑥)
𝑘
|
𝑝𝑘 < ∞,

there exists 𝑘
0
∈ N such that

∞

∑

𝑘=𝑘0+1


(𝐵𝑥)
𝑘



𝑝𝑘

<
𝜖

3 (2𝑀+1)
. (33)

It follows from the fact

lim
𝑛→∞

[𝜎
𝑝
(𝑥
(𝑛)

) −

𝑘0

∑

𝑘=1


(𝐵𝑥
(𝑛)

)
𝑘



𝑝𝑘

] = 𝜎
𝑝
(𝑥) −

𝑘0

∑

𝑘=1


(𝐵𝑥)
𝑘



𝑝𝑘

(34)

that there exists 𝑛
0
∈ N such that for all 𝑛 ≥ 𝑛

0
and for all

𝑘 ∈ N,

𝜎
𝑝
(𝑥
𝑛𝑘
) −

𝑘0

∑

𝑘=1


(𝐵𝑥
(𝑛)

)
𝑘



𝑝𝑘

< 𝜎
𝑝
(𝑥) −

𝑘0

∑

𝑘=1


(𝐵𝑥)
𝑘



𝑝𝑘

+
𝜖

3 (2𝑀)
,

(35)

and for all 𝑛 ≥ 𝑛
0
,

𝑘0

∑

𝑘=1


{𝐵 (𝑥
(𝑛)

− 𝑥)}
𝑘



𝑝𝑘

<
𝜖

3
. (36)

Therefore, we obtain from (33), (35), and (36) that

𝜎
𝑝
(𝑥
𝑛
− 𝑥) =

∞

∑

𝑘=1


{𝐵 (𝑥
(𝑛)

− 𝑥)}
𝑘



𝑝𝑘

<

𝑘0

∑

𝑘=1


{𝐵 (𝑥
(𝑛)

− 𝑥)}
𝑘



𝑝𝑘

+

∞

∑

𝑘=𝑘0+1


{𝐵 (𝑥
(𝑛)

− 𝑥)}
𝑘



𝑝𝑘

<
𝜖

3
+ 2
𝑀[

[

∞

∑

𝑘=𝑘0+1


(𝐵𝑥
(𝑛)

)
𝑘



𝑝𝑘

+

∞

∑

𝑘=𝑘0+1


(𝐵𝑥)
𝑘



𝑝𝑘]

]

<
𝜖

3
+ 2
𝑀[

[

𝜎
𝑝
(𝑥
𝑛
) −

𝑘0

∑

𝑘=1


(𝐵𝑥
(𝑛)

)
𝑘



𝑝𝑘

+

∞

∑

𝑘0+1


(𝐵𝑥)
𝑘



𝑝𝑘]

]

<
𝜖

3
+ 2
𝑀[

[

𝜎
𝑝
(𝑥) −

𝑘0

∑

𝑘=1


(𝐵𝑥)
𝑘



𝑝𝑘

+
𝜖

3 (2𝑀)
+

∞

∑

𝑘=𝑘0+1


(𝐵𝑥)
𝑘



𝑝𝑘]

]

<
𝜖

3
+ 2
𝑀[

[

2

∞

∑

𝑘=𝑘0+1


(𝐵𝑥)
𝑘



𝑝𝑘

+
𝜖

3 (2𝑀)

]

]

<
𝜖

3
+ 2
𝑀

[2
𝜖

3 (2𝑀+1)
+

𝜖

3 (2𝑀)
] = 𝜖.

(37)

This means that 𝜎
𝑝
(𝑥
(𝑛)

− 𝑥) → 0 as 𝑛 → ∞. By Part (ii) of
Theorem 10, 𝜎

𝑝
(𝑥
(𝑛)

−𝑥) → 0 as 𝑛 → ∞ implies ‖𝑥
𝑛
−𝑥‖ →

0 as 𝑛 → ∞. Hence, 𝑥
𝑛
→ 𝑥 as 𝑛 → ∞.

Theorem 12. The sequence space ℓ(𝐵, 𝑝) has the Kadec-Klee
property.

