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We give several sufficient conditions under which the first-order nonlinear discrete Hamiltonian system Δ𝑥(𝑛) = 𝛼(𝑛)𝑥(𝑛 +
1) + 𝛽(𝑛)|𝑦(𝑛)|

𝜇−2
𝑦(𝑛), Δ𝑦(𝑛) = −𝛾(𝑛)|𝑥(𝑛 + 1)|

𝜈−2
𝑥(𝑛 + 1) − 𝛼(𝑛)𝑦(𝑛) has no solution (𝑥(𝑛), 𝑦(𝑛)) satisfying condition 0 <

∑
+∞

𝑛=−∞
[|𝑥(𝑛)|

𝜈
+ (1 + 𝛽(𝑛))|𝑦(𝑛)|

𝜇
] < +∞, where 𝜇, 𝜈 > 1 and 1/𝜇 + 1/𝜈 = 1 and 𝛼(𝑛), 𝛽(𝑛), and 𝛾(𝑛) are real-valued functions

defined on Z.

1. Introduction

In 1907, Lyapunov [1] established the first so-called Lyapunov
inequality:

(𝑏 − 𝑎) ∫

𝑏

𝑎

𝑞 (𝑡) 𝑑𝑡 > 4, (1)

if Hill’s equation

𝑥

(𝑡) + 𝑞 (𝑡) 𝑥 (𝑡) = 0 (2)

has a real solution 𝑥(𝑡) such that

𝑥 (𝑎) = 𝑥 (𝑏) = 0, 𝑥 (𝑡) ̸≡ 0, 𝑡 ∈ [𝑎, 𝑏] , (3)

and the constant 4 in (1) cannot be replaced by a larger num-
ber, where 𝑞(𝑡) is a piecewise continuous and nonnegative
function defined on R. Since this result has found appli-
cations in the study of various properties of solutions such
as oscillation theory, disconjugacy, and eigenvalue problems
of (2), a large number of Lyapunov-type inequalities were
established in the literature which generalized or improved
(1); see [1–20].

In 1983, Cheng [3] first obtained the discrete analogy
of Lyapunov inequality (1) for the second-order difference
equation:

Δ
2
𝑥 (𝑛) + 𝑞 (𝑛) 𝑥 (𝑛 + 1) = 0, (4)

where, and in the sequel, Δ denotes the forward difference
operator defined by Δ𝑥(𝑛) = 𝑥(𝑛 + 1) − 𝑥(𝑛).

When 𝑎 = −∞ and 𝑏 = +∞, that is, system (4) has a
solution 𝑥(𝑛) satisfying lim|𝑛|→∞ 𝑥(𝑛) = 0, which is called
homoclinic solution, whether one can obtain Lyapunov-type
inequalities for (4)? To the best of our knowledge, there are
no results.

In 2003, Sh. Guseinov and Kaymakçalan [7] partly gen-
eralized the Cheng’s result to the discrete linear Hamiltonian
system:

Δ𝑥 (𝑛) = 𝛼 (𝑛) 𝑥 (𝑛 + 1) + 𝛽 (𝑛) 𝑦 (𝑛) ,

Δ𝑦 (𝑛) = −𝛾 (𝑛) 𝑥 (𝑛 + 1) − 𝛼 (𝑛) 𝑦 (𝑛) ,

(5)

where 𝛼(𝑛), 𝛽(𝑛), and 𝛾(𝑛) are real-valued functions defined
on Z and 𝑎 and 𝑏 are not necessarily usual zeros, but
rather, generalized zeros. Later, some better Lyapunov-type
inequalities for system (5) were obtained in [19, 20].

Very recently, He and Zhang [10] further generalized the
result in [19] to the following first-order nonlinear difference
system:

Δ𝑥 (𝑛) = 𝛼 (𝑛) 𝑥 (𝑛 + 1) + 𝛽 (𝑛)
𝑦 (𝑛)



𝜇−2
𝑦 (𝑛) ,

Δ𝑦 (𝑛) = −𝛾 (𝑛) |𝑥 (𝑛 + 1)|
𝜈−2
𝑥 (𝑛 + 1) − 𝛼 (𝑛) 𝑦 (𝑛) ,

(6)

where 𝜇, 𝜈 > 1 and 1/𝜇+1/𝜈 = 1 and 𝛼(𝑛), 𝛽(𝑛), and 𝛾(𝑛) are
real-valued functions defined on Z.
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When 𝜇 = 𝜈 = 2, system (6) reduces to (5). In addition,
the special forms of system (6) contain many well-known
difference equations which have been studied extensively and
have much applications in the literature [21–23], such as the
second-order linear difference equation:

Δ [𝑝 (𝑛) Δ𝑥 (𝑛)] + 𝑞 (𝑛) 𝑥 (𝑛 + 1) = 0, (7)

and the second-order half-linear difference equation:

Δ [𝑝 (𝑛) |Δ𝑥 (𝑛)|
𝑟−2
Δ𝑥 (𝑛)] + 𝑞 (𝑛) |𝑥 (𝑛 + 1)|

𝑟−2
𝑥 (𝑛 + 1) = 0,

(8)

where 𝑟 > 1, 𝑝(𝑛) and 𝑞(𝑛) are real-valued functions defined
on Z and 𝑝(𝑛) > 0. Let

𝑦 (𝑛) = 𝑝 (𝑛) |Δ𝑥 (𝑛)|
𝑟−2
Δ𝑥 (𝑛) , (9)

then (8) can be written as the form of (6):

Δ𝑥 (𝑛) = [𝑝 (𝑛)]
1/(1−𝑟)𝑦 (𝑛)



(2−𝑟)/(𝑟−1)
𝑦 (𝑛) ,

Δ𝑦 (𝑛) = −𝑞 (𝑛) |𝑥 (𝑛 + 1)|
𝑟−2
𝑥 (𝑛 + 1) ,

(10)

where 𝜇 = 𝑟/(𝑟 − 1), 𝜈 = 𝑟 and 𝛼(𝑛) = 0, 𝛽(𝑛) = [𝑝(𝑛)]1/(1−𝑟)
and 𝛾(𝑛) = 𝑞(𝑛).

In this paper, we will establish several Lyapunov-type
inequalities for systems (5) and (6) if they have a solution
(𝑥(𝑛), 𝑦(𝑛)) satisfying conditions

0 <

+∞

∑

−∞

[|𝑥 (𝑛)|
2
+ (1 + 𝛽 (𝑛))

𝑦 (𝑛)


2
] < +∞, (11)

0 <

+∞

∑

−∞

[|𝑥 (𝑛)|
𝜈
+ (1 + 𝛽 (𝑛))

𝑦 (𝑛)


𝜇
] < +∞, (12)

respectively. Taking advantage of these Lyapunov-type
inequalities, we are able to establish some criteria for
nonexistence of homoclinic solutions of systems (5) and
(6). As we know, there are no results on non-existence of
homoclinic solutions for Hamiltonian systems in previous
literature.

2. Lyapunov-Type Inequalities for System (6)
In this section, we shall establish some Lyapunov-type
inequalities for system (6). For the sake of convenience, we
list some assumptions on 𝛼(𝑛) and 𝛽(𝑛) as follows:

(A0) 𝛼(𝑛) < 1, for all 𝑛 ∈ Z,∏+∞
𝑠=−∞

[1 − 𝛼(𝑠)]
−1
< ∞;

(A1) 𝛼(𝑛) < 1, for all 𝑛 ∈ Z, ∑+∞
𝑠=−∞

|𝛼(𝑠)| < +∞;
(B0) 𝛽(𝑛) ≥ ( ̸≡ ) 0, for all 𝑛 ∈ Z;
(B1) ∑0

𝜏=−∞
𝛽(𝜏)∏

0

𝑠=𝜏
[1 − 𝛼(𝑠)]

−𝜇

+ ∑
+∞

𝜏=1
𝛽(𝜏)∏

𝜏−1

𝑠=0
[1 − 𝛼(𝑠)]

𝜇
< +∞.

Denote

𝜁 (𝑛) := [

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

𝑛

∏

𝑠=𝜏

[1 − 𝛼 (𝑠)]
−𝜇
]

𝜈/𝜇

,

𝜂 (𝑛) := [

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)

𝜏−1

∏

𝑠=𝑛+1

[1 − 𝛼 (𝑠)]
𝜇
]

𝜈/𝜇

.