Proof. Let 𝑥 ∈ 𝑆[ℓ(𝐵, 𝑝)] and (𝑥
(𝑛)

) ⊂ ℓ(𝐵, 𝑝) such that
‖𝑥
(𝑛)

‖ → 1 and 𝑥
(𝑛)
𝑤

→ 𝑥 are given. By Part (ii) of
Theorem 10, we have 𝜎

𝑝
(𝑥
(𝑛)

) → 1 as 𝑛 → ∞. Also 𝑥 ∈

𝑆[ℓ(𝐵, 𝑝)] implies ‖𝑥‖ = 1. By Part (iii) of Proposition 6, we
obtain 𝜎

𝑝
(𝑥) = 1. Therefore, we have 𝜎

𝑝
(𝑥
(𝑛)

) → 𝜎
𝑝
(𝑥) as

𝑛 → ∞.
Since 𝑥

(𝑛)
𝑤

→ 𝑥 and 𝑞
𝑘

: ℓ(𝐵, 𝑝) → R defined by
𝑞
𝑘
(𝑥) = 𝑥

𝑘
is continuous, 𝑥(𝑛)

𝑘
→ 𝑥
𝑘
as 𝑛 → ∞ for all

𝑘 ∈ N. Therefore, 𝑥(𝑛) → 𝑥 as 𝑛 → ∞.
Since any weakly convergent sequence in ℓ(𝐵, 𝑝) is

convergent, the sequence space ℓ(𝐵, 𝑝) has the Kadec-Klee
property.

Theorem 13. For any 1 < 𝑝 < ∞, the space (ℓ
𝑝
)
𝐵
has the

uniform Opial property.

Proof. Let 𝜖 > 0 and 𝜖
0
∈ (0, 𝜖) be given such that 1+(𝜖𝑝/2) >

(1 + 𝜖
0
)
𝑝. Also let 𝑥 ∈ (ℓ

𝑝
)
𝐵
and ‖𝑥‖ ≥ 𝜖. There exists 𝑘

1
∈ N

such that
∞

∑

𝑘=𝑘1+1


(𝐵𝑥)
𝑘



𝑝

< (
𝜖
0

4
)

𝑝

. (38)

Hence, we have


∞

∑

𝑘=𝑘1+1

𝑥
𝑘
𝑒
𝑘



<
𝜖
0

4
. (39)
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Furthermore, we have

𝜖
𝑝

≤

𝑘1

∑

𝑘=1


(𝐵𝑥)
𝑘



𝑝

+

∞

∑

𝑘=𝑘1+1


(𝐵𝑥)
𝑘



𝑝

<

𝑘1

∑

𝑘=1


(𝐵𝑥)
𝑘



𝑝

+ (
𝜖
0

4
)

𝑝

<

𝑘1

∑

𝑘=1


(𝐵𝑥)
𝑘



𝑝

+
𝜖
𝑝

4
,

(40)

which yields that

3𝜖
𝑝

4
<

𝑘1

∑

𝑘=1


(𝐵𝑥)
𝑘



𝑝

. (41)

For any weakly null sequence (𝑥(𝑚)) ⊂ 𝑆[(ℓ
𝑝
)
𝐵
], since 𝑥(𝑚)

𝑘
→

0 as 𝑚 → ∞ for each 𝑘 ∈ N, there exists 𝑚
0
∈ N such that

for all𝑚 > 𝑚
0
,



𝑘1

∑

𝑘=1

𝑥
(𝑚)

𝑘
𝑒
𝑘



<
𝜖
𝑝

4
. (42)

Therefore, for all𝑚 > 𝑚
0
,


𝑥
(𝑚)

+ 𝑥

=



𝑘1

∑

𝑘=1

(𝑥
(𝑚)

𝑘
+ 𝑥
𝑘
) 𝑒
𝑘
+

∞

∑

𝑘=𝑘1+1

(𝑥
(𝑚)

𝑘
+ 𝑥
𝑘
) 𝑒
𝑘



≥



𝑘1

∑

𝑘=1

𝑥
𝑘
𝑒
𝑘
+

∞

∑

𝑘=𝑘1+1

𝑥
(𝑚)

𝑘
𝑒
𝑘



−



𝑘1

∑

𝑘=1

𝑥
(𝑚)

𝑘
𝑒
𝑘



−



∞

∑

𝑘=𝑘1+1

𝑥
𝑘
𝑒
𝑘



≥



𝑘1

∑

𝑘=1

𝑥
𝑘
𝑒
𝑘
+

∞

∑

𝑘=𝑘1+1

𝑥
(𝑚)

𝑘
𝑒
𝑘



−
𝜖
𝑝

4
−
𝜖
𝑝

4
.