(13)

Theorem 1. Suppose that hypotheses (A0), (B0), and (B1) are
satisfied. If system (6) has a solution (𝑥(𝑛), 𝑦(𝑛)) satisfying

0 <

+∞

∑

𝑛=−∞

[|𝑥 (𝑛)|
𝜈
+ (1 + 𝛽 (𝑛))

𝑦 (𝑛)


𝜇
] < +∞, (14)

then one has the following inequality:

+∞

∑

𝑛=−∞

𝜁 (𝑛) 𝜂 (𝑛)

𝜁 (𝑛) + 𝜂 (𝑛)
𝛾
+
(𝑛) ≥ 1, (15)

where 𝛾+(𝑛) = max{𝛾(𝑛), 0}.

Proof. Hypothesis (B1) implies that functions 𝜁(𝑛) and 𝜂(𝑛)
are well defined on Z. Without loss of generality, we can
assume that

+∞

∑

𝑛=−∞

𝜁 (𝑛) 𝜂 (𝑛)

𝜁 (𝑛) + 𝜂 (𝑛)
𝛾
+
(𝑛) < +∞. (16)

From (14) and (B0), one has

lim
|𝑛|→∞

|𝑥 (𝑛)| = lim
|𝑛|→∞

𝑦 (𝑛)
 = 0, (17)

+∞

∑

𝜏=−∞

𝛽 (𝜏)
𝑦 (𝜏)



𝜇
< +∞. (18)

It follows from (13), (18), and the Hölder inequality that

𝑛

∑

𝜏=−∞

𝛽 (𝜏)
𝑦 (𝜏)



𝜇−1
𝑛

∏

𝑠=𝜏

[1 − 𝛼 (𝑠)]
−1

≤ [

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

𝑛

∏

𝑠=𝜏

[1 − 𝛼 (𝑠)]
−𝜇
]

1/𝜇

[

𝑛

∑

𝜏=−∞

𝛽 (𝜏)
𝑦 (𝜏)



𝜇
]

1/𝜈

= [𝜁 (𝑛)]
1/𝜈
[

𝑛

∑

𝜏=−∞

𝛽 (𝜏)
𝑦 (𝜏)



𝜇
]

1/𝜈

< +∞, ∀𝑛 ∈ Z,

(19)

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)
𝑦 (𝜏)



𝜇−1
𝜏−1

∏

𝑠=𝑛+1

[1 − 𝛼 (𝑠)]

≤ [

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)

𝜏−1

∏

𝑠=𝑛+1

[1 − 𝛼 (𝑠)]
𝜇
]

1/𝜇

[

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)
𝑦 (𝜏)



𝜇
]

1/𝜈

= [𝜂 (𝑛)]
1/𝜈
[

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)
𝑦 (𝜏)



𝜇
]

1/𝜈

< +∞, ∀𝑛 ∈ Z.

(20)
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From (A0), (17), (19), (20), and the first equation of system
(6), we have

𝑥 (𝑛+1) =

𝑛

∑

𝜏=−∞

𝛽 (𝜏)
𝑦 (𝜏)



𝜇−2
𝑦 (𝜏)

𝑛

∏

𝑠=𝜏

[1−𝛼 (𝑠)]
−1
, ∀𝑛∈Z,

(21)

𝑥 (𝑛+1) =−

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)
𝑦 (𝜏)



𝜇−2
𝑦 (𝜏)

𝜏−1

∏

𝑠=𝑛+1

[1−𝛼 (𝑠)] , ∀𝑛∈Z.

(22)

Combining (19) with (21), one has

|𝑥 (𝑛 + 1)|
𝜈
=



𝑛

∑

𝜏=−∞

𝛽 (𝜏)
𝑦 (𝜏)



𝜇−2
𝑦 (𝜏)

𝑛

∏

𝑠=𝜏

[1 − 𝛼 (𝑠)]
−1



𝜈

≤ 𝜁 (𝑛)

𝑛

∑

𝜏=−∞

𝛽 (𝜏)
𝑦 (𝜏)



𝜇
, ∀𝑛 ∈ Z.

(23)

Similarly, it follows from (20) and (22) that

|𝑥 (𝑛 + 1)|
𝜈
=



+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)
𝑦 (𝜏)



𝜇−2
𝑦 (𝜏)

𝜏−1

∏

𝑠=𝑛+1

[1 − 𝛼 (𝑠)]



𝜈

≤ 𝜂 (𝑛)

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)
𝑦 (𝜏)



𝜇
, ∀𝑛 ∈ Z.

(24)

Combining (23) with (24), one has

|𝑥 (𝑛 + 1)|
𝜈
≤
𝜁 (𝑛) 𝜂 (𝑛)

𝜁 (𝑛) + 𝜂 (𝑛)

+∞

∑

𝜏=−∞

𝛽 (𝜏)
𝑦 (𝜏)



𝜇
, ∀𝑛 ∈ Z.

(25)

Now, it follows from (16), (18), and (25) that

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) |𝑥 (𝑛 + 1)|

𝜈

≤ [

+∞

∑

𝑛=−∞

𝜁 (𝑛) 𝜂 (𝑛)

𝜁 (𝑛) + 𝜂 (𝑛)
𝛾
+
(𝑛)]

×

+∞

∑

𝑛=−∞

𝛽 (𝑛)
𝑦 (𝑛)



𝜇
< +∞.

(26)

By (6), we obtain

Δ (𝑥 (𝑛) 𝑦 (𝑛)) = 𝛽 (𝑛)
𝑦 (𝑛)



𝜇
− 𝛾 (𝑛) |𝑥 (𝑛 + 1)|

𝜈
. (27)

Summing the above from −∞ to +∞ and using (17) and (18),
we obtain

+∞

∑

𝑛=−∞

𝛾 (𝑛) |𝑥 (𝑛 + 1)|
𝜈
=

+∞

∑

𝑛=−∞

𝛽 (𝑛)
𝑦 (𝑛)



𝜇
, (28)

which, together with (26), implies that

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) |𝑥 (𝑛 + 1)|

𝜈

≤ [

+∞

∑

𝑛=−∞

𝜁 (𝑛) 𝜂 (𝑛)

𝜁 (𝑛) + 𝜂 (𝑛)
𝛾
+
(𝑛)]

+∞

∑

𝑛=−∞

𝛽 (𝑛)
𝑦 (𝑛)



𝜇

= [

+∞

∑

𝑛=−∞

𝜁 (𝑛) 𝜂 (𝑛)

𝜁 (𝑛) + 𝜂 (𝑛)
𝛾
+
(𝑛)]

+∞

∑

𝑛=−∞

𝛾 (𝑛) |𝑥 (𝑛 + 1)|
𝜈

≤ [

+∞

∑

𝑛=−∞

𝜁 (𝑛) 𝜂 (𝑛)

𝜁 (𝑛) + 𝜂 (𝑛)
𝛾
+
(𝑛)]

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) |𝑥 (𝑛 + 1)|

𝜈
.

(29)

We claim that
+∞

∑

𝑛=−∞

𝛾
+
(𝑛) |𝑥 (𝑛 + 1)|

𝜈
> 0. (30)

If (30) is not true, then
+∞

∑

𝑛=−∞

𝛾
+
(𝑛) |𝑥 (𝑛 + 1)|

𝜈
= 0. (31)

From (28) and (31), we have

0 ≤

+∞

∑

𝑛=−∞

𝛽 (𝑛)
𝑦 (𝑛)



𝜇
=

+∞

∑

𝑛=−∞

𝛾 (𝑛) |𝑥 (𝑛 + 1)|
𝜈

≤

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) |𝑥 (𝑛 + 1)|

𝜈
= 0.

(32)

It follows that

𝛽 (𝑛)
𝑦 (𝑛)



𝜇−2
𝑦 (𝑛) ≡ 0, ∀𝑛 ∈ Z. (33)

Combining (21) with (33), we obtain that

𝑥 (𝑛) ≡ 0, ∀𝑛 ∈ Z, (34)

which, together with the second equation of system (6),
implies that

Δ𝑦 (𝑛) = −𝛼 (𝑛) 𝑦 (𝑛) , ∀𝑛 ∈ Z. (35)

Combining the above with (17), one has

𝑦 (𝑛) ≡ 0, ∀𝑛 ∈ Z. (36)

Both (34) and (36) contradict with (14).Therefore, (30) holds.
Hence, it follows from (29) and (30) that (15) holds.