(43)

Moreover,



𝑘1

∑

𝑘=1

𝑥
𝑘
𝑒
𝑘
+

∞

∑

𝑘=𝑘1+1

𝑥
(𝑚)

𝑘
𝑒
𝑘



𝑝

=

𝑘1

∑

𝑘=1


(𝐵𝑥)
𝑘

𝑒
𝑘



𝑝

+

∞

∑

𝑘=𝑘1+1


(𝐵𝑥
(𝑚)

)
𝑘

𝑒
𝑘



𝑝

≥
3𝜖
𝑝

4
+ (1 −

𝜖
𝑝

4
)

= 1 +
𝜖
𝑝

2

> (1 + 𝜖
0
)
𝑝

.

(44)

Then, we have


𝑥
(𝑚)

+ 𝑥

≥



𝑘1

∑

𝑘=1

𝑥
𝑘
𝑒
𝑘
+

∞

∑

𝑘=𝑘1+1

𝑥
(𝑚)

𝑘
𝑒
𝑘



−
𝜖
𝑝

2

≥ 1 + 𝜖
0
−
𝜖
𝑝

2

> 1 +
𝜖
𝑝

0

2
.

(45)

This means that (ℓ
𝑝
)
𝐵
has the uniform Opial property.

3. Conclusion

The sequence spaces 𝑏V(𝑢, 𝑝) and 𝑏V
∞
(𝑢, 𝑝) of nonabsolute

type consisting of all sequences 𝑥 = (𝑥
𝑘
) such that

{𝑢
𝑘
(𝑥
𝑘
−𝑥
𝑘−1

)} is in theMaddox’ spaces ℓ(𝑝) and ℓ
∞
(𝑝)were

introduced by Başar et al. [13], where 𝑢 = (𝑢
𝑘
) is a sequence

such that 𝑢
𝑘

̸= 0 for all 𝑘 ∈ N and the rotundity of the space
𝑏V(𝑢, 𝑝) was examined.

The sequence space 𝑎𝑟(𝑢, 𝑝) of nonabsolute type consist-
ing of all sequences 𝑥 = (𝑥

𝑘
) such that 𝐴𝑟𝑥 = {∑

𝑛

𝑘=0
(1 +

𝑟
𝑘

)𝑥
𝑘
/(𝑛 + 1)} ∈ ℓ(𝑝) was studied by Aydın and Başar [14],

and some results related to the rotundity of the space 𝑎𝑟(𝑢, 𝑝)
were given.

Quite recently, the sequence space ℓ̂(𝑝) of nonabsolute
type consisting of all sequences 𝑥 = (𝑥

𝑘
) such that 𝐵(𝑟, 𝑠)𝑥 =

(𝑠𝑥
𝑘−1

+ 𝑟𝑥
𝑘
) ∈ ℓ(𝑝) was defined by Aydın and Başar [15],

and emphasized the rotundity of the space ℓ̂(𝑝) together with
some related results.

Although the sequence spaces 𝑎𝑟(𝑢, 𝑝) and ℓ(𝐵, 𝑝) are not
comparable, since the double sequential band matrix 𝐵(𝑟, 𝑠)
reduces to the generalized difference matrix 𝐵(𝑟, 𝑠) in the
special case 𝑟 = 𝑟𝑒 and 𝑠 = 𝑠𝑒, the new space ℓ(𝐵, 𝑝) is
more general than the space ℓ̂(𝑝). Similarly, the sequence
space ℓ(𝐵, 𝑝) is also reduced to the space 𝑏V(𝑢, 𝑝) in the case
𝑟 = (𝑢

𝑘
) and 𝑠 = (−𝑢

𝑘
). So, the results on the space ℓ(𝐵, 𝑝)

are much more comprehensive than the results on the space
𝑏V(𝑢, 𝑝). Additionally, the corresponding theorems on the
Kadec-Klee property of the space ℓ(𝐵, 𝑝) and the uniform
Opial property of the space (ℓ

𝑝
)
𝐵
were not given byBaşar et al.

[13] and Aydın and Başar [15] which make the present paper
significant.
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