Corollary 2. Suppose that hypotheses (A1), (B0), and (B1) are
satisfied. If system (6) has a solution (𝑥(𝑛), 𝑦(𝑛)) satisfying
(14), then one has the following inequality:

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) [

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)]

𝜈/2𝜇

≥2

+∞

∏

𝑛=−∞

{Θ [𝛼 (𝑛)]}
𝜈/2
,

(37)
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where and in the sequel,

Θ [𝛼 (𝑛)] = min {1 − 𝛼+ (𝑛) , [1 + 𝛼− (𝑛)]−1} ,

𝛼
+
(𝑛) = max {𝛼 (𝑛) , 0} , 𝛼

−
(𝑛) = max {−𝛼 (𝑛) , 0} .

(38)

Proof. Obviously, (A1) implies that

0 <

+∞

∏

𝑠=−∞

[1 − 𝛼 (𝑠)] < +∞, (39)

and so (A0) holds, and which, together with (B1), implies that
∑
+∞

𝜏=−∞
𝛽(𝜏) < +∞. Since

𝜁 (𝑛) + 𝜂 (𝑛) ≥ 2[𝜁 (𝑛) 𝜂 (𝑛)]
1/2
, (40)

it follows that

1 ≤

+∞

∑

𝑛=−∞

𝜁 (𝑛) 𝜂 (𝑛)

𝜁 (𝑛) + 𝜂 (𝑛)
𝛾
+
(𝑛)

≤
1

2

+∞

∑

𝑛=−∞

[𝜁 (𝑛) 𝜂 (𝑛)]
1/2
𝛾
+
(𝑛)

=
1

2

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) {

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

𝑛

∏

𝑠=𝜏

[1 − 𝛼 (𝑠)]
−𝜇

×

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)

𝜏−1

∏

𝑠=𝑛+1

[1 − 𝛼 (𝑠)]
𝜇
}

𝜈/2𝜇

≤
1

2

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) {

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

𝑛

∏

𝑠=𝜏

[1 − 𝛼
+
(𝑠)]
−𝜇

×

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)

𝜏−1

∏

𝑠=𝑛+1

[1 + 𝛼
−
(𝑠)]
𝜇
}

𝜈/2𝜇

≤
1

2

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) [

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)]

𝜈/2𝜇

×

𝑛

∏

𝑠=−∞

[1 − 𝛼
+
(𝑠)]
−𝜈/2
+∞

∏

𝑠=𝑛+1

[1 + 𝛼
−
(𝑠)]
𝜈/2

≤
1

2

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) [

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

𝑏

∑

𝜏=𝑛+1

𝛽 (𝜏)]

𝜈/2𝜇

×

+∞

∏

𝑠=−∞

{Θ [𝛼 (𝑠)]}
−𝜈/2
,

(41)

which implies that (37) holds.

Since

[

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)]

1/2

≤
1

2

+∞

∑

𝑛=−∞

𝛽 (𝑛) , (42)

then it follows from (37) that the following corollary is true.

Corollary 3. Suppose that hypotheses (A1), (B0), and (B1) are
satisfied. If system (6) has a solution (𝑥(𝑛), 𝑦(𝑛)) satisfying
(14), then

(

+∞

∑

𝑛=−∞

𝛽 (𝑛))

1/𝜇

(

+∞

∑

𝑛=−∞

𝛾
+
(𝑛))

1/𝜈

≥ 2

+∞

∏

𝑛=−∞

{Θ [𝛼 (𝑛)]}
1/2
.

(43)

Applying Theorem 1 and Corollary 2 to system (8) (i.e.,
(10)), we have immediately the following two corollaries.

Corollary 4. Suppose that 𝑟 > 1 and 𝑝(𝑛) > 0 for 𝑛 ∈ Z, and
that

+∞

∑

𝜏=−∞

1

[𝑝 (𝜏)]
1/(𝑟−1)

< +∞. (44)

If (8) has a solution 𝑥(𝑛) satisfying

0 <

+∞

∑

𝑛=−∞

[|𝑥 (𝑛)|
𝑟
+𝑝 (𝑛) (1+[𝑝 (𝑛)]

1/(𝑟−1)
) |Δ𝑥 (𝑛)|

𝑟
]<+∞,

(45)

then

+∞

∑

𝑛=−∞

({

𝑛

∑

𝜏=−∞

[𝑝 (𝜏)]
−1/(𝑟−1)

}

𝑟−1

{

+∞

∑

𝜏=𝑛+1

[𝑝 (𝜏)]
−1/(𝑟−1)

}

𝑟−1

× ({

𝑛

∑

𝜏=−∞

[𝑝 (𝜏)]
−1/(𝑟−1)

}

𝑟−1

+{

+∞

∑

𝜏=𝑛+1

[𝑝 (𝜏)]
−1/(𝑟−1)

}

𝑟−1

)

−1

)𝑞
+
(𝑛) ≥ 1.

(46)

Corollary 5. Suppose that 𝑟 > 1 and 𝑝(𝑛) > 0 for 𝑛 ∈ Z, and
that (44) holds. If (8) has a solution 𝑥(𝑛) satisfying (45), then

+∞

∑

𝑛=−∞

𝑞
+
(𝑛) {

𝑛

∑

𝜏=−∞

[𝑝 (𝜏)]
−1/(𝑟−1)

+∞

∑

𝜏=𝑛+1

[𝑝 (𝜏)]
−1/(𝑟−1)

}

(𝑟−1)/2

≥ 2.

(47)

3. Lyapunov-Type Inequalities for System (5)
When 𝜇 = 𝜈 = 2, assumption (B1) reduces the following
form:

(B2) ∑0
𝜏=−∞

𝛽(𝜏)∏
0

𝑠=𝜏
[1 − 𝛼(𝑠)]

−2

+ ∑
+∞

𝜏=1
𝛽(𝜏)∏

𝜏−1

𝑠=0
[1 − 𝛼(𝑠)]

2
< +∞.

Applying the results obtained in last section to the first-
order linearHamiltonian system (5), we have immediately the
following corollaries.
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Corollary 6. Suppose that hypotheses (A0), (B0), and (B2) are
satisfied. If system (5) has a solution (𝑥(𝑛), 𝑦(𝑛)) satisfying

0 <

+∞

∑

𝑛=−∞

[|𝑥 (𝑛)|
2
+ (1 + 𝛽 (𝑛))

𝑦 (𝑛)


2
] < +∞, (48)

then

+∞

∑

𝑛=−∞

({

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

𝑛

∏

𝑠=𝜏

[1 − 𝛼 (𝑠)]
−2
}

× {

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)

𝜏−1

∏

𝑠=𝑛+1

[1 − 𝛼 (𝑠)]
2
}

×(

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

𝑛

∏

𝑠=𝜏

[1 − 𝛼 (𝑠)]
−2

+

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)

𝜏−1

∏

𝑠=𝑛+1

[1 − 𝛼 (𝑠)]
2
)

−1

)𝛾
+
(𝑛)≥1.

(49)

Corollary 7. Suppose that hypotheses (A1), (B0), and (B2) are
satisfied. If system (5) has a soldution (𝑥(𝑛), 𝑦(𝑛)) satisfying
(48), then

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) [

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)]

1/2

≥ 2

+∞

∏

𝑛=−∞

Θ [𝛼 (𝑛)] .

(50)

Corollary 8. Suppose that 𝑝(𝑛) > 0 for 𝑛 ∈ Z, and that
+∞

∑

𝜏=−∞

1

𝑝 (𝜏)
< +∞. (51)

If (7) has a solution 𝑥(𝑛) satisfying

0 <

+∞

∑

𝑛=−∞

[|𝑥 (𝑛)|
2
+ 𝑝 (𝑛) (1 + 𝑝 (𝑛)) |Δ𝑥 (𝑛)|

2
] < +∞,

(52)

then
+∞

∑

𝑛=−∞

𝑞
+
(𝑛) [

𝑛

∑

𝜏=−∞

1

𝑝 (𝜏)

+∞

∑

𝜏=𝑛+1

1

𝑝 (𝜏)
] ≥

+∞

∑

𝑛=−∞

1

𝑝 (𝑛)
. (53)

4. Nonexistence of Homoclinic Solutions

Applying the results obtained in Sections 2 and 3, we can
drive the following criteria for non-existence of homoclinic
solutions of systems (5) and (6) immediately.

Corollary 9. Suppose that hypotheses (A0), (B0), and (B1) are
satisfied. If

+∞

∑

𝑛=−∞

𝜁 (𝑛) 𝜂 (𝑛)

𝜁 (𝑛) + 𝜂 (𝑛)
𝛾
+
(𝑛) < 1, (54)

then system (6) has no solution (𝑥(𝑛), 𝑦(𝑛)) satisfying

0 <

+∞

∑

𝑛=−∞

[|𝑥 (𝑛)|
𝜈
+ (1 + 𝛽 (𝑛))

𝑦 (𝑛)


𝜇
] < +∞. (55)

Corollary 10. Suppose that hypotheses (A1), (B0), and (B1) are
satisfied. If

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) [

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

+∞

∑

𝜏=n+1
𝛽 (𝜏)]

𝜈/2𝜇

<2

+∞

∏

𝑛=−∞

{Θ [𝛼 (𝑛)]}
𝜈/2
,

(56)

then system (6) has no solution (𝑥(𝑛), 𝑦(𝑛)) satisfying (55).

Corollary 11. Suppose that hypotheses (A1), (B0), and (B1) are
satisfied. If

(

+∞

∑

𝑛=−∞

𝛽 (𝑛))

1/𝜇

(

+∞

∑

𝑛=−∞

𝛾
+
(𝑛))

1/𝜈

< 2

+∞

∏

𝑛=−∞

{Θ [𝛼 (𝑛)]}
1/2
,

(57)

then system (6) has no solution (𝑥(𝑛), 𝑦(𝑛)) satisfying (55).

Corollary 12. Suppose that hypotheses (A0), (B0), and (B2)
are satisfied. If

+∞

∑

𝑛=−∞

({

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

𝑛

∏

𝑠=𝜏

[1 − 𝛼 (𝑠)]
−2
}

× {

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)

𝜏−1

∏

𝑠=𝑛+1

[1 − 𝛼 (𝑠)]
2
}

× (

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

𝑛

∏

𝑠=𝜏

[1 − 𝛼 (𝑠)]
−2

+

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)

𝜏−1

∏

𝑠=𝑛+1

[1 − 𝛼 (𝑠)]
2
)

−1

)𝛾
+
(𝑛) < 1,

(58)

then system (5) has no solution (𝑥(𝑛), 𝑦(𝑛)) satisfying

0 <

+∞

∑

𝑛=−∞

[|𝑥 (𝑛)|
2
+ (1 + 𝛽 (𝑛))

𝑦 (𝑛)


2
] < +∞. (59)

Corollary 13. Suppose that hypotheses (A1), (B0), and (B2) are
satisfied. If

+∞

∑

𝑛=−∞

𝛾
+
(𝑛) [

𝑛

∑

𝜏=−∞

𝛽 (𝜏)

+∞

∑

𝜏=𝑛+1

𝛽 (𝜏)]

1/2

< 2

+∞

∏

𝑛=−∞

Θ [𝛼 (𝑛)] ,

(60)

then system (5) has no solution (𝑥(𝑛), 𝑦(𝑛)) satisfying (59).
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Corollary 14. Suppose that 𝑝(𝑛) > 0 for 𝑛 ∈ Z, and that (51)
holds. If
+∞

∑

𝑛=−∞

𝑞
+
(𝑛) (

𝑛

∑

𝜏=−∞

1

𝑝 (𝜏)

+∞

∑

𝜏=𝑛+1

1

𝑝 (𝜏)
) <

+∞

∑

𝑛=−∞

1

𝑝 (𝑛)
, (61)

then (7) has no solution 𝑥(𝑛) satisfying (52).

Example 15. Consider the second-order difference equation:

Δ [(1 + 𝑛
2
) Δ𝑥 (𝑛)] + 𝑞 (𝑛) 𝑥 (𝑛 + 1) = 0, (62)

where 𝑞(𝑛) is real-valued function defined on Z. In view of
Corollary 14, if
+∞

∑

𝑛=−∞

[(

𝑛

∑

𝜏=−∞

1

1 + 𝜏2

+∞

∑

𝜏=𝑛+1

1

1 + 𝜏2
)] 𝑞
+
(𝑛) <

+∞

∑

𝑛=−∞

1

1 + 𝑛2
,

(63)

then (62) has no solution 𝑥(𝑛) satisfying

0 <

+∞

∑

𝑛=−∞

[|𝑥 (𝑛)|
2
+ (1 + 𝑛

2
)
2

|Δ𝑥 (𝑛)|
2
] < +∞. (64)
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